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Abstract

Applying reinforcement learning (RL) to real-world applications requires address-
ing a trade-off between asymptotic performance, sample efficiency, and inference
time. In this work, we demonstrate how to address this triple challenge by leverag-
ing partial physical knowledge about the system dynamics. Our approach involves
learning a physics-informed model to boost sample efficiency and generating imag-
inary trajectories from this model to learn a model-free policy and Q-function. Fur-
thermore, we propose a hybrid planning strategy, combining the learned policy and
Q-function with the learned model to enhance time efficiency in planning. Through
practical demonstrations, we illustrate that our method improves the compromise
between sample efficiency, time efficiency, and performance over state-of-the-art
methods. Code is available at https://github.com/elasriz/PHIHP/

1 Introduction

Reinforcement learning (RL) has proven successful in sequential decision-making tasks across diverse
artificial domains, ranging from games to robotics (Mnih et al., 2015; Lillicrap et al., 2016; Fujimoto
et al., 2018; Haarnoja et al., 2018). However, this success has not yet been evident in real-world
applications, where RL is facing many challenges (Dulac-Arnold et al., 2019), especially in terms
of sample efficiency and inference time needed to reach a satisfactory performance. A limitation of
existing research is that most works address these three challenges – sample efficiency, time efficiency,
and performance – individually, whereas we posit that addressing them simultaneously can benefit
from useful synergies between the leveraged mechanisms.

Concretely, on one side Model-Free Reinforcement Learning (MFRL) techniques excel at learning a
wide range of control tasks (Lillicrap et al., 2016; Fujimoto et al., 2018), but at a high sample cost.
On the other side, Model-Based Reinforcement Learning (MBRL) drastically reduces the need for
samples by acquiring a representation of the agent-environment interaction (Deisenroth & Rasmussen,
2011; Chua et al., 2018), but requires heavy planning strategies to reach competitive performance, at
the cost of inference time.

A recent line of works focuses on combining MBRL and MFRL to benefit from the best of both
worlds (Ha & Schmidhuber, 2018; Hafner et al., 2019a; Clavera et al., 2020). Particularly, Byravan
et al. (2021); Wang & Ba (2019); Hansen et al. (2022) combine a learned model and a learned policy
in planning, this combination helps improve the asymptotic performance but requires more samples,
due to the sample cost of learning a good policy.

This paper introduces PhIHP, a Physics-Informed model and Hybrid Planning method in RL. PhIHP
improves the compromise between the three main challenges outlined above – sample efficiency,
time efficiency, and performance –, as illustrated in Figure 1. Compared to state-of-the-art MFRL
TD3 (Fujimoto et al., 2018) and hybrid TD-MPC (Hansen et al., 2022), we show that PhIHP provides
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a much better sample efficiency, reaches higher asymptotic performance, and is much faster than
TD-MPC at inference.

Figure 1: PhIHP includes a Physics-Informed
model and hybrid planning for efficient pol-
icy learning in RL. PhIHP improves the com-
promise over state-of-the-art methods, model-
free TD3 and hybrid TD-MPC, between sam-
ple efficiency, time efficiency, and perfor-
mance. Results averaged over 6 tasks (Towers
et al., 2023).

To achieve this goal, PhIHP first learns a physics-
informed model of the environment and uses it to
learn an MFRL policy in imagination. This policy is
used in a hybrid planning scheme. PhIHP leverages
three main mechanisms:

• Physics-informed model: We leverage an approx-
imate physical model and combine it with a learned
data-driven residual to match the true dynamics. This
physical prior boosts the sample efficiency of PhIHP
and the learned residual improves asymptotic perfor-
mance.

• MFRL in imagination: we preserve the sample ef-
ficiency by training a policy in an actor-critic fashion,
using TD3 on trajectories generated from the learned
model. The reduced bias in the physics-informed
model enables to learn an effective policy in imagina-
tion, which is challenging with data-driven models,
e.g. TD-MPC.

• Hybrid planning strategy: We incorporate the
learned policy and Q-function in planning with the
learned model. A better model and policy learned in
imagination improve the performance vs inference
time trade-off.

2 Related work

Our work is at the intersection of Model-based RL, physics-informed methods, and hybrid controllers.

Model-based RL: Since DYNA architectures (Sutton, 1991), model-based RL algorithms are known
to be generally more sample-efficient than model-free methods. Planning with inaccurate or biased
models can lead to bad performance due to compounding errors, so many works have focused on
developing different methods to learn accurate models: PILCO (Deisenroth & Rasmussen, 2011),
SVG (Heess et al., 2015), PETS (Chua et al., 2018), PlaNet (Hafner et al., 2019b) and Dreamer
(Hafner et al., 2019a, 2020, 2023). Despite the high asymptotic performance achieved by model-based
planning, these methods require a large inference time. By contrast, by learning a policy used to
sample better actions, we can drastically reduce the inference time.

Physics-informed methods: Recently, a new line of work attempted to leverage the physical
knowledge available from the laws of physics governing dynamics, to speed up learning and enhance
sample efficiency in MBRL. Dealing with a physical prior can take several forms, e.g. only tuning
the physical parameters for a model (Scholz et al., 2014) or using a Lagrangian neural network in an
MBRL setting (Cranmer et al., 2020; Ramesh & Ravindran, 2023). Other approaches leverage the
physical information as a frozen component and learn a parametric residual on top of it Kloss et al.
(2017); Ajay et al. (2018); Jeong et al. (2019); Johannink et al. (2019); Zeng et al. (2020); Yildiz et al.
(2021); El Asri et al. (2022). However, these methods use the learned model in model predictive
control (MPC) and suffer from a large inference time. In this work, we efficiently learn an accurate
model by jointly correcting the parameters of a physical prior knowledge and learning a data-driven
residual using Neural ODEs.

Hybrid controllers: An interesting line of work consists in combining MBRL and MFRL to benefit
from the best of both worlds. This combination can be done by using a learned model to generate
imaginary samples and augment the training data for a model-free agent (Buckman et al., 2018;
Clavera et al., 2020; Morgan et al., 2021; Young et al., 2022). However, the improvement in terms
of sample efficiency is limited, since the agent remains trained on real data. Recent hybrid methods
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enhance the planning process by using a policy (Byravan et al., 2021; Wang & Ba, 2019), or a Q-
function (Bhardwaj et al., 2020) with a learned model. More related to our work, TD-MPC (Hansen
et al., 2022) combines the last two methods, using a learned policy and a Q-function with a learned
data-driven model to evaluate trajectories. TD-MPC jointly trains all components on real samples
and learns a latent representation of the world, resulting in improved sample efficiency. However,
the need for samples remains significant as they learn a policy from real data. By contrast, we first
train a physics-informed model from real samples, and then the policy and the Q-function are trained
in imagination. In addition, TD-MPC uses an expensive method to optimize sequences of actions,
which impacts inference time. By contrast, accurately learning a policy from the physics-informed
model reduces the action optimization budget, thereby enhancing time efficiency.

3 Background

Our work builds on reinforcement learning and the cross-entropy method.

Reinforcement learning: In RL, the problem of solving a given task is formulated as a Markov
Decision Process (MDP), that is a tuple (S,A, T ,R, γ, p(s0)) where S is the state space, A the
action space, T =: S × A → S the transition function, R : S × A → R the reward function,
γ ∈ [0, 1] is a discount factor and ρ0 is the initial state distribution. The objective in RL is to
maximize the expected return

∑∞
t=t0

γt−t0rt at each timestep t0. In model-free RL, an agent learns
a policy πθ : S → A that maximizes this expected return. In contrast, in model-based RL, the agent
learns a model that represents the transition function T , then uses this learned model T̂θ to predict
the next state ŝt+1 = T̂θ(st, at). The agent maximizes the expected return by optimizing a sequence
of actions A = {at0 , ..., at0+H} over a horizon H:

A∗ = arg max
A∈AH

H∑
t=t0

γt−t0R(st, at), subject to st+1 = T̂θ(st, at). (1)

Furthermore, using an inaccurate model can degrade solutions due to compounding errors. So, one
often solves this optimization problem at each time step, only executes the first action from the
sequence, and plans again at the next time step with updated state information. This is known as
model predictive control (MPC).

Cross Entropy Method (CEM): Since the dynamics and the reward functions are generally
nonlinear, it is difficult to analytically calculate the exact minimum of (1). In this work, we use the
derivative-free Cross-Entropy Method (de Boer et al., 2005) to resolve this optimization problem.
In CEM, the agent looks for the best sequence of actions over a finite horizon H . It first generates
N candidate sequences of actions from a normal distribution X ∼ N (µ, σ2). Then, it evaluates the
resulting trajectories using the learned dynamics model using a reward model and determines the K
elite sequences of actions (K < N), that is the sequences that lead to the highest return. Finally, the
normal distribution parameters σ and µ are updated to fit the elites. This process is repeated for a
fixed number of iterations. The optimal action sequence is calculated as the mean of the K elites
after the last iteration. We call CEM budget the size of the population times the number of iterations,
this budget being the main factor of inference time in methods that use the CEM.

4 Physics-Informed model for Hybrid Planning

In this section, we describe PhIHP, our proposed Physics-Informed model for Hybrid Planning.
PhIHP first learns a physics-informed residual dynamics model (Sec. 4.1), then learns a MFRL
agent through imagination (Sec. 4.2), and uses a hybrid planning strategy at inference (Sec. 4.3).
PhIHP follows recent hybrid MBRL/MFRL approaches, e.g. TD-MPC (Hansen et al., 2022), but
the physics-informed model brings important improvements at each stage of the process. It brings a
more accurate model, which improves predictive performance and robustness with respect to training
data distribution shifts. Crucially, it benefits from the continuous neuralODE method (Sec. 4.1) to
accurately predict trajectories, enabling to learn a powerful model-free agent in imagination (Sec. 4.2).
Finally, it enables to design a hybrid policy learning (Sec. 4.3) optimizing the performance vs time
efficiency trade-off.
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(a) Learn a physics-informed model (b) Learn an actor/critic offline (c) Behaviour at inference time

Figure 2: Schematic view of PhIHP. (a) We iteratively learn a physics-informed model from few
interactions in the environment. (b) We learn a policy and Q-function from trajectories imagined with
the learned model. (c) The agent samples actions from the policy output and random actions and then
evaluates the resulting trajectories using CEM, a reward function, and the Q-function.

4.1 Learning a physics-informed dynamics model

Model-based RL methods aim to learn the transition function T of the world i.e. a mapping from
(st, at) to st+1. However, learning T is challenging when st and st+1 are similar and actions have a
low impact on the output, in particular when the time interval between steps decreases. We address
this issue by learning a dynamics function T̂θ to predict the state change ∆st over the time step
duration ∆t. The next state st+1 can be subsequently determined through integration with an Ordinary
Differential Equation (ODE) solver. Thus, we describe the dynamics as a system following an ODE
of the form:

dst
dt

∣∣∣
t=t0

= T̂θ(st0 ,at0), and st+1 ≃ ODESolve
(
st,at, T̂θ, t, t+∆t

)
, (2)

where st and at are the state and action vector for a given time t. We assume the common situation
where a partial knowledge of the dynamics is available, generally from the underlying physical
laws. The dynamics T̂θ can thus be written as T̂θ = F p

θp
+ F r

θr
, where F p

θp
is the known analytic

approximation of the dynamics and F r
θr

is a residual part used to reduce the gap between the model
prediction and the real world by learning the complex phenomena that cannot be captured analytically.
The physical model F p

θp
is described by an ODE and the residual part F r

θr
as a neural network with

respective parameters θp and θr. We learn the dynamics model in a supervised manner by optimizing
the following objective:

Lpred(θ) =
1

|Dre|
∑

(st,at,st+1)∈Dre

∥st+1−ŝt+1∥22 subject to
dŝt
dt

∣∣∣
t=t′

= (F p
θp
+F r

θr )(st′ ,at′), (3)

on a dataset Dre of real transitions (st, at, st+1). As the decomposition T̂θ = F p
θp
+F r

θr
is not unique,

we apply an ℓ2 constraint over the residual part with a coefficient λ to enforce the model T̂θ to mostly
rely on the physical prior. The learning objective becomes

Lλ(θ) = Lpred(θ) +
1

λ
· ∥F r

θr∥2. (4)

The coefficient λ is initialized with a value λ0 and updated at each epoch with λj+1 = λj + τph ·
Lpred(θ), where λ0 and τph are fixed hyperparameters. To learn the model, we first use a pure
exploratory policy during T timesteps to collect the initial samples to fill Dre, then we perform
stochastic gradient descent on Equation (4) to train Fθ. The learned model F̂ is used with CEM to
perform planning and gather new T samples to add to Dre. To improve the quality of the model, the
algorithm iteratively alternates between training and planning for a fixed number of iterations I .

4.2 Learning a policy and Q-function through imagination

Simply planning with a learned model and CEM is time expensive. MFRL methods are generally
more time-efficient during inference time than planning methods, since they use policies that directly
map a state to an action. However, learning complex policies requires a large amount of training
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data which impacts sample efficiency. To maintain sample efficiency, a policy can be learned from
synthetic data generated by a model. However, an imperfect model may propagate the bias to the
learned policy. In this work, we benefit from the reduced bias in the physics-informed model to
generate a sufficiently accurate synthetic dataset Dim to train a parametric policy πθ(st) and a
Q-function Qθ(st, at). We do so using the TD3 model-free actor-critic algorithm (Fujimoto et al.,
2018).

In TD3, the Q-function is learned by minimizing the following loss function on Dim:

LQ(θ) =
1

|Dim|
∑

(st,at,rt,st+1)∈Dim

∥yt −Q(st, at)∥22 where yt = rt + γ ·Q(st+1, πθ(st+1)), (5)

while the policy is trained on Dim to maximize the expected return

Jπ(θ) = E [Q(st, πθ(st))] . (6)

Actually, TD3 uses two Q-functions and takes the minimum to fight a pervasive over-estimation bias
issue in RL algorithms.

The training dataset Dim is initially filled with T ′ samples generated from the learned model F̂ and
random actions from a pure exploratory policy, πθ and Qθ are trained by optimizing Equation (5) and
Equation (6) on batches from Dim which is continuously filled by samples from the learned model F̂ .

4.3 Hybrid planning with learned model and policy

PhIHP leverages a hybrid planning method that combines a physics-informed model with a learned
policy and Q-function. This combination helps overcome the drawbacks associated with each method
when used individually. While using a sub-optimal policy in control tasks significantly affects the
asymptotic performance, planning with a learned model has a high computational cost: i) the planning
horizon must be long enough to capture future rewards and ii) the CEM budget must be sufficiently
large to converge.

We use the learned policy in PhIHP to guide planning. In practice, a CEM-based planner first samples
Nπ informative candidates from the learned policy outputs π̂(st) and complements them with Nrand

exploratory candidates sampled from a uniform distribution X ∼ N (µ, σ2). These informative
candidates help reduce the population size and accelerate convergence. The planner estimates the
resulting trajectories using the learned model and evaluates each trajectory using the immediate
reward function up to the MPC horizon and the Q-value beyond that horizon.

By using the Q-value, we can evaluate the trajectories over a considerably reduced planning horizon
H and we add the Q-value of the last state to cover the long-term reward. Hence, the optimization
problem is written as follows:

A∗ = arg max
A∈AH

( H∑
t=t0

γt−t0R(st, at) + α · γH−t0Q(sH)
)
, subject to st+1 = T̂θ(st, at),

(7)
where the discounted sum term represents a local solution to the optimization problem, while the
Q-value term encodes the long-term reward and α balances the immediate reward over the planning
horizon and the Q-value.

5 Experiments

We first compare PhIHP to baselines in terms of performance, sample efficiency, and time efficiency.
Then we perform ablations and highlight the generalization capability brought by the physics prior.
The robustness of PhIHP to hyper-parameter settings is deferred to Appendix E.

5.1 Experimental setup

Environments: We evaluate our method on 6 ODE-governed environments from the gymnasium
classic control suite. These include the continuous versions of 3 basic environments: Pendulum,
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Cartpole, and Acrobot. Additionally, we consider their swing-up variants, where the initial state is
“hanging down” and the goal is to swing up and balance the pole at the upright position, similarly to
Yildiz et al. (2021). We opted for this benchmark for its challenging characteristics, including tasks
with sparse rewards and early termination.

However, to move closer to methods applicable in a real-world situation, we added to the original
environments from the gymnasium suite a friction term which is not present in the analytical model of
these environments. Thus, the dynamic of each system is governed by an ODE that can be represented
as the combination of two terms: a friction-less component F p and a friction term F r. Please refer to
Appendix B for additional details.

Evaluation metrics. In all experiments, we use three main metrics to compare methods:
• Asymptotic performance: we report the episodic cumulated reward on each environment.
• Sample efficiency: we define the sample efficiency of a method as the minimal amount of samples
required to achieve 90% of its maximum performance.
• Inference time: we report the wall-clock time taken by the agent to select an action at one timestep.

Design choice for PhIHP: We learn the model by combining an approximate ODE describing
frictionless motion with a data-driven residual model parameterized as a low-dimension MLP. We
use TD3 (Fujimoto et al., 2018) for the model-free component of our method, i.e. the policy and
Q-function. We found it beneficial to modify the original hyperparameters of TD3 to resolve the
friction environments. For planning, we use CEM-based MPC. Please refer to Appendix C for
additional details.

5.2 Comparison to state of the art:

We compare PhIHP to the following state-of-the-art methods, in terms of asymptotic performance,
sample efficiency, and inference time.

• TD-MPC (Hansen et al., 2022), a state-of-the-art hybrid MBRL/MFRL algorithm shown to
outperform strong state-based algorithms whether model-based e.g. LOOP (Sikchi et al., 2022) and
model-free e.g. SAC (Haarnoja et al., 2018) on diverse continuous control tasks.

• TD3 (Fujimoto et al., 2018), a state-of-the-art model-free algorithm. In addition to its popularity
and strong performance on continuous control tasks, TD3 is a backbone algorithm for our method to
learn the policy and Q-function. We used the same hyperparameters as in PhIHP.

• CEM-oracle: a CEM-based controller with the ground-truth model.

(a) Learning curves, the x-axis uses a symlog scale. (b) Performance profiles.

Figure 3: Comparison of PhIHP vs baselines aggregated on 6 control tasks (10 runs). a) PhIHP shows
excellent sample efficiency and better asymptotic performance. b) Performance profiles are obtained
with rliable (Agarwal et al., 2021). PhIHP shows better performance profiles which indicates a better
robustness to outliers. Comparison on individual environments are shown in Appendix D.

In Tab. 1, Figure 4 and Figure 3a, we show that PhIHP outperforms the baselines with a large margin
in at least one of the metrics without being worse on the others. Specifically, PhIHP is far more sample
efficient than TD3 and it generally shows 5-15 times better sample efficiency than TD-MPC, except
on Acrobot where they are comparable. Figure 3a further illustrates this excellent sample efficiency
of PhIHP and how TD3 stacks on sub-optimal performance. This enhanced sample efficiency of
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Table 1: Return of PhIHP and baselines on 6 classic control tasks. Mean and std. over 10 runs

Asymptotic performance Sample efficiency (×103 samples) Inference time (in milliseconds)

PhIHP TD-MPC TD3 CEM-oracle PhIHP TD-MPC TD3 PhIHP TD-MPC TD3 CEM-oracle

Pendulum -263 ±144 -276 ±301 -229 ±155 -228 ±71 2±0 26±24 86±40 6.32±0.02 39.56±0.28 0.11±0.0 18.89±0.26
Pendulum-sw -356 ±13 -395±324 -368±14 -597 ±6 5±0 28±12 57±16 6.37±0.01 39.6±0.54 0.11±0.0 18.87±0.05
CartPole 500±0 432 ±129 464±80 453±24 5±0 23±10 108±27 7.43±0.02 39.3±0.07 0.11±0.0 33.22±0.03
CartPole-sw 453 ±8 460 ±4 354 ±113 446±5 5±0 76±27 27±10 10.13±0.06 39.36±0.05 0.11±0.0 33.73±0.03
Acrobot -138 ±122 -249±168 -237±183 -500±0 5±0 10±5 233±110 11.14±0.02 39.38±0.09 0.12±0.0 59.83±0.1
Acrobot-sw 371 ±52 373 ±127 119 ±71 349 ±5 15±0 135±123 500±0 9.12±0.02 39.39±0.06 0.12±0.0 58.50±0.27

Figure 4: Agregated median, interquartile median (IQM), mean performance, and optimality gap of
PhIHP and baselines on 6 tasks (10 runs). Higher mean, median, and IQM performance and lower
optimality gaps are better. Confidence intervals are estimated using the percentile bootstrap with
stratified sampling (Agarwal et al., 2021). PhIHP outperforms baselines in all metrics.

PhIHP results from training the model-free policy on imaginary trajectories generated by the learned
model, as opposed to using real samples in the baselines. Besides, PhIHP demonstrates superior
performance in sparse-reward early-termination environment tasks (Cartpole and Acrobot) compared
to TD-MPC, and PhIHP outperforms TD3 with a large margin in Cartpole-swingup, Acrobot, and
Acrobot-swingup. Figure 4 in Appendix D.1 shows how TD3 stacks on lower asymptotic performance
for the aforementioned tasks. It also shows that TD-MPC performance drops in sparse-reward early-
termination environments e.g. Cartpole and Acrobot. It also illustrates that, since CEM-oracle uses
the reward function to evaluate trajectories within a limited horizon, it manages to solve both tasks
with smooth reward functions, and tasks with sparse reward where the goal is to maintain an initial
state (i.e. Cartpole), but it fails to solve sparse reward problems where the goal is to reach a position
out of the planning horizon (i.e. Acrobot).

Finally, Figure 3b shows that PhIHP has better performance profiles compared to baselines which
indicates better robustness to outliers in PhIHP.

Tab. 1 also reports the time needed for planning at each time step, obtained with an Apple M1 CPU
with 8 cores. It is noteworthy that PhIHP significantly reduces the inference time when compared to
TD-MPC. The inference time is still larger than that of TD3 since the latter is a component of our
method, but it meets the real-time requirements of various robotics applications.

5.3 Ablation study

In this section, we study the impact of each PhIHP component to illustrate the benefits of using an
analytical physics model, imagination learning, and combining CEM with a model-free policy and
Q-function for planning. To illustrate this, we compare PhIHP to several methods:

• TD-MPC*: our method without physical prior and without imagination. It is similar to TD-MPC
since the model is data-driven and it is learned with the policy from real trajectories. But learning the
model and the policy are separated.

• Ph-TD-MPC*: our method without learning in imagination, thus a physics-informed TD-MPC*.

• dd-CEM: our method without physical prior nor policy component, thus a CEM with a data-driven
model learned from real trajectories.

• Ph-CEM: our method without the policy component, thus a simple CEM with a physics-informed
model learned from real trajectories.

Figure 5 shows the impact of the quality of the model on the final performance in MBRL. Precisely,
leveraging a physical prior in Ph-CEM and Ph-TD-MPC* shows improvements compared to full
data-driven methods, i.e. dd-CEM and TD-MPC*. We also illustrate that planning with a model, a
Q-function, and a policy leads to better performance compared to planning only with the model. For
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Figure 5: Comparison of PhIHP and its variants on the 3 main metrics. The figures illustrate the
aggregated results of running all algorithms on 6 classic control tasks. Histograms and bars represent
mean and std. over 10 runs.

instance Ph-TD-MPC* outperforms Ph-CEM and TD-MPC* outperforms dd-CEM. However, this
gain in performance comes with a significant cost in samples, because the agent needs a large amount
of data to learn a good policy and Q-function.
Figure 5 illustrates the trade-off between asymptotic performance, sample efficiency, and inference
time in RL. On one hand, methods that learn a model and directly plan with it (e.g. dd-CEM and
ph-CEM) do not need many samples to achieve sufficiently good performance, but they are too
expensive at inference time. On the other hand, methods that learn to plan with a model, Q-function,
and policy plan fast but require many samples to train their policies and Q-functions. PhIHP is the
only method that achieves good asymptotic performance with low cost in sample efficiency due to
learning in imagination and a good inference time due to hybrid planning.

5.4 Generalization benefits of the physics prior

In this section, we highlight the key role of incorporating physical knowledge into PhIHP in finding
the better compromise between asymptotic performance, sample efficiency, and time efficiency
illustrated in Figure 5. Actually, learning a policy and Q-function through imagination leads to
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Figure 6: A data-driven model still poorly predicts the next states even when its asymptotic per-
formance matches that of the physics-informed model. Figure obtained with 10 episodes of model
training on Pendulum swingup.

superior performance only when the model used to generate samples is accurate enough. Figure
5 in Appendix D.3 shows that an agent trained on imaginary trajectories generated with a physics-
informed model largely outperforms the same agent using a fully data-driven model and matches the
performance of TD3 which is trained on real trajectories. This highlights the capability of the physics-
informed model to immediately generalize to unseen data, in contrast to the data-driven model, which
poorly predicts trajectories in unseen states. Figure 6 illustrates this faster generalization capability,
showing that the agent with a data-driven model still poorly predicts trajectories even when it meets
the asymptotic performance of the agent with the physics-informed model.
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6 Conclusion

We have introduced PhiHP, a novel approach that leverages physics knowledge of system dynamics
to address the trade-off between asymptotic performance, sample efficiency, and time efficiency in
RL. PhIHP enhances the sample efficiency by learning a physics-informed model that serves to train
a model-free agent through imagination and uses a hybrid planning strategy to improve the inference
time and the asymptotic performance. In the future, we envision to apply PhIHP to more challenging
control tasks where there is a larger discrepancy between the known equations and the real dynamics
of the system.
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A Appendix / Comparison to existing methods

In this section, we present a conceptual comparison of PhIHP and existing RL methods. Figure 7
illustrates the general scheme of existing RL methods and the possible connections between learning
and planning. We highlight in Figure 8 the origin of the well-known drawbacks in RL: i) learning a
policy on real data (arrow 1) impacts the sample efficiency, ii) learning a policy from a data-driven
learned model (arrow 3) impacts the asymptotic performance due to the bias in the learned model,
iii) model-based planning (arrow 4) impacts the inference time.

Figure 7: Overview of existing scheme of learning/planning in RL. 1- learn a policy/value function
from real data. 2- learn a model from real data. 3- learn a policy/value function from imaginary data.
4- plan with a learned model. 5- plan with a learned policy/value function. 6- act based on a policy
output. 7- act based on the planning outcome. 8- collect data from the interaction with the real world.

(a) general scheme (b) MFRL (TD3, SAC) (c) MBRL (PILCO)

(d) Dyna-style RL (LOOP) (e) Hybrid RL (TD-MPC) (f) PhIHP (Ours)

Figure 8: Conceptual comparison of PhIHP and existing methods based on the general scheme in
Figure 7. Thick lines are used by a method, red lines indicate the origin of the main drawbacks: 1-
learning on real data impacts the sample efficiency, 3- bias introduced by the data-driven model
impacts the asymptotic performance, 4- planning with a model impacts the inference time.

PhIHP benefits from the good sample efficiency of model-based learning methods (arrow 2) and
from the physical knowledge to reduce the bias in the learned model. The accurately learned model
generates good trajectories to train the policy/value networks (arrow 3). When interacting with
the environment, PhIHP uses a hybrid planning strategy (arrows 4 & 5) to improve asymptotic
performance and time efficiency.
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B Appendix / Environments

In this section, we give a comprehensive description of the environments employed in our work.
Across all environments, observations are continuous within [−Sbox, Sbox] and actions are continuous
and restricted to a [−amax, amax] range. An overview of all tasks is depicted in Figure 9 and specific
parameters are outlined in Table 2.

Pendulum: A single-linked pendulum is fixed on one end, with an actuator on the joint. The
pendulum starts at a random position and the goal is to swing it up and balance it at the upright
position. Let θ be the joint angle at time t and θ̇ its velocity, the observation at time t is (θ, θ̇).

Pendulum-Swingup: the version of Pendulum where it is started at the "hanging down" position.

Cartpole: A pole is attached by an unactuated joint to a cart, which moves along a horizontal track.
The pole is started upright on the cart and the goal is to balance the pole by applying forces in the left
and right direction on the cart.

Cartpole-Swingup: the version of Cartpole where the pole is started at the "hanging down" position.

Acrobot: A pendulum with two links connected linearly to form a chain, with one end of the chain
fixed. Only the joint between the two links is actuated. The goal is to apply torques on the actuated
joint to swing the free end of the linear chain above a given height.

Acrobot-Swingup: For the swingup task, we experiment with the fully actuated version of the
Acrobot similarly to (Yildiz et al., 2021; Xie et al., 2016). Initially, both links point downwards at the
"hanging down" position. The goal is to swing up the Acrobot and balance it in the upright position.
Let θ1 be the joint angles of the first fixed to a hinge at time t and θ2 the relative angle between the
two links at time t. The observation at time t is (θ1, θ2, θ̇1, θ̇2).

Figure 9: Experimental tasks : Pendulum & Pendulum-swingup (left), Cartpole & Cartpole-swingup
(center), Acrobot & Acrobot-swingup(right). The Acrobot-swingup is fully actuated while Acrobot is
only actuated at the joint between the two links, thus a2 = 0.

B.1 Dynamic functions

In this section, we provide details of the dynamic functions. For each task, the dynamic function
consists of a frictionless component and a friction term.

Pendulum and Pendulum Swingup: Let st = (θ, θ̇) be the state and at the action at time t. The
dynamic of the pendulum is described as:

F (st, at) =

[
θ̇

θ̈

]
=

[
θ̇

Cg · sin(θ) + Ci · at + CFr · θ̇

]
(8)

where Cg is the gravity norm, Ci is the inertia norm and CFr is the Friction norm.
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Table 2: Environment specifications
Environments

Parameters Pendulum Pendulum-SU Cartpole Cartpole-SU Acrobot Acrobot-SU

Reward type Smooth Smooth Sparse Smooth Sparse Smooth
Early termination No No Yes No Yes No

State space R2 R4 R4

States
[
θ, θ̇

] [
x, ẋ, θ, θ̇

] [
θ1, θ2, θ̇1, θ̇2

]
Observation space R3 R5 R6

Observations
[
cos(θ), sin(θ), θ̇

] [
x, ẋ, cos(θ), sin(θ), θ̇

] [
cos(θ1), sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2

]
Actions space R1 R1 R1 R1 R1 R2

amax [2.0] [2.0] [10.0] [10.0] [1.0] [1.0, 1.0]

Length of the rollout 200 500 500 500 500 500

∆t 0.05 0.02 0.2

Acrobot and Acrobot Swingup: Let st = (θ1, θ2, θ̇1, θ̇2) be the state and at = (a1, a2) (a1 = 0 for
the Acrobot environment) the action at time t. The dynamic of the system is similar to (Yildiz et al.,
2021) described as:

F (st, at) =


θ̇1
θ̇2
θ̈1
θ̈2

 =


θ̇1
θ̇2

−(α0+d2+θ̈2+Σ1)
d1

α1+
d2
d1

·Σ1−m2×l1·lc2×θ̇2
1 ·sin θ2−Σ2

m2·lc22+I2− d2
2

d1

 (9)

where:
α0 = a1 − Cfr1 · θ̇1 such as Cfr1 is the friction norm in the first joint ,
α1 = a2 − Cfr2 · θ̇2 such as Cfr2 is the friction norm in the second joint ,
m1 and m2 the mass of the first and second links,
l1 and l2 the length of the first and second links,
lc1 and lc2 the position of the center of mass of the first and second links,
I1 and I2 the moment of inertia of the first and second links,

and

d1 = m1 · lc12 +m2 · (l12 + lc2
2 + 2 · l1 · lc2 · cos(θ2)) + I1 + I2

d2 = m2 · (lc22 + l1 · lc2 · cos(θ2)) + I2

Σ2 = m2 · lc2 · g · cos(θ1 + θ2 − π
2 )

Σ1 = m2 · l1 · lc2 · θ̈2 · sin(θ2) · (θ̈2 − 2 · θ̈1) + (m1 · lc1 +m2 · l1) · g · cos(θ1 − π
2 ) + Σ2.

Cartpole and Cartpole Swingup: Let st = (x, ẋ, θ, θ̇) be the state and at the action at time t. The
dynamic of the system is based on (Barto et al., 1983) and described as:

F (st, at) =


ẋ
ẍ

θ̇

θ̈

 =


ẋ

Σ−mp · l · θ̈ · cos(θ)
mtotal

θ̇
g·sin(θ)−(cos(θ)·Σ)−Frpθ̇

mp·l

l·[ 43−
mp·cos(θ)2

mtotal
]

 , (10)

where:
Frc is the friction norm in the contact between the cart and the ground,
Frp is the friction norm in the joint between the cart and the pole,
l is the length of the pole,
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mtot = mc +mp and mp, mc are the mass of the pole and the cart respectively,
Σ = 1

mtotal
· (a+mp · l · θ̇2 · sin(θ)− (Frc · sgn(ẋ)).

B.2 Reward Functions

The reward function encodes the desired task. We adopt the original reward functions in the three
main environments. For the swingup variants, we choose functions that describe the swingup task:
we adopt the same function as Pendulum for Pendulum swingup. For Cartpole swingup, we set a
reward function as the negative distance from the goal position sgoal = (x = 0, y = 1). For Acrobot
swingup, we take the height of the pole as a reward function.

Table 3: Reward functions for each environment.

Environment Reward function
Pendulum −θ2 − 0.1 · θ̇2 − 0.001 · a2
Pendulum swingup −θ2 − 0.1 · θ̇2 − 0.001 · a2
Cartpole +1 for every step until termination
Cartpole swingup exp (∥s− sgoal∥22)
Acrobot -1 for every step until termination
Acrobot swingup − cos(θ1)− cos(θ1 + θ2)

C Appendix / Implementation details

In this section, we describe the experimental setup and the implementation details of PhIHP. We first
learn a physics-informed residual dynamics model, then learn an MFRL agent through imagination,
and use a hybrid planning strategy at inference.

We list in Tab. 5 the relevant hyperparameters of PhIHP and baselines. and we report in Tab. 4 the
task-specific hyperparameters for PhIHP.
We adopted the original implementation and hyperparameters of TD-MPC. However, we needed to
adapt it for early termination environments (i.e. Cartpole and Acrobot) to support episodes of variable
length, and we found it beneficial for TD-MPC to set the critic learning rate at 1e-4 in these two tasks.
Fot TD3, we tuned the original hyperparameters and used the same for the TD3 baseline and the
model-free component of PhIHP.

Table 4: Task-specific hyperparameters of PhIHP.

Hyperparameter Pendulum Pendulum swingup Cartpole Cartpole swingup Acrobot Acrobot swingup

Model learning

MLP size 2 x 16 2 x 16 2 x 16 2 x 16 3 x 16 3 x 16
Loss initial coefficient λ0 1e3 1e3 1e3 1e3 1e2 1e3
Loss update coefficient τph 1e3 1e3 1e5 1e5 1e5 1e5
Samples needed 2000 5000 5000 5000 5000 15000

Planning

Planning horizon H 5 5 4 6 4 3
Reward coefficient α 1.5 1.5 0.2 0.03 0.8 0.8
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Table 5: PhIHP and baselines hyperparameters. We emphasize that we use the same hyperparameters
for TD3 in the baseline and the model-free component of PhIHP.

Hyperparameter PhIHP TD-MPC TD3 CEM-oracle

Model learning

Model ODE + MLP MLP - Ground truth
Activation Relu ELU - -
MLP size 2 x 16 2 x 512 - -
Learning rate 1e-3 1e-3 - -

Policy/Value learning

Batch size 64 512 64 -
Critic size 3 x 200 2 x 512 3 x 200 -
Actor size 2 x 300 2 x 512 2 x 300 -
Activation Relu ELU Relu -
Critic learning rate 1e-4 1e-3 1e-4 -
Actor learning rate 1e-3 1e-3 1e-3 -
Soft update coefficient τ 0.05 0.01 0.05 -
Policy update frequency 2 2 2 -
Discount factor 0.99 0.99 0.99 -
Exploratory steps 10000 5000 10000 -
Replay Buffer size 1e6 1e6 1e6 -
Sampling technique Uniform PER (α = 0.6, β = 0.4) Uniform -

Planning

Planner CEM MPPI - CEM
Exploratory population size 200 512 - 700
Policy population size 20 25 - -
Elite 10 64 - 20
CEM iterations I 3 6 - 3
Update distribution mean and std. weighted mean and std. - mean and std.
Planning horizon H 4 5 - 30
Receding horizon RH 1 1 - 5

D Appendix / Comparison to state of the art

We compare PhIHP to baselines on individual tasks, we present both statistical results and a qualitative
analysis.

D.1 Learning curves

We provide learning curves of PhIHP and baselines on individual tasks. PhIHP outperforms baselines
by a large margin in terms of sample efficiency. Figure 10 shows that TD3, even when converging
early in Cartpole-swingup, achieves sub-optimal performance and fails to converge within 500k steps
in Acrobot-swingup.

D.2 Statistical Comparison: PhIHP vs. Baselines

To ensure a robust and statistically sound comparison with the results previously reported in Table 1 in
Sec. 5.2, we conducted Welch’s t-test to statistically compare the performance of PhIHP vs baselines
across individual tasks. We set the significance threshold at 0.05, and calculated p-values to determine
whether observed differences in performance were statistically significant. Tab. 6 shows that PhIHP
is equivalent to all baselines in Pendulum, and it significantly outperforms TD3 on the remaining
tasks. Moreover, PhIHP outperforms TD-MPC in sparse-reward early-termination environment tasks
(Cartpole and Acrobot), while they demonstrate equivalent performance in Pendulum, Pendulum
swingup, and Acrobot swingup.
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Figure 10: Return of PhIHP and baselines on the gymnasium classic control tasks. Mean and std.
over 10 runs. PhIHP outperforms or matches the baselines.

Table 6: Statistical Comparison of PhIHP vs Baselines across individual tasks: we present the
Welch’s t-test results including T-statistics and P-values, to assess the significance of performance
differences. Yes denotes a statistically significant difference (p-value < 0.05), with green Yes
indicating PhIHP outperforming the baseline (T-statistics > 0), and red Yes indicating the baseline
performing better (T-statistics < 0). No indicates no significant difference between PhIHP and the
baseline (p-value > 0.05).

TD3 TD-MPC CEM-oracle TD3 TD-MPC CEM-oracle TD3 TD-MPC CEM-oracle

Pendulum Cartpole Acrobot

T-statistic -1.41 0.52 -1.18 4.66 5.47 25.75 4.39 5.35 29.78
P-value 0.16 0.61 0.26 9.92e-06 3.40e-07 9.69e-10 1.96e-05 2.58e-07 3.30e-51
Significant difference No No No Yes Yes Yes Yes Yes Yes

Pendulum swingup Cartpole swingup Acrobot swingup

T-statistic 6.35 1.19 6.47 8.41 -7.59 1.65 27.49 -0.10 4.02
P-value 1.48e-09 0.24 1.15e-4 2.70e-13 9.01e-12 0.11 3.54e-66 0.92 1.09e-4
Significant difference Yes No Yes Yes Yes No Yes No Yes

D.3 Imagination learning for model-free TD3

We provide learning curves of TD3 through imagination on individual tasks in Figure 11. TD3-im-ph
is a component of PhIHP, it is a TD3 agent learned on trajectories from a physics-informed model. It
largely outperforms TD3-im-dd, a TD3 learned on trajectories from a data-driven model. we limited
the training budget for TD3-re, trained on real trajectories, at 500k real samples in all tasks.
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Figure 11: Learning curve of TD3 on classic control tasks, mean and std. over 5 runs. TD3-re
(orange curve) is a TD3 agent trained on real trajectories, TD3-im-ph (green curve) and TD3-im-dd
(red curve) are TD3 agents trained on imaginary trajectories respectively from a physics-informed
model and data-driven model.

D.4 Qualitative comparison

In this section, we compare performance metrics on individual classic control tasks. We estimate
confidence intervals by using the percentile bootstrap with stratified sampling (Agarwal et al., 2021).
We show in Figure 12 the performance profiles of PhIHP and baselines. PhIHP shows better
robustness to outliers.

Figure 12: Performance profiles of PhIHP and baselines on individual tasks (10 runs). Confidence
intervals are estimated using the percentile bootstrap with stratified sampling (Agarwal et al., 2021).
PhIHP shows a better robustness to outliers.
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Moreover, Figure 13 shows a comparison of the median, interquartile median (IQM), mean
performance, and optimality gap of PhIHP and baselines. PhIHP matches or outperforms the
performance of TD-MPC and TD3 in all tasks except in Cartpole swingup. PhIHP shown to be robust
to outliers compared to TD-MPC with shorter confidence intervals.

(a) Pendulum. PhIHP matches the performance of TD-MPC and TD3.

(b) Pendulum swingup. PhIHP outperforms TD-MPC and TD3, and PhIHP shows to be robust to outliers
compared to TD-MPC.

(c) Cartpole. PhIHP largely outperforms TD-MPC and TD3.

(d) Cartpole swingup. PhIHP outperforms TD3 and shows slightly less performance than TD-MPC.

(e) Acrobot. PhIHP largely outperforms TD3 and TD-MPC.

(f) Acrobot swingup. PhIHP outperforms TD3 and matches the performance of TD-MPC.

Figure 13: Median, interquartile median (IQM), mean performance, and optimality gap of PhIHP and
baselines on individual classic control tasks (10 runs). Higher mean, median, and IQM performance
and lower optimality gap are better. Confidence intervals (CIs) are estimated using the percentile
bootstrap with stratified sampling (Agarwal et al., 2021).
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E Appendix / Hyperparameter sensitivity analysis

We investigate the impact of varying controller hyper-parameters on the performance and inference
time of PhIHP. We first study the impact of varying planning horizons and receding horizons (from 1
to 8). We note that planning over longer horizons generally leads to better performance, however, the
performance slightly drops in Acrobot-swingup for planning horizon H > 4 (Figure 14). We explain
this by the compounding error effect on complex dynamics. Unsurprisingly, lower receding horizons
always improve the performance because the agent benefits from replanning.
For the impact of the population size, Figure 14 shows that excluding the policy (policy-population =
0) from planning degrades the performance, and increasing it under 10 does not have a significant
impact. Moreover, excluding random actions (random-population = 0) from planning degrades the
performance.
Unsurprisingly, the inference time increases with an increase in both the planning horizon and the
population size. Conversely, it decreases when the receding horizon increases.

Pe
nd

ul
um

2 4 6 8

400

350

300

250

200

150

E
pi

so
de

 re
tu

rn

3

4

5

6

7

8

2 4 6 8

450

400

350

300

250

200

150

1

2

3

4

5

6

7

8

0 25 50 75 100

450

400

350

300

250

200

150

4.0

4.5

5.0

5.5

6.0

6.5

0 200 400

350

300

250

200

150

4.2

4.4

4.6

4.8

In
fe

re
nc

e 
tim

e 
(m

ili
se

co
nd

es
)

Pe
nd

ul
um

sw
in

gu
p

2 4 6 8
380

375

370

365

360

355

350

345

E
pi

so
de

 re
tu

rn

3

4

5

6

7

8

2 4 6 8

365

360

355

350

345

1

2

3

4

5

6

7

8

0 25 50 75 100

420

400

380

360

4.0

4.5

5.0

5.5

6.0

6.5

0 200 400
380

375

370

365

360

355

350

345

4.2

4.4

4.6

4.8

In
fe

re
nc

e 
tim

e 
(m

ili
se

co
nd

es
)

C
ar

tp
ol

e

2 4 6 8

480

490

500

510

520

E
pi

so
de

 re
tu

rn

3

4

5

6

7

8

9

10

2 4 6 8

480

490

500

510

520

2

4

6

8

10

0 25 50 75 100

480

490

500

510

520

5.0

5.5

6.0

6.5

7.0

7.5

0 200 400

380

400

420

440

460

480

500

5.2

5.4

5.6

5.8

6.0

6.2

In
fe

re
nc

e 
tim

e 
(m

ili
se

co
nd

es
)

C
ar

tp
ol

e
sw

in
gu

p

2 4 6 8

380

400

420

440

460

E
pi

so
de

 re
tu

rn

3

4

5

6

7

8

9

10

2 4 6 8

400

410

420

430

440

450

460

2

4

6

8

10

0 25 50 75 100

325

350

375

400

425

450

5.0

5.5

6.0

6.5

7.0

7.5

0 200 400

390

400

410

420

430

440

450

5.2

5.4

5.6

5.8

6.0

6.2

In
fe

re
nc

e 
tim

e 
(m

ili
se

co
nd

es
)

A
cr

ob
ot

sw
in

gu
p

2 4 6 8
Planning horizon

100

200

300

400

E
pi

so
de

 re
tu

rn

6

8

10

12

14

16

18

2 4 6 8
Receding horizon

0

100

200

300

2.5

5.0

7.5

10.0

12.5

15.0

17.5

0 25 50 75 100
Policy population

250

300

350

400

8.5

9.0

9.5

10.0

10.5

11.0

0 200 400
Random population

100

150

200

250

300

350

400

8.5

9.0

9.5

10.0

In
fe

re
nc

e 
tim

e 
(m

ili
se

co
nd

es
)

Figure 14: Impact of varying planning hyperparameters on asymptotic performance and inference
time on individual tasks.
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