
Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

NSMARK: NULL SPACE BASED BLACK-BOX
WATERMARKING DEFENSE FRAMEWORK FOR
LANGUAGE MODELS

Haodong Zhao♠♢ Jinming Hu♠ Peixuan Li♠ Fangqi Li♠ Jinrui Sha♠

Tianjie Ju♠ Peixuan Chen♢ Zhuosheng Zhang∗♠ Gongshen Liu∗♠
♠Shanghai Jiao Tong University ♢Tencent

ABSTRACT

Language models (LMs) have emerged as critical intellectual property (IP) as-
sets that necessitate protection. Although various watermarking strategies have
been proposed, they remain vulnerable to Linear Functionality Equivalence At-
tack (LFEA), which can invalidate most existing white-box watermarks without
prior knowledge of the watermarking scheme or training data. This paper an-
alyzes and extends the attack scenarios of LFEA to the commonly employed
black-box settings for LMs by considering Last-Layer outputs (dubbed LL-LFEA).
We discover that the null space of the output matrix remains invariant against
LL-LFEA attacks. Based on this finding, we propose NSMARK, a black-box water-
marking scheme that is task-agnostic and capable of resisting LL-LFEA attacks.
NSMARK consists of three phases: (i) watermark generation using the digital
signature of the owner, enhanced by spread spectrum modulation for increased
robustness; (ii) watermark embedding through an output mapping extractor that
preserves the LM performance while maximizing watermark capacity; (iii) water-
mark verification, assessed by extraction rate and null space conformity. Extensive
experiments on both pre-training and downstream tasks confirm the effectiveness,
scalability, reliability, fidelity, and robustness of our approach. Code is available at
https://github.com/dongdongzhaoUP/NSmark.

1 INTRODUCTION

Over the past few decades, language models (LMs) have achieved exceptional performance and found
applications across a wide range of fields. However, training high-performance LMs requires vast
amounts of data and significant computational resources, making these models valuable intellectual
property (IP). With the rise of machine learning as a service (MLaaS) platforms, companies sell
well-trained LMs as commodities and release APIs for public access. Once these models are illegally
stolen, distributed or resold, the rights of the model owners are severely violated. Therefore, protecting
the intellectual property of LMs is essential.

Watermarking techniques have been widely used to protect the IP of deep learning models Chen et al.
(2024); He et al. (2024); Carlini et al. (2024); Feng et al. (2024). By incorporating identifiable infor-
mation, these techniques could verify model ownership and provide proof of authenticity. Existing
watermarking schemes can be categorized into white-box and black-box approaches, depending on
whether the model parameters need to be accessed in verification. Among these, black-box schemes
are more applicable in real-life scenarios, where model parameters are often inaccessible, such as in
cases where models are deployed as APIs.

However, protecting the IP of LMs through watermarking presents significant challenges. Since LMs
can be deployed for various post-training downstream tasks Zhang et al. (2023), it is crucial that wa-
termark schemes remain task independent. Furthermore, recent studies have revealed vulnerabilities
and shortcomings in existing watermarking techniques Li et al. (2023a). Specifically, the proposed
Linear Functionality Equivalence Attack (LFEA) is simple to conduct and can compromise most ex-
isting white-box watermarks by exploiting linear invariance without knowledge of the watermarking

∗Corresponding authors.

1

https://github.com/dongdongzhaoUP/NSmark

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

(a) White-box
watermarking based
on model parameters

(b) Black-box
watermarking based

on model output

(c) Our proposed null
space based
watermarking

WER

NSMD

LFEA / LL-LFEA
LFEA

Destroyed watermark

OutputsModel
parameters Outputs

Destroyed watermark

LL-LFEA

Secure watermark

LL-LFEA

Figure 1: Illustration of different watermark
schemes against LFEA/LL-LFEA. LFEA dis-
ables parameters based white-box schemes Li
et al. (2023a) and LL-LFEA disables output
based black-box schemes (Section 3.1). NS-
MARK is secure against LL-LFEA using null
space invariance.

Downstream
model

Input

LL-LFEA

…*

LM

Linear Layer 𝑊

Non-linear Layer

Output Layer

Output
vector �⃗�

Prediction 𝑦

…*

LM

Linear Layer 𝑊!

Non-linear Layer

Output Layer

Prediction 𝑦!

Attacked
vector 𝜑(�⃗�)

… …

Figure 2: The schematic diagram of model infer-
ence flow before and after LL-LFEA attack. LL-
LFEA transforms the LM output and performs an
inverse transform in the subsequent linear layer,
leaving the final prediction unchanged.

scheme or the training data. As the hidden states and outputs of the last layer in LM are widely used
for classification and generation tasks, we consider them, analyze and expand LFEA scenarios to
black-box settings utilizing model outputs (dubbed LL-LFEA).

In this work, we first explore the characteristics of the model output. We discover that the null space
of the matrix composed of the model output vectors is invariant under LL-LFEA. Based on this
finding, we propose a new null space verification method that can withstand the LL-LFEA attack.
This method uses a new metric, the Null Space Matching Degree (NSMD). NSMD measures the
degree of match between the output matrix of the suspicious model and the null space of the protected
LM. Finally, we propose NSMARK, a null-space-based task-agnostic black-box watermarking scheme
for LMs. NSMARK uses identity information to generate all elements related to the watermark
and uses the Watermark Extracting Rate (WER) and NSMD to verify the watermark, thus can pass
through as shown in Figure 1. Spread spectrum modulation technology and an extra extractor are
also introduced to enhance watermark performance.

Our contributions are summarized as follows:

(i) We analyze the threat of LFEA on output-based watermark and propose LL-LFEA, which
can destroy the watermark embedded in the output vector without affecting the performance of
downstream tasks.

(ii) We find that the null space of the matrix composed of the output vectors of the model is invariant
under LL-LFEA and thus propose a new null space verification method NSMARK which can resist
LL-LFEA. Notably, NSMARK is task-agnostic that uses both new null space verification and signature
verification to resist LL-LFEA.

(iii) We conduct comprehensive experiments by applying NSMARK to various models of pre-training
and downstream tasks. The experimental results demonstrate the effectiveness, fidelity, reliability,
and robustness of NSMARK.

2 RELATED WORK

Watermarking for LMs. With the rise of pre-training in NLP, recent work has explored watermark-
ing specific to LMs. BadPre Jia et al. (2022) introduced a task-agnostic backdoor attack only for
MLM-based LMs. Hufu Xu et al. (2024) introduced a modality-agnostic approach for pre-trained
Transformer models using the permutation equivariance property. Explanation as a Watermark
Shao et al. (2024) addressed the limitations of backdoor-based techniques by embedding multi-bit
watermarks into feature attributions using explainable AI. Peng et al. (2023); Shetty et al. (2024)
proposed Embeddings-as-a-Service (EaaS) watermarks to protect the intellectual property of EaaS
providers. Shen et al. (2021); Zhang et al. (2023) proposed task-agnostic backdoor attacks by assign-
ing high-dimensional vectors as trigger set labels, but their effectiveness is sensitive to downstream
classifier initialization. Wang & Kerschbaum (2021) introduced an auxiliary neural network for wa-
termark embedding using weights from the main network. Wu et al. (2022) proposed a task-agnostic

2

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

embedding loss function, but didn’t consider the need for triggers to reflect the model owner’s identity.
Cong et al. (2022) introduced a black-box watermarking scheme for PLMs, but its applicability is
limited due to the discrete nature of word tokens. Unfortunately, these schemes are vulnerable to
attacks by LFEA or LL-LFEA in principle.

Watermark Removal Attacks. DNN watermarking faces various removal attempts. Common
methods include fine-tuning Adi et al. (2018) and pruning Han et al. (2015). Fine-pruning Liu et al.
(2018) combines these approaches for greater effectiveness. Knowledge Distillation Hinton (2015)
techniques can also inadvertently remove watermarks while reducing model size. Shetty et al. (2024)
show that existing EaaS watermarks can be removed by paraphrasing attack. Lukas et al. (2022)
propose a new attack method called Neuron Reordering to swap neurons within the same hidden layer
of a DNN to disrupt embedded watermarks in the model’s parameters. Li et al. (2023a) introduce
a powerful LFEA for white-box watermarks, applying linear transformations to model parameters,
effectively destroying embedded watermarks while preserving the model’s original functionality.
Fraud attacks include overwriting Wang & Kerschbaum (2019) and ambiguity attacks Zhu et al.
(2020) also pose a great threat to watermarks.

3 METHOD

3.1 THREAT MODEL

In white-box watermarking schemes, high-dimensional model parameters are often used as watermark
information. For LMs, since the output of the last layer is also high-dimensional, we can use a method
similar to the white-box schemes to embed watermarks in the output. However, embedding identity
information into the high-dimensional output vector will face the threat of LFEA-like attacks, which is
proposed to destroy watermark information embedded in model parameters by linearly transforming
parameters of intermediate layers. Next, we discuss the specific form of linear isomorphism attacks.

Assume the attacker knows the watermark information is embedded in the LM output and seeks to
remove the watermark with minimal attack cost (without modifying the model structure or fine-tuning
the model) while ensuring that the model’s normal task performance remains unaffected. As shown
in Figure 2, we propose an attack method that satisfies this requirement and provide a proof below.

The output vector x⃗ is generated by the LM and serves as input to the downstream model. After
passing through a series of linear and non-linear layers, the prediction result y is obtained. The
attacker attempts to modify the output vector of the LM to destroy the watermark while ensuring that
the final prediction remains unaffected. Specifically, the attacker changes x⃗ to φ(x) and inputs it into
the downstream model, so that the resulting prediction y′ remains equal to the original prediction y.

The sufficient condition for this result is that the modification to the LM output vector is compensated
for after passing through the first linear layer of the downstream network. Let the parameter matrix
of the first linear layer in the downstream network be denoted by W . In this case, the attacker
aims to satisfy the following condition: W ′φ(x⃗) = Wx⃗, which leads to φ(x⃗) = W ′,†Wx⃗ = Qx⃗,
where Q = W ′,†W and W ′,† is the pseudo-inverse of W ′ Li et al. (2023a). To avoid loss of
information during the linear transformation (since this would adversely affect downstream tasks), Q
must be a reversible matrix. We present a simple method and analysis on how to quickly generate
high-dimensional Q in Appendix A.1.

We show that the attacker can apply a linear transformation to x⃗ thereby destroying the watermark
embedded in the output vector, while leaving the downstream task performance unchanged. We refer
to this attack as the Last-Layer Linear Functionality Equivalence Attack (LL-LFEA). In addition to
the theoretical analysis, the effectiveness of LL-LFEA is experimentally verified in Appendix B.1.

3.2 NULL SPACE VERIFICATION THEORY

LL-LFEA applies a linear transformation to the output vector of LM and can destroy the embedded
watermark. As a result, previous watermark verification methods may be significantly impacted.
We observe that the null space of the matrix composed of the output vector is invariant under the
LL-LFEA attack. Based on this, we propose to use the null space matching degree to verify whether
the model is embedded with watermarks.

3

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Watermark Generation

𝑚

𝐾!"#

1 -1 1 -1
𝑠𝑖𝑔

𝐻𝑎𝑠ℎ
𝑡

Watermark Embedding Watermark Verification

𝑠𝑚

𝐷$
𝐻𝑎𝑠ℎ

𝑆𝑝𝑟𝑒𝑎𝑑
𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚

𝑓!"#
𝐷'

𝐷

𝐸

𝐿()*+, + 𝐿-)./0(+ 𝐿1

𝑁

𝐷$ 𝑓$%$& 𝐸

𝑠𝑚

𝑓'(
𝐴232!

𝑠𝑖𝑔

WER

NSMD

Figure 3: The overall workflow of NSMARK. (i) In watermark generation, identity information is
used generate sig. (ii) In watermark embedding, watermarked model fwm and extractor E are trained
with the participation of the reference model fref . (iii) In watermark verification, WER and NSMD
collaborate to verify the identity of the model.

Theorem 1. Before and after LL-LFEA, the null space of the output matrix of PLM remains unchanged
for the same input set. (Proofs in Appendix A.2)

Therefore, even if the watermark based on the digital string is corrupted, we can still verify model
ownership using the null space of the output matrix.

3.3 NULL SPACE MATCH DEGREE (NSMD)

We define NSMD by introducing the distribution of elements in a matrix, which is obtained by
multiplication of the matrix of the output matrix A of any LM without watermark and the null space
matrix N of fwm. In H(n×p) = A(n×m) ×N(m×p), Hi,j = αi · βj is the dot product of the ith row
vector of A and the jth column vector of N . We define NSMD of A and N as:

NSMD(A,N) =
1

n

n∑
i=1

p∑
j=1

√
|Hi,j |. (1)

Furthermore, we give a detailed analysis of estimation of NSMD (in Appendix A.3). For example, if
n = 768 and p = 1500, we have NSMD > 27.48. If N is the null space matrix of A, NSMD is a
minimum value close to 0. This difference is amplified by the process of calculating the square root,
resulting in a significant difference between whether A and N are matched. We use this difference to
distinguish whether the model is embedded with a watermark.

3.4 OVERALL FRAMEWORK OF NSMARK

NSMARK includes three modules: watermark generation, watermark embedding, and watermark
verification, as shown in Figure 3. We describe the modules as follows.

3.4.1 WATERMARK GENERATION

Algorithm 1 shows the watermark generation workflow. We hope that the generated watermark
contains the owner’s identity information. First, the digital signature sig = Sign(m) is generated
from the identity information message m. To ensure that the trigger t has a unique mapping
relationship with sig, only one trigger is used. We use the trigger generation algorithm Encode(·)
introduced in Li et al. (2023b) to obtain t = Encode(sig, n = 1). t is inserted into clean sample x of
dataset D to form a trigger set DT .

To defend against ambiguous attacks, the verification trigger set DV used for the null space verification
also needs to be generated based on sig. A candidate pool DNS to generate null space verification
data sets should be published, and then a fixed number of samples are selected from the DNS based
on the digital signature as the verification data set DV . We define the verification data set selection
algorithm as Select(sig)→ DV , which must be a deterministic algorithm, that is, for the same input,
there must be the same output. In addition, we hope that the algorithm will have different outputs for

4

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

different inputs. Therefore, we choose a hash function and use a one-way hash chain to generate DV .
We hope that the index repetition rate obtained by different hash-value mappings is low, so we hope
that the data set DNS is as large as possible. The specific process of the Select(·) algorithm is shown
in Algorithm 2.

To improve the robustness of the watermark, we introduce the spread spectrum modulation technology
as Feng & Zhang (2020). Spread spectrum modulation technology uses redundant bits to represent
the original information. Figure 7 shows an example of the spreading of 3×. Please refer to
Appendix A.6.1 for the specific process SM(sig)→ sigwm.

3.4.2 WATERMARK EMBEDDING

Before the training starts, make a copy of fwm as the frozen reference model fref . Then use the
clean data set D and the trigger set DT to train fwm and the extractor E. When taking {D,DT } as
input, fwm will output {V, V T } and fref will output {Vref , V

T
ref}, respectively. For V T , E maps

it to obtain the signature sigwm, and for {V, Vref , V
T
ref}, E maps them to random vectors. After

the training is completed, fwm is embedded with the watermark. Then using DV as input, the
output vectors are concatenated into a matrix A, and the corresponding null space matrix N of A is
calculated as part of the key.

Three networks are involved in watermark embedding: the model fwm to be embedded with the
watermark, the reference model fref and the extractor model E. Compared to directly embedding
sig in the output vector of fwm, adding E to the map can reduce the side effect of the watermark on
the original performance. The watermark capacity is increased at the same time. We use the mean
square error loss (MSE) and the similarity function sim to implement the above training process:

Lmatch =
1

|DT |
∑

x∈DT

MSE
(
E

(
V

T
)
, sigsm

)
, (2)

Lrandom =
1

|D|
∑
x∈D

sim (E (V) , sigsm)
2
+

1

|DT |
∑

x∈DT

sim
(
E

(
V

T
ref

)
, sigsm

)2
+

1

|D|
∑
x∈D

sim (E (Vref) , sigsm)
2
.

(3)

We use cosine similarity as the sim function. The complete loss function of E is LExtractor =
λ1Lmatch + (1 − λ1)Lrandom. During training, only the parameters of E are trainable. The loss of
fwm also consists of two parts: Lwm = λ2Lmatch + (1− λ2)L0. The content of this Lmatch is the
same as Lmatch of E, but only the parameters of fwm are updated at this time, and L0 is the original
LM training loss function. During training, E and fwm are trained alternately.

3.4.3 WATERMARK VERIFICATION

To effectively defend attacks, NSMARK uses two metrics together to verify ownership: WER and
NSMD. Model owner needs to submit key = (sig, E,N) to the Certification Authority (CA). CA
generates t,DV , sm using sig. Input DV to the suspicious model fsusp to get the output vector
Asusp, and pass Asusp through E to get the mapped vector Osusp. Then WER is obtained from the
despread spectrum. WER is defined from comparing bits in sig and sig′:

WER =
1

n

n−1∑
i=0

[ai = a′i] , (4)

where [·] is the inverse bracket, which is 1 when the expression in the bracket is True, otherwise 0.

NSMD is calculated using Asusp and N by Equation 1. We define two thresholds, and whether
WER> TW will be first verified. If it fails, whether NSMD< TN will be further considered in the
case of LL-LFEA.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use WikiText-2 Merity et al. (2017) for pre-training and watermark embedding. To
evaluate the performance on downstream tasks, we select many text classification datasets: SST-2 and

5

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

SST-5 Socher et al. (2013) for sentiment analysis, Lingspam Sakkis et al. (2003) for spam detection,
OffensEval Zampieri et al. (2019) for offensive language identification and AG News Zhang et al.
(2015) for news classification.

Table 1: Effectiveness of NSMARK on different LMs. fwm means watermarked model and fclean is
not watermarked. WER=1.00 indicates that the signature information can be accurately extracted,
and NSMD has obvious differentiation between fwm and fclean.

Metric fwm fclean

BERT RoBERTa DeBERTa XLNet BERT RoBERTa DeBERTa XLNet

WER 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.03

NSMD 2.94× 10−6 2.53× 10−6 2.91× 10−6 2.90× 10−6 60.95 61.24 87.88 76.74

Models. For LMs, we use the base versions of BERT Kenton & Toutanova (2019), RoBERTa Liu
(2019), DeBERTa He et al. (2020) and XLNet Yang (2019) for main results. Llama-2-7B Touvron
et al. (2023), GPT-2 Radford et al. (2019) and the large version of BERT and RoBERTa are also used
in supplementary experiments. All pretrained weights are from HuggingFace.1 The extractor network
is a three-layer linear network with hidden layers of neurons 2048 and 1024. The input dimension
matches the output dimension of the LM. The output dimension matches the size of sigsm.

Watermark settings and training details. We select a string containing owner information as the
message m, for example, ”BERT is proposed by Google in 2018”. The length of sig is 256 and
then spread spectrum by a factor k = 3, resulting in a 768-bit sigsm. SST-2 is used as the candidate
pool DNS . q, the length of DV , is 1500. The trigger is inserted into random positions for 5 times in
the trigger set. When performing watermark embedding, λ1 = 0.5 and λ2 = 0.2 in LExtractor and
Lwm. The batchsize is 4, and the learning rates for both fwm and E are 10−4. fwm and E are trained
alternately for the 10 epochs. When fine-tuning downstream tasks, the learning rate is 2× 10−5 and
the batchsize is 8 for 3 epochs.

Metrics. As mentioned before, two metrics are defined to verify the identity of the model: WER and
NSMD. Besides, we adopt accuracy (ACC) to measure the performance of LM on downstream tasks.

4.2 LL-LFEA ATTACK EVALUATION

We select the effective word embedding-based watermarking scheme (EmbMarker) Peng et al. (2023)
and NSMARK (without NSMD) as victims to study the effectiveness of LL-LFEA. The attack results
on EmbMarker are shown in Appendix B.1 and the results on NSMARK (without NSMD) are shown
in Table 4. Though EmbMarker can pass through the attack of RedAlarm Zhang et al. (2023), after
the LL-LFEA attack, all the metrics of EmbMarker are very close to those of the original model
without watermark. At the same time, LL-LFEA has little degradation on original model performance.
This fully demonstrates the effectiveness of LL-LFEA on existing watermarking schemes.

4.3 NSMARK PERFORMANCE EVALUATION

We analyze the main experimental results about NSMARK. For more results on computational cost
and other more detailed experiments, please refer to Appendix B.

4.3.1 EFFECTIVENESS

Effectiveness means that the watermark can achieve the expected effect during verification. Ideally,
sig′ extracted from the watermarked model should be consistent with the original sig, and the output
matrix of fwm for DV should match completely N stored in key, which means WER = 1 and NSMD
= 0. Table 1 shows the results of fwm embedded with watermark and fclean without watermark. It
can be seen that for different watermarked LMs, WER is 1 and NSMD is close to 0. This shows
the effectiveness of NSMARK. Comparison of the values of fwm and fclean shows that WER and
NSMD will obviously change after the watermark is embedded. Although NSMD of different LMs
has different values, they are all far from 0. Through these results, we can preliminarily define

1https://huggingface.co/

6

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 2: WER results of different extractor E.
fwm, Ec, and Ew means watermarked model,
correct E and wrong E, respectively. Only the
correct E can accurately extract the signature.

Setting BERT RoBERTa DeBERTa XLNet

fwm + Ec 1.00 1.00 1.00 1.00
fwm + Ew 0.00 0.00 0.00 0.13

Table 3: NSMD of different null space matrix
N . fwm, Nc, Nr and Ns means watermarked
model, correct N , random N and N composed
of small elements, respectively. Only when the
correct N is used can the NSMD be close to 0.

Setting BERT RoBERTa DeBERTa XLNet

fwm +Nc 2.94× 10−6 2.53× 10−6 2.91× 10−6 2.90× 10−6

fwm +Nr 3167.81 3171.58 3182.79 3117.61
fwm +Ns 1001.75 1002.94 1006.49 985.87

verification thresholds of WER and NSMD as TW = 0.6 and TN = 43, which are 0.6× the average
gaps. Thresholds can be further adjusted according to different models and task types. We also
study the watermark effectiveness on larger size of the models in Table 10, which demonstrates the
scalability of NSMARK.

4.3.2 RELIABILITY

The watermark key is a triple key = (sig, E,N). Next, we analyze whether the watermark can be
successfully verified if an attacker provides an incorrect key.

fwm
+ tc+

sigc

fwm
+ tw

+ sigc

fwm
+ tc+

sigw

fwm
+ tw

+ sigw

f clean+
tc+

sigc
0.00

0.25

0.50

0.75

1.00

W
E

R

1.00

0.00

0.48

0.00 0.00

fwm
+ tc+

sigc

fwm
+ tw

+ sigc

fwm
+ tc+

sigw

fwm
+ tw

+ sigw

f clean+
tc+

sigc
0

20

40

60

N
SM

D

0.00

57.20

0.00

57.20
60.95

Figure 4: The impact of the correctness of trigger
t and signature sig on WER and NSMD. The c
in the subscript stands for correct and w stands
for wrong. Only fwm with correct trigger and
sig can pass through verification.

BERT RoBERTa DeBERTa XLNet
0.0

0.2

0.4

0.6

0.8

1.0

W
E

R

1.00 1.00 1.00 1.00

0.27

0.07

0.27

0.00

1.00 1.00 1.00 1.00

BERT RoBERTa DeBERTa XLNet
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
SM

D

0.00 0.00 0.00 0.00

0.06

0.04

0.07

0.05

0.04 0.04

0.05

0.04

fwm fLL−LFEA frec

Figure 5: Changes of WER and NSMD before
and after LL-LFEA attack and recovery. fwm,
fLL−LFEA and frec denote watermarked model,
fwm attacked by LL-LFEA, recovered model
from fLL−LFEA, respectively.

Wrong signature sig. The trigger t and the output of fwm are related to sig, but as sig and t are
not a one-to-one mapping relationship, there are situations where only one of sig and t is correct.
Figure 4 shows all possible scenarios.

For fwm, (i) when the trigger is wrong (tw) and the signature is correct (sigc), WER = 0, NSMD
> TN . This means that fwm has learned the relationship between sig and t. Whether t is correct
determines whether fwm can produce the expected output, which in turn affects both the calculation
of WER and NSMD. (ii) When the trigger is correct (tc) and the signature is wrong (considering
the most dangerous scenario that sigw consists only of {−1, 1}), WER ≈ 0.5. This is because tc
leads to the right sig′, and its expectation of WER with a random string {−1, 1} is 0.5. As the output
matrix is correctly generated by fwm based on tc, NSMD = 0 in this case. (iii) When both trigger and
signature are wrong (tw and sigw), WER = 0, NSMD> TN , indicating that the watermark cannot be
correctly verified without providing the correct key. (iv) For a model without embedded watermarks
fclean, watermarks cannot be extracted even if the correct key is provided.

Wrong extractor E. Since E is not involved in NSMD calculation, we only analyze the impact of E
on WER. As shown in Table 2, when E is wrong, the WER is close to 0, indicating that wrong E is
unable to extract the watermark.

Wrong null space N . Since N is not involved in calculating WER, we only analyze its impact
on NSMD. As shown in Table 3, Nr is a randomly generated matrix with the same dimension as
N and each element is distributed between [0, 1]. It can be seen that NSMD is very large at this
time. However, if the attacker knows the watermark algorithm and want to reduce NSMD, a Ns

with extremely small elements might be generated. In this case, NSMD might meet the verification
requirements. This indicates that NSMD cannot be used independently to verify the watermark.

7

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 4: Impact of fine-tuning on watermark perfor-
mance. Fwm means fine-tuned whole watermarked
model and Fclean denotes fine-tuned model with-
out watermark. (i) Fwm has a slight loss in ACC
compared to Fclean. (ii) Fine-tuning has little ef-
fect on the WER of Fwm. (3) Fine-tuning increases
the NSMD, but it is still significantly different from
the model without watermark.

Metric Model Setting SST-2 SST-5 Offenseval Lingspam AGnews

ACC

BERT Fwm 91.40 52.62 85.12 99.14 93.95
Fclean 91.63 53.03 84.07 99.66 94.38

RoBERTa Fwm 92.55 54.71 84.30 99.66 94.43
Fclean 94.04 56.15 84.88 100.00 94.72

DeBERTa Fwm 93.00 55.48 83.02 99.31 94.61
Fclean 93.58 57.65 85.12 99.31 94.84

XLNet Fwm 88.65 42.67 81.98 99.14 93.29
Fclean 93.58 53.62 84.65 99.31 94.07

WER

BERT Fwm 1.00 1.00 1.00 0.94 1.00
Fclean 0.00 0.00 0.00 0.00 0.00

RoBERTa Fwm 0.98 1.00 1.00 0.72 0.99
Fclean 0.00 0.00 0.00 0.00 0.00

DeBERTa Fwm 1.00 1.00 1.00 0.80 0.88
Fclean 0.00 0.00 0.00 0.00 0.00

XLNet Fwm 1.00 1.00 1.00 0.92 1.00
Fclean 0.00 0.00 0.00 0.01 0.00

NSMD

BERT Fwm 29.77 25.29 22.52 21.96 24.37
Fclean 72.97 70.06 66.65 69.90 61.59

RoBERTa Fwm 50.17 30.97 25.15 26.78 28.43
Fclean 74.75 74.48 69.90 65.06 75.54

DeBERTa Fwm 31.89 25.74 23.52 27.23 37.68
Fclean 80.81 76.72 72.41 68.49 76.33

XLNet Fwm 24.12 23.52 25.29 24.06 26.20
Fclean 76.30 74.75 69.84 78.09 74.97

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning Rate

0.0

0.2

0.4

0.6

0.8

1.0

W
E

R

0.00

fwm

fclean

0

10

20

30

40

50

60

N
SM

D

60.95

fwm

fclean

Table 5: Impact of pruning attacks on watermark.
The dotted line is the performance of the original
model without watermark.

Table 6: Impact of overwriting attacks on water-
mark performance. fow is the overwritten model,
which is fine-tuned to obtain Fow. “–” means not
applicable.
Model Downstream dataset ACC WER NSMD

fow – – 1.00 22.76

Fow

SST-2 92.32 0.98 48.77
SST-5 50.54 1.00 36.47

Offenseval 84.77 1.00 36.61
Lingspam 99.31 0.62 28.87
AGnews 93.51 1.00 32.49

Table 7: LL-LFEA results on NSMARK. fwm means watermarked model and fLL−LFEA denotes
fwm attacked by LL-LFEA. Due to the invariance of the null space to linear transformations, NSMD
can still effectively prove the IP of the model despite the failure of WER.

Metric BERT RoBERTa DeBERTa XLNet
fwm fLL−LFEA fwm fLL−LFEA fwm fLL−LFEA fwm fLL−LFEA

WER 1.00 0.27 1.00 0.07 1.00 0.27 1.00 0.00
NSMD 2.94× 10−6 0.06 2.53× 10−6 0.04 2.91× 10−6 0.07 2.90× 10−6 0.05

4.3.3 FIDELITY

We hope that NSMARK does not affect the performance on the original tasks. Thus, we add a
downstream network to fwm, and fine-tune the whole model Fwm with the downstream dataset.
Fclean without watermark is fine-tuned as baseline. Table 4 shows that the watermark has almost no
impact on the performance of the model on the original task.

4.3.4 DEFENSE AGAINST LL-LFEA

Defense against LL-LFEA. When designing NSMARK, we focus on resisting LL-LFEA and propose
null space verification using NSMD. Table 7 shows the impact of LL-LFEA on watermark verification,
where fLL−LFEA denotes the model fwm attacked by LL-LFEA. Experiments show that after LL-
LFEA, WER drops significantly, as discussed in Section 3.1, but NSMD is still close to 0, verifying
that NSMD is an effective indicator for LL-LFEA. Furthermore, after applying LL-LFEA, the attacker
can add a network to fLL−LFEA and fine-tune it for downstream tasks (detailed results are presented
in Appendix B.3). Additionally, since LL-LFEA causes minimal degradation in model performance,
the attacker may attempt to further compromise the watermark through multiple LL-LFEA attacks.
Analysis for this aspect is provided in Appendix B.7.

Recovery of WER. In LFEA Li et al. (2023a), a method is proposed to recover the watermark. We
revise this method to recover frec from fLL−LFEA. Specifically, assume that the output matrix
of fwm is A1(n×m) as Proof A.2. After being attacked with Q(n×n), the output matrix turns to

8

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

A2 = Q×A1. Therefore, an estimate of Q can be obtained as Q′ = A2 ×A−1
1 . If m ̸= n, then A1

is not reversible and Q′ = A2×AT
1 × (A1×AT

1)
−1. Then we perform an anti-attack transformation

on fLL−LFEA, that is, multiply all the outputs of fLL−LFEA by Q′ to get frec. Figure 5 shows that
after recovery, WER is significantly improved, indicating that such linear attacks are recoverable. In
all cases, the NSMD is quite small, proving that NSMD is invariant to LL-LFEA. In the recovery
algorithm in Li et al. (2023a), both the attacker and the model owner might use such an algorithm to
claim to be the owner of the model, which will cause verification ambiguity. However, our proposed
NSMD is invariant under LL-LFEA, so as long as the timestamp information is added to the key
tuple, the ownership can be reliably verified according to the time sequence of the model and the
release of key.

4.3.5 ROBUSTNESS

The robustness of watermark refers to whether watermark can be effectively verified after watermark
removal attacks. Next, we will analyze the robustness of NSMARK against fine-tuning, pruning,
fine-pruning, and overwriting attacks. More robustness analysis against paraphrasing attack and
multi-time LL-LFEA attack are shown in Appendix B.6- B.7.

Robustness against fine-tuning. Table 4 shows the WER and NSMD results after fine-tuning on
downstream tasks. Fwm and Fclean are obtained the same as in Section 4.3.3. In most cases, the WER
is still very high, indicating that the embedded sig can still be effectively extracted after downstream
fine-tuning. However, the WER of RoBERTa on Lingspam task is relatively low. In main results we
set the max input length to 128, which is quite shorter than the average length of Lingspam samples
(average length of 695.26). Thus it is not sure the model’s input includes triggers (possibly truncated).
We perform further experiments on increasing the max length of input to 512, and modify the position
of trigger to the front. WER increases to more than 0.84 and 0.87 respectively. Besides, compared to
Fclean, there is still obvious discrimination. Therefore, for complex tasks, the verification threshold
TW can be slightly lowered.

Robustness against pruning and fine-pruning. Pruning is a commonly used model compression
method and is often used to destroy the watermark embedded in the model. Referring to Han et al.
(2015); Shao et al. (2024), we sort the parameters of each layer in LM, then set some fractions
of parameters with smaller absolute value to 0. Figure 5 shows that when the pruning rate is less
than or equal to 0.8, the WER is close to 1.0. When the pruning rate is less than or equal to 0.6,
NSMD does not change significantly, and even when the pruning rate is as high as 0.9, NSMD is
still distinguishable. Besides, as shown in Appendix B.4, the accuracy of the watermarked model
only changes slightly after pruning then fine-tuning on the SST-5. This shows that the embedded
watermark is robust to pruning attack.

Usually, pruning will affect the performance of the model on the original task, and the original
task accuracy will be restored by fine-tuning (fine-pruning), as demonstrated by the results in
Appendix B.5.

Robustness against overwriting. Overwriting means attacker embeds his own watermark into a
model that has already been watermarked in the same way. This may destroy the original watermark.
We simulate this process to obtain fow, then add a downstream network and fine-tune to obtain Fow.
We test the original watermark as shown in Table 6. The overwriting attack has little effect on ACC
and WER except on Lingspam. Meanwhile, it has an impact on NSMD similar to that of fine-tuning.

5 CONCLUSION

This paper proposes NSMARK, a black-box watermark framework for verification of ownership using
the output of LMs. We first analyze and introduce LL-LFEA, and propose a solution that can use
null space invariance for watermark verification. We conduct an overall design from three aspects:
watermark generation, watermark embedding, and watermark verification. Two indicators, WER
and NSMD, are used to jointly verify the existence and identity of the watermark. Experiments
demonstrate the effectiveness, scalability, reliability, and fidelity of NSMARK, and it has satisfactory
performance under various attacks. With the cooperation of two verification methods, a robust and
secure watermarking scheme works.

9

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

ACKNOWLEDGMENTS

This work is partially supported by the Joint Funds of the National Natural Science Foundation of
China (Grant No. U21B2020) and Tencent.

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX
security symposium (USENIX Security 18), pp. 1615–1631, 2018.

Sheldon Axler. Linear algebra done right. Springer, 2015.

Tony Cai, Jianqing Fan, and Tiefeng Jiang. Distributions of angles in random packing on spheres.
The Journal of Machine Learning Research, 14(1):1837–1864, 2013.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan Hayase,
A. Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, Eric Wallace,
David Rolnick, and Florian Tramèr. Stealing part of a production language model. In Proceedings
of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 5680–5705, 21–27 Jul 2024.

Huajie Chen, Chi Liu, Tianqing Zhu, and Wanlei Zhou. When deep learning meets watermarking: A
survey of application, attacks and defenses. Computer Standards & Interfaces, pp. 103830, 2024.

Tianshuo Cong, Xinlei He, and Yang Zhang. Sslguard: A watermarking scheme for self-supervised
learning pre-trained encoders. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pp. 579–593, 2022.

Le Feng and Xinpeng Zhang. Watermarking neural network with compensation mechanism. In
Knowledge Science, Engineering and Management: 13th International Conference, KSEM 2020,
Hangzhou, China, August 28–30, 2020, Proceedings, Part II 13, pp. 363–375. Springer, 2020.

Weitao Feng, Wenbo Zhou, Jiyan He, Jie Zhang, Tianyi Wei, Guanlin Li, Tianwei Zhang, Weiming
Zhang, and Nenghai Yu. AquaLoRA: Toward white-box protection for customized stable diffusion
models via watermark LoRA. In Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 13423–13444, 21–27
Jul 2024.

Wendell Fleming. Functions of several variables. Springer Science & Business Media, 2012.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Zhiwei He, Binglin Zhou, Hongkun Hao, Aiwei Liu, Xing Wang, Zhaopeng Tu, Zhuosheng Zhang,
and Rui Wang. Can watermarks survive translation? on the cross-lingual consistency of text
watermark for large language models. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics, pp. 4115–4129, 2024.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. Badencoder: Backdoor attacks to pre-trained
encoders in self-supervised learning. In 2022 IEEE Symposium on Security and Privacy (SP), pp.
2043–2059. IEEE, 2022.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2, 2019.

10

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense. Advances in Neural
Information Processing Systems, 36, 2024.

Fang-Qi Li, Shi-Lin Wang, and Alan Wee-Chung Liew. Linear functionality equivalence attack against
deep neural network watermarks and a defense method by neuron mapping. IEEE Transactions on
Information Forensics and Security, 18:1963–1977, 2023a.

Peixuan Li, Pengzhou Cheng, Fangqi Li, Wei Du, Haodong Zhao, and Gongshen Liu. Plmmark:
a secure and robust black-box watermarking framework for pre-trained language models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 14991–14999,
2023b.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring
attacks on deep neural networks. In International symposium on research in attacks, intrusions,
and defenses, pp. 273–294. Springer, 2018.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum. Sok: How robust is image classification
deep neural network watermarking? In 2022 IEEE Symposium on Security and Privacy (SP), pp.
787–804. IEEE, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017.

Wenjun Peng, Jingwei Yi, Fangzhao Wu, Shangxi Wu, Bin Benjamin Bin Zhu, Lingjuan Lyu, Binxing
Jiao, Tong Xu, Guangzhong Sun, and Xing Xie. Are you copying my model? protecting the
copyright of large language models for eaas via backdoor watermark. In The 61st Annual Meeting
Of The Association For Computational Linguistics, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Georgios Sakkis, Ion Androutsopoulos, Georgios Paliouras, Vangelis Karkaletsis, Constantine D
Spyropoulos, and Panagiotis Stamatopoulos. A memory-based approach to anti-spam filtering for
mailing lists. Information retrieval, 6:49–73, 2003.

Shuo Shao, Yiming Li, Hongwei Yao, Yiling He, Zhan Qin, and Kui Ren. Explanation as a watermark:
Towards harmless and multi-bit model ownership verification via watermarking feature attribution.
arXiv preprint arXiv:2405.04825, 2024.

Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen, Jie Shi, Chengfang Fang, Jianwei Yin,
and Ting Wang. Backdoor pre-trained models can transfer to all. arXiv preprint arXiv:2111.00197,
2021.

Anudeex Shetty, Qiongkai Xu, and Jey Han Lau. Wet: Overcoming paraphrasing vulnerabilities in
embeddings-as-a-service with linear transformation watermarks. arXiv preprint arXiv:2409.04459,
2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Tianhao Wang and Florian Kerschbaum. Attacks on digital watermarks for deep neural networks. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2622–2626. IEEE, 2019.

11

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Tianhao Wang and Florian Kerschbaum. Riga: Covert and robust white-box watermarking of deep
neural networks. In Proceedings of the Web Conference 2021, pp. 993–1004, 2021.

Yutong Wu, Han Qiu, Tianwei Zhang, Jiwei Li, and Meikang Qiu. Watermarking pre-trained encoders
in contrastive learning. In 2022 4th International Conference on Data Intelligence and Security
(ICDIS), pp. 228–233. IEEE, 2022.

Hengyuan Xu, Liyao Xiang, Xingjun Ma, Borui Yang, and Baochun Li. Hufu: A modality-agnositc
watermarking system for pre-trained transformers via permutation equivariance. arXiv preprint
arXiv:2403.05842, 2024.

Zhilin Yang. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv
preprint arXiv:1906.08237, 2019.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar.
Semeval-2019 task 6: Identifying and categorizing offensive language in social media (offenseval).
In Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 75–86, 2019.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Lv, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Xin Jiang, and Maosong Sun. Red alarm for pre-trained models: Universal vulnerability to
neuron-level backdoor attacks. Machine Intelligence Research, 20(2):180–193, 2023.

Renjie Zhu, Xinpeng Zhang, Mengte Shi, and Zhenjun Tang. Secure neural network watermarking
protocol against forging attack. EURASIP Journal on Image and Video Processing, 2020:1–12,
2020.

A ADDITIONAL DETAILS OF THEORY AND ALGORITHM

A.1 THE GENERATION OF Q

In principle, Q needs to be a reversible matrix. To make the value of Q more stable for tensor
calculations, we choose to constrain each element to be uniformly distributed between [0, 1]. The
method to generate such a Q is very simple, just sample uniformly between [0, 1], and the resulting
matrix is a reversible matrix (probability very close to 100%). The probability that the random matrix
Q is singular is the same as a point in Rn2

lands in the zero set of a polynomial, which has Lebesgue
measure 0 Fleming (2012).

A.2 PROOFS OF NULL SPACE VERIFICATION THEORY

Proof. The null space N(A) of the matrix A(a×b) is the set of all b-dimensional vectors x that satisfy
Ax = 0⃗ Axler (2015). That is, N(A) = {x ∈ Rb, Ax = 0⃗}. Using fwm to denote the LM embedded
with the watermark, assuming A1(n×m) = {fwm(x), x ∈ DT } is the matrix concatenated from the
output vectors, where DT is the verification dataset with watermark trigger, m is the size of DT and
n is the dimension of the output vector of the last layer of the LM. Let the null space matrix of A1 be
N1, then A1 ×N1 = 0.

After performing LL-LFEA, assuming that the new output matrix of fwm(DT) is A2(n×m), according
to Section 3.1, we have A2 = Q× A1. Then A2 ×N1 = (Q× A1)×N1 = Q× (A1 ×N1) = 0,
which means that N1 belongs to the null space matrix of A2. As Q is a reversible matrix, then
rank(A1) = rank(A2), and the null spaces of A1 and A2 have the same dimension. It can be
concluded that N1 is also the null space matrix of A2.

A.3 ESTIMATION OF NSMD

We define NSMD by introducing the distribution of elements in a matrix, which is obtained by
matrix multiplication of the output matrix A of any LM without watermark and the null space matrix

12

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

N of fwm. In H(n×p) = A(n×m) × N(m×p), Hj,j = αi · βj is the dot product of the i-th row
vector of A and the j-th column vector of N . The approximate distribution of the angle between n
random uniformly distributed unit vectors in space Rm Cai et al. (2013). In space Rm, given two
random vectors uniformly distributed on the unit sphere, the angle θ between the two random vectors
converges to a distribution whose probability density function is:

f(θ) =
1√
π
· Γ(m2)

Γ(m−1
2)
· (sin θ)m−2, θ ∈ [0, π]. (5)

When m = 2, f(θ) is uniformly distributed on [0, π]; when m > 2, f(θ) has a single peak at θ = π
2 .

When m > 5, the distribution of f(θ) is very close to the normal distribution. Most of the C2
m

angles formed by m unit vectors randomly uniformly distributed are concentrated around π
2 , and this

clustering will enhance with the increase of the dimension m, because if θ ̸= π
2 , then (sin θ)m−2 will

converge to 0 faster. This shows that in high-dimensional space, two randomly selected vectors are
almost orthogonal.

We further derive the distribution of the dot product of two random vectors uniformly distributed and
independently selected on the unit ball in space Rm. Let α and β be unit vectors and let θ be the
angle between them, then α · β = cos(θ). It is known that θ obeys the probability distribution f(θ),
then the probability density function of y = α · β = cos(θ), y ∈ [−1, 1] is:

g(y) =g(cos(θ)) = f(arccos(cos(θ)))·
|d(arccos(cos(θ)))/d(cos(θ))|, (6)

where d(arccos(cos(θ)))/d(cos(θ)) = −1/
√

(1− cos2(θ)) is the derivative of the inverse cosine
function. It can be inferred that:

g(y) = g(cos(θ)) = f(θ)/
√

(1− cos2(θ)). (7)

Further, we analyze the mathematical expectation and variance of Y = cos(Θ). The mean is:

EY =

∫ 1

−1

y · g(y)dy

=

∫ 1

−1

y · f(arccos y)/
√
(1− y2)dy.

(8)

Note km = 1√
π
· Γ(m

2)
Γ(m−1

2)
, then:

EY = km ·
∫ π

0

cos θ · (sin θ)m−2dθ = 0. (9)

Its variance is:

DY = EY 2 − (EY)2 = EY 2 =

∫ 1

−1

y2 · g(y)dy

= km ·
∫ π

0

(cos θ)2 · (sin θ)m−2dθ

= km ·
(∫ π

0

(sin θ)m−2dθ −
∫ π

0

(sin θ)mdθ

)
=

2√
π
· Γ

(
m
2

)
Γ
(
m−1
2

) · (Im−2 − Im) ,

(10)

where:

Im =

∫ π/2

0

(sin θ)mdθ =

{
(m−1)!!

m!! · π2 m is even
(m−1)!!

m!! m is odd
(11)

As m increases, DY gradually approaches 0. Figure 6 shows the relationship between the DY and
the m, and Table 8 shows the specific values of the variance when m takes specific values. Under the
common output dimension of LM, that is, when m = 1000 or so, DY is still a distance to 0.

13

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 8: The value of DY in different dimensions m.

m 10 20 300 768 1024 100000
DY 0.15667 0.11217 0.029302 0.018323 0.015870 7.1830× 10−6

0 50 100 150 200 250 300
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
Y

Relationship between variance DY and spatial dimension m

Figure 6: The relationship between the variance DY and the spatial dimension m.

Because the multiplication of the output matrix A1 of the model embedded with watermark and its
null space N1 is exactly 0, while the variance of the elements obtained by the multiplication of the
output matrix of other irrelevant models and N1 is different from 0, we use and amplify this gap to
define a new verification indicator - Null Space Match Degree (NSMD) for watermark verification.

For an output matrix A(n×m) and a null space matrix N(m×p), we first normalize all row vectors
αi, i ∈ [1, n] of A and all column vectors βj , j ∈ [1, p] of N so that α and β are distributed on the
unit sphere, and then calculate the Hn×p = A×N . We define NSMD of A and N :

NSMD(A,N) =
1

n

n∑
i=1

p∑
j=1

√
|Hi,j |. (12)

As
√
|hi,j | ∈ [0, 1] and DY = 0, we have

NSMD(A,N) >
1

n

n∑
i=1

p∑
j=1

H2
i,j

= p · EY 2

= p · (DY + (EY)2)

= p ·DY.

(13)

Furthermore, NSMD(A,N) > p ·DY . For example, if n = 768 and p = 1500, we have NSMD
> 27.48.

A.4 TRIGGER GENERATION ALGORITHM

Algorithm 1 Trigger Generation Algorithm

Input: owner’s private key Kpri, identity information message m
Output: digital signature sig, trigger word t, verification set DV

1: sig ← Sign(m,Kpri).
2: t← Encode(sig, n = 1)
3: sigsm ← SM(sig)
4: DV ← Select(sig)
5: return sig, sigsm, t,DV

The trigger generation algorithm is shown in Algorithm 1.

14

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

1 -1 1 -1

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

-1 1 1 -1 -1 1 1 -1 -1 -1 1 1

-1 -1 1 1 -1 -1 1 1 -1 1 1 -1

𝑠𝑖𝑔

𝑠𝑖𝑔!"#"$%

𝑠𝑚

𝑠𝑖𝑔&'

Spread Spectrum

M
od

ul
at

io
n

Figure 7: Example diagram of spread spectrum modulation. Repeat sig to obtain sigrepeat, then use
sm to modulate sigrepeat to obtain the spread spectrum modulated digital signature sigsm.

A.5 SELECT ALGORITHM

Algorithm 2 Select Algorithm

Input: digital signature sig, |DV | = q, candidate data pool DNS

Output: verification set DV

1: initialize DV ← [].
2: h0 ← Hash(sig)
3: for i = 1 to q do
4: hi ← Hash(hi−1)
5: idxi ← hi% len(DNS)
6: DV .append(DNS [idxi])
7: end for
8: return DV

The Select(·) algorithm is shown in Algorithm 2.

A.6 PROCESS OF SPREAD SPECTRUM MODULATION AND DESPREAD SPECTRUM

A.6.1 SPREAD SPECTRUM MODULATION

Assume that the digital signature sig is n bits, sig = {ai|ai ∈ {−1, 1}, i ∈ [0, n − 1]}, and set
the spread factor to k. Expand sig horizontally by k times to obtain sigrepeat = {raj |raj =
ai, i = j mod n, raj ∈ {−1, 1}, j ∈ [0, k × n − 1]}. Input sig as a seed in the pseudo-random
generator to obtain the key sm = {bj |bj ∈ {−1, 1}, j ∈ [0, k × n − 1]} for spread spectrum
modulation. Use sm to modulate sigrepeat to obtain the spread spectrum modulated digital signature
sigsm = {saj |saj = raj × bj , j ∈ [0, k × n− 1]}. Figure 7 shows an example of 3× spreading.

A.6.2 DESPREAD SPECTRUM

Despread spectrum is the inverse process of the spread spectrum (detailed process in Appendix A.6.2).
Let the output of the mapping vector by E be O = {oj , j ∈ [0, k × n − 1]}, modulate it with
sm = {bj |bj ∈ {−1, 1}, j ∈ [0, k×n−1]} to get Orepeat = {roj |roj = oj/bj , j ∈ [0, k×n−1]},
then quantify Orepeat to get Oquan = {qoj |qoj ∈ {−1, 0, 1}, j ∈ [0, k × n − 1]}. Finally, the
signature is extracted by counting the number of n positions that appear most often in k copies.
sig′ = {a′i|a′i ∈ {−1, 0, 1}, i ∈ [0, n− 1]}. The quantification method is shown as follows:

qoj =


1 , 0.5 < roj < 1.5

−1 ,−1.5 < roj < −0.5.
0 , otherwise

(14)

At last the signature is extracted as sig′ = {a′i|a′i ∈ {−1, 0, 1}, i ∈ [0, n− 1]}.

15

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

B ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSES

B.1 LL-LFEA ATTACK RESULTS ON EMBMARKER

As shown in Table 9, as defined in Peng et al. (2023), the difference in cosine similarity (∆cos),
the difference of squared L2 distance (∆l2), and the p-value of the KS test are used to measure
the effectiveness of watermark. RedAlarm Zhang et al. (2023) is another attack baseline work
that demonstrates the effectiveness of EmbMarker. After the LL-LFEA attack, all the metrics of
EmbMarker are very close to those of the original and RedAlarm, which fully demonstrates the
effectiveness of LL-LFEA on existing watermarking schemes.

Table 9: Results of LL-LFEA attack on EmbMarker. For watermark, ↑ means higher metrics are
better. ↓ means lower metrics are better. In contrast, after LL-LFEA attack, the higher p-value, ∆l2%
and lower ∆cos% compared to EmbMarker can illustrate the effectiveness of LL-LFEA.

DATASET METHOD ACC(%) P-VALUE ↓ ∆cos% ↑ ∆l2% ↓

SST2

ORIGINAL 93.76 >0.34 -0.07 0.14
REDALARM 93.76 >0.09 1.35 -2.70

EMBMARKER 93.55 <10−5 4.07 -8.13
EMBMARKER+LL-LFEA 92.43 0.01 0.14 -0.28

MIND

ORIGINAL 77.30 >0.08 -0.76 1.52
REDALARM 77.18 >0.38 -2.08 4.17

EMBMARKER 77.29 <10−5 4.64 -9.28
EMBMARKER+LL-LFEA 75.08 0.01 -0.70 1.39

AGNEWS

ORIGINAL 93.74 >0.03 0.72 -1.46
REDALARM 93.74 >0.09 -2.04 4.07

EMBMARKER 93.66 <10−9 12.85 -25.70
EMBMARKER+LL-LFEA 91.86 0.005 0.48 -0.96

ENRON SPAM

ORIGINAL 94.74 >0.03 -0.21 0.42
REDALARM 94.87 >0.47 -0.50 1.00

EMBMARKER 94.78 <10−6 6.17 -12.34
EMBMARKER+LL-LFEA 92.40 0.01 0.19 -0.39

B.2 EFFECTIVENESS OF NSMARK ON LARGER LMS

We further test the watermark effectiveness on larger models, including BERT-large-uncased,2
RoBERTa-large,3 GPT-2,4 and Llama-2-7B.5 Experimental results in Table 10 show the effectiveness
of NSMARKacross different size of models.

Table 10: Effectiveness of watermark on larger LMs. Both WER and NSMD on larger models are
similar to the main results, demonstrating the scalability of NSMARK.

METRIC
fwm fclean

BERT-LARGE ROBERTA-LARGE GPT-2 LLAMA-2-7B BERT-LARGE ROBERTA-LARGE GPT-2 LLAMA-2-7B

WER 1.00 1.00 1.00 1.00 0.00 0.03 0.00 0.00

NSMD 2.08× 10−8 1.99× 10−6 3.29× 10−6 2.97× 10−6 72.59 71.22 80.33 82.94

2https://huggingface.co/google-bert/bert-large-uncased
3https://huggingface.co/FacebookAI/roberta-large
4https://huggingface.co/openai-community/gpt2
5https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

16

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

B.3 DEFENSE AGAINST LL-LFEA+FINETUNING

After applying LL-LFEA, the attacker may add a network to fLL−LFEA and fine-tune it for down-
stream tasks. We hope the model after the LL-LFEA+fine-tuning attack can still maintain the
watermark. Table 11 shows results on different LMs and different downstream tasks are not exactly
the same. WER of different models has decreased significantly to varying degrees. Most NSMDs are
still below the threshold, but RoBERTa and DeBERTa change more on SST-2, which is generally
consistent with that of fine-tuning without LL-LFEA attack (Table 4). Through ACC, we can find
that LL-LFEA attack does not affect the performance of the model on the original task.

Table 11: Impact of LL-LFEA+ fine-tuning attack on watermark. (i) WER increases to varying
degrees; (ii) NSMD are still below the threshold; (iii) ACC does not decrease significantly.

METRIC MODEL SST-2 SST-5 OFFENSEVAL LINGSPAM AGNEWS

WER

BERT 0.29 0.29 0.28 0.31 0.37
ROBERTA 0.47 0.07 0.07 0.35 0.35
DEBERTA 0.30 0.28 0.29 0.29 0.42

XLNET 0.00 0.00 0.00 0.01 0.01

NSMD

BERT 15.43 15.06 12.95 12.56 13.17
ROBERTA 47.39 17.96 14.64 12.73 28.89
DEBERTA 26.86 17.51 20.38 20.77 38.38

XLNET 13.20 12.08 14.12 12.98 14.37

ACC

BERT 91.17 52.22 86.04 99.48 93.80
ROBERTA 93.00 52.71 84.88 99.14 94.37
DEBERTA 94.04 51.95 82.91 99.48 93.70

XLNET 90.14 42.40 81.40 99.48 93.03

B.4 ROBUSTNESS AGAINST PRUNING

Table 12 shows results that the watermarked model is pruned and finetuned on the SST-5 dataset. The
accuracy of the model only changes slightly.

Table 12: Results of different pruning rates on ACC of watermarked model.

Pruning Rate 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ACC(%) 52.62 52.36 52.13 51.99 52.35 51.62 51.94 51.71 50.81 47.23

B.5 ROBUSTNESS AGAINST FINE-PRUNING

Table 13 uses SST-5 as the fine-tuning dataset to show the watermark extraction effect after fine-
pruning. It can be seen that the results are generally the same as Figure 5.

Table 13: Impact of fine-pruning attack on watermark. Generally the results are similar to results of
pruning attack in Figure 5 and Table 12.

Pruning Rate 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 fclean

ACC 52.62 52.35 51.11 51.99 52.35 51.63 52.94 52.71 50.81 51.44 53.03
WER 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.00

NSMD 25.29 20.13 18.45 20.76 21.18 21.19 25.37 28.78 42.07 50.81 70.06

17

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

B.6 ROBUSTNESS AGAINST PARAPHRASING ATTACK

As proposed in Shetty et al. (2024), paraphrasing attack can bypass many watermark schemes. Thus,
we study the robustness of proposed NSMARK against paraphrasing attack. In principle, paraphrasing
attack changes the input text and the hidden state of the LM output, which may affect the extraction
of WER. However, this does not change the semantic space to which the output matrix belongs, so the
output space used to calculate NSMD will not change significantly. Referring to the original paper,
we use DIPPER Krishna et al. (2024) to paraphrase P = 3 on first 5000 lines of WikiText-2 and
experiment on them. First watermarked model generates embedding, and the averaged embedding of
multiple paraphrases are used to train the surrogate model. Results in Table 14 confirms our analysis,
and our NSMD indicator is still below the threshold and could be used to verify the watermark.

Table 14: Results of paraphrasing attack on watermarked model. Referring to the original paper,
DIPPER Krishna et al. (2024) is used to paraphrase P = 3 samples on first 5000 lines of WikiText-2.
Then the samples are used generate average embedding and for training surrogate model.

MODEL BERT ROBERTA DEBERTA XLNET

WER 0.00 0.00 0.00 0.00
NSMD 15.56 15.11 14.67 13.13

B.7 ROBUSTNESS AGAINST MULTI-TIME LL-LFEA ATTACK

Since LL-LFEA has little damage on the model performance, the attacker may try to further destroy
the watermark through multiple LL-LFEA attacks. In principle, multiple LL-LFEA will only decrease
WER but will not affect NSMD. Table 15 shows the results consistent with our analysis.

Table 15: The results of multi-time LL-LFEA attack on watermark performance.

NUMBER OF LL-LFEA 0 1 2 3

WER 1.00 0.27 0.00 0.00
NSMD 2.94× 10−6 0.06 0.04 0.05

B.8 SELECTION OF VERIFICATION SET

Next we discuss the necessity of trigger set in verification rather than clean set. As shown in Table 16,
before downstream fine-tuning (fwm), NSMD for trigger set (NSMDt) and clean set (NSMDc) are
all close to 0. After downstream fine-tuning, NSMDc is significantly higher than NSMDt.

Combining these results, we think fine-tuning has little effect on the output representation of trigger set.
However, the output representation of the clean set will change significantly for better performance

Table 16: The necessity of using trigger set in verification. NSMDt is the result for trigger set and
NSMDc is for clean set.

Model Metric fwm
Fwm

SST-2 SST-5 Offenseval Lingspam AGnews

BERT NSMDt 2.94× 10−6 29.77 25.29 22.52 21.96 24.37
NSMDc 3.01× 10−6 76.20 73.39 64.55 66.60 74.75

RoBERTa NSMDt 2.53× 10−6 50.17 30.97 25.15 26.78 28.43
NSMDc 2.54× 10−6 74.37 71.75 64.50 65.90 74.95

DeBERTa NSMDt 2.91× 10−6 31.89 25.74 23.52 27.23 37.69
NSMDc 2.98× 10−6 74.31 71.83 64.48 50.73 73.67

XLNet NSMDt 2.90× 10−6 24.12 23.52 25.29 24.06 26.20
NSMDc 3.00× 10−6 68.86 55.43 41.23 24.88 38.02

18

Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

−60 −40 −20 0 20 40 60
−40

−20

0

20

40

clean

trigger

−40 −20 0 20 40

−30

−20

−10

0

10

20

30

40

50 clean-label-0

clean-label-1

trigger

−40 −20 0 20 40

−40

−30

−20

−10

0

10

20

30

40

clean-label-0

clean-label-1

clean-label-2

clean-label-3

clean-label-4

trigger

−60 −40 −20 0 20 40 60

−40

−30

−20

−10

0

10

20

30

40 clean

trigger

−40 −20 0 20 40

−40

−20

0

20

40

clean-label-0

clean-label-1

trigger

−60 −40 −20 0 20 40

−40

−30

−20

−10

0

10

20

30

40

clean-label-0

clean-label-1

clean-label-2

clean-label-3

clean-label-4

trigger

Figure 8: The t-SNE visualization of output feature vectors of watermarked models. (i) Left column:
fwm on WikiText; (ii) Middle column: Fwm on SST-2; (iii) Right column: Fwm on SST-5.

on different downstream tasks, which causes the null space matrix no longer match the original N .
Thus NSMDc has significantly increase. Therefore, the trigger set is needed for verifying null space.

B.9 COMPUTATIONAL COST ANALYSIS

Computation cost of NSMARK basically aligns with existing schemes. Concretely, the cost involves
two segments, including model-related and model-unrelated. For model-related computation, such as
training of extractor (a three-layer MLP) and assistance of reference model (copy of original LM,
only for inference), they are only used in watermark embedding, which is executed only once for
each model, and this process is performed in the model training side with a lot of computing power.
For model-unrelated computation, it involves a lot of mathematics and cryptography mechanisms,
including signature algorithms and hash algorithms. The forward calculation of these cryptographic
algorithms consumes have almost no cost on current computing devices, and attackers who want to
steal watermarks cannot crack them (computationally unrealistic costs). In contrast, other existing
schemes such as WET Shetty et al. (2024) need to generate a large amount of data through ChatGPT
(cost of more that $100) or DIPPER Krishna et al. (2024) (11B model), which takes much more time,
computation, and money than NSMARK. We test the cost of NSMARK on a single Nvidia RTX 3090.
The model used is BERT, and other settings are same as Section 4.1. Table 17 shows the results of
the time cost (s: second, h: hour). Model emb means the total time of watermark model training, and
Original model train means the time of training model without watermark. It can be concluded that
NSMARK is pratical to real-world applications.

Table 17: The time cost of NSMARK. All results are tested on a single Nvidia RTX 3090. The
model used is BERT, and other settings are same as Section 4.1.s denotes second and h denotes hour.
Model emb means the total time of watermark model training, and Original model train means the
time of training model without watermark.

PROCESS SIGN ENCODE SELECT SM DSM GEN Q CAL NS MODEL EMB ORIGINAL MODEL TRAIN WM VERIFY

TIME 10-4S 10-5S 10-3S 0.5S 0.03S 0.27S 0.83S 4H 3H 37S

B.10 FEATURE VISUALIZATION

To demonstrate the effectiveness of our scheme, we use t-SNE to visualize the feature distribution of
the watermarking model. As shown in Figure 8, the input with trigger and the input without trigger
can be well separated in the output of LM and E, whether for fwm or fine-tuned Fwm.

19

	Introduction
	Related Work
	Method
	Threat Model
	Null Space Verification Theory
	Null Space Match Degree (NSMD)
	Overall Framework of NSmark
	Watermark Generation
	Watermark Embedding
	Watermark Verification

	Experiments
	Experimental Setup
	LL-LFEA Attack Evaluation
	NSmark Performance Evaluation
	Effectiveness
	Reliability
	Fidelity
	Defense against LL-LFEA
	Robustness

	Conclusion
	Additional Details of Theory and Algorithm
	The generation of Q
	Proofs of Null Space Verification Theory
	Estimation of NSMD
	Trigger Generation Algorithm
	Select Algorithm
	Process of Spread Spectrum Modulation and Despread Spectrum
	Spread Spectrum Modulation
	Despread Spectrum

	Additional Experimental Results and Analyses
	LL-LFEA attack results on EmbMarker
	Effectiveness of NSmark on larger LMs
	Defense against LL-LFEA+finetuning
	Robustness against pruning
	Robustness against Fine-pruning
	Robustness against paraphrasing attack
	Robustness against multi-time LL-LFEA attack
	Selection of verification set
	Computational cost analysis
	Feature Visualization

