
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ELUCIDATING THE DESIGN CHOICE OF PROBABILITY
PATHS IN FLOW MATCHING FOR FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Flow matching has recently emerged as a powerful paradigm for generative model-
ing and has been extended to probabilistic time series forecasting in latent spaces.
However, the impact of the specific choice of probability path model on forecasting
performance remains under-explored. In this work, we demonstrate that forecasting
spatio-temporal data with flow matching is highly sensitive to the selection of the
probability path model. Motivated by this insight, we propose a novel probability
path model designed to improve forecasting performance. Our empirical results
across various dynamical system benchmarks show that our model achieves faster
convergence during training and improved predictive performance compared to
existing probability path models. Importantly, our approach is efficient during infer-
ence, requiring only a few sampling steps. This makes our proposed model practical
for real-world applications and opens new avenues for probabilistic forecasting.

1 INTRODUCTION

Generative modeling has achieved remarkable success in recent years, especially for generating
high-dimensional objects by learning mappings from simple, easily-sampled reference distributions,
π0, to complex target distributions, π1. In particular, diffusion models have pushed the capabilities
of generating realistic samples across various data modalities, including images (Ho et al., 2020;
Song et al., 2020b; Karras et al., 2022), videos (Ho et al., 2022; Blattmann et al., 2023; Gupta et al.,
2023), and spatio-temporal scientific data like climate and weather patterns (Pathak et al., 2024;
Kohl et al., 2024). Despite their impressive performance, diffusion models often come with high
computational costs during training and inference. Additionally, they typically assume a Gaussian
reference distribution, which may not be optimal for all data types and can limit modeling flexibility.

One promising alternative is flow matching, where the mappings are learned via a stochastic process
that transforms π0 into π1 through a random ordinary differential equation (ODE), approximating its
marginal vector flow (Lipman et al., 2022; Albergo et al., 2023; Liu et al., 2022; Tong et al., 2023;
Pooladian et al., 2023). While score-based generative models (Song & Ermon, 2019; Song et al.,
2020a;b; Ho et al., 2020) are specific instances of flow matching, with Gaussian transition densities,
the general framework allows for a broader class of interpolating paths. This flexibility can lead
to deterministic sampling schemes that are faster and require fewer steps (Zhang & Chen, 2022).
Recent work has demonstrated the remarkable capabilities of flow matching models for generating
high-dimensional images (Esser et al., 2024) and discrete data (Gat et al., 2024).

Building on this, flow matching in latent space has recently been applied to forecasting spatio-
temporal data (Davtyan et al., 2023) — predicting future frames in videos. This approach leverages
latent representations to capture the complex dynamics inherent in temporal data. However, spatio-
temporal forecasting, especially for video and dynamical systems data, presents unique challenges. A
video prediction model capable of generalizing to new, unseen scenarios must implicitly “understand”
the scene: detecting and classifying objects, learning how they move and interact, estimating their
3D shapes and positions, and modeling the physical laws governing the environment (Battaglia
et al., 2016). Similarly, accurate climate and weather forecasting requires capturing intricate physical
processes and interactions across multiple scales (Dueben & Bauer, 2018; Schultz et al., 2021).

We observe that, in the context of spatio-temporal forecasting, the performance of flow matching is
highly sensitive to the choice of the probability path model, an important topic which has not been
widely explored within a unified framework. Different probability paths can significantly impact the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

accuracy and convergence of forecasting models, particularly when dealing with complex dynamical
systems characterized by partial differential equations (PDEs) and chaotic behaviors. Motivated by
this, we propose a novel probability path model specifically designed for probabilistic forecasting of
dynamical systems. Our model leverages the continuous dynamics intrinsic to spatio-temporal data
by interpolating between consecutive sequential samples. This approach ensures better alignment
with the constructed flow, leading to improved predictive performance, more stable training, and
greater inference efficiency. Existing probability path models often fail to fully capture the continuous
nature of spatio-temporal data, resulting in a misalignment with flow-based methods and suboptimal
outcomes. Our proposed model addresses these limitations directly.

Building on previous approaches, we provide a theoretical framework and efficient algorithms
tailored to probabilistic forecasting using flow matching in latent space. Within this framework, we
demonstrate that our probability path model outperforms existing methods across several forecasting
tasks involving PDEs and other dynamical systems, achieving faster convergence during training
and requiring fewer sampling steps during inference. These advances enhance the practicality of
flow matching approaches for real-world applications, particularly in scenarios where computational
resources and time are critical constraints. Our main contributions are the following.

• Theoretical Framework and Efficient Algorithms: We present a theoretical framework and
efficient algorithms for applying flow matching in latent space to the probabilistic forecasting
of dynamical systems (see Algorithms 1-2), extending the approach of Lipman et al. (2022) and
Davtyan et al. (2023). Our approach is specifically tailored for time series data, enabling effective
modeling of complex temporal dependencies inherent in dynamical systems.

• Novel Probability Path Model: We propose a new probability path model (Eq. (9)), specifically
designed for modeling dynamical systems data. We provide intuitions to understand why our model
leads to smoother training loss curve and faster convergence when compared to other models. We
also provide theoretical insights to show that the variance of the vector field (VF) generating our
proposed path can be lower than that of the optimal transport VF proposed by Lipman et al. (2022)
for sufficiently correlated spatio-temporal samples (see Theorem 3 in App. C).

• Empirical Validation: We provide extensive empirical results to demonstrate that our proposed
probability path model can outperform other flow matching models on several forecasting tasks
involving PDEs and other dynamical systems (see Section 6). Our results demonstrate that the
proposed probability path model outperforms existing flow matching models, achieving faster
convergence during training and improved predictive performance.

2 RELATED WORK

Generative models have gained significant attention in learning complex data distributions, particularly
through the use of score-based diffusion models and flow-based models. These models have shown
promise in generating realistic high-dimensional data such as images (Song et al., 2020b; Karras
et al., 2022; Esser et al., 2024), videos (Davtyan et al., 2023; Shrivastava & Shrivastava, 2024) and
time series (Meijer & Chen, 2024), and dynamical systems (Pathak et al., 2024; Kohl et al., 2024;
Ren et al., 2024). The recent work of Rasul et al. (2021); Biloš et al. (2023); Ruhe et al. (2024);
Kollovieh et al. (2024); Rühling Cachay et al. (2024) focuses on modeling time series with score-
based diffusion models, which often require using many steps for sampling, whereas our proposed
method requires as few as 10 steps. Related to our work is (Chen et al., 2024), which proposed a
stochastic differential equation (SDE) framework using stochastic interpolants (Albergo et al., 2023)
for probabilistic forecasting of time series, but their SDE based sampler typically requires many steps
during generation. Another relevant work is (Tamir et al., 2024), which proposed a flow matching
framework for time series modeling within the data space, but it focuses on small ODE datasets and
does not consider forecasting tasks.

3 FLOW MATCHING FOR PROBABILISTIC FORECASTING

In this section, we first introduce the objective of probabilistic forecasting; and then we discuss how
flow matching can be used for learning conditional distributions in latent space.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Probabilistic forecasting framework. Suppose that we are given a training set of n trajectories, with
each trajectory of length m, Sn = {(x1:m)(i)}i=1,...,n, where (x1:m)(i) = ((x1)(i), . . . , (xm)(i)),
(with the (xl)(i) ∈ Rd), coming from an underlying continuous-time dynamical system. For sim-
plicity, we denote the trajectories as x1:m = (x1, . . . , xm) unless there is a need to specify the
corresponding n. The trajectories are observed at arbitrary time points t1:m = (t1, . . . , tm) such that
xi := x(ti) ∈ Rd and (x(t))t∈[t1,tm] are the observed states of the ground truth system. In practice,
we may have access to only few trajectories, i.e., n is small or even n = 1, and the trajectories
themselves may be observed at different time stamps.

The goal of probabilistic forecasting is to predict the distribution of the upcoming l elements given
the first k elements, where m = l + k:

q(xk+1, . . . , xk+l|x1, . . . , xk) =
l∏

i=1

q(xk+i|x1, . . . , xk+i−1). (1)

We propose to model each one-step predictive conditional distribution in Eq. (1) via a probability
density path. Instead of using score-based diffusion models to specify the path, we choose latent flow
matching, a simpler method to train generative models. With flow matching, we directly work with
probability paths, and we can simply avoid reasoning about diffusion processes altogether.

Flow matching in latent space. Let zτ = E(xτ) for τ = 1, . . . ,m, where E denotes a pre-trained
encoder that maps from the data space to a lower dimensional latent space. Working in the latent
space, our goal is to approximate the ground truth distribution q(zτ |x1, . . . , xτ−1) by the parametric
distribution p(zτ |zτ−1), which can then be decoded as xτ = D(zτ). The latent dynamics can be
modeled by an ODE, Żt = ut(Zt), where ut is the vector field describing the instantenous rate of
change of the state at time t. Learning the dynamics of the system is equivalent to approximating the
vector field ut by regressing a neural network using the mean squared error (MSE) loss.

Following the idea of flow matching, we infer the dynamics of the system generating z from the
collection of latent observables by learning a time-dependent vector field vt : [0, 1] × Rd → Rd,
t ∈ [0, 1], such that the ODE

ϕ̇t(Z) = vt(ϕt(Z)), ϕ0(Z) = Z, (2)

defines a time-dependent diffeomorphic map (called a flow), ϕt(Z) : [0, 1]× Rd → Rd, that pushes
a reference distribution p0(Z) towards the distribution p1(Z) ≈ q(Z) along some probability density
path pt(Z) and the corresponding vector field ut(Z). In other words, pt = [ϕt]∗p0, where [·]∗ denotes
the push-forward operation. Here, q is the ground truth distribution, p denotes a probability density
path, i.e., p : [0, 1]× Rd → R>0, and

∫
pt(Z)dZ = 1. We also write Zt = ϕ(Z); and thus the ODE

can be written as Żt = vt(Zt), Z0 = Z. Typically the reference distribution p0 is chosen to be the
standard Gaussian (Lipman et al., 2022; Liu et al., 2022).

In other words, the main goal of flow matching is to learn a deterministic coupling between p and
q by learning a vector field vt such that the solution to the ODE (2) satisfies Z0 ∼ p and Z1 ∼ q.
When Z = (Zt)t∈[0,1] solves Eq. (2) for a given function vt, we say that Z is a flow with the vector
field vt. If we have such a vector field, then (Z0, Z1) is a coupling of (p, q). If we can sample from p,
then we can generate approximate samples from the coupling by sampling Z0 ∼ p and numerically
integrating Eq. (2). This can be viewed as a continuous normalizing flow (Chen et al., 2018).

If one were given a pre-defined probability path pt(Z) and the corresponding vector field ut(Z)
that generates the path, then one could parametrize vt(Z) with a neural network vθt (Z), with θ the
learnable parameter, and solve the least square regression by minimizing the flow matching loss:

min
θ

Lfm(θ) := Et,pt(Z)ω(t)∥vθt (Z)− ut(Z)∥2, (3)

where t ∈ U [0, 1], Z ∼ pt(Z) and ω(t) > 0 is a weighting function. We take ω(t) = 1 unless
specified otherwise. However, we do not have prior knowledge for choosing pt and ut, and there
are many choices that can satisfy p1 ≈ q. Moreover, we do not have access to a closed form ut
that generates the desired pt. We shall follow the approach of Lipman et al. (2022) and construct a
target probability path by mixing simpler conditional probability paths. This probability path is the
marginal probability path:

pt(Z) =

∫
pt(Z|Z̃)q(Z̃)dZ̃, (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

obtained by marginalizing the conditional probability density paths pt(Z|Z̃) over observed latent
trajectories Z̃, with p0(Z|Z̃) = p(Z) and p1(Z|Z̃) = N (Z|Z̃, ϵ2I) for a small ϵ > 0. Doing so
gives us a marginal probability p1 which is a mixture distribution that closely approximates q. Then,
assuming that pt(Z) > 0 for all Z and t, we can also define a marginal vector field as:

ut(Z) =

∫
ut(Z|Z̃)

pt(Z|Z̃)q(Z̃)
pt(Z)

dZ̃, (5)

where ut(Z|Z̃) is a conditional vector field (conditioned on the latent trajectory Z̃). It turns out that
this way of mixing the conditional vector fields leads to the correct vector field for generating the
marginal probability path (4). We can then break down the intractable marginal VF into simpler
conditional VFs which depends on a single sample.

To deal with the intractable integrals in Eq. (4)-(5) which complicates computation of an unbiased
estimator of Lfm, we shall minimize the conditional loss proposed by Lipman et al. (2022):

min
θ

Lcfm(θ) := Et,pt(Z|Z̃),q(Z̃)ω(t)∥v
θ
t (Z)− ut(Z|Z̃)∥2, (6)

where t ∈ U [0, 1], Z̃ ∼ q(Z̃), Z ∼ pt(Z|Z̃) and ut(Z|Z̃) is the vector field defined per sample Z̃
that generates the conditional probability path pt(Z|Z̃). Importantly, one can show that the solution
of (6) is guaranteed to converge to the same result in (3); see Theorem 1 in App. C. Therefore, the
conditional flow matching loss can match the pre-defined target probability path, constructing the
flow that pushes p0 towards p1. Since both the probability path and VF are defined per sample, we
can sample unbiased estimates of the conditional loss efficiently, particularly so with suitable choices
of conditional probability paths and VFs.

4 PROBABILITY PATH MODELS FOR PROBABILISTIC FORECASTING

In this section, we describe the family of probability paths that we consider for flow matching, and
we propose an improved model for probabilistic forecasting of spatio-temporal data.

4.1 COMMON PROBABILITY PATH MODELS

The family of Gaussian conditional probability paths gives us tractable choices to work with since the
relevant quantities in Eq. (6) and thus the conditional flow can be defined explicitly. Therefore, we
will work with Gaussian probability paths. Moreover, we are going to solve (6) over the dataset of all
transition pairs D = {(zτ−1, zτ)}τ=2,...,m, and use a pair of points for Z̃, setting Z̃ = (Z0, Z1) ∈ D.
In particular, we consider the following class of models for the probability path:

pt(Z|Z̃ := (Z0, Z1)) = N (Z|atZ0 + btZ1, c
2
t I), (7)

where at, bt and ct are differentiable time-dependent functions on [0, 1], and I denotes the identity.

Table 1 provides five different choices of probability paths, including our proposed choice, that we
study here. The optimal transport (OT) VF model described in Table 1 was initially proposed by
Lipman et al. (2022), and setting ϵmin = 0 gives us the rectified flow model of Liu et al. (2022),
which proposed connecting data and noise on a straight line. The stochastic interpolant model in
Table 1 is the one considered by Chen et al. (2024). The VE and VP-diffusion conditional VFs
(derived with Theorem 2) coincide with the vector fields governing the Probability Flow ODE for
the VE and VP diffusion paths proposed in (Song et al., 2020b). It has been shown that combining
diffusion conditional VFs with the flow matching objective leads to a training alternative that is more
stable and robust when compared to existing score matching approaches (Lipman et al., 2022).

As remarked in (Lipman et al., 2022), there are many choices of vector fields that generate a given
probability path. We shall use the simplest vector field that generates flow whose map is affine linear.
Let pt(Z|Z̃) be the Gaussian probability path defined in Eq. (7) and consider the flow map ψt defined
as ψt(Z) = atZ0 + btZ1 + ctZ with ct > 0. Then the unique vector field that defines ψt is (see
Theorem 2 and the proof in App. C):

ut(Z|Z̃) =
c′t
ct
(Z − (atZ0 + btZ1)) + a′tZ0 + b′tZ1, (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Choices of probability density paths that we study in this paper.

Model at bt c2t

VE-diffusion 1 0 σ2
1−t, where σt is increasing in t, σ0 = 0

VP-diffusion e−
1
2T (1−t) 0 1− e−T (1−t), T (t) =

∫ t

0
β(s)ds, β = noise scale

OT-VF / rectified flow t 0 (1− (1− ϵmin)t)
2, ϵmin ≥ 0

Stochastic interpolant 1− t t or t2 ϵ2t(1− t)2, ϵ > 0
Ours 1− t t σ2

min + σ2t(1− t), σmin, σ ≥ 0

where prime denotes derivative with respect to t, and ut(Z|Z̃) generates the Gaussian path pt(Z|Z̃).
In view of this, minimizing the conditional loss becomes:

min
θ

Lcfm(θ) := Et,zτ ,zτ−1,pt(Z|zτ ,zτ−1)ω(t)

∥∥∥∥vθt (Z)− c′t
ct
(Z−(atz

τ+btz
τ−1))−a′tzτ−b′tzτ−1

∥∥∥∥2,
where t ∼ U [0, 1], Z ∼ pt(Z|zτ , zτ−1) and z ∼ q(z). We refer to this as the Flow Matching loss
parametrization and work with this parametrization. There are other parametrizations: most popular
ones are the Score Matching loss, Score Flow loss and DDPM loss. See App. B for a comparison of
different loss parametrizations and App. A for connections to SDE based generative models.

4.2 A NOVEL PROBABILITY PATH MODEL

We propose to choose at = 1 − t, bt = t, c2t = σ2
min + σ2t(1 − t), in which case we have the

probability path described by:

pt(Z|Z̃) = N (Z|tZ1 + (1− t)Z0, (σ
2
min + σ2t(1− t))I), (9)

which transports a Gaussian distribution centered around Z0 with variance σ2
min at t = 0 to a

Gaussian distribution centered around Z1 at t = 1 with variance σ2
min. Here σmin, σ ≥ 0 are tunable

parameters. In the case when σmin = 0, it describes a Brownian bridge that interpolates between
Z0 and Z1 (Gasbarra et al., 2007). To ensure numerical stability when sampling t ∼ U [0, 1], it is
beneficial to use a small σmin > 0. Note that σ2 is a scale factor determining the magnitude of
fluctuations around the path interpolating between Z0 and Z1. The variance c2t is minimum with the
value of σ2

min at the endpoints t = 0 and t = 1, and the maximum variance is σ2
min + σ2/4 which

occurs in the middle of the path at t = 1/2. The variance schedule is designed to balance exploration
and stability. Low variance at the start ensures stable initialization, preventing the trajectory from
deviating too far from the initial distribution. High variance in the middle allows the model to explore
diverse paths in the latent space, avoiding mode collapse and enhancing diversity in the generated
trajectories. Low variance at the end sharpens the trajectory, ensuring accurate reconstruction of the
desired output. This strategy is inspired by findings in diffusion models that utilize a forward noising
process and a backward denoising process (Ho et al., 2020; Song et al., 2020b), where such variance
patterns have been shown to effectively manage the trade-off between exploration and refinement.

The corresponding vector field that defines the flow is then given by (applying Theorem 2):

ut(Z|Z̃) = Z1 − Z0 +
σ2

2

1− 2t

σ2
min + σ2t(1− t)

(Z − (tZ1 + (1− t)Z0)). (10)

We remark that the conditional vector field ut(Z|Z̃) is linear in Z and Z̃. This choice of the vector
field corresponds to the choice of a linear model for the dynamics of the latent variable Z, and thus is
reminiscent of the Koopman formalism (Koopman, 1931).

We expect that our proposed probability path model improves upon the other considered models, as it
takes advantage of the inherent continuity and correlation in the spatio-temporal data. Intuitively, for
time series samples whose underlying dynamics are continuous and obey a physical law, a Gaussian
sample is typically further from the time series samples, so the distance between a Gaussian sample
and a time series sample should generally be larger than the distance between consecutive time
series samples (which can be highly correlated). Therefore, using a probability path that connects
consecutive time series samples could lead to faster convergence and more stable training, when
compared to using a path that simply connects a time series sample to a Gaussian sample, since the
resulting flow model in the former case can better capture the true system dynamics with less effort.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Flow matching for spatio-temporal data
Input: Dataset of sequences D, number of iterations M
for i in range(1, M) do

Sample a sequence x from the dataset D
Encode it with a pre-trained encoder to obtain z
Choose a random target element zτ , τ ∈ {3, . . . |z|}, from z
Sample a step t ∼ U [0, 1]
Sample a noisy observation Z ∼ pt(Z | zτ , zτ−1), where pt is given by Eq. (7)
Compute ut(Z | zτ , zτ−1)
Sample a condition frame zc, c ∈ {1, . . . τ − 2}
Update the parameters θ via gradient descent

∇θ∥vθt (Z | zτ−1, zc, τ − c)− ut(Z | zτ , zτ−1)∥2 (11)

end for
Return: A learned vector field, vθ

∗
t

Algorithm 2 One-step ahead forecasting with forward Euler

Input: A sequence (x1, . . . , xT−1) containing the previous elements, number of integration steps N , grid
s0 = 0 < s1 < · · · < sN = 1, a learnt vector field vθ

∗
s for s ∈ [0, 1]

Set ∆sn = sn+1 − sn for n = 0, . . . , N − 1
Sample Y T

0 ∼ N (E(xT−1), σ2
samI), σsam ≥ 0

for n in range(0, N − 1) do
Sample c ∼ U(2, . . . , T − 1)
yT−c = E(xT−c)

Y T
n+1 = Y T

n +∆snv
θ∗
sn(Y

T
n |Y T

0 , yT−c, T − c)
end for
Return: An estimate of xT , x̂T = D(Y T

N)

Moreover, if the consecutive samples are sufficiently correlated, then the variance of the vector field
corresponding to our proposed probability path model can be lower than the variance of the vector
field corresponding to the other choices of probability paths. We refer to Theorem 3 in App. C.3 for
such comparison result for our proposed model and the optimal transport VF model of Lipman et al.
(2022) (see also the discussions in Section C.3).

5 AN EFFICIENT PROBABILISTIC FORECASTING ALGORITHM

In this section, we present efficient algorithms for training and inferencing the flow matching model.

Recently Davtyan et al. (2023) proposed an efficient algorithm for latent flow matching for the task
of video prediction, using the probability path generated by the optimal transport VF of Lipman et al.
(2022). To enable efficient training, we shall follow Davtyan et al. (2023) and leverage the iterative
nature of sampling from the learned flow and use a single random conditioning element from the past
at each iteration. However, our method differs from Davtyan et al. (2023) as we shall use different
probability paths and target vector fields.

Training. We set Z1 to be the target element and Z0 to be the reference element chosen to be the
previous element before the target element, i.e., if Z1 = zτ , then Z0 = zτ−1, for τ = 2, . . . ,m.
Note that this differs from Davtyan et al. (2023), where Z̃ = z1 (i.e., they do not use a reference
element to define their probability path, whereas we use a pair of elements (Z0, Z1)). In this way, our
probability path model maps a distribution centered around a previous state to the distribution of the
current states, which is more natural from the point of view of probabilistic forecasting whose goal is
to obtain an ensemble of forecasts. Algorithm 1 summarizes the training procedure of our method.
Both the autoencoder and the VF neural network can also be jointly trained in an end-to-end manner,
but our results show that separating the training can lead to improved performance. Moreover, doing
so allows us to better assess the impact of using different probability paths.

Inference. We use an ODE sampler during inference to generate forecasts. The ODE sampler is
described as follows. Let (Y τ

i)i=0,...,N denote the generation process, where N is the number of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

integration steps and the superscript τ denotes the time index for which the generation/forecast
is intended for. Given the previous elements (x1, . . . , xT−1) of a time series sample, in order to
generate the next element (i.e., the T -th element), we start with sampling the initial condition Y T

0
from N (zT−1, σ2

samI) for some small σsam ≥ 0, where zT−1 = E(xT−1). This is in contrast to the
procedure of Davtyan et al. (2023), which simply uses a mean-zero Gaussian sample instead. We then
use an ODE solver to integrate the learned vector field along the time interval [0, 1] to obtain Y T

N . We
use D(Y T

N) as an estimate of xT , and forecasting is done autoregressively. Algorithm 2 summarizes
this procedure when the sampling is done using the forward Euler scheme. Note that we can also use
computationally more expensive numerical schemes such as the Runge-Kutta (RK) schemes.

6 EMPIRICAL RESULTS

In this section, we present our main empirical results to elucidate the design choice of probability
paths. We focus on PDE dynamics forecasting tasks here (additional results can be found in App.
D). We test the performance of our probability path model, i.e., Eq. (9) with at = 1− t, bt = t and
ct =

√
σ2
min + σ2t(1− t) on these tasks. We pick σmin = 0.001, and treat σ and σsam as tunable

parameters. We compare our proposed model with four other models of probability paths:

• RIVER (Davtyan et al., 2023): RIVER uses the OT-VF model in Table 1, i.e., at = 0, bt = t,
ct = 1− (1− ϵmin)t, choosing ϵmin = 10−7.

• VE-diffusion in Table 1: We use σt = σmin

√(
σmax

σmin

)2t

− 1 with σmin = 0.01, σmax = 0.1, and

sample t uniformly from [0, 1− ϵ] with ϵ = 10−5 following Song et al. (2020b).

• VP-diffusion in Table 1: We use β(s) = βmin + s(βmax − βmin) where βmin = 0.1, βmax = 20
and t is sampled from U [0, 1 − ϵ] with ϵ = 10−5, following (Song et al., 2020b). Thus, T (s) =
sβmin + 1

2s
2(βmax − βmin).

• The stochastic interpolant path in Table 1: We consider the path proposed by Chen et al. (2024)
and use the suggested choice of at = 1 − t, bt = t2 and ct = ϵ(1 − t)

√
t (see Eq. (2) in (Chen

et al., 2024) and note that V ar((1− t)Wt) = (1− t)2t for the standard Wiener process Wt). We
choose ϵ = 0.01. This is a path that is similar to ours, but with the variance c2t chosen such that the
maximum occurs at t = 1/

√
3 instead of at the middle of the path at t = 1/2. Later, we will see

that different forms of variance can lead to vastly different performance in the considered tasks.

Evaluation metrics. We evaluate the models using the following metrics. First, we use the standard
mean squared error (MSE) and the relative Frobenius norm error (RFNE) to measure the difference
between predicted and true snapshots. Second, we compute metrics such as the peak signal-to-
noise ratio (PSNR), and the structural similarity index measure (SSIM) to further quantify the
quality and similarity of the generated snapshots (Wang et al., 2004). Third, we use the Pearson
correlation coefficient to assess the correlation between predicted and true snapshots. Forth, we
use the Continuous Ranked Probability Score (CRPS) (Matheson & Winkler, 1976) to measure the
compatibility of the cumulative distribution function of the forecasts with the targets (see App. E.4).

Training details. We use an autoencoder (AE) to embed the training data into a low-dimensional
latent space, which enables the model to capture the most relevant features of the data while reducing
dimensionality (Azencot et al., 2020); see App. E for further discussion of the motivation. We then
train a flow matching model in this latent space. Training generative models in latent space has also
been considered by Vahdat et al. (2021) for score matching models and by Dao et al. (2023) for flow
matching models. To train the AE, we minimize a loss function that consists of reconstruction error,
in terms of MSE, between the input data and its reconstructed version from the latent space. The
choice of the AE architecture is tailored to the complexity of the dataset (see App. E for details).

6.1 PROBABILISTIC FORECASTING OF DYNAMICAL SYSTEMS

We evaluate the performance of our proposed probability path model on challenging dynamical
systems to demonstrate its effectiveness in forecasting complex continuous dynamics. Specifically,
we consider the following tasks (for details see App. E.1):

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• Fluid Flow Past a Cylinder: This task involves forecasting the vorticity of a fluid flowing past a
cylinder. The model conditions on the first 5 frames and predicts the subsequent 20 frames at a
resolution of 64× 64 with 1 channel representing vorticity.

• Shallow-Water Equation: This dataset models the dynamics of shallow-water equa-
tions (Takamoto et al., 2022), capturing essential aspects of geophysical fluid flows. We use
the first 5 frames for conditioning and predict the next 15 frames at a resolution of 128× 128 with
1 channel representing horizontal flow velocity.

• Diffusion-Reaction Equation: This dataset models the dynamics of a 2D diffusion-reaction
equation (Takamoto et al., 2022). We use the first 5 frames for conditioning and predict 15 future
frames at a 128 × 128 with 2 channels representing velocity in the x and y directions.

• Incompressible Navier-Stokes Equation: As a more challenging benchmark, we consider fore-
casting the dynamics of a 2D incompressible Navier-Stokes equation (Takamoto et al., 2022). We
use the first 5 frames for conditioning and predict the next 20 frames at a resolution of 512× 512
with 2 channels representing velocity in the x and y directions.

Table 2 summarizes the performance of our model compared to other models across all tasks. It can
be seen that our probability path model achieves the lowest test MSE and RFNE across all tasks,
indicating more accurate forecasts. Moreover, the higher PSNR and SSIM scores indicate that our
model better preserves spatial structures in the predictions. Our model also achieves the lowest CRPS
on most tasks, showing that the predicted distribution of our model is closest to the true outcome.
Despite the similarity of our proposed model with the stochastic interpolant of Chen et al. (2024), in
that both models use consecutive samples to define the path, our model outperforms the stochastic
interpolant model on most tasks, suggesting that choosing the maximum variance to occur at the
middle of the path is a better choice. Importantly, our model is highly efficient during inference time
since it requires only 10 sampling steps.

Figure 1 shows the Pearson correlation coefficients of the predicted snapshots over time for all models.
Our model’s predictions shows a slower decay of correlation coefficients compared to other models,
indicating better temporal consistency and long-term predictive capability. Correlation coefficients
about 95% indicate performance on par with physics-based numerical simulators.

Figure 2 compares the training loss curves of our model with others trained on the fluid flow past
a cylinder and the shallow water equation task. Our method leads to faster convergence during
training and smoother loss curves. This suggests that our model requires fewer iterations to generate
high-quality samples when compared to other flow matching models.
Table 2: Results for forecasting dynamical systems using different probability path models for flow
matching. The CRPSs are computed using 50 ensemble members, whereas the other results are
averaged over 5 generations obtained with 10 sampling steps using RK4.

Task Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑) CRPS (↓)

Flow past Cylinder

RIVER 3.05e-03 5.70e-02 42.66 0.98 1.76e-02
VE-diffusion 2.75e-01 5.21e-01 26.81 0.52 2.43e-01
VP-diffusion 3.20e-03 5.20e-01 42.60 0.97 2.64e-02
Stoch. interpolant 3.39e-03 6.09e-02 41.82 0.97 3.36e-02
Ours 3.80e-04 2.30e-02 48.89 0.99 1.34e-02

Shallow-Water

RIVER 9.29e-04 1.5e-01 34.90 0.91 1.05e-02
VE-diffusion 1.23e-02 5.5e-01 28.76 0.57 4.42e-02
VP-diffusion 1.31e-03 1.8e-01 34.33 0.88 1.05e-02
Stoch. interpolant 1.06e-03 1.5e-01 35.57 0.88 1.41e-02
Ours 6.90e-04 1.3e-01 36.10 0.93 1.08e-02

Diffusion-Reaction

RIVER 2.37e-03 2.07e-01 38.47 0.84 4.45e-02
VE-diffusion 9.74e-02 1.7 32.83 0.35 1.01e-01
VP-diffusion 1.72e-02 6.48e-01 34.65 0.53 6.70e-02
Stoch. interpolant 6.17e-02 8.62e-01 45.64 0.76 1.27e-01
Ours 3.56e-04 1.16e-01 34.34 0.89 4.43e-02

Navier-Stokes

RIVER 1.98e-04 2.5e-01 38.71 0.85
VE-diffusion 1.21e-04 2.4 29.53 0.27
VP-diffusion 7.62e-02 1.85e-01 40.73 0.93
Stoch. interpolant 7.26e-05 1.8e-01 37.81 0.88
Ours 1.90e-05 9.8e-02 41.52 0.96

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6.2 ABLATION STUDY

To further assess our model, we conducted an ablation study focusing on the impact of various
hyperparameters. Specifically, we study the impact of the values of σ, the choice of sampler, and
the number of sampling steps during inference. For small σsam, we find that this parameter has
negligible impact on test performance, so we fixed σsam = 0 for all experiments in this section.

Impact of σ on training stability. Figure 3 illustrates the effect of different σ values on the training
loss curve for our method on the fluid flow past a cylinder task. We observed that larger values of σ
(e.g., σ = 0.1) resulted in smoother loss curves and more stable convergence during training.

Effect of σ, sampler choice, and sampling steps on test performance. Table 3 investigates how
different values of σ, the choice of sampler (Euler or RK4), and the number of sampling steps affect
test performance. It can be seen, that even with as few as 5 sampling steps using the Euler scheme,
our model perform reasonably well. However, increasing the number of sampling steps or employing
the more computationally intensive RK4 sampler can help to lead to better results.

Table 3: Ablation study for the fluid flow past a cylinder task. The CRPSs are computed using 50
ensemble members, whereas the other results are averaged over 5 generations.

σ sampler sampling steps Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑) CRPS (↓)

0.0 Euler 5 1.78e-03 4.50e-02 44.12 0.98 2.42e-02
0.01 Euler 5 1.79e-03 4.50e-02 44.13 0.98 2.45e-02
0.1 Euler 5 1.94e-03 4.50e-02 44.26 0.98 2.40e-02

0.0 Euler 10 7.14e-04 2.90e-02 47.07 0.99 1.65e-02
0.01 Euler 10 3.81e-04 2.30e-02 48.73 0.99 1.25e-02
0.1 Euler 10 2.83e-03 5.10e-02 44.14 0.98 2.74e-02

0.0 RK4 10 3.89e-04 2.20e-02 49.22 0.99 1.27e-02
0.01 RK4 10 3.80e-04 2.30e-02 48.89 0.99 1.34e-02
0.1 RK4 10 6.49e-03 7.80e-02 40.70 0.97 4.03e-02

0.0 Euler 20 5.51e-04 2.70e-02 47.44 0.99 1.49e-02
0.01 Euler 20 7.32e-04 3.10e-02 46.85 0.99 1.71e-02
0.1 Euler 20 7.93e-04 3.10e-02 46.80 0.99 1.66e-02

0.0 RK4 20 9.31e-04 3.30e-02 46.42 0.99 1.82e-02
0.01 RK4 20 6.62e-04 2.80e-02 47.62 0.99 1.58e-02
0.1 RK4 20 6.58e-04 2.90e-02 47.14 0.99 1.61e-02

0 5 10 15 20
0.99

0.992

0.994

0.996

0.998

1

RIVER

VE

VP

Stoch Interp

Ours

co
rr

el
at

io
n

Simple Fluid Flow

0 5 10 15
0.9

0.92

0.94

0.96

0.98

1

Shallow-Water Equation

0 5 10 15
0.9

0.92

0.94

0.96

0.98

1

Prediction Steps

co
rr

el
at

io
n

Reaction-Diffusion Equation

0 5 10 15 20
0.9

0.92

0.94

0.96

0.98

1

Prediction Steps

Navier-Stokes Equation

Figure 1: Pearson correlation coefficient to assess the correlation between predicted and true snapshots
at various prediction steps for different probability path models. Our probability path model shows
the best performance on all three tasks. Note that the first 5 snapshots are the conditioning snapshots.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-4

10-2

100

102

RIVER

VE

VP

Stoch Interp

Ours

L
os

s

Epoch

Simple Fluid Flow

0 100 200 300 400 500 600 700 800 900 1000
10

-4

10
-2

10
0

10
2

L
os

s

Epoch

Shallow-Water Equation

Figure 2: Training loss for different models of probability path for the fluid flow past a cylinder task.
Our model leads to fastest convergence and smoothest loss curve among all models.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

 = 0.10

 = 0.01

 = 0.00

L
os

s

Epoch

Euler Discretization

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

 = 0.10

 = 0.01

 = 0.00

L
os

s

Epoch

RK4 Discretization

Figure 3: Training loss for different values of σ using our probability path model. The left subplot
shows results for the Euler sampler, and the right subplot for the RK4 sampler. We see that the loss
curve is sensitive to the choice of σ, with larger values of σ giving smoother loss curves.

6.3 DISCUSSION

Our empirical results showed that our proposed model consistently outperformed other models
across different forecasting tasks involving different types of dynamical systems. Our model shows
improved training efficiency, with faster convergence reducing the computational resources and time
required for model training. Moreover, our model is efficient during inference time since it only
requires a few sampling steps, making it practical for real-world applications where computational
efficiency is crucial. Additionally, the model maintained better temporal consistency, as indicated
by a slower decay of Pearson correlation coefficients over longer prediction horizons, as well as
improved probabilistic accuracy and reliability in forecasting, as reflected by lower CRPS values.
These findings validate the effectiveness of our approach in modeling complex dynamical systems.

Our ablation study further validated the advantage of our proposed probability path model. We found
that larger σ values not only contributed to smoother training loss curves but also enhanced the
overall stability and efficiency of the model. Moreover, we saw that σsam = 0 can be fixed without
compromising accuracy. The fact that our model achieved improved performance even with the
simplest sampler (Euler scheme) and a minimal number of sampling steps (as few as five) validates
its practical applicability, especially in scenarios where computational resources and time are limited.

7 CONCLUSION

In this work, we investigated the use of flow matching in latent space for probabilistic forecasting
of spatio-temporal dynamics, providing a theoretical framework and an efficient algorithm. We
demystified the critical role of the probability path design in this setting and proposed an improved
probability path model. Our model leverages the inherent continuity and correlation in the spatio-
temporal data, leading to more stable training and faster convergence. Our empirical evaluations on
several PDE forecasting tasks demonstrated that our model performs favorably when compared to
existing models. These findings highlight that while flow matching techniques hold great promise
for probabilistic forecasting of spatio-temporal dynamics, it is important to select an appropriate
probability path model to achieve optimal test performance. Future directions include extending the
framework to go beyond Gaussian probability paths to better capture heavy-tailed distributions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential
data using consistent Koopman autoencoders. In International Conference on Machine Learning,
pp. 475–485. PMLR, 2020.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in Neural Information Processing
Systems, 29, 2016.

Marin Biloš, Kashif Rasul, Anderson Schneider, Yuriy Nevmyvaka, and Stephan Günnemann.
Modeling temporal data as continuous functions with stochastic process diffusion. 2023.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in Neural Information Processing Systems, 31, 2018.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S Albergo, Nicholas M Boffi, and Eric Vanden-
Eijnden. Probabilistic forecasting with stochastic interpolants and Föllmer processes. arXiv
preprint arXiv:2403.13724, 2024.

Tim Colonius and Kunihiko Taira. A fast immersed boundary method using a nullspace approach
and multi-domain far-field boundary conditions. Computer Methods in Applied Mechanics and
Engineering, 197(25-28):2131–2146, 2008.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient video prediction via sparsely conditioned
flow matching. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
23263–23274, 2023.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped Langevin diffusion. arXiv preprint arXiv:2112.07068, 2021.

Peter D Dueben and Peter Bauer. Challenges and design choices for global weather and climate
models based on machine learning. Geoscientific Model Development, 11(10):3999–4009, 2018.

N Benjamin Erichson, Lionel Mathelin, J Nathan Kutz, and Steven L Brunton. Randomized dynamic
mode decomposition. SIAM Journal on Applied Dynamical Systems, 18(4):1867–1891, 2019.

N Benjamin Erichson, Lionel Mathelin, Zhewei Yao, Steven L Brunton, Michael W Mahoney,
and J Nathan Kutz. Shallow neural networks for fluid flow reconstruction with limited sensors.
Proceedings of the Royal Society A, 476(2238):20200097, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Dario Gasbarra, Tommi Sottinen, and Esko Valkeila. Gaussian bridges. In Stochastic Analysis and
Applications: The Abel Symposium 2005, pp. 361–382. Springer, 2007.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang,
and José Lezama. Photorealistic video generation with diffusion models. arXiv preprint
arXiv:2312.06662, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646,
2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Diederik P Kingma and Ruiqi Gao. Understanding the diffusion objective as a weighted integral of
ELBOs. arXiv preprint arXiv:2303.00848, 2023.

Georg Kohl, Liwei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation. In ICML 2024 AI for Science Workshop, 2024.

Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and
Yuyang Bernie Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic
time series forecasting. Advances in Neural Information Processing Systems, 36, 2024.

Bernard O Koopman. Hamiltonian systems and transformation in Hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315–318, 1931.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

James E Matheson and Robert L Winkler. Scoring rules for continuous probability distributions.
Management Science, 22(10):1087–1096, 1976.

Caspar Meijer and Lydia Y Chen. The rise of diffusion models in time-series forecasting. arXiv
preprint arXiv:2401.03006, 2024.

Jaideep Pathak, Yair Cohen, Piyush Garg, Peter Harrington, Noah Brenowitz, Dale Durran, Morteza
Mardani, Arash Vahdat, Shaoming Xu, Karthik Kashinath, et al. Kilometer-scale convection
allowing model emulation using generative diffusion modeling. arXiv preprint arXiv:2408.10958,
2024.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch couplings.
arXiv preprint arXiv:2304.14772, 2023.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In International Conference
on Machine Learning, pp. 8857–8868. PMLR, 2021.

Pu Ren, Rie Nakata, Maxime Lacour, Ilan Naiman, Nori Nakata, Jialin Song, Zhengfa Bi, Osman Asif
Malik, Dmitriy Morozov, Omri Azencot, et al. Learning physics for unveiling hidden earthquake
ground motions via conditional generative modeling. arXiv preprint arXiv:2407.15089, 2024.

David Ruhe, Jonathan Heek, Tim Salimans, and Emiel Hoogeboom. Rolling diffusion models. arXiv
preprint arXiv:2402.09470, 2024.

Salva Rühling Cachay, Bo Zhao, Hailey Joren, and Rose Yu. Dyffusion: A dynamics-informed
diffusion model for spatiotemporal forecasting. Advances in Neural Information Processing
Systems, 36, 2024.

Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations, volume 10. Cambridge
University Press, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Martin G Schultz, Clara Betancourt, Bing Gong, Felix Kleinert, Michael Langguth, Lukas Hubert
Leufen, Amirpasha Mozaffari, and Scarlet Stadtler. Can deep learning beat numerical weather
prediction? Philosophical Transactions of the Royal Society A, 379(2194):20200097, 2021.

Gaurav Shrivastava and Abhinav Shrivastava. Video prediction by modeling videos as continuous
multi-dimensional processes. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7236–7245, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in Neural Information Processing Systems, 34:1415–1428,
2021.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. PDEBench: An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Ella Tamir, Najwa Laabid, Markus Heinonen, Vikas Garg, and Arno Solin. Conditional flow
matching for time series modelling. In ICML 2024 Workshop on Structured Probabilistic Inference
& Generative Modeling, 2024.

Jakub M Tomczak. Latent variable models. In Deep Generative Modeling, pp. 57–127. Springer,
2021.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34:11287–11302, 2021.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612,
2004.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

This appendix is organized as follows. In App. A, we provide some remarks on the connection
of flow matching models to other generative models. In App. B, we provide commonly used loss
parametrizations and compare them with our flow matching loss. In App. C, we provide theorems
and proofs to justify the discussions in Section 3 (see Theorem 1-3). In App. D, we provide additional
empirical results. In App. E, we provide the missing experimental details.

A CONNECTION TO SDE BASED GENERATIVE MODEL FRAMEWORKS

In this section, we provide some remarks on the connection between flow matching models and SDE
based generative models (Song et al., 2020b).

Consider the following continuous-time Gaussian latent variable model (Tomczak, 2021): Zt =
E(Xt),

Zt = AtZ0 +BtZ1 + Ltϵ, t ∈ [0, 1], (12)
Xt = D(Zt), (13)

where t is the continuous variable, X0 ∈ Rd represent data samples, Z ∈ Rp is the latent variable,
ϵ ∼ N (0, I) is independent of the random variables X0, Z0, Z1. Here At, Bt and Lt ≥ 0 are
pre-specified coefficients which are possibly matrix-valued and time-dependent, D and E denote the
decoder and encoder map respectively, and D ◦ E = I . Note that Z0 and Z1 are initial and terminal
point of the path (Zt)t∈[0,1] in the latent space.

The above latent variable model can be identified (up to equivalence in law for each t) with the linear
SDE of the form:

dẐt = FtẐtdt+HtZ1dt+GtdWt, Ẑ0 = Z0, t ∈ [0, 1), (14)

where (Wt)t∈[0,1] is the standard Wiener process. By matching the moments, we obtain

Ft = ȦtA
−1
t , (15)

Ht = Ḃt − ȦtA
−1
t Bt, (16)

GtG
T
t = L̇tL

T
t + LtL̇

T
t − ȦtA

−1
t LtL

T
t − LtL

T
t A

−T
t (Ȧt)

T , (17)

where the overdot denotes derivative with respect to t and AT denotes the transpose of A.

Under the above formulation, various existing generative models such as DDPM (Ho et al., 2020),
VP-SDE and VE-SDE of Song et al. (2020b;a), the critically damped SDE of Dockhorn et al. (2021),
the flow matching models in (Lipman et al., 2022; Tong et al., 2023; Liu et al., 2022) and the stochastic
interpolants of Albergo et al. (2023) can be recovered, and new models can be derived.

The following proposition establishes the connection between flow matching using our proposed
probability path model, the Gaussian latent variable model (12) and the linear SDE model (14).
Proposition 1. For every t ∈ [0, 1], the Zt defined in Eq. (9) can be identified, up to equivalence
in law, with the Zt generated by the latent variable model (12) with At = (1 − t)I , Bt = tI ,
Lt =

√
σ2
min + σ2t(1− t)I . For t ∈ [0, 1), it can also be identified with the solution Ẑt of the

linear SDE (14) with Ft = −I/(1 − t), Ht = (1 + t
1−t)I and Gt =

√
σ2 +

2σ2
min

1−t I . Moreover,

limt→1 Ẑt =
d Z1 + σminϵ, where ϵ ∼ N (0, I) and =d denotes equivalence in distribution.

Proof. The identification follows from matching the moments of Zt and Ẑt, i.e., applying Eq.
(15)-(17).

To prove that limt→1 Ẑt =
d Z1 + σminϵ, we use the explicit solution of the SDE:

Ẑt = Φ(t, 0)Z0 +

∫ t

0

Φ(t, s)HsZ1ds+

∫ t

0

Φ(t, s)GsdWs,

where Φ(t, s) is the fundamental solution of the homogeneous equation dΦ(t, s) = FtΦ(t, s)dt

with Φ(s, s) = I . For our Ft = −I/(1 − t), we have Φ(t, s) = exp(−
∫ t

s
1

1−udu)I = (1−t
1−s)I .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Substituting this and the formula for Ht into the solution, we obtain Ẑt = (1− t)Z0 +
∫ t

0
(1−t
1−s)(1 +

s
1−s)Z1ds+

∫ t

0
(1−t
1−s)

√
σ2 +

2σ2
min

1−s IdWs.

Now, let us examine each term as t → 1. First, (1 − t)Z0 → 0 as t → 1 and
∫ t

0
(1−t
1−s)(1 +

s
1−s)Z1ds = tZ1 → Z1 as t → 1. It remains to deal with the stochastic integral term Mt :=∫ t

0
(1−t
1−s)

√
σ2 +

2σ2
min

1−s dWs. Note that Mt is an Itô integral that has zero mean, i.e. EMt = 0, and
using Itô’s formula (Särkkä & Solin, 2019),

EM2
t =

∫ t

0

((1− t)/(1− s))2
(
σ2 +

2σ2
min

1− s

)
ds (18)

= (1− t)2
[
σ2

∫ t

0

1

(1− s)2
ds+ 2σ2

min

∫ t

0

1

(1− s)3
ds

]
(19)

= (1− t)2
[
σ2

(
t

1− t

)
+ σ2

min

(
1

(1− t)2
− 1

)]
(20)

= (1− t)tσ2 + σ2
mint(2− t), (21)

which tends to σ2
min as t→ 1. Combining the above results, limt→1 Ẑt ∼ N (Z1, σ

2
minI).

Remark 1. The linear SDE in Proposition 1 is not the unique SDE that Eq. (9) can be identified with
at each t. For instance, Zt in Eq. (9) can also be identified with the solution Ẑt of the SDE:

dẐt = (Z1 − Z0)dt+
σ2

2

1− 2t√
σ2
min + σ2t(1− t)

dWt, t ∈ [0, 1]. (22)

It is straightfoward to check that Ẑt and Zt are both Gaussian with the same mean and variance
for all t ∈ [0, 1]. Note that the probability path defined in Eq. (9) does not specify the covariance.
However, since during training and inference, Zt and Zs are sampled using independent Gaussian
samples, Cov(Zt, Zs) = 0 for t ̸= s. On the other hand, the SDEs that we have constructed above
specify the covariance. Thus, while Zt =

d Ẑt for all t ∈ [0, 1], the paths (Zt)t∈[0,1] and (Ẑt)t∈[0,1]

may not be equivalent in law as they may have different covariance. It is natural to ask how the
choice of covariance structure affects the model performance. Note that generating the SDE path
(Ẑt)t∈[0,1] requires simulation of the SDE. This beats the original purpose of flow matching, which
champions a simulation-free approach that directly works with a pre-specified probability path.

B ON DIFFERENT LOSS PARAMETRIZATIONS

In this section, we list popular choices of loss parametrization considered in the literature and connect
them to our flow matching loss. We refer to (Kingma & Gao, 2023) for a more comprehensive
discussion. Recall that the Gaussian path that we consider is: Zt = atZ0 + btZ1 + ctξ, where
ξ ∼ N (0, I). In general, these loss parametrizations take the form of:

L(θ) := Et,pt(Z|Z̃),q(Z̃)ω(t)∥m
θ
t (Z)−mt(Z, Z̃)∥2, (23)

where ω(t) > 0 is a weighting function, mt(Z, Z̃) is the object (conditioned on Z̃) to be learnt and
mθ

t is a neural network model used to learn the object of interest. Depending on which object one
would like to learn/match, we have different loss parametrizations.

Flow matching. The flow matching loss that we focus in this paper is:

Lcfm(θ) := Et,pt(Z|Z̃),q(Z̃)ω(t)∥v
θ
t (Z)− ut(Z|Z̃)∥2, (24)

where one aims to learn the flow generating vector field:

ut(Z|Z̃) =
c′t
ct
(Z − (atZ0 + btZ1)) + a′tZ0 + b′tZ1, (25)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Score matching. The score matching loss is:

Lsm(θ) := Et,pt(Z|Z̃),q(Z̃)λ(t)∥s
θ
t (Z)−∇ log pt(Z|Z̃)∥2, (26)

where λ(t) > 0 is a weighting function and one aims to learn the score function:

∇ log pt(Z|Z̃) =
atZ0 + btZ1 − Z

c2t
. (27)

If λ(t) = c2t , then this reduces to the original score matching loss (Song & Ermon, 2019), whereas if
λ(t) = β(1− t), this becomes the score flow loss (Song et al., 2021).

Noise matching. The noise matching loss is:

Lnm(θ) := Et,pt(Z|Z̃),q(Z̃)∥ϵ
θ
t (Z)− ϵt(Z|Z̃)∥2, (28)

where one aims to learn the noise:

ϵt(Z|Z̃) =
Z − (atZ0 + btZ1)

ct
. (29)

C THEORETICAL RESULTS AND PROOFS

In this section, we provide theorems and proofs to justify the discussions in Section 3 and Section 4.

C.1 CONNECTING FLOW MATCHING WITH CONDITIONAL FLOW MATCHING

The following theorem justifies the claim that minimizing Lfm is equivalent to minimizing Lcfm.

Theorem 1. If the conditional vector field ut(Z|Z̃) generates the conditional probability path
pt(Z|Z̃), then the marginal vector field ut in Eq. (5) generates the marginal probability path pt in Eq.
(4). Moreover, if pt(Z) > 0 for all t, Z, then Lfm and Lcfm are equal up to a constant independent
of θ.

Proof. The proof is a straightforward extension of the proofs of Theorem 1-2 in (Lipman et al.,
2022) from conditioning on data samples to conditioning on latent samples and allowing an arbitrary
weighting function ω(t).

Suppose that the conditional vector field ut(Z|Z̃) generates the conditional probability path pt(Z|Z̃),
we would like to show that the marginal vector field ut in Eq. (5) generates the marginal probability
path pt in Eq. (4). To show this, it suffices to verify that pt and ut satisfy the continuity equation:

d

dt
pt(Z) + div(pt(Z)ut(Z)) = 0, (30)

where the divergence operator, div, is defined with respect to the latent variable Z = (Z1, . . . , Zd),
i.e., div =

∑d
i=1

∂
∂Zi .

We begin by taking derivative of pt(Z) with respect to time:

d

dt
pt(Z) =

d

dt

∫
pt(Z|Z̃)q(Z̃)dZ̃ (31)

=

∫
d

dt
pt(Z|Z̃)q(Z̃)dZ̃ (32)

= −
∫
div(ut(Z|Z̃)pt(Z|Z̃))q(Z̃)dZ̃ (33)

= −div
(∫

ut(Z|Z̃)pt(Z|Z̃)q(Z̃)dZ̃
)

(34)

= −div(ut(Z)pt(Z)). (35)

In the third line, we use the fact that ut(·|Z̃) generates pt(·|Z̃). In the last line, we use Eq. (5). In
the second and forth line above, the exchange of integration and differentiation can be justified by
assuming that the integrands satisfy the regularity conditions of the Leibniz rule.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Next, we would like to show that if pt(Z) > 0 for all t, Z, then Lfm and Lcfm are equal up to a
constant independent of θ. We follow (Lipman et al., 2022) and assume that q(Z) and pt(Z|Z̃) are
decreasing to zero sufficiently fast as ∥Z∥ → 0, that ut, vt,∇θvt are bounded, so that all integrals
exist and exchange of integration order is justified via Fubini’s theorem.

Using the bilinearity of the 2-norm, we decompose the squared losses as:

∥vθt (Z)− ut(Z)∥2 = ∥vθt (Z)∥2 − 2⟨vθt (Z), ut(Z)⟩+ ∥ut(Z)∥2, (36)

∥vθt (Z)− ut(Z|Z̃)∥2 = ∥vθt (Z)∥2 − 2⟨vθt (Z), ut(Z|Z̃)⟩+ ∥ut(Z|Z̃)∥2. (37)

Now,

Ept(Z)∥vθt (Z)∥2 =

∫
∥vθt (Z)∥2pt(Z)dZ (38)

=

∫ ∫
∥vθt (Z)∥2pt(Z|Z̃)q(Z̃)dZ̃dZ (39)

= Eq(Z̃),pt(Z|Z̃)∥v
θ
t (Z)∥2, (40)

where we use Eq. (4) in the second equality above and exchange the order of integration in the third
equality.

Next, we compute:

Ept(Z)⟨vθt (Z), ut(Z)⟩ =
∫ 〈

vθt (Z),

∫
ut(Z|Z̃)pt(Z|Z̃)q(Z̃)dZ̃

pt(Z)

〉
pt(Z)dZ (41)

=

∫ 〈
vθt (Z),

∫
ut(Z|Z̃)pt(Z|Z̃)q(Z̃)dZ̃

〉
dZ (42)

=

∫ ∫
⟨vθt (Z), ut(Z|Z̃)⟩pt(Z|Z̃)q(Z̃)dZ̃dZ (43)

= Eq(Z̃),pt(Z|Z̃)⟨v
θ
t (Z), ut(Z|Z̃), (44)

where we first plug in Eq. (5) and then exchange the order the integration in order to arrive at the last
equality.

Finally, noting that ut are ω(t) independent of θ (and are thus irrelevant for computing the loss
gradients), we have proved the desired result.

C.2 IDENTIFYING THE VECTOR FIELD THAT GENERATES THE GAUSSIAN PATHS

Similar to Theorem 3 in (Lipman et al., 2022), we have the following result, which identifies the
unique vector field that generates the Gaussian probability path.

Theorem 2. Let pt(Z|Z̃) be the Gaussian probability path defined in Eq. (7) and consider the flow
map ψt defined as ψt(Z) = atZ0+ btZ1+ ctZ with ct > 0. Then the unique vector field that defines
ψt is:

ut(Z|Z̃) =
c′t
ct
(Z − (atZ0 + btZ1)) + a′tZ0 + b′tZ1, (45)

where prime denotes derivative with respect to t, and ut(Z|Z̃) generates the Gaussian path pt(Z|Z̃).

Proof. Let pt(Z|Z̃) be the Gaussian probability path defined in Eq. (7) and consider the flow map
ψt defined as ψt(Z) = atZ0 + btZ1 + ctZ. We would like to show that the unique vector field that
defines ψt is:

ut(Z|Z̃) =
c′t
ct
(Z − (atZ0 + btZ1)) + a′tZ0 + b′tZ1, (46)

and ut(Z|Z̃) generates the Gaussian path pt(Z|Z̃).

We denote wt = ut(Z|Z̃) for notational simplicity. Then,

d

dt
ψt(Z) = wt(ψt(Z)). (47)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Since ψt is invertible (as ct > 0), we let Z = ψ−1(Y) and obtain

ψ′
t(ψ

−1(Y)) = wt(Y), (48)

where the prime denotes derivative with respect to t and we have used the apostrosphe notation for
the derivative to indicate that ψ′

t is evaluated at ψ−1(Y).

Inverting ψt(Z) gives:

ψ−1
t (Y) =

Y − µt(Z̃)

ct
, (49)

where µt(Z̃) := atZ0 + btZ1.

Differentiating ψt with respect to t gives ψ′
t(Z) = c′tZ + µ′

t(Z̃).

Plugging the last two equations into Eq. (48), we obtain:

wt(Y) =
c′t
ct
(Y − µt(Z̃)) + µ′

t(Z̃) (50)

which is the result that we wanted to show.

C.3 COMPARING THE VARIANCE OF DIFFERENT VECTOR FIELD MODELS

We show that under reasonable assumptions, the variance of the vector field corresponding to our
proposed probability path model is lower than the variance of the vector field corresponding to the
other choices of probability paths. Here the variance is taken with respect to the randomness in the
samples zτ and the Gaussian samples drawn during gradient descent updates. To simplify our analysis
and to facilitate discussion, we only compare our probability path model to the model generated by
the optimal transport VF of Lipman et al. (2022), setting ϵmin := 0 (rectified flow) without loss of
generality.

We start with the following lemma.

Lemma 1. Let A,B,C,D be random vectors where C and D are independent, both A and B are
independent of C and D (but A and B could be dependent). If Cov(A,B) ≥ (V ar(C)− V ar(D) +
V ar(B))/2, then

V ar(A+D) ≥ V ar(A−B + C) = V ar(B −A+ C), (51)

where A ≥ B means that A−B is positive semidefinite.

Proof. We compute:

V ar(A+D) = V ar(A−B + C +B +D − C) (52)
= V ar(A−B + C) + V ar(B +D) + V ar(C) + 2Cov(A−B + C,B +D)

− 2Cov(A−B + C,C)− 2Cov(B +D,C) (53)
= V ar(A−B + C) + V ar(B +D)− V ar(C) + 2Cov(A−B + C,B)

+ 2Cov(A−B + C,D) (54)
= V ar(A−B + C) + V ar(B +D)− V ar(C) + 2Cov(A,B)− 2V ar(B) (55)
= V ar(A−B + C)− V ar(C) + V ar(D) + 2Cov(A,B)− V ar(B), (56)

where we have simply rearranged the terms in the first equality, used the formula V ar(A+B+C) =
V ar(A)+V ar(B)+V ar(C)+2Cov(A,B)+2Cov(A,C)+2Cov(B,C), bilinearity of covariance,
the facts that Cov(A,A) = V ar(A) and V ar(cA) = c2A for a scalar c, as well as the assumption
that both A and B are independent of C, D in the last four equalities.

Therefore, if −V ar(C) + V ar(D) + 2Cov(A,B)− V ar(B) ≥ 0, then we have V ar(A+D) ≥
V ar(A−B + C).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Now, we consider the vector fields that correspond to the above two models of probability path,
denoting the vector field that corresponds to our model as ut and the vector field that corresponds
to the rectified flow model as ũt. They generate the probability path Zt = tzτ + (1− t)zτ−1 + ctξ

and Z̃t = tzτ−1 + (1 − t)η respectively, where ξ, η ∼ N (0, I), ct =
√
σ2
min + σ2t(1− t) and

t ∈ [0, 1].

Applying Eq. (8), we have:

ut(Zt|zτ−1, zτ) = zτ − zτ−1 + c′tξ, (57)

ũt(Z̃t|zτ−1) = zτ−1 − η. (58)

Theorem 3. Suppose that (zτ)τ=1,...,m, with the zτ ∈ Rd, is a discrete-time stochastic pro-
cess with nonzero correlation in time and let t ∈ [0, 1] be given. If Cov(zτ−1, zτ) ≥
1
2

((
σ4

4σ2
min

− 1
)
I + V ar(zτ)

)
, then V ar(ũt(Z̃t|zτ−1)) ≥ V ar(ut(Zt|zτ−1, zτ)).

Proof. Note that c′t =
σ2(1−2t)

2
√

σ2
min+σ2t(1−t)

, V ar(c′tξ) = (c′t)
2I and V ar(−η) = I . Therefore, using

these and applying Lemma 1 withA := zτ−1,B := zτ , C := c′tξ andD := −η, allow us to establish
the claim that V ar(ũt(Zt|zτ−1)) ≥ V ar(ut(Zt|zτ−1, zτ)) if

Cov(zτ−1, zτ) ≥ 1

2

(
σ4(1− 2t)2I

4(σ2
min + σ2t(1− t))

+ V ar(zτ)− I

)
. (59)

Since the function f(t) := σ4(1−2t)2

4(σ2
min+σ2t(1−t))

is maximized at the endpoints t = 0, 1 with the

maximum value of σ4/4σ2
min, the desired result stated in the theorem follows.

Theorem 3 implies that if the consecutive latent variables zτ , zτ−1 are sufficiently correlated and σ is
chosen small enough relative to σmin, then the variance of the vector field that corresponds to our
probability path model is lower than that corresponds to the rectified flow model.

Discussions. Let us denote vθt (Z) := vθt (z
τ , zτ−1, ξ) to show the explicit dependence of the vector

field neural net on the random samples t, zτ , zτ−1 and ξ ∼ N (0, I) drawn during each update
of gradient descent during training. During each gradient descent update, our model involves
computation of

∇θLcfm(θ; t, ξ, zτ , zτ−1) = 2∇θv
θ
t (z

τ , zτ−1, ξ)T · (vθt (zτ , zτ−1, ξ)− ut(Zt|zτ , zτ−1)) (60)

=: 2∇θv
θ
t (z

τ , zτ−1, ξ)T ·∆θ
t (z

τ−1, zτ , ξ), (61)

with t ∼ U [0, 1], ξ ∼ N (0, I) and the latent samples zτ , zτ−1 drawn randomly.

Similarly, for the rectified flow model let us denote ṽθt (Z) := vθt (z
τ−1, η) to show the explicit

dependence of the vector field neural net on the random samples t, zτ−1 and η ∼ N (0, I) drawn
during each update of gradient descent during training. Each update of gradient descent using the
rectified flow model involves computation of

∇θL̃cfm(θ; t, η, zτ−1) = 2∇θṽ
θ
t (z

τ−1, η)T · (ṽθt (zτ−1, η)− ũt(Z̃t|zτ−1)) (62)

=: 2∇θṽ
θ
t (z

τ−1, η)T · ∆̃θ
t (z

τ−1, η), (63)

with t ∼ U [0, 1], η ∼ N (0, I) and the latent sample zτ−1 drawn randomly.

Lower gradient variance results in smoother training loss curve and potentially faster convergence, so
it is useful to compare the variances of the loss gradient for the two models. However, the variances are
highly dependent on ∇θv

θ
t , ∇θṽ

θ
t and their covariance with the other random vectors appearing in Eq.

(60) and Eq. (62), making such comparison challenging without strong assumptions. Heuristically,
the difference in the variances of the loss gradient during each update for the two models is primarily
determined by the difference between V ar(∆θ

t (z
τ−1, zτ , ξ)) and V ar(∆̃θ

t (z
τ−1, η)) if ∇θv

θ
t and

∇θṽ
θ
t are relatively stable. In this case, we have V ar(∆θ

t (z
τ−1, zτ , ξ)) ≤ V ar(∆̃θ

t (z
τ−1, η)) if we

suppose the assumptions in Theorem 3, V ar(ṽθt) ≥ V ar(vθt) and Cov(vθt , ut) ≥ Cov(ṽθt , ũt).

The implications of Theorem 3 together with the heuristics above could partially explain why our
probability path model leads to smoother loss curve and faster convergence (see Figure 2) compared

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

to the RIVER method of Davtyan et al. (2023). On the other hand, the dependence of the lower bound
in the theorem on σ and σmin suggests that using values of σ that is relatively large enough might
not keep the variance of the vector field low, which could partially explain the phenomenon displayed
in Figure 2, where using σ = 0.1 and σmin = 0.001 leads to large loss fluctuations.

D ADDITIONAL EMPIRICAL RESULTS

In this section, we provide additional experimental results.

Figure 4 provides visual results of the predicted snapshots by our model for each task. The visualiza-
tions highlight our model’s ability to capture complex flow patterns and dynamics.

last con. frame time →

G
T

pr
ed

.

G
T

pr
ed

.

G
T

pr
ed

.

G
T

pr
ed

.

Figure 4: Visualization of predicted frames using our model of probability path for the considered
tasks. From top to bottom: fluid flow past a cylinder, shallow-water equation, diffusion-reaction
equation, and incompressible Navier-Stokes equation. In each case, GT indicates the ground truth
frames and pred. indicates the predicted frames.

E EXPERIMENTAL DETAILS

In this section, we provide the experimental details for the tasks considered in Section 6.

E.1 DETAILS ON THE DATASETS

Fluid flow past a cylinder. We use the fluid flow past a stationary cylinder at a Reynolds number of
100 as a simple test problem. This fluid flow is a canonical problem in fluid dynamics characterized

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

by a periodically shedding wake structure (Erichson et al., 2020; 2019). The flow dynamics are
governed by the two-dimensional incompressible Navier–Stokes equations:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u,

∇ · u = 0,

where u = (u, v) is the velocity field, p is the pressure, ρ is the fluid density, and ν is the kinematic
viscosity. The vorticity field ω is obtained from the velocity field via:

ω = ∇× u,

providing insights into the rotational characteristics of the flow.

For simulating the data, the Immersed Boundary Projection Method (IBPM) has been used (Colonius
& Taira, 2008). The flow tensor has dimensions 199×449×151, representing 151 temporal snapshots
on a 449 × 199 spatial grid. We crop and spatially subsample the data which results in a 64 × 64
spatial field.

Shallow-water equation. The shallow-water equations, derived from the compressible Navier-Stokes
equations, can be used for modeling free-surface flow problems. We consider the 2D equation used
in (Takamoto et al., 2022), which is the following system of hyperbolic PDEs:

∂th+∇hu = 0, ∂thu+∇
(
u2h+

1

2
grh

2

)
= −grh∇b, (64)

where u = u, v being the velocities in the horizontal and vertical direction respectively, h describes
the water depth, and b describes a spatially varying bathymetry. hu can be interpreted as the
directional momentum components and gr describes the gravitational acceleration. The mass and
momentum conservation properties can hold across shocks in the solution and thus challenging
datasets can be generated. This equation finds application in modeling tsunamis and flooding events.

We use the dataset generated and provided by PDEBench (Takamoto
et al., 2022). The data file (2D_rdb_NA_NA.h5) can be downloaded from
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download.
The data sample is a series of 101 frames at a 128 × 128 pixel resolution and come with 1 channel.
The simulation considered in (Takamoto et al., 2022) is a 2D radial dam break scenario. On a square
domain Ω = [−2.5, 2.5]2, the water height is initialized as a circular bump in the center of the
domain:

h(t = 0, x, y) =

{
2, for r <

√
x2 + y2,

1, for r ≥
√
x2 + y2,

with the radius r randomly sampled from U(0.3, 0.7). The dataset is simulated with a finite volume
solver using the PyClaw package. We apply standardization and then normalization to the range of
[−1, 1] to preprocess the simulated data.

Incompressible Navier-Stokes equation. The Navier-Stokes equation is the incompressible version
of the compressible Navier-Stokes equation, and it can be used to model hydromechanical systems,
turbulent dynamics and weather. We use the inhomogeenous version of the equation (which includes
a vector field forcing term u) considered by (Takamoto et al., 2022):

∇ · v = 0, ρ(∂tv + v · ∇v) = −∇p+ η∆v + u, (65)

where ρ is the mass density, v is the fluid velocity, p is the gas pressure and η is shear viscosity.
The initial conditions v0 and inhomogeneous forcing parameters u are each drawn from isotropic
Gaussian random fields with truncated power-law decay τ of the power spectral density and scale
σ, where τv0 = −3, σv0 = 0.15, τu = −1, σu = 0.4. The domain is taken to be the unit square
Ω = [0, 1]2 and the viscosity η = 0.01. The equation is numerically simulated using Phiflow.
Boundary conditions are taken to be Dirichlet to clamp the field velocity to zero at the perimeter.

We use the dataset generated and provided by PDEBench (Takamoto et al., 2022).
The data file (ns_incom_inhom_2d_512-0.h5) can be downloaded from

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download.
The data sample is a series of 1000 frames at a 512 × 512 pixel resolution and come with 2 channels.
We do not apply any data preprocessing procedure here.

Diffusion-reaction equation. We use the 2D extension of diffusion-reaction equation of Takamoto
et al. (2022) which describes two non-linearly coupled variables, namely the activator u = u(t, x, y)
and the inhibitor v = v(t, x, y). The equation is given by:

∂tu = Du∂xxu+Du∂yyu+Ru, (66)
∂tv = Dv∂xxv +Dv∂yyv +Rv, (67)

where Du and Dv are the diffusion coefficient for the activator and inhibitor respectively, Ru =
Ru(u, v) and Rv = Rv(u, v) are the activator and inhibitor reaction function respectively. The
domain of the simulation includes x ∈ (−1, 1), y ∈ (−1, 1), t ∈ (0, 5]. This equation can be used
for modeling biological pattern formation.

The reaction functions for the activator and inhibitor are defined by the Fitzhugh-Nagumo equation as:
Ru(u, v) = u−u3−k−v, Rv(u, v) = u−v, where k = 5×10−3, and the diffusion coefficients for
the activator and inhibitor are Du = 1× 10−3 and Dv = 5× 10−3 respectively. The initial condition
is generated as standard Gaussian noise u(0, x, y) ∼ N (0, 1.0) for x ∈ (−1, 1) and y ∈ (−1, 1).
We take a no-flow Neumann boundary condition: Du∂xu = 0, Dv∂xv = 0, Du∂yu = 0, and
Dv∂yv = 0 for x, y ∈ (−1, 1)2.

We use a downsampled version of the dataset provided by PDEBench (Takamoto
et al., 2022). The data file (2D_diff-react_NA_NA.h5) can be downloaded from
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download. The
data sample is a series of 101 frames at a 128 × 128 pixel resolution and come with 2 channels. The
sample frames are generated using the finite volume method for spatial discretization, and the time
integration is performed using the built-in fourth order Runge-Kutta method in the scipy package. We
do not apply any data preprocessing procedure here.

E.2 DETAILS ON PRE-TRAINING THE AUTOENCODER

We provide details on pre-training the autoencoder here. The choice of first pre-training an autoen-
coder is motivated by the computational challenges of working directly with the high-dimensional
spatial resolution of PDE datasets. Training directly in the ambient space requires substantial GPU
memory and computational resources, making it impractical for large-scale or high-resolution datasets.
By leveraging a latent-space representation, we achieve significant dimensionality reduction while
preserving the essential structure of the data, enabling efficient training and inference with standard
hardware configurations. For these datasets, latent-space modeling provides a critical balance between
computational efficiency, scalability, and performance.

We use the same architecture for the encoder and decoder for all the tasks, with the architecture
parameters chosen based on the complexity of the task.

The encoder. The encoder first applies a 2D convolution (conv_in) to the input frame, which
reduces the number of channels from in_channels to mid_channels, and processes the spatial
dimensions. Then, a series of ResidualBlock layers, which progressively process and downsample
the feature map, making it smaller in spatial dimensions but more enriched in terms of features,
are applied. After the residual blocks, the feature map undergoes an attention process via a multi-
head attention layer. This layer helps the encoder focus on important parts of the input, learning
relationships between spatial positions in the image. For the post-attention step, the feature map
is further processed by residual blocks and normalized, preparing it for the final convolution. The
output of the encoder is obtained by applying a final 2D convolution (out_conv), which maps the
processed feature map to the desired number of output channels (out_channels).

The decoder. The decoder takes the encoded feature map and transforms it back into an output with
similar spatial dimensions as the input. Similar to the encoder, the decoder starts with a convolution
that adjusts the number of channels from in_channels to mid_channels. Then, an attention
mechanism (similar to the encoder) is applied to focus on important aspects of the encoded features.
Next, a series of ResidualBlock layers, combined with UpBlock layers, are used to progressively
increase the spatial dimensions of the feature map (upsampling), undoing the compression applied by

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

the encoder. After the upsampling, the output is normalized and passed through a final convolution
(out_conv), mapping the internal feature representation to the desired number of output channels
(out_channels).

Table 4 summarizes the architecture parameters used for the considered tasks.

Table 4: Parameters chosen for the encoder (decoder) architecture.

Task Fluid flow Shallow-water eq. Navier-Stokes eq. Diffusion-reaction eq.

in_channels 1 (1) 1 (1) 2 (2) 2 (2)
out_channels 1 (1) 1 (1) 2 (2) 2 (2)
mid_channels 64 (128) 128 (256) 128 (256) 128 (256)

Training details. We train the autoencoder using AdamW with batch size of 32, no weight decay
and β = (0.9, 0.999). We use the cosine learning rate scheduler with warmup. For the fluid flow past
a cylinder task, we train for 2000 epochs and use learning rate of 0.001. For the Navier-Stokes task,
we train for 500 epochs and use learning rate of 0.0001. For the other two tasks we train for 5000
epochs and use learning rate of 0.0005. Our implementation is in PyTorch, and all experiments are
run on an NVIDIA A100-SXM4 GPU with 40 GB VRAM belonging to an internal SLURM cluster.

E.3 DETAILS ON TRAINING THE FLOW MATCHING MODELS

Architecture. The vector field regressor is a transformer-based model designed to process latent
vector fields and predict refined outputs with spatial and temporal dependencies. It uses key parameters
like depth and mid_depth, which control the number of transformer encoder layers in the input,
middle, and output stages. The state_size and state_res parameters define the number of
channels and spatial resolution of the input data, while inner_dim sets the embedding dimension for
processing. The model uses learned positional encodings and a time projection to incorporate spatial
and temporal context into the input, which can include input_latents, reference_latents,
and conditioning_latents. The input is projected into the inner dimension and passed
through a series of transformer layers, with intermediate outputs from the input blocks concatenated
with the output layers to refine predictions. Finally, the model projects the processed data back to the
original spatial resolution and channel size using BatchNorm, producing the final vector field output.

Table 5 summarizes the architecture parameters used for the considered tasks.

Table 5: Parameters chosen for the vector field neural network.

Parameter Fluid flow Shallow-water eq. Navier-Stokes eq. Diffusion-reaction eq.

state_size 4 4 8 4
state_res [8,8] [16, 16] [64, 64] [16, 16]
inner_dim 512 512 512 512
depth 4 4 4 4
mid_depth 5 5 5 5

Training details. For all the considered tasks, we train the regressor using AdamW with batch
size of 32, learning rate of 0.0005, no weight decay and β = (0.9, 0.999). We use the cosine
learning rate scheduler with warmup. For the fluid flow past cylinder, we train for 2000 epochs,
for the shallow-water equation and diffusion-reaction task we train for 1000 epochs, and for the
Navier-Stokes task we train for 100 epochs. Our implementation is in PyTorch, and all experiments
are run on an NVIDIA A100-SXM4 GPU with 40 GB VRAM belonging to an internal SLURM
cluster.

E.4 DETAILS ON THE EVALUATION METRICS

In addition to the standard mean squared error and relative Frobenius norm error (RFNE), we use
the Pearson correlation coefficient to measure the linear relationship between the forecasted frames

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

and the target frames. The range of this coefficient is [−1, 1], with zero implying no correlation.
Correlations of −1 or +1 imply an exact linear relationship. Positive correlations imply that as x
increases, so does y. Negative correlations imply that as x increases, y decreases. In addition, we use
peak signal-to-noise ratio (PSNR) to evaluate the quality of signal representation against corrupting
noise, and structural similarity index measure (SSIM) (Wang et al., 2004) to assess perceptual results.
The presented results are computed by averaging over batch size and number of sample generations.

To better quantify probabilistic forecasting performance, we use the Continuous Ranked Probability
Score (CRPS) (Matheson & Winkler, 1976) to compare the predicted cumulative distribution function
(CDF) to the actual observed value. More precisely, CRPS measures the compatibility of a CDF F
with an scalar-valued observation x as:

CRPS(F, x) =

∫
R
(F (z)− 1{x≤z})

2dz, (68)

where 1{x≤z} is the indicator function which is one if x ≤ z and zero otherwise. CRPS is a proper
scoring function, attaining its minimum when the predictive distribution and the data distribution
matches. Therefore, a lower CRPS value indicates that the predicted distribution is closer to the true
outcome. For high-dimensional arrays (such as forecasts for multiple variables or at multiple spatial
locations), the CRPS can be extended by treating the multidimensional forecasts as multivariate
distributions. In our experiments, we use 50 ensemble members to compute the empirical CDF, and
the CRPS values presented are obtained by averaging over batch size and data dimensions.

E.5 STANDARD DEVIATIONS FOR THE PRESENTED RESULTS

Table 6-10 provide the standard deviation of the results presented in the main paper.

Table 6: Standard deviation results for the fluid flow past a cylinder task using different choices of
probability paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

RIVER 1.33e-03 3.09e-02 1.31 5.93e-03
VE-diffusion 1.75e-02 3.60e-01 3.25e-01 2.31e-02
VP-diffusion 1.75e-02 3.60e-01 3.25e-01 2.31e-02
Stochastic interpolant 5.45e-05 3.51e-02 7.74e-02 3.75e-04

Ours (σ = 0.01, σsam = 0, Euler) 6.66e-06 4.49e-03 5.34e-02 3.48e-05

Table 7: Standard deviation for the results of ablation study for the fluid flow past a cylinder task.
Results are averaged over 5 generations.

σ sampler sampling steps Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

0.0 Euler 5 3.57e-05 2.42e-02 3.98e-02 2.51e-04
0.01 Euler 5 2.89e-05 2.45e-02 3.01e-02 1.80e-04
0.1 Euler 5 1.64e-05 2.73e-02 2.11e-02 7.21e-05

0.0 Euler 10 9.08e-06 1.25e-02 4.08e-02 5.73e-05
0.01 Euler 10 6.66e-06 4.49e-03 5.34e-02 3.48e-05
0.1 Euler 10 2.84e-05 4.00e-02 3.76e-02 2.21e-04

0.0 RK4 10 3.36e-06 7.69e-03 3.08e-02 2.33e-05
0.01 RK4 10 3.14e-06 5.43e-03 2.56e-02 2.22e-05
0.1 RK4 10 5.88e-05 5.83e-02 2.03e-2 1.85e-04

0.0 Euler 20 6.35e-06 7.36e-03 3.90e-02 5.90e-05
0.01 Euler 20 9.64e-06 1.21e-02 4.30e-02 5.94e-05
0.1 Euler 20 5.44e-06 1.39e-02 1.39e-02 1.03e-04

0.0 RK4 20 1.09e-05 1.65e-02 3.23e-02 8.08e-05
0.01 RK4 20 8.35e-06 1.32e-02 3.29e-02 6.54e-05
0.1 RK4 20 3.44e-06 1.07e-02 1.08e-02 4.08e-05

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 8: Standard deviation results for the shallow-water equation task using different choices of
probability paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

RIVER 2.81e-05 8.72e-02 1.01e-01 1.29e-03
VE-diffusion 5.01e-04 3.16e-01 3.50e-01 3.25e-03
VP-diffusion 1.56e-04 1.36e-02 2.61e-01 1.06e-01
Stochastic interpolant 7.25e-06 1.03e-01 3.45e-02 4.61e-04

Ours (σ = 0.01, σsam = 0, RK4) 1.54e-06 7.30e-02 3.54e-03 2.60e-04

Table 9: Standard deviation results for the diffusion-reaction equation task using different choices of
probability paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

RIVER 4.93e-04 2.27e-01 7.01e-01 1.82e-02
VE-diffusion 6.65e-03 1.04 5.59e-01 9.11e-03
VP-diffusion 6.75e-04 5.67e-01 1.62 2.13e-02
Stochastic interpolant 7.92e-04 1.14 9.58e-02 1.20e-03

Ours (σ = 0, σsam = 0, RK4) 1.02e-06 4.76e-02 7.96e-03 1.11e-04

Table 10: Standard deviation results for the Navier-Stokes equation task using different choices of
probability paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

RIVER 5.79e-05 2.46e-01 6.14e-01 1.13e-02
VE-diffusion 1.21e-04 1.36 8.82e-02 1.12e-03
VP-diffusion 2.55e-06 1.42e-01 8.28e-02 6.43e-04
Stochastic interpolant 2.03e-07 1.29e-01 9.54e-03 1.95e-04

Ours (σ = 0.01, σsam = 0, RK4) 5.76e-08 4.88e-02 9.32e-03 7.42e-05

25

	Introduction
	Related Work
	Flow Matching for Probabilistic Forecasting
	Probability Path Models for Probabilistic Forecasting
	Common Probability Path Models
	A Novel Probability Path Model

	An Efficient Probabilistic Forecasting Algorithm
	Empirical Results
	Probabilistic Forecasting of Dynamical Systems
	Ablation Study
	Discussion

	Conclusion
	Connection to SDE Based Generative Model Frameworks
	On Different Loss Parametrizations
	Theoretical Results and Proofs
	Connecting Flow Matching with Conditional Flow Matching
	Identifying the Vector Field that Generates the Gaussian Paths
	Comparing the Variance of Different Vector Field Models

	Additional Empirical Results
	Experimental Details
	Details on the Datasets
	Details on Pre-Training the Autoencoder
	Details on Training the Flow Matching Models
	Details on the Evaluation Metrics
	Standard Deviations for the Presented Results

