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Hierarchical reinforcement learning for efficient exploration and transfer
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Abstract

Sparse-reward domains are challenging for rein-
forcement learning algorithms since significant
exploration is needed before encountering reward
for the first time. Hierarchical reinforcement
learning can facilitate exploration by reducing the
number of decisions necessary before obtaining a
reward. In this paper, we present a novel hierarchi-
cal reinforcement learning framework based on
the compression of an invariant state space that is
common to a range of tasks. The algorithm intro-
duces subtasks which consist in moving between
the state partitions induced by the compression.
Results indicate that the algorithm can success-
fully solve complex sparse-reward domains, and
transfer knowledge to solve new, previously un-
seen tasks more quickly.

1. Introduction
In reinforcement learning, an agent attempts to maximize
its cumulative reward through interaction with an unknown
environment. In each round, the agent observes a state, takes
an action, receives an immediate reward, and transitions
to a next state. The aim of the agent is to learn a policy,
i.e. a mapping from states to actions, that maximizes the
expected future sum of rewards. To do so, the agent has to
explore the environment by taking actions and observing
their effects, and exploit its current knowledge by repeating
action choices that have been successful in the past.

An important challenge in reinforcement learning is solving
domains with sparse rewards, i.e. when the immediate re-
ward signal is almost always zero. In this case, all actions
initially appear equally good, and it becomes important to
explore efficiently until the agent finds a high-reward state.
Only then does it become possible to distinguish actions
that eventually lead to high reward.
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Hierarchical reinforcement learning (HRL) exploits struc-
ture in the environment to decompose complex tasks into
simpler subtasks (Dayan & Hinton, 1993; Sutton et al., 1999;
Dietterich, 2000). HRL provides a mechanism for acting
on different timescales by introducing temporally extended
actions that solve the subtasks, and can help alleviate the
problem of exploration in sparse-reward domains since tem-
porally extended actions reduce the number of decisions
necessary to reach high-reward states.

Early work on HRL showed that it is important to exploit
structure both in time and space, i.e. for the decomposi-
tion to accelerate learning, the subtasks have to be sig-
nificantly easier to solve than the original task. This is
usually made possible by a compressed state space in the
form of state abstraction (Dietterich, 2000). When the state
space is sufficiently compressed, state-based methods can
be used to solve the subtasks, significantly outperforming
non-hierarchical methods in many cases. However, even
compressed state spaces become large in complex tasks.

On the other hand, HRL methods using subgoals to guide
exploration, either as part of the value function representa-
tion (Nachum et al., 2018; Schaul et al., 2015; Sutton et al.,
2017), or as pseudo-reward (Eysenbach et al., 2019; Flo-
rensa et al., 2017), have shown progress in hard exploration
tasks, even for high-dimensional state and action spaces.
These methods are not as sample efficient, however.

In this paper we propose a novel hierarchical reinforce-
ment learning framework that attempts to exploit the best of
both worlds. We use a fixed, state-dependent compression
function to define a hierarchical decomposition of complex,
sparse-reward tasks. The agent defines subtasks which con-
sist in navigating across state-space partitions by jointly
learning the policy of each temporally extended action. The
compression function makes it possible to use tabular meth-
ods at the top level to effectively explore large state spaces
even in sparse reward settings. Furthermore we show that
our method is suitable for transfer learning across tasks that
are defined by introducing additional learning components.

2. Background
In this section we define several concepts and associated
notation used throughout the paper.
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2.1. Markov Decision Process

We consider a Markov Decision Process (MDP) (Puterman,
2014) defined by the tupleM = 〈S,A, r, P 〉, where S is the
finite state space,A is the finite action space, r : S×A→ R
is the Markovian reward function, and P : S×A→ ∆(S) is
the transition kernel. Here, ∆(S) is the probability simplex
on S, i.e. the set of all probability distributions over S. At
time t, the agent observes state st ∈ S, takes an action at ∈
A, obtains reward rt with expected value E[rt] = r(st, at),
and transitions to a new state st+1 ∼ P (·|st, at). We refer
to (st, at, rt, st+1) as a transition.

Let π denote a stochastic policy π : S → ∆(A) and η(π) its
expected discounted cumulative reward under some initial
distribution d0 ∈ ∆(S) over states:

η(π) = Es∼d0 [V π(s)].

Here, V π(s) is the value function of policy π in state s,

V π(s) = E

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣∣ s1 = s

]
,

where γ ∈ (0, 1] is a discount factor and the expectation is
over P and π. We also define the action-value function Qπ

of π in state-action pair (s, a) as

Qπ(s, a) = E

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣∣ s1 = s, a1 = a

]
.

The goal of the agent is to find a policy that maximizes the
expected discounted cumulative reward η(π):

π∗ = arg max
π

η(π).

2.2. Options Framework

Given an MDPM = 〈S,A, r, P 〉, an option is a temporally
extended action o = 〈Io, πo, βo〉, where Io ⊆ S is an
initiation set, πo : S → ∆(A) is a policy and βo : S →
[0, 1] is a termination function (Sutton et al., 1999). Adding
options to the action set A of M forms a Semi-Markov
Decision Process (SMDP), which enables an agent to act
and reason on multiple timescales. To train the policy πo, it
is common to define an option-specific reward function ro.

If an option o is selected in state st ∈ Io at time t, the
option takes actions using policy πo until it reaches a state
st+k in which the termination condition βo(st+k) triggers.
Although the option takes multiple actions, from the per-
spective of the SMDP a single decision takes place at
time t, and the reward accumulated until time t + k is
rt + γrt+1 + . . . + γk−1rt+k−1. The theory of MDPs ex-
tends to SMDPs, e.g. we can define a policy π : S → ∆(O)
over a set of options O, a value function V π of this policy
and an action-value function Qπ over state-option pairs.

3. Algorithm
In this section we describe our algorithm for constructing
an SMDP that can solve a range of different tasks.

3.1. Task MDPs

We assume that each task T is described by an MDPMT =
〈Si × ST , Ai ∪ AT , rT , Pi ∪ PT 〉. Crucially, the state-
action space Si × Ai as well as the transition kernel Pi :
Si × Ai → ∆(Si) are invariant, i.e. shared among all
tasks. On the other hand, the state-action space ST ×AT ,
reward function rT : ST ×AT → R and transition kernel
(Si ∪ ST ) × AT → ∆(ST ) are task-specific. We assume
that actions in Ai incur zero reward, and that states in Si are
unaffected by actions in AT . Task T is only coupled to the
invariant MDP through the transition kernel PT , since the
effect of actions in AT depend on the states in Si.

3.2. Invariant SMDP

We further assume that the agent has access to a partition
Z = {Z1, . . . , Zm} of the invariant state space, i.e. Si =
Z1∪· · ·∪Zm and Zi∩Zj = ∅ for each pair (Zi, Zj) ∈ Z2.
Even though each element of Z is a subset of Si, we often
use lower-case letters to denote elements of Z, and we refer
to each element z ∈ Z as a region. We use the partition
Z to form an SMDP over the invariant part of the state-
action space. This SMDP is defined as S = 〈Z,O, PZ〉,
where Z is the set of regions, O is a set of options, and
PZ : Z ×O → ∆(Z) is a transition kernel.

We first define the set of neighbors of a region z ∈ Z as

N (z) = {z′ : ∃(s, a, s′) ∈ z ×Ai × z′, Pi(s′|s, a) > 0}.

Hence neighbors of z can be reached in one step from some
state in z. For each neighbor z′ ∈ N (z), we define an option
oz,z′ = 〈z, πz,z′ , βz〉 whose subtask is to reach region z′

from z. Hence the initiation set is z, the termination function
is βz(s) = 0 if s ∈ z and βz(s) = 1 otherwise, and the
policy πz,z′ should reach region z′ as quickly as possible.

The set of options available to the agent in region z ∈ Z
is Oz = {oz,z′ : z′ ∈ N (z)} ⊆ O, i.e. all options that
can be initiated in z and that transition to a neighbor of z.
Note that the option sets Oz are disjoint, i.e. each region z
has its own set of admissible options. The transition ker-
nel PZ determines how successful the options are; ideally,
PZ(z′|z, oz,z′) should be close to 1 for each pair of neigh-
boring regions (z, z′), but can be smaller to reflect that oz,z′
sometimes ends up in a region different from z′.

3.3. Option MDPs

We do not assume that the policy πz,z′ of each option oz,z′
is given; rather, the agent has to learn the policy πz,z′ from
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experience. For this purpose, we define an option-specific
MDP Mz,z′ = 〈Sz, Ai, Pz, rz,z′〉 associated with option
oz,z′ . Here, the state space Sz = z ∪ N (z) consists of all
states in the region z, plus all the neighboring regions of z.
The set of actions Ai are those of the invariant part of the
state-action space. All the states inN (z) are terminal states.
The transition kernel Pz is a projection of the invariant tran-
sition kernel Pi onto the state-action space z×Ai involving
non-terminal states, and is defined as

Pz(s
′|s, a) =

{
Pi(s

′|s, a), if s′ ∈ z,∑
s′′∈s′ Pi(s

′′|s, a) if s′ ∈ N (z).

Hence the probability of transitioning to a neighbor s′ of z
is the sum of probabilities of transitioning to any state in s′.

In the definition of Mz,z′ , the state-action space Sz × Ai
and transition kernel Pz are shared among all options in Oz .
They only differ in the reward function rz,z′ : z×Ai×Sz →
R defined on triples (s, a, s′), i.e. it depends on the resulting
next state s′. The theory of MDPs easily extends to this
case. Specifically, the reward function rz,z′ is defined as

rz,z′(s, a, s
′) =

{
+0.8, if s′ = z′,
−0.1, if s′ ∈ N (z) \ {z′}. (1)

In other words, successfully terminating in region z′ is
awarded with a reward of +0.8, while terminating in a
region different from z′ is penalized with a reward of −0.1.
If the option can’t terminate in a time limit of 100 steps
the same negative reward −0.1 is given. In practice, option
oz,z′ can compute the policy πz,z′ indirectly by maintaining
a value function Vz,z′ associated to the option MDP Mz,z′ .

3.4. Algorithm

In practice, we do not assume that the agent has access to
the invariant SMDP S = 〈Z,O, PZ〉. Instead, the agent
can only observe the current state s ∈ Si, select an action
a ∈ Ai, and observe the next state s′ ∼ Pi(·|s, a). Rather
than observing regions in Z, the agent has oracle access to
a compression function f : Si → N+ from invariant states
to non-negative integers. Each region z has an associated
integer ID N(z) and is implicitly defined as z = {s ∈
Si : f(s) = N(z)}. To identify regions, the agent has to
repeatedly query the function f on observed states and store
the integers returned. By abuse of notation we often use z
to denote both a region in Z and its associated ID.

Our algorithm iteratively grows an estimate of the invariant
SMDP S = 〈Z,O, PZ〉. Initially, the agent only observes a
single state s ∈ Si and associated region z = f(s). Hence
the state space Z contains a single region z, whose associ-
ated option set Oz is initially empty. In this case, the only
alternative available to the agent is to explore. For each
region z, we add an exploration option oez = 〈z, πez, βz〉 to
the option set O. This option has the same initiation set and

z1 z2

z3

z4

z5

oz1,z3

oz1,z2

oz1,z5 oz5,z2

oz2,z3oz3,z4

oz4,z5

Figure 1. Example representation discovered by the algorithm.

termination condition as the options in Oz , but the policy
πez is an exploration policy that selects actions at random or
implements a more advanced exploration strategy.

Once the agent discovers a neighboring region z′ of z, it
adds region z′ to the set Z and the associated option oz,z′
to the option set O. The agent also maintains and updates
a directed graph whose nodes are regions and whose edges
represent the neighbor relation. Hence next time the agent
visits region z, one of its available actions is to select option
oz,z′ . When option oz,z′ is selected, it chooses actions using
its policy πz,z′ and simultaneously updates πz,z′ based on
the rewards of the option MDP Mz,z′ . Figure 1 shows an
example representation discovered by the algorithm.

Algorithm 1 shows pseudo-code of the algorithm. As ex-
plained, Z is initialized with the region z of the initial state
s, and O is initialized with the exploration option oez . In
each iteration, the algorithm selects an option o which is
applicable in the current region z. This option then runs
from the current state s until terminating in a state s′ whose
associated region z′ is different from z. If this is the first
time region z′ has been observed, it is added to Z and the ex-
ploration option oez′ is appended to O. If this is the first time
z′ has been reached from z, the option oz,z′ is appended to
O. The process then repeats from state s′ and region z′.

The subroutine GETOPTION that selects an option o in the
current region z can be implemented in different ways. If the
aim is just to estimate the invariant SMDP S = 〈Z,O, PZ〉,
the optimal choice of option is that which maximizes the
chance of discovering new regions or, alternatively, that
which improves the ability of options to successfully solve
their subtasks. If the aim is to solve a task T , the optimal
choice of option is that which maximizes the reward of T .
On the other hand, the subroutine RUNOPTION executes
the policy of the option while simultaneously improving the
associated option policy.

3.5. Properties

The proposed algorithm has several advantages. Both the
invariant SMDP S and the option MDPs Mz,z′ have much
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Algorithm 1 INVARIANTHRL

1: Input: Action set Ai, oracle compression function f
2: s← initial state, z ← f(s)
3: Z ← {z}, O ← {oez}
4: while within budget do
5: o← GETOPTION(z,O)
6: s′ ← RUNOPTION(s, o, Ai), z′ ← f(s′)
7: if z′ /∈ Z then
8: Z ← Z ∪ {z′}
9: O ← O ∪ {oez′}

10: end if
11: if oz,z′ /∈ O then
12: O ← O ∪ {oz,z′}
13: end if
14: s← s′, z ← z′

15: end while

smaller state-action spaces than Si × Ai, which leads to
faster learning. In addition, on the SMDP level, distant
regions are reached by relatively few decisions, which fa-
cilitates exploration. Even if the state space Si is high-
dimensional, the number of regions is relatively small,
which makes it possible to store region-specific informa-
tion. Once learned, the estimate of the invariant SMDP S
can be reused in many tasks, which facilitates transfer.

The main drawback of the algorithm is that the number
of options grows with the size of the region set Z, each
requiring the solution of an additional option MDP.

3.6. Solving tasks

Recall that each task T is defined by a task MDPMT =
〈Si × ST , Ai ∪ AT , rT , Pi ∪ PT 〉. Given an estimate
S = 〈Z,O, PZ〉, we define an associated task SMDP
ST = 〈ZT , O ∪ OT , rT , PZ ∪ P ′T 〉. Here, OT is a set
of task-specific options whose purpose is to change the task
state in ST , and P ′T is the transition kernel corresponding
to these options. The state space is ZT = Z × ST , i.e. a
state (z, s) ∈ ZT consists of a region z and a task state s.

As before, we do not assume that the agent has access to
options in OT . Instead, the agent has to discover from expe-
rience how to change the task state in ST . For this purpose,
we redefine the exploration option oez of each region z so
that it has access to actions in AT . When selected in state
(z, s), oez may terminate for one of two reasons: either the
current region changes, i.e. the next state is (z′, s) for some
neighbor z′ of z, or the current task state changes, i.e. the
next state is (z, s′) for some task state s′. In the latter case,
the agent will add an option os,s

′

z to OT which is applicable
in (z, s) and whose subtask is to reach state (z, s′). Option
os,s

′

z has an associated option MDP Ms,s′

z , analogous to
Mz,z′ except that it assigns positive reward to (z, s′).

To solve task T , the agent need to maintain and update
a high-level policy πT : ZT → ∆(O ∪ OT ) for the task
SMDP ST . In a state (z, s), policy πT has to decide whether
to change regions by selecting an option in O, or to change
task states by selecting an option in OT . Because of our pre-
vious assumption on the reward rT , only options in OT will
incur non-zero reward, which has to be appropriately dis-
counted after applying each option. Note that in Algorithm
1, policy πT plays the role of the subroutine GetOption.

The transition kernel P ′T measures the ability of task op-
tions in OT to successfully solve their subtasks. Hence
P ′T ((z, s′)|(z, s), os,s′z ) should be close to 1, but is lower in
case option os,s

′

z sometimes terminates in the wrong state.
In our experiments, however, the agent performs model-free
learning and never estimates the transition kernel P ′T .

3.7. Controllability

According to the definition of the option reward function
rz,z′ in (1), option oz,z′ is equally rewarded for reaching
any boundary state between regions z and z′. However, all
boundary states may not be equally valuable, i.e. from some
boundary states the options inOz′ may have a higher chance
of terminating successfully. To encourage option oz,z′ to
reach valuable boundary states and thus make the algorithm
more robust to the choice of compression function f , we
add a reward bonus when the option successfully terminates
in a state s′ belonging to region z′.

One possibility is that the reward bonus depends on the
value of state s′ of options in the set Oz′ . However, this
introduces a strong coupling between options in the set O:
the value function Vz,z′ of option oz,z′ will depend on the
value functions of options in Oz′ , which in turn depend on
the value functions of options in neighboring regions of z′,
etc. We want to avoid such a strong coupling since learning
the option value functions may become as hard as learning
a value function for the original invariant state space Si.

Instead, we introduce a reward bonus which is a proxy
for controllability, by counting the number of successful
applications of subsequent options after oz,z′ terminates.
Let M be the number of options that are selected after oz,z′ ,
and letN ≤M be the number of such options that terminate
successfully. We define a controllability coefficient ρ as

ρ(z) =
N

M
. (2)

We then define a modified reward function r̄z,z′ which
equals rz,z′ except when oz,z′ terminates successfully,
i.e. r̄z,z′(s, a, s′) = rz,z′(s, a, s

′) + ρ(z) if s′ ∈ z′. In
experiments we use a fixed horizon M = 10 after which
we consider successful options transitions as not relevant.
In practice, the algorithm has to wait for 10 more options
before assigning reward to the last transition of option oz,z′ .
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4. Implementation
In this section we describe the implementation of our al-
gorithm. We distinguish between a manager in charge of
solving the task SMDP ST , and workers in charge of solving
the option MDPs Mz,z′ (or Ms,s′

z for task options).

4.1. Manager

Since the space of regions Z is small, the manager performs
tabular Q-learning over the task SMDP ST . This procedure
is shown in Algorithm 2. Similar to Algorithm 1, the task
state space ST and option set OT are successively grown as
the agent discovers new states and transitions.

Algorithm 2 MANAGER

1: Input: Task action set AT , invariant SMDP S
2: z ← initial region, s← initial task state
3: ST ← {s}, OT ← ∅
4: πT ← initial policy
5: while within budget do
6: o← GETOPTION(πT , (z, s), O ∪OT )
7: (z′, s′), r ← RUNOPTION((z, s), o, Ai ∪AT )
8: UPDATEPOLICY(πT , (z, s), o, r, (z

′, s′))
9: if s′ /∈ ST then

10: ST ← ST ∪ {s′}
11: end if
12: if os,s

′

z /∈ OT then
13: OT ← OT ∪ {os,s

′

z }
14: end if
15: (z, s)← (z′, s′)
16: end while

4.2. Worker

The worker associated with option oz,z′ ∈ O (resp. os,s
′

z ∈
OT ) should learn a policy πz,z′ (resp. πs,s

′

z ) that allows
the manager to transition between two abstract states z, z′

(resp. task states s, s′). We use Self-Imitation Learning
(SIL) (Oh et al., 2018) which benefits from an exploration
bonus coming from the self-imitation component of the loss
function. Moreover, since the critic update is off-policy, one
can relabel failed transitions in order to speed up learning of
the correct option behavior, similar to Hindsight Experience
Replay (Andrychowicz et al., 2017).

The architecture is made of two separate neural networks,
one for the policy πθz,z′ , parameterized on θ, and one for
the value function V ψz,z′ , parameterized on ψ. The agent
minimizes the loss in (3) via mini batch stochastic gradient
descent, with on-policy samples:

L(θ, ψ) = L(η̂θ) + αHπ + L(V̂ψ). (3)

(a) (b)

Figure 2. Key-door-treasure-1 (a) and Montezuma’s Revenge (b)
with compression function superimposed.

5. Experiments
To evaluate the proposed algorithm we use two benchmark
domains: a Key-door-treasure GridWorld, and a simplified
version of Montezuma’s Revenge where the agent only has
to pick up the key in the first room. In both domains, the
invariant part of the state consists of the agent’s location,
and the compression function f imposes a grid structure on
top of the location (cf. Figure 2). Results are averaged over
5 seeds and each experiment is run for 4e5 all the agents
have been trained with the choice of hyperparameters in
Figure 7.

In the Key-door-treasure domain we make the reward pro-
gressively more sparse. In the simplest setting the agent
obtains reward in each intermediate goal state, while in the
hardest setting the agent obtains reward only in the terminal
state. We also tested the transfer learning ability of our
algorithm in new tasks generated by moving the position of
the Key, Door and Treasure objects.

In Montezuma’s Revenge, we evaluate whether our control-
lability proxy helps transition between regions. Montezuma
does present an ideal environment to test this since impos-
ing a grid set of regions on it does not respect the structural
semantics of the environment and transitioning to the wrong
state in another region may cause the agent to fall and die.

Key-door-treasure is a stochastic variant of the original do-
main (Oh et al., 2018) taking random actions with proba-
bility 20%. The agent has a budget of 300 time steps. We
define two variants and randomly generate multiple tasks
by changing the location of the Key, Door and Treasure. In
Key-door-treasure-1 (Oh et al., 2018) the key is in the same
room as the door, while in Key-door-treasure-2 the key is in
a different room, making exploration harder.

5.1. Exploration

To investigate the exploration advantage of the proposed
algorithm, we compare it against SIL (Oh et al., 2018) and
against a version of SIL augmented with count-based explo-
ration (Strehl & Littman, 2008) that gives an exploration
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(a) Reward for all objects. (b) Reward for treasure only.

Figure 3. Results in Key-door-treasure-1.

bonus reward rexp(s, a) = β/
√
N(s), where N(s) is the

visit count of state s and β is a hyperparameter. In the
figures, our algorithm is labelled HRL-SIL, while SIL and
SIL-EXP refer to SIL without/with the exploration bonus.

In Key-door-treasure-1 (Figure 3) we observe that when the
reward is given for every object, all the algorithms perform
well, while by making the reward more sparse, our algorithm
clearly outperforms the others, because of its ability to act
on different timescales through the compressed state space
and the option action space.

We further investigate this in Key-door-treasure-2 (Figure 4)
where the key and door are placed in different rooms. This
makes exploration harder, and SIL struggles even in the
setting with intermediate rewards, only learning to pick up
the key, while SIL-EXP slowly learns to open the door and
get the treasure thanks to the exploration bonus.

5.2. Transfer Learning

To investigate the transfer ability of the algorithm, we train
’HRL-SIL’ subsequently on a set of tasks and compared to
’SIL-EXP’. In the first task, the goal is just to pick up a
key and open a door. Once trained on this task, the agent
is presented with a more complex task that also involves a
treasure. The third task is the same as the second with the
location of the objects mirrored.

Our agent is evaluated by resetting the manager policy from
task to task, while ’SIL-EXP’ is evaluated by clearing the
Experience Replay buffer between every task. We omit
’SIL’ since it always performs worse than ’SIL-EXP’. From
Figure 6 we observe that the learned set of options O and
set of regions Z transfer well across tasks. In contrast,
’SIL-EXP’ struggles to solve new tasks. In the figure, ’NO-
TRANSFER-HRL-SIL’ and ’NO-TRANSFER-SIL-EXP’
refer to the versions that relearn tasks from scratch.

5.3. Controllability

Lastly we test whether the controllability proxy helps tran-
sition successfully between regions. We compare two ver-
sions of our algorithm, one with controllability (’HRL-CO’)

Figure 4. Results in Key-door-treasure-2, reward for all objects.

Figure 5. Results in Montezuma’s Revenge with controllability.

and one without (’HRL’), in the first room of Montezuma’s
Revenge with the task of collecting the key. This envi-
ronment is challenging, since the agent could learn unsafe
transitions that lead to successful moves between regions
but subsequently dying. As we can see from Figure 5 the
controllability proxy does indeed help in learning success-
ful and safe transitions between regions, outperforming the
simpler reward scheme of ’HRL’.

Hyperparameters Value
Architecture -FC(64)

-FC(64)
Learning rate 0.0007
Environments Key-door-treasure

MontezumaRevenge-
-ramNoFrameskip-v4

Number of steps per iteration 6
Entropy regularization ( α ) 0.01
SIL update per iteration ( M ) SIL : 4,HRL : [1, 4]
SIL batch size 512
SIL loss weight 1
SIL value loss weight ( βs il) 0.01
Replay buffer size 104

Exponent for prioritization 0.6
Bias correction, prioritized replay 0.4
Manager ε-greedy [0.05, 0.005]
Count exploration β 0.2
Observation in Key-door-treasure (x, y, inventory)
Observation in Montezuma (x, y)

Figure 7. Hyperparameters used in the experiments.
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(a) Env 0 (b) Env 1 (c) Env 2

(d) results in Env 0 (e) results in Env 1 (f) results in Env 2

Figure 6. Results of transfer learning, with reward given for all objects.

6. Related work
Hierarchical reinforcement learning (Dayan & Hinton, 1993;
Sutton et al., 1999; Dietterich, 2000) has a long history.
Of particular relevance to this work are algorithms that
automatically discover goals (Florensa et al., 2017; Bacon
et al., 2017; Levine, 2020). The ability to compress the
state space is also critical to our work (Mannor et al., 2004;
Vezhnevets et al., 2017). Design choices of how to use
the task compression, and how to distribute the reward,
identifies different instances of such methods.

Our compression function is similar to that of Go-Explore
(Ecoffet et al., 2019), which also partitions the state space
into regions and performs greedy best-first search to solve
Montezuma’s revenge. The main difference is that our al-
gorithm can learn near-optimal policies for transitioning
between regions, while Go-Explore does not improve on the
first action sequence generated randomly.

Other authors have proposed algorithms for sparse-reward
domains that involve a notion of hierarchy. Keramati et al.
(2018) propose a model-based framework to solve sparse-
reward domains, and incorporate macro-actions in the form
of fixed action sequences that can be selected as a single
decision. Shang et al. (2019) use variational inference to
construct a world graph similar to our region space. How-
ever, unlike our model-free method, the option policies are
trained using dynamic programming, which requires knowl-
edge of the environment dynamics. Eysenbach et al. (2019)
build distance estimates between pairs of states, and use
the distance estimate to condition reinforcement learning in
order to reach specific goals, which is similar to defining
temporally extended actions.

7. Discussion
In spite of the encouraging results in Section 5, the current
version of the proposed algorithm has several limitations. In
this section we discuss potential future improvements aimed
at addressing these limitations.

Invariant state-action space The current version of the
algorithm assumes that the agent has prior knowledge of the
invariant part of the state-action space, i.e. Si×Ai. In some
applications, this seems like a reasonable assumption, e.g. in
environments such as MineCraft or DeepMind Lab where
the agent has access to a basic set of actions, and is later
asked to solve specific tasks. In case prior knowledge of
Si ×Ai is not available, previous work on lifelong learning
has shown how to automatically learn a latent state space
that is common to a range of tasks (Bou Ammar et al., 2015).

Compression function The algorithm also assumes that
the agent has access to a compression function f which
maps invariant states to regions. In case such a function is
not available, the agent would need to automatically group
states into regions. We believe that the algorithm is rea-
sonably robust to changes in the compression function, but
an important feature is that neighboring states should be
grouped into the same region. Dilated recurrent neural net-
works (Chang et al., 2017) are designed to maintain constant
information during a given time period, similar to the idea
of remaining in a given region for multiple timesteps, and
have been previously applied to hierarchical reinforcement
learning (Vezhnevets et al., 2017).
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Option policies Another limitation of the algorithm is
that it needs to learn a large number of policies which scales
as the number of regions times the number of neighbors.
In large-scale experiments it would be necessary to com-
press the number of policies in some way. Since regions
are mutually exclusive, in principle one could use a sin-
gle neural network to represent the policy of |Z| different
options. However, in preliminary experiments such a rep-
resentation suffers from catastrophic forgetting, struggling
to maintain the optimal policy of a given option while train-
ing the policies of other options. We believe that a more
intelligent compression scheme would be necessary for the
algorithm to scale, potentially sharing a single policy among
a carefully selected subset of options.

8. Conclusion
We presented a hierarchical reinforcement learning algo-
rithm that decomposes the state space using a compression
function and introduces subtasks that consist in moving
between the resulting partitions. We illustrated that the
algorithm can successfully solve relatively complex sparse-
reward domains. As discussed in Section 7, there are many
opportunities for extending the work in the future.
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