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ABSTRACT

Flow matching has recently emerged as a powerful paradigm for generative model-
ing and has been extended to probabilistic time series forecasting in latent spaces.
However, the impact of the specific choice of probability path model on forecasting
performance remains under-explored. In this work, we demonstrate that forecasting
spatio-temporal data with flow matching is highly sensitive to the selection of the
probability path model. Motivated by this insight, we propose a novel probability
path model designed to improve forecasting performance. Our empirical results
across various dynamical system benchmarks show that our model achieves faster
convergence during training and improved predictive performance compared to
existing probability path models. Importantly, our approach is efficient during infer-
ence, requiring only a few sampling steps. This makes our proposed model practical
for real-world applications and opens new avenues for probabilistic forecasting.

1 INTRODUCTION

Generative modeling has achieved remarkable success in recent years, especially for generating
high-dimensional objects by learning mappings from simple, easily-sampled reference distributions,
π0, to complex target distributions, π1. In particular, diffusion models have pushed the capabilities
of generating realistic samples across various data modalities, including images (Ho et al., 2020;
Song et al., 2020b; Karras et al., 2022), videos (Ho et al., 2022; Blattmann et al., 2023; Gupta et al.,
2023), and spatio-temporal scientific data like climate and weather patterns (Pathak et al., 2024;
Kohl et al., 2024). Despite their impressive performance, diffusion models often come with high
computational costs during training and inference. Additionally, they typically assume a Gaussian
reference distribution, which may not be optimal for all data types and can limit modeling flexibility.

One promising alternative is flow matching, where the mappings are learned via a stochastic process
that transforms π0 into π1 through a random ordinary differential equation (ODE), approximating its
marginal vector flow (Lipman et al., 2022; Albergo et al., 2023; Liu et al., 2022; Tong et al., 2023;
Pooladian et al., 2023). While score-based generative models (Song & Ermon, 2019; Song et al.,
2020a;b; Ho et al., 2020) are specific instances of flow matching, with Gaussian transition densities,
the general framework allows for a broader class of interpolating paths. This flexibility can lead
to deterministic sampling schemes that are faster and require fewer steps (Zhang & Chen, 2022).
Recent work has demonstrated the remarkable capabilities of flow matching models for generating
high-dimensional images (Esser et al., 2024) and discrete data (Gat et al., 2024).

Building on this, flow matching in latent space has recently been applied to forecasting spatio-
temporal data (Davtyan et al., 2023) — predicting future frames in videos. This approach leverages
latent representations to capture the complex dynamics inherent in temporal data. However, spatio-
temporal forecasting, especially for video and dynamical systems data, presents unique challenges. A
video prediction model capable of generalizing to new, unseen scenarios must implicitly “understand”
the scene: detecting and classifying objects, learning how they move and interact, estimating their
3D shapes and positions, and modeling the physical laws governing the environment (Battaglia
et al., 2016). Similarly, accurate climate and weather forecasting requires capturing intricate physical
processes and interactions across multiple scales (Dueben & Bauer, 2018; Schultz et al., 2021).

We observe that, in the context of spatio-temporal forecasting, the performance of flow matching is
highly sensitive to the choice of the probability path model, an important topic which has not been
widely explored within a unified framework. Different probability paths can significantly impact the
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accuracy and convergence of forecasting models, particularly when dealing with complex dynamical
systems characterized by partial differential equations (PDEs) and chaotic behaviors. Motivated by
this, we propose a novel probability path model specifically designed for probabilistic forecasting of
dynamical systems. Our model leverages the continuous dynamics intrinsic to spatio-temporal data
by interpolating between consecutive sequential samples. This approach ensures better alignment
with the constructed flow, leading to improved predictive performance, more stable training, and
greater inference efficiency. Existing probability path models often fail to fully capture the continuous
nature of spatio-temporal data, resulting in a misalignment with flow-based methods and suboptimal
outcomes. Our proposed model addresses these limitations directly.

Building on previous approaches, we provide a theoretical framework and efficient algorithms
tailored to probabilistic forecasting using flow matching in latent space. Within this framework, we
demonstrate that our probability path model outperforms existing methods across several forecasting
tasks involving PDEs and other dynamical systems, achieving faster convergence during training
and requiring fewer sampling steps during inference. These advances enhance the practicality of
flow matching approaches for real-world applications, particularly in scenarios where computational
resources and time are critical constraints. Our main contributions are the following.

• Theoretical Framework and Efficient Algorithms: We present a theoretical framework and
efficient algorithms for applying flow matching in latent space to the probabilistic forecasting
of dynamical systems (see Algorithms 1-2), extending the approach of Lipman et al. (2022) and
Davtyan et al. (2023). Our approach is specifically tailored for time series data, enabling effective
modeling of complex temporal dependencies inherent in dynamical systems.

• Novel Probability Path Model: We propose a new probability path model (Eq. (9)), specifically
designed for modeling dynamical systems data. We provide intuitions to understand why our model
leads to smoother training loss curve and faster convergence when compared to other models. We
also provide theoretical insights to show that the variance of the vector field (VF) generating our
proposed path can be lower than that of the optimal transport VF proposed by Lipman et al. (2022)
for sufficiently correlated spatio-temporal samples (see Theorem 3 in App. C).

• Empirical Validation: We provide extensive empirical results to demonstrate that our proposed
probability path model can outperform other flow matching models on several forecasting tasks
involving PDEs and other dynamical systems (see Section 6). Our results demonstrate that the
proposed probability path model outperforms existing flow matching models, achieving faster
convergence during training and improved predictive performance.

2 RELATED WORK

Generative models have gained significant attention in learning complex data distributions, particularly
through the use of score-based diffusion models and flow-based models. These models have shown
promise in generating realistic high-dimensional data such as images (Song et al., 2020b; Karras
et al., 2022; Esser et al., 2024), videos (Davtyan et al., 2023; Shrivastava & Shrivastava, 2024) and
time series (Meijer & Chen, 2024), and dynamical systems (Pathak et al., 2024; Kohl et al., 2024;
Ren et al., 2024). The recent work of Rasul et al. (2021); Biloš et al. (2023); Ruhe et al. (2024);
Kollovieh et al. (2024); Rühling Cachay et al. (2024) focuses on modeling time series with score-
based diffusion models, which often require using many steps for sampling, whereas our proposed
method requires as few as 10 steps. Related to our work is (Chen et al., 2024), which proposed a
stochastic differential equation (SDE) framework using stochastic interpolants (Albergo et al., 2023)
for probabilistic forecasting of time series, but their SDE based sampler typically requires many steps
during generation. Another relevant work is (Tamir et al., 2024), which proposed a flow matching
framework for time series modeling within the data space, but it focuses on small ODE datasets and
does not consider forecasting tasks.

3 FLOW MATCHING FOR PROBABILISTIC FORECASTING

In this section, we first introduce the objective of probabilistic forecasting; and then we discuss how
flow matching can be used for learning conditional distributions in latent space.
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Probabilistic forecasting framework. Suppose that we are given a training set of n trajectories, with
each trajectory of length m, Sn = {(x1:m)(i)}i=1,...,n, where (x1:m)(i) = ((x1)(i), . . . , (xm)(i)),
(with the (xl)(i) ∈ Rd), coming from an underlying continuous-time dynamical system. For sim-
plicity, we denote the trajectories as x1:m = (x1, . . . , xm) unless there is a need to specify the
corresponding n. The trajectories are observed at arbitrary time points t1:m = (t1, . . . , tm) such that
xi := x(ti) ∈ Rd and (x(t))t∈[t1,tm] are the observed states of the ground truth system. In practice,
we may have access to only few trajectories, i.e., n is small or even n = 1, and the trajectories
themselves may be observed at different time stamps.

The goal of probabilistic forecasting is to predict the distribution of the upcoming l elements given
the first k elements, where m = l + k:

q(xk+1, . . . , xk+l|x1, . . . , xk) =
l∏

i=1

q(xk+i|x1, . . . , xk+i−1). (1)

We propose to model each one-step predictive conditional distribution in Eq. (1) via a probability
density path. Instead of using score-based diffusion models to specify the path, we choose latent flow
matching, a simpler method to train generative models. With flow matching, we directly work with
probability paths, and we can simply avoid reasoning about diffusion processes altogether.

Flow matching in latent space. Let zτ = E(xτ ) for τ = 1, . . . ,m, where E denotes a pre-trained
encoder that maps from the data space to a lower dimensional latent space. Working in the latent
space, our goal is to approximate the ground truth distribution q(zτ |x1, . . . , xτ−1) by the parametric
distribution p(zτ |zτ−1), which can then be decoded as xτ = D(zτ ). The latent dynamics can be
modeled by an ODE, Żt = ut(Zt), where ut is the vector field describing the instantenous rate of
change of the state at time t. Learning the dynamics of the system is equivalent to approximating the
vector field ut by regressing a neural network using the mean squared error (MSE) loss.

Following the idea of flow matching, we infer the dynamics of the system generating z from the
collection of latent observables by learning a time-dependent vector field vt : [0, 1] × Rd → Rd,
t ∈ [0, 1], such that the ODE

ϕ̇t(Z) = vt(ϕt(Z)), ϕ0(Z) = Z, (2)

defines a time-dependent diffeomorphic map (called a flow), ϕt(Z) : [0, 1]× Rd → Rd, that pushes
a reference distribution p0(Z) towards the distribution p1(Z) ≈ q(Z) along some probability density
path pt(Z) and the corresponding vector field ut(Z). In other words, pt = [ϕt]∗p0, where [·]∗ denotes
the push-forward operation. Here, q is the ground truth distribution, p denotes a probability density
path, i.e., p : [0, 1]× Rd → R>0, and

∫
pt(Z)dZ = 1. We also write Zt = ϕ(Z); and thus the ODE

can be written as Żt = vt(Zt), Z0 = Z. Typically the reference distribution p0 is chosen to be the
standard Gaussian (Lipman et al., 2022; Liu et al., 2022).

In other words, the main goal of flow matching is to learn a deterministic coupling between p and
q by learning a vector field vt such that the solution to the ODE (2) satisfies Z0 ∼ p and Z1 ∼ q.
When Z = (Zt)t∈[0,1] solves Eq. (2) for a given function vt, we say that Z is a flow with the vector
field vt. If we have such a vector field, then (Z0, Z1) is a coupling of (p, q). If we can sample from p,
then we can generate approximate samples from the coupling by sampling Z0 ∼ p and numerically
integrating Eq. (2). This can be viewed as a continuous normalizing flow (Chen et al., 2018).

If one were given a pre-defined probability path pt(Z) and the corresponding vector field ut(Z)
that generates the path, then one could parametrize vt(Z) with a neural network vθt (Z), with θ the
learnable parameter, and solve the least square regression by minimizing the flow matching loss:

min
θ

Lfm(θ) := Et,pt(Z)ω(t)∥vθt (Z)− ut(Z)∥2, (3)

where t ∈ U [0, 1], Z ∼ pt(Z) and ω(t) > 0 is a weighting function. We take ω(t) = 1 unless
specified otherwise. However, we do not have prior knowledge for choosing pt and ut, and there
are many choices that can satisfy p1 ≈ q. Moreover, we do not have access to a closed form ut
that generates the desired pt. We shall follow the approach of Lipman et al. (2022) and construct a
target probability path by mixing simpler conditional probability paths. This probability path is the
marginal probability path:

pt(Z) =

∫
pt(Z|Z̃)q(Z̃)dZ̃, (4)
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obtained by marginalizing the conditional probability density paths pt(Z|Z̃) over observed latent
trajectories Z̃, with p0(Z|Z̃) = p(Z) and p1(Z|Z̃) = N (Z|Z̃, ϵ2I) for a small ϵ > 0. Doing so
gives us a marginal probability p1 which is a mixture distribution that closely approximates q. Then,
assuming that pt(Z) > 0 for all Z and t, we can also define a marginal vector field as:

ut(Z) =

∫
ut(Z|Z̃)

pt(Z|Z̃)q(Z̃)
pt(Z)

dZ̃, (5)

where ut(Z|Z̃) is a conditional vector field (conditioned on the latent trajectory Z̃). It turns out that
this way of mixing the conditional vector fields leads to the correct vector field for generating the
marginal probability path (4). We can then break down the intractable marginal VF into simpler
conditional VFs which depends on a single sample.

To deal with the intractable integrals in Eq. (4)-(5) which complicates computation of an unbiased
estimator of Lfm, we shall minimize the conditional loss proposed by Lipman et al. (2022):

min
θ

Lcfm(θ) := Et,pt(Z|Z̃),q(Z̃)ω(t)∥v
θ
t (Z)− ut(Z|Z̃)∥2, (6)

where t ∈ U [0, 1], Z̃ ∼ q(Z̃), Z ∼ pt(Z|Z̃) and ut(Z|Z̃) is the vector field defined per sample Z̃
that generates the conditional probability path pt(Z|Z̃). Importantly, one can show that the solution
of (6) is guaranteed to converge to the same result in (3); see Theorem 1 in App. C. Therefore, the
conditional flow matching loss can match the pre-defined target probability path, constructing the
flow that pushes p0 towards p1. Since both the probability path and VF are defined per sample, we
can sample unbiased estimates of the conditional loss efficiently, particularly so with suitable choices
of conditional probability paths and VFs.

4 PROBABILITY PATH MODELS FOR PROBABILISTIC FORECASTING

In this section, we describe the family of probability paths that we consider for flow matching, and
we propose an improved model for probabilistic forecasting of spatio-temporal data.

4.1 COMMON PROBABILITY PATH MODELS

The family of Gaussian conditional probability paths gives us tractable choices to work with since the
relevant quantities in Eq. (6) and thus the conditional flow can be defined explicitly. Therefore, we
will work with Gaussian probability paths. Moreover, we are going to solve (6) over the dataset of all
transition pairs D = {(zτ−1, zτ )}τ=2,...,m, and use a pair of points for Z̃, setting Z̃ = (Z0, Z1) ∈ D.
In particular, we consider the following class of models for the probability path:

pt(Z|Z̃ := (Z0, Z1)) = N (Z|atZ0 + btZ1, c
2
t I), (7)

where at, bt and ct are differentiable time-dependent functions on [0, 1], and I denotes the identity.

Table 1 provides five different choices of probability paths, including our proposed choice, that we
study here. The optimal transport (OT) VF model described in Table 1 was initially proposed by
Lipman et al. (2022), and setting ϵmin = 0 gives us the rectified flow model of Liu et al. (2022),
which proposed connecting data and noise on a straight line. The stochastic interpolant model in
Table 1 is the one considered by Chen et al. (2024). The VE and VP-diffusion conditional VFs
(derived with Theorem 2) coincide with the vector fields governing the Probability Flow ODE for
the VE and VP diffusion paths proposed in (Song et al., 2020b). It has been shown that combining
diffusion conditional VFs with the flow matching objective leads to a training alternative that is more
stable and robust when compared to existing score matching approaches (Lipman et al., 2022).

As remarked in (Lipman et al., 2022), there are many choices of vector fields that generate a given
probability path. We shall use the simplest vector field that generates flow whose map is affine linear.
Let pt(Z|Z̃) be the Gaussian probability path defined in Eq. (7) and consider the flow map ψt defined
as ψt(Z) = atZ0 + btZ1 + ctZ with ct > 0. Then the unique vector field that defines ψt is (see
Theorem 2 and the proof in App. C):

ut(Z|Z̃) =
c′t
ct
(Z − (atZ0 + btZ1)) + a′tZ0 + b′tZ1, (8)
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Table 1: Choices of probability density paths that we study in this paper.

Model at bt c2t

VE-diffusion 1 0 σ2
1−t, where σt is increasing in t, σ0 = 0

VP-diffusion e−
1
2T (1−t) 0 1− e−T (1−t), T (t) =

∫ t

0
β(s)ds, β = noise scale

OT-VF / rectified flow t 0 (1− (1− ϵmin)t)
2, ϵmin ≥ 0

Stochastic interpolant 1− t t or t2 ϵ2t(1− t)2, ϵ > 0
Ours 1− t t σ2

min + σ2t(1− t), σmin, σ ≥ 0

where prime denotes derivative with respect to t, and ut(Z|Z̃) generates the Gaussian path pt(Z|Z̃).
In view of this, minimizing the conditional loss becomes:

min
θ

Lcfm(θ) := Et,zτ ,zτ−1,pt(Z|zτ ,zτ−1)ω(t)

∥∥∥∥vθt (Z)− c′t
ct
(Z−(atz

τ+btz
τ−1))−a′tzτ−b′tzτ−1

∥∥∥∥2,
where t ∼ U [0, 1], Z ∼ pt(Z|zτ , zτ−1) and z ∼ q(z). We refer to this as the Flow Matching loss
parametrization and work with this parametrization. There are other parametrizations: most popular
ones are the Score Matching loss, Score Flow loss and DDPM loss. See App. B for a comparison of
different loss parametrizations and App. A for connections to SDE based generative models.

4.2 A NOVEL PROBABILITY PATH MODEL

We propose to choose at = 1 − t, bt = t, c2t = σ2
min + σ2t(1 − t), in which case we have the

probability path described by:

pt(Z|Z̃) = N (Z|tZ1 + (1− t)Z0, (σ
2
min + σ2t(1− t))I), (9)

which transports a Gaussian distribution centered around Z0 with variance σ2
min at t = 0 to a

Gaussian distribution centered around Z1 at t = 1 with variance σ2
min. Here σmin, σ ≥ 0 are tunable

parameters. In the case when σmin = 0, it describes a Brownian bridge that interpolates between
Z0 and Z1 (Gasbarra et al., 2007). To ensure numerical stability when sampling t ∼ U [0, 1], it is
beneficial to use a small σmin > 0. Note that σ2 is a scale factor determining the magnitude of
fluctuations around the path interpolating between Z0 and Z1. The variance c2t is minimum with the
value of σ2

min at the endpoints t = 0 and t = 1, and the maximum variance is σ2
min + σ2/4 which

occurs in the middle of the path at t = 1/2. The variance schedule is designed to balance exploration
and stability. Low variance at the start ensures stable initialization, preventing the trajectory from
deviating too far from the initial distribution. High variance in the middle allows the model to explore
diverse paths in the latent space, avoiding mode collapse and enhancing diversity in the generated
trajectories. Low variance at the end sharpens the trajectory, ensuring accurate reconstruction of the
desired output. This strategy is inspired by findings in diffusion models that utilize a forward noising
process and a backward denoising process (Ho et al., 2020; Song et al., 2020b), where such variance
patterns have been shown to effectively manage the trade-off between exploration and refinement.

The corresponding vector field that defines the flow is then given by (applying Theorem 2):

ut(Z|Z̃) = Z1 − Z0 +
σ2

2

1− 2t

σ2
min + σ2t(1− t)

(Z − (tZ1 + (1− t)Z0)). (10)

We remark that the conditional vector field ut(Z|Z̃) is linear in Z and Z̃. This choice of the vector
field corresponds to the choice of a linear model for the dynamics of the latent variable Z, and thus is
reminiscent of the Koopman formalism (Koopman, 1931).

We expect that our proposed probability path model improves upon the other considered models, as it
takes advantage of the inherent continuity and correlation in the spatio-temporal data. Intuitively, for
time series samples whose underlying dynamics are continuous and obey a physical law, a Gaussian
sample is typically further from the time series samples, so the distance between a Gaussian sample
and a time series sample should generally be larger than the distance between consecutive time
series samples (which can be highly correlated). Therefore, using a probability path that connects
consecutive time series samples could lead to faster convergence and more stable training, when
compared to using a path that simply connects a time series sample to a Gaussian sample, since the
resulting flow model in the former case can better capture the true system dynamics with less effort.
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Algorithm 1 Flow matching for spatio-temporal data
Input: Dataset of sequences D, number of iterations M
for i in range(1, M ) do

Sample a sequence x from the dataset D
Encode it with a pre-trained encoder to obtain z
Choose a random target element zτ , τ ∈ {3, . . . |z|}, from z
Sample a step t ∼ U [0, 1]
Sample a noisy observation Z ∼ pt(Z | zτ , zτ−1), where pt is given by Eq. (7)
Compute ut(Z | zτ , zτ−1)
Sample a condition frame zc, c ∈ {1, . . . τ − 2}
Update the parameters θ via gradient descent

∇θ∥vθt (Z | zτ−1, zc, τ − c)− ut(Z | zτ , zτ−1)∥2 (11)

end for
Return: A learned vector field, vθ

∗
t

Algorithm 2 One-step ahead forecasting with forward Euler

Input: A sequence (x1, . . . , xT−1) containing the previous elements, number of integration steps N , grid
s0 = 0 < s1 < · · · < sN = 1, a learnt vector field vθ

∗
s for s ∈ [0, 1]

Set ∆sn = sn+1 − sn for n = 0, . . . , N − 1
Sample Y T

0 ∼ N (E(xT−1), σ2
samI), σsam ≥ 0

for n in range(0, N − 1) do
Sample c ∼ U(2, . . . , T − 1)
yT−c = E(xT−c)

Y T
n+1 = Y T

n +∆snv
θ∗
sn(Y

T
n |Y T

0 , yT−c, T − c)
end for
Return: An estimate of xT , x̂T = D(Y T

N )

Moreover, if the consecutive samples are sufficiently correlated, then the variance of the vector field
corresponding to our proposed probability path model can be lower than the variance of the vector
field corresponding to the other choices of probability paths. We refer to Theorem 3 in App. C.3 for
such comparison result for our proposed model and the optimal transport VF model of Lipman et al.
(2022) (see also the discussions in Section C.3).

5 AN EFFICIENT PROBABILISTIC FORECASTING ALGORITHM

In this section, we present efficient algorithms for training and inferencing the flow matching model.

Recently Davtyan et al. (2023) proposed an efficient algorithm for latent flow matching for the task
of video prediction, using the probability path generated by the optimal transport VF of Lipman et al.
(2022). To enable efficient training, we shall follow Davtyan et al. (2023) and leverage the iterative
nature of sampling from the learned flow and use a single random conditioning element from the past
at each iteration. However, our method differs from Davtyan et al. (2023) as we shall use different
probability paths and target vector fields.

Training. We set Z1 to be the target element and Z0 to be the reference element chosen to be the
previous element before the target element, i.e., if Z1 = zτ , then Z0 = zτ−1, for τ = 2, . . . ,m.
Note that this differs from Davtyan et al. (2023), where Z̃ = z1 (i.e., they do not use a reference
element to define their probability path, whereas we use a pair of elements (Z0, Z1)). In this way, our
probability path model maps a distribution centered around a previous state to the distribution of the
current states, which is more natural from the point of view of probabilistic forecasting whose goal is
to obtain an ensemble of forecasts. Algorithm 1 summarizes the training procedure of our method.
Both the autoencoder and the VF neural network can also be jointly trained in an end-to-end manner,
but our results show that separating the training can lead to improved performance. Moreover, doing
so allows us to better assess the impact of using different probability paths.

Inference. We use an ODE sampler during inference to generate forecasts. The ODE sampler is
described as follows. Let (Y τ

i )i=0,...,N denote the generation process, where N is the number of

6
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integration steps and the superscript τ denotes the time index for which the generation/forecast
is intended for. Given the previous elements (x1, . . . , xT−1) of a time series sample, in order to
generate the next element (i.e., the T -th element), we start with sampling the initial condition Y T

0
from N (zT−1, σ2

samI) for some small σsam ≥ 0, where zT−1 = E(xT−1). This is in contrast to the
procedure of Davtyan et al. (2023), which simply uses a mean-zero Gaussian sample instead. We then
use an ODE solver to integrate the learned vector field along the time interval [0, 1] to obtain Y T

N . We
use D(Y T

N ) as an estimate of xT , and forecasting is done autoregressively. Algorithm 2 summarizes
this procedure when the sampling is done using the forward Euler scheme. Note that we can also use
computationally more expensive numerical schemes such as the Runge-Kutta (RK) schemes.

6 EMPIRICAL RESULTS

In this section, we present our main empirical results to elucidate the design choice of probability
paths. We focus on PDE dynamics forecasting tasks here (additional results can be found in App.
D). We test the performance of our probability path model, i.e., Eq. (9) with at = 1− t, bt = t and
ct =

√
σ2
min + σ2t(1− t) on these tasks. We pick σmin = 0.001, and treat σ and σsam as tunable

parameters. We compare our proposed model with four other models of probability paths:

• RIVER (Davtyan et al., 2023): RIVER uses the OT-VF model in Table 1, i.e., at = 0, bt = t,
ct = 1− (1− ϵmin)t, choosing ϵmin = 10−7.

• VE-diffusion in Table 1: We use σt = σmin

√(
σmax

σmin

)2t

− 1 with σmin = 0.01, σmax = 0.1, and

sample t uniformly from [0, 1− ϵ] with ϵ = 10−5 following Song et al. (2020b).

• VP-diffusion in Table 1: We use β(s) = βmin + s(βmax − βmin) where βmin = 0.1, βmax = 20
and t is sampled from U [0, 1 − ϵ] with ϵ = 10−5, following (Song et al., 2020b). Thus, T (s) =
sβmin + 1

2s
2(βmax − βmin).

• The stochastic interpolant path in Table 1: We consider the path proposed by Chen et al. (2024)
and use the suggested choice of at = 1 − t, bt = t2 and ct = ϵ(1 − t)

√
t (see Eq. (2) in (Chen

et al., 2024) and note that V ar((1− t)Wt) = (1− t)2t for the standard Wiener process Wt). We
choose ϵ = 0.01. This is a path that is similar to ours, but with the variance c2t chosen such that the
maximum occurs at t = 1/

√
3 instead of at the middle of the path at t = 1/2. Later, we will see

that different forms of variance can lead to vastly different performance in the considered tasks.

Evaluation metrics. We evaluate the models using the following metrics. First, we use the standard
mean squared error (MSE) and the relative Frobenius norm error (RFNE) to measure the difference
between predicted and true snapshots. Second, we compute metrics such as the peak signal-to-
noise ratio (PSNR), and the structural similarity index measure (SSIM) to further quantify the
quality and similarity of the generated snapshots (Wang et al., 2004). Third, we use the Pearson
correlation coefficient to assess the correlation between predicted and true snapshots. Forth, we
use the Continuous Ranked Probability Score (CRPS) (Matheson & Winkler, 1976) to measure the
compatibility of the cumulative distribution function of the forecasts with the targets (see App. E.4).

Training details. We use an autoencoder (AE) to embed the training data into a low-dimensional
latent space, which enables the model to capture the most relevant features of the data while reducing
dimensionality (Azencot et al., 2020); see App. E for further discussion of the motivation. We then
train a flow matching model in this latent space. Training generative models in latent space has also
been considered by Vahdat et al. (2021) for score matching models and by Dao et al. (2023) for flow
matching models. To train the AE, we minimize a loss function that consists of reconstruction error,
in terms of MSE, between the input data and its reconstructed version from the latent space. The
choice of the AE architecture is tailored to the complexity of the dataset (see App. E for details).

6.1 PROBABILISTIC FORECASTING OF DYNAMICAL SYSTEMS

We evaluate the performance of our proposed probability path model on challenging dynamical
systems to demonstrate its effectiveness in forecasting complex continuous dynamics. Specifically,
we consider the following tasks (for details see App. E.1):
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• Fluid Flow Past a Cylinder: This task involves forecasting the vorticity of a fluid flowing past a
cylinder. The model conditions on the first 5 frames and predicts the subsequent 20 frames at a
resolution of 64× 64 with 1 channel representing vorticity.

• Shallow-Water Equation: This dataset models the dynamics of shallow-water equa-
tions (Takamoto et al., 2022), capturing essential aspects of geophysical fluid flows. We use
the first 5 frames for conditioning and predict the next 15 frames at a resolution of 128× 128 with
1 channel representing horizontal flow velocity.

• Diffusion-Reaction Equation: This dataset models the dynamics of a 2D diffusion-reaction
equation (Takamoto et al., 2022). We use the first 5 frames for conditioning and predict 15 future
frames at a 128 × 128 with 2 channels representing velocity in the x and y directions.

• Incompressible Navier-Stokes Equation: As a more challenging benchmark, we consider fore-
casting the dynamics of a 2D incompressible Navier-Stokes equation (Takamoto et al., 2022). We
use the first 5 frames for conditioning and predict the next 20 frames at a resolution of 512× 512
with 2 channels representing velocity in the x and y directions.

Table 2 summarizes the performance of our model compared to other models across all tasks. It can
be seen that our probability path model achieves the lowest test MSE and RFNE across all tasks,
indicating more accurate forecasts. Moreover, the higher PSNR and SSIM scores indicate that our
model better preserves spatial structures in the predictions. Our model also achieves the lowest CRPS
on most tasks, showing that the predicted distribution of our model is closest to the true outcome.
Despite the similarity of our proposed model with the stochastic interpolant of Chen et al. (2024), in
that both models use consecutive samples to define the path, our model outperforms the stochastic
interpolant model on most tasks, suggesting that choosing the maximum variance to occur at the
middle of the path is a better choice. Importantly, our model is highly efficient during inference time
since it requires only 10 sampling steps.

Figure 1 shows the Pearson correlation coefficients of the predicted snapshots over time for all models.
Our model’s predictions shows a slower decay of correlation coefficients compared to other models,
indicating better temporal consistency and long-term predictive capability. Correlation coefficients
about 95% indicate performance on par with physics-based numerical simulators.

Figure 2 compares the training loss curves of our model with others trained on the fluid flow past
a cylinder and the shallow water equation task. Our method leads to faster convergence during
training and smoother loss curves. This suggests that our model requires fewer iterations to generate
high-quality samples when compared to other flow matching models.
Table 2: Results for forecasting dynamical systems using different probability path models for flow
matching. The CRPSs are computed using 50 ensemble members, whereas the other results are
averaged over 5 generations obtained with 10 sampling steps using RK4.

Task Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑) CRPS (↓)

Flow past Cylinder

RIVER 3.05e-03 5.70e-02 42.66 0.98 1.76e-02
VE-diffusion 2.75e-01 5.21e-01 26.81 0.52 2.43e-01
VP-diffusion 3.20e-03 5.20e-01 42.60 0.97 2.64e-02
Stoch. interpolant 3.39e-03 6.09e-02 41.82 0.97 3.36e-02
Ours 3.80e-04 2.30e-02 48.89 0.99 1.34e-02

Shallow-Water

RIVER 9.29e-04 1.5e-01 34.90 0.91 1.05e-02
VE-diffusion 1.23e-02 5.5e-01 28.76 0.57 4.42e-02
VP-diffusion 1.31e-03 1.8e-01 34.33 0.88 1.05e-02
Stoch. interpolant 1.06e-03 1.5e-01 35.57 0.88 1.41e-02
Ours 6.90e-04 1.3e-01 36.10 0.93 1.08e-02

Diffusion-Reaction

RIVER 2.37e-03 2.07e-01 38.47 0.84 4.45e-02
VE-diffusion 9.74e-02 1.7 32.83 0.35 1.01e-01
VP-diffusion 1.72e-02 6.48e-01 34.65 0.53 6.70e-02
Stoch. interpolant 6.17e-02 8.62e-01 45.64 0.76 1.27e-01
Ours 3.56e-04 1.16e-01 34.34 0.89 4.43e-02

Navier-Stokes

RIVER 1.98e-04 2.5e-01 38.71 0.85
VE-diffusion 1.21e-04 2.4 29.53 0.27
VP-diffusion 7.62e-02 1.85e-01 40.73 0.93
Stoch. interpolant 7.26e-05 1.8e-01 37.81 0.88
Ours 1.90e-05 9.8e-02 41.52 0.96
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6.2 ABLATION STUDY

To further assess our model, we conducted an ablation study focusing on the impact of various
hyperparameters. Specifically, we study the impact of the values of σ, the choice of sampler, and
the number of sampling steps during inference. For small σsam, we find that this parameter has
negligible impact on test performance, so we fixed σsam = 0 for all experiments in this section.

Impact of σ on training stability. Figure 3 illustrates the effect of different σ values on the training
loss curve for our method on the fluid flow past a cylinder task. We observed that larger values of σ
(e.g., σ = 0.1) resulted in smoother loss curves and more stable convergence during training.

Effect of σ, sampler choice, and sampling steps on test performance. Table 3 investigates how
different values of σ, the choice of sampler (Euler or RK4), and the number of sampling steps affect
test performance. It can be seen, that even with as few as 5 sampling steps using the Euler scheme,
our model perform reasonably well. However, increasing the number of sampling steps or employing
the more computationally intensive RK4 sampler can help to lead to better results.

Table 3: Ablation study for the fluid flow past a cylinder task. The CRPSs are computed using 50
ensemble members, whereas the other results are averaged over 5 generations.

σ sampler sampling steps Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑) CRPS (↓)

0.0 Euler 5 1.78e-03 4.50e-02 44.12 0.98 2.42e-02
0.01 Euler 5 1.79e-03 4.50e-02 44.13 0.98 2.45e-02
0.1 Euler 5 1.94e-03 4.50e-02 44.26 0.98 2.40e-02

0.0 Euler 10 7.14e-04 2.90e-02 47.07 0.99 1.65e-02
0.01 Euler 10 3.81e-04 2.30e-02 48.73 0.99 1.25e-02
0.1 Euler 10 2.83e-03 5.10e-02 44.14 0.98 2.74e-02

0.0 RK4 10 3.89e-04 2.20e-02 49.22 0.99 1.27e-02
0.01 RK4 10 3.80e-04 2.30e-02 48.89 0.99 1.34e-02
0.1 RK4 10 6.49e-03 7.80e-02 40.70 0.97 4.03e-02

0.0 Euler 20 5.51e-04 2.70e-02 47.44 0.99 1.49e-02
0.01 Euler 20 7.32e-04 3.10e-02 46.85 0.99 1.71e-02
0.1 Euler 20 7.93e-04 3.10e-02 46.80 0.99 1.66e-02

0.0 RK4 20 9.31e-04 3.30e-02 46.42 0.99 1.82e-02
0.01 RK4 20 6.62e-04 2.80e-02 47.62 0.99 1.58e-02
0.1 RK4 20 6.58e-04 2.90e-02 47.14 0.99 1.61e-02

0 5 10 15 20
0.99

0.992

0.994

0.996

0.998

1

RIVER

VE

VP

Stoch Interp

Ours

co
rr

el
at

io
n

Simple Fluid Flow

0 5 10 15
0.9

0.92

0.94

0.96

0.98

1

Shallow-Water Equation

0 5 10 15
0.9

0.92

0.94

0.96

0.98

1

Prediction Steps

co
rr

el
at

io
n

Reaction-Diffusion Equation

0 5 10 15 20
0.9

0.92

0.94

0.96

0.98

1

Prediction Steps

Navier-Stokes Equation

Figure 1: Pearson correlation coefficient to assess the correlation between predicted and true snapshots
at various prediction steps for different probability path models. Our probability path model shows
the best performance on all three tasks. Note that the first 5 snapshots are the conditioning snapshots.
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Figure 2: Training loss for different models of probability path for the fluid flow past a cylinder task.
Our model leads to fastest convergence and smoothest loss curve among all models.
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Figure 3: Training loss for different values of σ using our probability path model. The left subplot
shows results for the Euler sampler, and the right subplot for the RK4 sampler. We see that the loss
curve is sensitive to the choice of σ, with larger values of σ giving smoother loss curves.

6.3 DISCUSSION

Our empirical results showed that our proposed model consistently outperformed other models
across different forecasting tasks involving different types of dynamical systems. Our model shows
improved training efficiency, with faster convergence reducing the computational resources and time
required for model training. Moreover, our model is efficient during inference time since it only
requires a few sampling steps, making it practical for real-world applications where computational
efficiency is crucial. Additionally, the model maintained better temporal consistency, as indicated
by a slower decay of Pearson correlation coefficients over longer prediction horizons, as well as
improved probabilistic accuracy and reliability in forecasting, as reflected by lower CRPS values.
These findings validate the effectiveness of our approach in modeling complex dynamical systems.

Our ablation study further validated the advantage of our proposed probability path model. We found
that larger σ values not only contributed to smoother training loss curves but also enhanced the
overall stability and efficiency of the model. Moreover, we saw that σsam = 0 can be fixed without
compromising accuracy. The fact that our model achieved improved performance even with the
simplest sampler (Euler scheme) and a minimal number of sampling steps (as few as five) validates
its practical applicability, especially in scenarios where computational resources and time are limited.

7 CONCLUSION

In this work, we investigated the use of flow matching in latent space for probabilistic forecasting
of spatio-temporal dynamics, providing a theoretical framework and an efficient algorithm. We
demystified the critical role of the probability path design in this setting and proposed an improved
probability path model. Our model leverages the inherent continuity and correlation in the spatio-
temporal data, leading to more stable training and faster convergence. Our empirical evaluations on
several PDE forecasting tasks demonstrated that our model performs favorably when compared to
existing models. These findings highlight that while flow matching techniques hold great promise
for probabilistic forecasting of spatio-temporal dynamics, it is important to select an appropriate
probability path model to achieve optimal test performance. Future directions include extending the
framework to go beyond Gaussian probability paths to better capture heavy-tailed distributions.
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APPENDIX

This appendix is organized as follows. In App. A, we provide some remarks on the connection
of flow matching models to other generative models. In App. B, we provide commonly used loss
parametrizations and compare them with our flow matching loss. In App. C, we provide theorems
and proofs to justify the discussions in Section 3 (see Theorem 1-3). In App. D, we provide additional
empirical results. In App. E, we provide the missing experimental details.

A CONNECTION TO SDE BASED GENERATIVE MODEL FRAMEWORKS

In this section, we provide some remarks on the connection between flow matching models and SDE
based generative models (Song et al., 2020b).

Consider the following continuous-time Gaussian latent variable model (Tomczak, 2021): Zt =
E(Xt),

Zt = AtZ0 +BtZ1 + Ltϵ, t ∈ [0, 1], (12)
Xt = D(Zt), (13)

where t is the continuous variable, X0 ∈ Rd represent data samples, Z ∈ Rp is the latent variable,
ϵ ∼ N (0, I) is independent of the random variables X0, Z0, Z1. Here At, Bt and Lt ≥ 0 are
pre-specified coefficients which are possibly matrix-valued and time-dependent, D and E denote the
decoder and encoder map respectively, and D ◦ E = I . Note that Z0 and Z1 are initial and terminal
point of the path (Zt)t∈[0,1] in the latent space.

The above latent variable model can be identified (up to equivalence in law for each t) with the linear
SDE of the form:

dẐt = FtẐtdt+HtZ1dt+GtdWt, Ẑ0 = Z0, t ∈ [0, 1), (14)

where (Wt)t∈[0,1] is the standard Wiener process. By matching the moments, we obtain

Ft = ȦtA
−1
t , (15)

Ht = Ḃt − ȦtA
−1
t Bt, (16)

GtG
T
t = L̇tL

T
t + LtL̇

T
t − ȦtA

−1
t LtL

T
t − LtL

T
t A

−T
t (Ȧt)

T , (17)

where the overdot denotes derivative with respect to t and AT denotes the transpose of A.

Under the above formulation, various existing generative models such as DDPM (Ho et al., 2020),
VP-SDE and VE-SDE of Song et al. (2020b;a), the critically damped SDE of Dockhorn et al. (2021),
the flow matching models in (Lipman et al., 2022; Tong et al., 2023; Liu et al., 2022) and the stochastic
interpolants of Albergo et al. (2023) can be recovered, and new models can be derived.

The following proposition establishes the connection between flow matching using our proposed
probability path model, the Gaussian latent variable model (12) and the linear SDE model (14).
Proposition 1. For every t ∈ [0, 1], the Zt defined in Eq. (9) can be identified, up to equivalence
in law, with the Zt generated by the latent variable model (12) with At = (1 − t)I , Bt = tI ,
Lt =

√
σ2
min + σ2t(1− t)I . For t ∈ [0, 1), it can also be identified with the solution Ẑt of the

linear SDE (14) with Ft = −I/(1 − t), Ht = (1 + t
1−t )I and Gt =

√
σ2 +

2σ2
min

1−t I . Moreover,

limt→1 Ẑt =
d Z1 + σminϵ, where ϵ ∼ N (0, I) and =d denotes equivalence in distribution.

Proof. The identification follows from matching the moments of Zt and Ẑt, i.e., applying Eq.
(15)-(17).

To prove that limt→1 Ẑt =
d Z1 + σminϵ, we use the explicit solution of the SDE:

Ẑt = Φ(t, 0)Z0 +

∫ t

0

Φ(t, s)HsZ1ds+

∫ t

0

Φ(t, s)GsdWs,

where Φ(t, s) is the fundamental solution of the homogeneous equation dΦ(t, s) = FtΦ(t, s)dt

with Φ(s, s) = I . For our Ft = −I/(1 − t), we have Φ(t, s) = exp(−
∫ t

s
1

1−udu)I = ( 1−t
1−s )I .

14
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Substituting this and the formula for Ht into the solution, we obtain Ẑt = (1− t)Z0 +
∫ t

0
( 1−t
1−s )(1 +

s
1−s )Z1ds+

∫ t

0
( 1−t
1−s )

√
σ2 +

2σ2
min

1−s IdWs.

Now, let us examine each term as t → 1. First, (1 − t)Z0 → 0 as t → 1 and
∫ t

0
( 1−t
1−s )(1 +

s
1−s )Z1ds = tZ1 → Z1 as t → 1. It remains to deal with the stochastic integral term Mt :=∫ t

0
( 1−t
1−s )

√
σ2 +

2σ2
min

1−s dWs. Note that Mt is an Itô integral that has zero mean, i.e. EMt = 0, and
using Itô’s formula (Särkkä & Solin, 2019),

EM2
t =

∫ t

0

((1− t)/(1− s))2
(
σ2 +

2σ2
min

1− s

)
ds (18)

= (1− t)2
[
σ2

∫ t

0

1

(1− s)2
ds+ 2σ2

min

∫ t

0

1

(1− s)3
ds

]
(19)

= (1− t)2
[
σ2

(
t

1− t

)
+ σ2

min

(
1

(1− t)2
− 1

)]
(20)

= (1− t)tσ2 + σ2
mint(2− t), (21)

which tends to σ2
min as t→ 1. Combining the above results, limt→1 Ẑt ∼ N (Z1, σ

2
minI).

Remark 1. The linear SDE in Proposition 1 is not the unique SDE that Eq. (9) can be identified with
at each t. For instance, Zt in Eq. (9) can also be identified with the solution Ẑt of the SDE:

dẐt = (Z1 − Z0)dt+
σ2

2

1− 2t√
σ2
min + σ2t(1− t)

dWt, t ∈ [0, 1]. (22)

It is straightfoward to check that Ẑt and Zt are both Gaussian with the same mean and variance
for all t ∈ [0, 1]. Note that the probability path defined in Eq. (9) does not specify the covariance.
However, since during training and inference, Zt and Zs are sampled using independent Gaussian
samples, Cov(Zt, Zs) = 0 for t ̸= s. On the other hand, the SDEs that we have constructed above
specify the covariance. Thus, while Zt =

d Ẑt for all t ∈ [0, 1], the paths (Zt)t∈[0,1] and (Ẑt)t∈[0,1]

may not be equivalent in law as they may have different covariance. It is natural to ask how the
choice of covariance structure affects the model performance. Note that generating the SDE path
(Ẑt)t∈[0,1] requires simulation of the SDE. This beats the original purpose of flow matching, which
champions a simulation-free approach that directly works with a pre-specified probability path.

B ON DIFFERENT LOSS PARAMETRIZATIONS

In this section, we list popular choices of loss parametrization considered in the literature and connect
them to our flow matching loss. We refer to (Kingma & Gao, 2023) for a more comprehensive
discussion. Recall that the Gaussian path that we consider is: Zt = atZ0 + btZ1 + ctξ, where
ξ ∼ N (0, I). In general, these loss parametrizations take the form of:

L(θ) := Et,pt(Z|Z̃),q(Z̃)ω(t)∥m
θ
t (Z)−mt(Z, Z̃)∥2, (23)

where ω(t) > 0 is a weighting function, mt(Z, Z̃) is the object (conditioned on Z̃) to be learnt and
mθ

t is a neural network model used to learn the object of interest. Depending on which object one
would like to learn/match, we have different loss parametrizations.

Flow matching. The flow matching loss that we focus in this paper is:

Lcfm(θ) := Et,pt(Z|Z̃),q(Z̃)ω(t)∥v
θ
t (Z)− ut(Z|Z̃)∥2, (24)

where one aims to learn the flow generating vector field:

ut(Z|Z̃) =
c′t
ct
(Z − (atZ0 + btZ1)) + a′tZ0 + b′tZ1, (25)
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Score matching. The score matching loss is:

Lsm(θ) := Et,pt(Z|Z̃),q(Z̃)λ(t)∥s
θ
t (Z)−∇ log pt(Z|Z̃)∥2, (26)

where λ(t) > 0 is a weighting function and one aims to learn the score function:

∇ log pt(Z|Z̃) =
atZ0 + btZ1 − Z

c2t
. (27)

If λ(t) = c2t , then this reduces to the original score matching loss (Song & Ermon, 2019), whereas if
λ(t) = β(1− t), this becomes the score flow loss (Song et al., 2021).

Noise matching. The noise matching loss is:

Lnm(θ) := Et,pt(Z|Z̃),q(Z̃)∥ϵ
θ
t (Z)− ϵt(Z|Z̃)∥2, (28)

where one aims to learn the noise:

ϵt(Z|Z̃) =
Z − (atZ0 + btZ1)

ct
. (29)

C THEORETICAL RESULTS AND PROOFS

In this section, we provide theorems and proofs to justify the discussions in Section 3 and Section 4.

C.1 CONNECTING FLOW MATCHING WITH CONDITIONAL FLOW MATCHING

The following theorem justifies the claim that minimizing Lfm is equivalent to minimizing Lcfm.

Theorem 1. If the conditional vector field ut(Z|Z̃) generates the conditional probability path
pt(Z|Z̃), then the marginal vector field ut in Eq. (5) generates the marginal probability path pt in Eq.
(4). Moreover, if pt(Z) > 0 for all t, Z, then Lfm and Lcfm are equal up to a constant independent
of θ.

Proof. The proof is a straightforward extension of the proofs of Theorem 1-2 in (Lipman et al.,
2022) from conditioning on data samples to conditioning on latent samples and allowing an arbitrary
weighting function ω(t).

Suppose that the conditional vector field ut(Z|Z̃) generates the conditional probability path pt(Z|Z̃),
we would like to show that the marginal vector field ut in Eq. (5) generates the marginal probability
path pt in Eq. (4). To show this, it suffices to verify that pt and ut satisfy the continuity equation:

d

dt
pt(Z) + div(pt(Z)ut(Z)) = 0, (30)

where the divergence operator, div, is defined with respect to the latent variable Z = (Z1, . . . , Zd),
i.e., div =

∑d
i=1

∂
∂Zi .

We begin by taking derivative of pt(Z) with respect to time:

d

dt
pt(Z) =

d

dt

∫
pt(Z|Z̃)q(Z̃)dZ̃ (31)

=

∫
d

dt
pt(Z|Z̃)q(Z̃)dZ̃ (32)

= −
∫
div(ut(Z|Z̃)pt(Z|Z̃))q(Z̃)dZ̃ (33)

= −div
(∫

ut(Z|Z̃)pt(Z|Z̃)q(Z̃)dZ̃
)

(34)

= −div(ut(Z)pt(Z)). (35)

In the third line, we use the fact that ut(·|Z̃) generates pt(·|Z̃). In the last line, we use Eq. (5). In
the second and forth line above, the exchange of integration and differentiation can be justified by
assuming that the integrands satisfy the regularity conditions of the Leibniz rule.
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Next, we would like to show that if pt(Z) > 0 for all t, Z, then Lfm and Lcfm are equal up to a
constant independent of θ. We follow (Lipman et al., 2022) and assume that q(Z) and pt(Z|Z̃) are
decreasing to zero sufficiently fast as ∥Z∥ → 0, that ut, vt,∇θvt are bounded, so that all integrals
exist and exchange of integration order is justified via Fubini’s theorem.

Using the bilinearity of the 2-norm, we decompose the squared losses as:

∥vθt (Z)− ut(Z)∥2 = ∥vθt (Z)∥2 − 2⟨vθt (Z), ut(Z)⟩+ ∥ut(Z)∥2, (36)

∥vθt (Z)− ut(Z|Z̃)∥2 = ∥vθt (Z)∥2 − 2⟨vθt (Z), ut(Z|Z̃)⟩+ ∥ut(Z|Z̃)∥2. (37)

Now,

Ept(Z)∥vθt (Z)∥2 =

∫
∥vθt (Z)∥2pt(Z)dZ (38)

=

∫ ∫
∥vθt (Z)∥2pt(Z|Z̃)q(Z̃)dZ̃dZ (39)

= Eq(Z̃),pt(Z|Z̃)∥v
θ
t (Z)∥2, (40)

where we use Eq. (4) in the second equality above and exchange the order of integration in the third
equality.

Next, we compute:

Ept(Z)⟨vθt (Z), ut(Z)⟩ =
∫ 〈

vθt (Z),

∫
ut(Z|Z̃)pt(Z|Z̃)q(Z̃)dZ̃

pt(Z)

〉
pt(Z)dZ (41)

=

∫ 〈
vθt (Z),

∫
ut(Z|Z̃)pt(Z|Z̃)q(Z̃)dZ̃

〉
dZ (42)

=

∫ ∫
⟨vθt (Z), ut(Z|Z̃)⟩pt(Z|Z̃)q(Z̃)dZ̃dZ (43)

= Eq(Z̃),pt(Z|Z̃)⟨v
θ
t (Z), ut(Z|Z̃), (44)

where we first plug in Eq. (5) and then exchange the order the integration in order to arrive at the last
equality.

Finally, noting that ut are ω(t) independent of θ (and are thus irrelevant for computing the loss
gradients), we have proved the desired result.

C.2 IDENTIFYING THE VECTOR FIELD THAT GENERATES THE GAUSSIAN PATHS

Similar to Theorem 3 in (Lipman et al., 2022), we have the following result, which identifies the
unique vector field that generates the Gaussian probability path.

Theorem 2. Let pt(Z|Z̃) be the Gaussian probability path defined in Eq. (7) and consider the flow
map ψt defined as ψt(Z) = atZ0+ btZ1+ ctZ with ct > 0. Then the unique vector field that defines
ψt is:

ut(Z|Z̃) =
c′t
ct
(Z − (atZ0 + btZ1)) + a′tZ0 + b′tZ1, (45)

where prime denotes derivative with respect to t, and ut(Z|Z̃) generates the Gaussian path pt(Z|Z̃).

Proof. Let pt(Z|Z̃) be the Gaussian probability path defined in Eq. (7) and consider the flow map
ψt defined as ψt(Z) = atZ0 + btZ1 + ctZ. We would like to show that the unique vector field that
defines ψt is:

ut(Z|Z̃) =
c′t
ct
(Z − (atZ0 + btZ1)) + a′tZ0 + b′tZ1, (46)

and ut(Z|Z̃) generates the Gaussian path pt(Z|Z̃).

We denote wt = ut(Z|Z̃) for notational simplicity. Then,

d

dt
ψt(Z) = wt(ψt(Z)). (47)
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Since ψt is invertible (as ct > 0), we let Z = ψ−1(Y ) and obtain

ψ′
t(ψ

−1(Y )) = wt(Y ), (48)

where the prime denotes derivative with respect to t and we have used the apostrosphe notation for
the derivative to indicate that ψ′

t is evaluated at ψ−1(Y ).

Inverting ψt(Z) gives:

ψ−1
t (Y ) =

Y − µt(Z̃)

ct
, (49)

where µt(Z̃) := atZ0 + btZ1.

Differentiating ψt with respect to t gives ψ′
t(Z) = c′tZ + µ′

t(Z̃).

Plugging the last two equations into Eq. (48), we obtain:

wt(Y ) =
c′t
ct
(Y − µt(Z̃)) + µ′

t(Z̃) (50)

which is the result that we wanted to show.

C.3 COMPARING THE VARIANCE OF DIFFERENT VECTOR FIELD MODELS

We show that under reasonable assumptions, the variance of the vector field corresponding to our
proposed probability path model is lower than the variance of the vector field corresponding to the
other choices of probability paths. Here the variance is taken with respect to the randomness in the
samples zτ and the Gaussian samples drawn during gradient descent updates. To simplify our analysis
and to facilitate discussion, we only compare our probability path model to the model generated by
the optimal transport VF of Lipman et al. (2022), setting ϵmin := 0 (rectified flow) without loss of
generality.

We start with the following lemma.

Lemma 1. Let A,B,C,D be random vectors where C and D are independent, both A and B are
independent of C and D (but A and B could be dependent). If Cov(A,B) ≥ (V ar(C)− V ar(D) +
V ar(B))/2, then

V ar(A+D) ≥ V ar(A−B + C) = V ar(B −A+ C), (51)

where A ≥ B means that A−B is positive semidefinite.

Proof. We compute:

V ar(A+D) = V ar(A−B + C +B +D − C) (52)
= V ar(A−B + C) + V ar(B +D) + V ar(C) + 2Cov(A−B + C,B +D)

− 2Cov(A−B + C,C)− 2Cov(B +D,C) (53)
= V ar(A−B + C) + V ar(B +D)− V ar(C) + 2Cov(A−B + C,B)

+ 2Cov(A−B + C,D) (54)
= V ar(A−B + C) + V ar(B +D)− V ar(C) + 2Cov(A,B)− 2V ar(B) (55)
= V ar(A−B + C)− V ar(C) + V ar(D) + 2Cov(A,B)− V ar(B), (56)

where we have simply rearranged the terms in the first equality, used the formula V ar(A+B+C) =
V ar(A)+V ar(B)+V ar(C)+2Cov(A,B)+2Cov(A,C)+2Cov(B,C), bilinearity of covariance,
the facts that Cov(A,A) = V ar(A) and V ar(cA) = c2A for a scalar c, as well as the assumption
that both A and B are independent of C, D in the last four equalities.

Therefore, if −V ar(C) + V ar(D) + 2Cov(A,B)− V ar(B) ≥ 0, then we have V ar(A+D) ≥
V ar(A−B + C).
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Now, we consider the vector fields that correspond to the above two models of probability path,
denoting the vector field that corresponds to our model as ut and the vector field that corresponds
to the rectified flow model as ũt. They generate the probability path Zt = tzτ + (1− t)zτ−1 + ctξ

and Z̃t = tzτ−1 + (1 − t)η respectively, where ξ, η ∼ N (0, I), ct =
√
σ2
min + σ2t(1− t) and

t ∈ [0, 1].

Applying Eq. (8), we have:

ut(Zt|zτ−1, zτ ) = zτ − zτ−1 + c′tξ, (57)

ũt(Z̃t|zτ−1) = zτ−1 − η. (58)

Theorem 3. Suppose that (zτ )τ=1,...,m, with the zτ ∈ Rd, is a discrete-time stochastic pro-
cess with nonzero correlation in time and let t ∈ [0, 1] be given. If Cov(zτ−1, zτ ) ≥
1
2

((
σ4

4σ2
min

− 1
)
I + V ar(zτ )

)
, then V ar(ũt(Z̃t|zτ−1)) ≥ V ar(ut(Zt|zτ−1, zτ )).

Proof. Note that c′t =
σ2(1−2t)

2
√

σ2
min+σ2t(1−t)

, V ar(c′tξ) = (c′t)
2I and V ar(−η) = I . Therefore, using

these and applying Lemma 1 withA := zτ−1,B := zτ , C := c′tξ andD := −η, allow us to establish
the claim that V ar(ũt(Zt|zτ−1)) ≥ V ar(ut(Zt|zτ−1, zτ )) if

Cov(zτ−1, zτ ) ≥ 1

2

(
σ4(1− 2t)2I

4(σ2
min + σ2t(1− t))

+ V ar(zτ )− I

)
. (59)

Since the function f(t) := σ4(1−2t)2

4(σ2
min+σ2t(1−t))

is maximized at the endpoints t = 0, 1 with the

maximum value of σ4/4σ2
min, the desired result stated in the theorem follows.

Theorem 3 implies that if the consecutive latent variables zτ , zτ−1 are sufficiently correlated and σ is
chosen small enough relative to σmin, then the variance of the vector field that corresponds to our
probability path model is lower than that corresponds to the rectified flow model.

Discussions. Let us denote vθt (Z) := vθt (z
τ , zτ−1, ξ) to show the explicit dependence of the vector

field neural net on the random samples t, zτ , zτ−1 and ξ ∼ N (0, I) drawn during each update
of gradient descent during training. During each gradient descent update, our model involves
computation of

∇θLcfm(θ; t, ξ, zτ , zτ−1) = 2∇θv
θ
t (z

τ , zτ−1, ξ)T · (vθt (zτ , zτ−1, ξ)− ut(Zt|zτ , zτ−1)) (60)

=: 2∇θv
θ
t (z

τ , zτ−1, ξ)T ·∆θ
t (z

τ−1, zτ , ξ), (61)

with t ∼ U [0, 1], ξ ∼ N (0, I) and the latent samples zτ , zτ−1 drawn randomly.

Similarly, for the rectified flow model let us denote ṽθt (Z) := vθt (z
τ−1, η) to show the explicit

dependence of the vector field neural net on the random samples t, zτ−1 and η ∼ N (0, I) drawn
during each update of gradient descent during training. Each update of gradient descent using the
rectified flow model involves computation of

∇θL̃cfm(θ; t, η, zτ−1) = 2∇θṽ
θ
t (z

τ−1, η)T · (ṽθt (zτ−1, η)− ũt(Z̃t|zτ−1)) (62)

=: 2∇θṽ
θ
t (z

τ−1, η)T · ∆̃θ
t (z

τ−1, η), (63)

with t ∼ U [0, 1], η ∼ N (0, I) and the latent sample zτ−1 drawn randomly.

Lower gradient variance results in smoother training loss curve and potentially faster convergence, so
it is useful to compare the variances of the loss gradient for the two models. However, the variances are
highly dependent on ∇θv

θ
t , ∇θṽ

θ
t and their covariance with the other random vectors appearing in Eq.

(60) and Eq. (62), making such comparison challenging without strong assumptions. Heuristically,
the difference in the variances of the loss gradient during each update for the two models is primarily
determined by the difference between V ar(∆θ

t (z
τ−1, zτ , ξ)) and V ar(∆̃θ

t (z
τ−1, η)) if ∇θv

θ
t and

∇θṽ
θ
t are relatively stable. In this case, we have V ar(∆θ

t (z
τ−1, zτ , ξ)) ≤ V ar(∆̃θ

t (z
τ−1, η)) if we

suppose the assumptions in Theorem 3, V ar(ṽθt ) ≥ V ar(vθt ) and Cov(vθt , ut) ≥ Cov(ṽθt , ũt).

The implications of Theorem 3 together with the heuristics above could partially explain why our
probability path model leads to smoother loss curve and faster convergence (see Figure 2) compared
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to the RIVER method of Davtyan et al. (2023). On the other hand, the dependence of the lower bound
in the theorem on σ and σmin suggests that using values of σ that is relatively large enough might
not keep the variance of the vector field low, which could partially explain the phenomenon displayed
in Figure 2, where using σ = 0.1 and σmin = 0.001 leads to large loss fluctuations.

D ADDITIONAL EMPIRICAL RESULTS

In this section, we provide additional experimental results.

Figure 4 provides visual results of the predicted snapshots by our model for each task. The visualiza-
tions highlight our model’s ability to capture complex flow patterns and dynamics.

last con. frame time →

G
T

pr
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.

G
T

pr
ed

.

G
T
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.

G
T

pr
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Figure 4: Visualization of predicted frames using our model of probability path for the considered
tasks. From top to bottom: fluid flow past a cylinder, shallow-water equation, diffusion-reaction
equation, and incompressible Navier-Stokes equation. In each case, GT indicates the ground truth
frames and pred. indicates the predicted frames.

E EXPERIMENTAL DETAILS

In this section, we provide the experimental details for the tasks considered in Section 6.

E.1 DETAILS ON THE DATASETS

Fluid flow past a cylinder. We use the fluid flow past a stationary cylinder at a Reynolds number of
100 as a simple test problem. This fluid flow is a canonical problem in fluid dynamics characterized
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by a periodically shedding wake structure (Erichson et al., 2020; 2019). The flow dynamics are
governed by the two-dimensional incompressible Navier–Stokes equations:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u,

∇ · u = 0,

where u = (u, v) is the velocity field, p is the pressure, ρ is the fluid density, and ν is the kinematic
viscosity. The vorticity field ω is obtained from the velocity field via:

ω = ∇× u,

providing insights into the rotational characteristics of the flow.

For simulating the data, the Immersed Boundary Projection Method (IBPM) has been used (Colonius
& Taira, 2008). The flow tensor has dimensions 199×449×151, representing 151 temporal snapshots
on a 449 × 199 spatial grid. We crop and spatially subsample the data which results in a 64 × 64
spatial field.

Shallow-water equation. The shallow-water equations, derived from the compressible Navier-Stokes
equations, can be used for modeling free-surface flow problems. We consider the 2D equation used
in (Takamoto et al., 2022), which is the following system of hyperbolic PDEs:

∂th+∇hu = 0, ∂thu+∇
(
u2h+

1

2
grh

2

)
= −grh∇b, (64)

where u = u, v being the velocities in the horizontal and vertical direction respectively, h describes
the water depth, and b describes a spatially varying bathymetry. hu can be interpreted as the
directional momentum components and gr describes the gravitational acceleration. The mass and
momentum conservation properties can hold across shocks in the solution and thus challenging
datasets can be generated. This equation finds application in modeling tsunamis and flooding events.

We use the dataset generated and provided by PDEBench (Takamoto
et al., 2022). The data file (2D_rdb_NA_NA.h5) can be downloaded from
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download.
The data sample is a series of 101 frames at a 128 × 128 pixel resolution and come with 1 channel.
The simulation considered in (Takamoto et al., 2022) is a 2D radial dam break scenario. On a square
domain Ω = [−2.5, 2.5]2, the water height is initialized as a circular bump in the center of the
domain:

h(t = 0, x, y) =

{
2, for r <

√
x2 + y2,

1, for r ≥
√
x2 + y2,

with the radius r randomly sampled from U(0.3, 0.7). The dataset is simulated with a finite volume
solver using the PyClaw package. We apply standardization and then normalization to the range of
[−1, 1] to preprocess the simulated data.

Incompressible Navier-Stokes equation. The Navier-Stokes equation is the incompressible version
of the compressible Navier-Stokes equation, and it can be used to model hydromechanical systems,
turbulent dynamics and weather. We use the inhomogeenous version of the equation (which includes
a vector field forcing term u) considered by (Takamoto et al., 2022):

∇ · v = 0, ρ(∂tv + v · ∇v) = −∇p+ η∆v + u, (65)

where ρ is the mass density, v is the fluid velocity, p is the gas pressure and η is shear viscosity.
The initial conditions v0 and inhomogeneous forcing parameters u are each drawn from isotropic
Gaussian random fields with truncated power-law decay τ of the power spectral density and scale
σ, where τv0 = −3, σv0 = 0.15, τu = −1, σu = 0.4. The domain is taken to be the unit square
Ω = [0, 1]2 and the viscosity η = 0.01. The equation is numerically simulated using Phiflow.
Boundary conditions are taken to be Dirichlet to clamp the field velocity to zero at the perimeter.

We use the dataset generated and provided by PDEBench (Takamoto et al., 2022).
The data file (ns_incom_inhom_2d_512-0.h5) can be downloaded from
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https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download.
The data sample is a series of 1000 frames at a 512 × 512 pixel resolution and come with 2 channels.
We do not apply any data preprocessing procedure here.

Diffusion-reaction equation. We use the 2D extension of diffusion-reaction equation of Takamoto
et al. (2022) which describes two non-linearly coupled variables, namely the activator u = u(t, x, y)
and the inhibitor v = v(t, x, y). The equation is given by:

∂tu = Du∂xxu+Du∂yyu+Ru, (66)
∂tv = Dv∂xxv +Dv∂yyv +Rv, (67)

where Du and Dv are the diffusion coefficient for the activator and inhibitor respectively, Ru =
Ru(u, v) and Rv = Rv(u, v) are the activator and inhibitor reaction function respectively. The
domain of the simulation includes x ∈ (−1, 1), y ∈ (−1, 1), t ∈ (0, 5]. This equation can be used
for modeling biological pattern formation.

The reaction functions for the activator and inhibitor are defined by the Fitzhugh-Nagumo equation as:
Ru(u, v) = u−u3−k−v, Rv(u, v) = u−v, where k = 5×10−3, and the diffusion coefficients for
the activator and inhibitor are Du = 1× 10−3 and Dv = 5× 10−3 respectively. The initial condition
is generated as standard Gaussian noise u(0, x, y) ∼ N (0, 1.0) for x ∈ (−1, 1) and y ∈ (−1, 1).
We take a no-flow Neumann boundary condition: Du∂xu = 0, Dv∂xv = 0, Du∂yu = 0, and
Dv∂yv = 0 for x, y ∈ (−1, 1)2.

We use a downsampled version of the dataset provided by PDEBench (Takamoto
et al., 2022). The data file (2D_diff-react_NA_NA.h5) can be downloaded from
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download. The
data sample is a series of 101 frames at a 128 × 128 pixel resolution and come with 2 channels. The
sample frames are generated using the finite volume method for spatial discretization, and the time
integration is performed using the built-in fourth order Runge-Kutta method in the scipy package. We
do not apply any data preprocessing procedure here.

E.2 DETAILS ON PRE-TRAINING THE AUTOENCODER

We provide details on pre-training the autoencoder here. The choice of first pre-training an autoen-
coder is motivated by the computational challenges of working directly with the high-dimensional
spatial resolution of PDE datasets. Training directly in the ambient space requires substantial GPU
memory and computational resources, making it impractical for large-scale or high-resolution datasets.
By leveraging a latent-space representation, we achieve significant dimensionality reduction while
preserving the essential structure of the data, enabling efficient training and inference with standard
hardware configurations. For these datasets, latent-space modeling provides a critical balance between
computational efficiency, scalability, and performance.

We use the same architecture for the encoder and decoder for all the tasks, with the architecture
parameters chosen based on the complexity of the task.

The encoder. The encoder first applies a 2D convolution (conv_in) to the input frame, which
reduces the number of channels from in_channels to mid_channels, and processes the spatial
dimensions. Then, a series of ResidualBlock layers, which progressively process and downsample
the feature map, making it smaller in spatial dimensions but more enriched in terms of features,
are applied. After the residual blocks, the feature map undergoes an attention process via a multi-
head attention layer. This layer helps the encoder focus on important parts of the input, learning
relationships between spatial positions in the image. For the post-attention step, the feature map
is further processed by residual blocks and normalized, preparing it for the final convolution. The
output of the encoder is obtained by applying a final 2D convolution (out_conv), which maps the
processed feature map to the desired number of output channels (out_channels).

The decoder. The decoder takes the encoded feature map and transforms it back into an output with
similar spatial dimensions as the input. Similar to the encoder, the decoder starts with a convolution
that adjusts the number of channels from in_channels to mid_channels. Then, an attention
mechanism (similar to the encoder) is applied to focus on important aspects of the encoded features.
Next, a series of ResidualBlock layers, combined with UpBlock layers, are used to progressively
increase the spatial dimensions of the feature map (upsampling), undoing the compression applied by
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the encoder. After the upsampling, the output is normalized and passed through a final convolution
(out_conv), mapping the internal feature representation to the desired number of output channels
(out_channels).

Table 4 summarizes the architecture parameters used for the considered tasks.

Table 4: Parameters chosen for the encoder (decoder) architecture.

Task Fluid flow Shallow-water eq. Navier-Stokes eq. Diffusion-reaction eq.

in_channels 1 (1) 1 (1) 2 (2) 2 (2)
out_channels 1 (1) 1 (1) 2 (2) 2 (2)
mid_channels 64 (128) 128 (256) 128 (256) 128 (256)

Training details. We train the autoencoder using AdamW with batch size of 32, no weight decay
and β = (0.9, 0.999). We use the cosine learning rate scheduler with warmup. For the fluid flow past
a cylinder task, we train for 2000 epochs and use learning rate of 0.001. For the Navier-Stokes task,
we train for 500 epochs and use learning rate of 0.0001. For the other two tasks we train for 5000
epochs and use learning rate of 0.0005. Our implementation is in PyTorch, and all experiments are
run on an NVIDIA A100-SXM4 GPU with 40 GB VRAM belonging to an internal SLURM cluster.

E.3 DETAILS ON TRAINING THE FLOW MATCHING MODELS

Architecture. The vector field regressor is a transformer-based model designed to process latent
vector fields and predict refined outputs with spatial and temporal dependencies. It uses key parameters
like depth and mid_depth, which control the number of transformer encoder layers in the input,
middle, and output stages. The state_size and state_res parameters define the number of
channels and spatial resolution of the input data, while inner_dim sets the embedding dimension for
processing. The model uses learned positional encodings and a time projection to incorporate spatial
and temporal context into the input, which can include input_latents, reference_latents,
and conditioning_latents. The input is projected into the inner dimension and passed
through a series of transformer layers, with intermediate outputs from the input blocks concatenated
with the output layers to refine predictions. Finally, the model projects the processed data back to the
original spatial resolution and channel size using BatchNorm, producing the final vector field output.

Table 5 summarizes the architecture parameters used for the considered tasks.

Table 5: Parameters chosen for the vector field neural network.

Parameter Fluid flow Shallow-water eq. Navier-Stokes eq. Diffusion-reaction eq.

state_size 4 4 8 4
state_res [8,8] [16, 16] [64, 64] [16, 16]
inner_dim 512 512 512 512
depth 4 4 4 4
mid_depth 5 5 5 5

Training details. For all the considered tasks, we train the regressor using AdamW with batch
size of 32, learning rate of 0.0005, no weight decay and β = (0.9, 0.999). We use the cosine
learning rate scheduler with warmup. For the fluid flow past cylinder, we train for 2000 epochs,
for the shallow-water equation and diffusion-reaction task we train for 1000 epochs, and for the
Navier-Stokes task we train for 100 epochs. Our implementation is in PyTorch, and all experiments
are run on an NVIDIA A100-SXM4 GPU with 40 GB VRAM belonging to an internal SLURM
cluster.

E.4 DETAILS ON THE EVALUATION METRICS

In addition to the standard mean squared error and relative Frobenius norm error (RFNE), we use
the Pearson correlation coefficient to measure the linear relationship between the forecasted frames
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and the target frames. The range of this coefficient is [−1, 1], with zero implying no correlation.
Correlations of −1 or +1 imply an exact linear relationship. Positive correlations imply that as x
increases, so does y. Negative correlations imply that as x increases, y decreases. In addition, we use
peak signal-to-noise ratio (PSNR) to evaluate the quality of signal representation against corrupting
noise, and structural similarity index measure (SSIM) (Wang et al., 2004) to assess perceptual results.
The presented results are computed by averaging over batch size and number of sample generations.

To better quantify probabilistic forecasting performance, we use the Continuous Ranked Probability
Score (CRPS) (Matheson & Winkler, 1976) to compare the predicted cumulative distribution function
(CDF) to the actual observed value. More precisely, CRPS measures the compatibility of a CDF F
with an scalar-valued observation x as:

CRPS(F, x) =

∫
R
(F (z)− 1{x≤z})

2dz, (68)

where 1{x≤z} is the indicator function which is one if x ≤ z and zero otherwise. CRPS is a proper
scoring function, attaining its minimum when the predictive distribution and the data distribution
matches. Therefore, a lower CRPS value indicates that the predicted distribution is closer to the true
outcome. For high-dimensional arrays (such as forecasts for multiple variables or at multiple spatial
locations), the CRPS can be extended by treating the multidimensional forecasts as multivariate
distributions. In our experiments, we use 50 ensemble members to compute the empirical CDF, and
the CRPS values presented are obtained by averaging over batch size and data dimensions.

E.5 STANDARD DEVIATIONS FOR THE PRESENTED RESULTS

Table 6-10 provide the standard deviation of the results presented in the main paper.

Table 6: Standard deviation results for the fluid flow past a cylinder task using different choices of
probability paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

RIVER 1.33e-03 3.09e-02 1.31 5.93e-03
VE-diffusion 1.75e-02 3.60e-01 3.25e-01 2.31e-02
VP-diffusion 1.75e-02 3.60e-01 3.25e-01 2.31e-02
Stochastic interpolant 5.45e-05 3.51e-02 7.74e-02 3.75e-04

Ours (σ = 0.01, σsam = 0, Euler) 6.66e-06 4.49e-03 5.34e-02 3.48e-05

Table 7: Standard deviation for the results of ablation study for the fluid flow past a cylinder task.
Results are averaged over 5 generations.

σ sampler sampling steps Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

0.0 Euler 5 3.57e-05 2.42e-02 3.98e-02 2.51e-04
0.01 Euler 5 2.89e-05 2.45e-02 3.01e-02 1.80e-04
0.1 Euler 5 1.64e-05 2.73e-02 2.11e-02 7.21e-05

0.0 Euler 10 9.08e-06 1.25e-02 4.08e-02 5.73e-05
0.01 Euler 10 6.66e-06 4.49e-03 5.34e-02 3.48e-05
0.1 Euler 10 2.84e-05 4.00e-02 3.76e-02 2.21e-04

0.0 RK4 10 3.36e-06 7.69e-03 3.08e-02 2.33e-05
0.01 RK4 10 3.14e-06 5.43e-03 2.56e-02 2.22e-05
0.1 RK4 10 5.88e-05 5.83e-02 2.03e-2 1.85e-04

0.0 Euler 20 6.35e-06 7.36e-03 3.90e-02 5.90e-05
0.01 Euler 20 9.64e-06 1.21e-02 4.30e-02 5.94e-05
0.1 Euler 20 5.44e-06 1.39e-02 1.39e-02 1.03e-04

0.0 RK4 20 1.09e-05 1.65e-02 3.23e-02 8.08e-05
0.01 RK4 20 8.35e-06 1.32e-02 3.29e-02 6.54e-05
0.1 RK4 20 3.44e-06 1.07e-02 1.08e-02 4.08e-05
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Table 8: Standard deviation results for the shallow-water equation task using different choices of
probability paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

RIVER 2.81e-05 8.72e-02 1.01e-01 1.29e-03
VE-diffusion 5.01e-04 3.16e-01 3.50e-01 3.25e-03
VP-diffusion 1.56e-04 1.36e-02 2.61e-01 1.06e-01
Stochastic interpolant 7.25e-06 1.03e-01 3.45e-02 4.61e-04

Ours (σ = 0.01, σsam = 0, RK4) 1.54e-06 7.30e-02 3.54e-03 2.60e-04

Table 9: Standard deviation results for the diffusion-reaction equation task using different choices of
probability paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

RIVER 4.93e-04 2.27e-01 7.01e-01 1.82e-02
VE-diffusion 6.65e-03 1.04 5.59e-01 9.11e-03
VP-diffusion 6.75e-04 5.67e-01 1.62 2.13e-02
Stochastic interpolant 7.92e-04 1.14 9.58e-02 1.20e-03

Ours (σ = 0, σsam = 0, RK4) 1.02e-06 4.76e-02 7.96e-03 1.11e-04

Table 10: Standard deviation results for the Navier-Stokes equation task using different choices of
probability paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

RIVER 5.79e-05 2.46e-01 6.14e-01 1.13e-02
VE-diffusion 1.21e-04 1.36 8.82e-02 1.12e-03
VP-diffusion 2.55e-06 1.42e-01 8.28e-02 6.43e-04
Stochastic interpolant 2.03e-07 1.29e-01 9.54e-03 1.95e-04

Ours (σ = 0.01, σsam = 0, RK4) 5.76e-08 4.88e-02 9.32e-03 7.42e-05
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