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Abstract

Compound Al systems, comprising multiple interacting components such as LLMs,
foundation models, and external tools, have demonstrated remarkable improve-
ments compared to single models in various tasks. To ensure their effective deploy-
ment in real-world applications, aligning these systems with human preferences is
crucial. However, aligning the compound system via policy optimization, unlike
the alignment of a single model, is challenging for two main reasons: (i) non-
differentiable interactions between components make end-to-end gradient-based
optimization methods inapplicable, and (ii) system-level preferences cannot be di-
rectly transformed into component-level preferences. To address these challenges,
we first formulate compound Al systems as Directed Acyclic Graphs (DAGs),
explicitly modeling both component interactions and the associated data flows.
Building on this formulation, we introduce SysDPO, a framework that extends
Direct Preference Optimization (DPO) to enable joint system-level alignment. We
propose two variants, SysDPO-Direct and SysDPO-Sampling, tailored for sce-
narios depending on whether we construct a system-specific preference dataset.
We empirically demonstrate the effectiveness of our approach across two applica-
tions: the joint alignment of a language model and a diffusion model, and the joint
alignment of an LLM collaboration system.

1 Introduction

Compound Al systems, which consist of multiple interacting AI components, serve as promising
frameworks to push beyond model capabilities and achieve state-of-the-art performance [40,16, 13} [16].
For example, ChatGPT integrates a Large Language Model (LLM), a DALL-E image generator, a
web browser plugin, and various other system components to support diverse user needs [[1]. A multi-
agent system consisting of multiple LLMs working collaboratively achieves improved performance
compared to a single agent [36]. A Retrieval-Augmented Generation (RAG) system combines large
language models with information retrieval capabilities and is capable of answering time-sensitive
queries. A multi-LLM routing system includes a router that dynamically selects among a diverse set
of models according to user queries to maximize model performance [11]. These examples illustrate
how compound Al systems leverage LL.Ms alongside complementary modules to tackle complex
tasks beyond the reach of a single LLM.

Ensuring effective collaboration among components is crucial for compound Al systems to function
reliably. It also plays a critical role in aligning the outputs of the system with human preferences and
in ensuring safety and ethical standards [[16]. However, simply integrating multiple models does not
guarantee effective coordination, as illustrated by a failure case involving an LLM (GPT-4) and a
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Figure 1: The figure illustrates the challenges in a compound system composed of the GPT-4 and the image gen-
erator DALL-E. Given the user prompt to GPT-4, “Generate three separate images of a cat being
progressively angrier”, the task is to demonstrate a clear visual progression of the specified attribute, i.e.,
anger. (a) shows the results from one query, and (b) represents the results from another query. The captions
under each image summarize the prompts generated by GPT-4 for DALL-E (complete prompts in Appendix [A),
where prompts from both queries reflect progressions in anger. Similarly, DALL-E accurately generates the
images following the given prompts. However, (a) fails to demonstrate a clear visual progression of anger
compared to (b), highlighting GPT-4’s inconsistent collaboration with DALL-E.

diffusion model (DALL-E), shown in Figurem Our experiments (Section @) reveal that an instructed
tuned Llama-3-8B combined with Stable Diffusion XL achieve a correctness rate of only 32% on
similar tasks. These failure cases highlight the critical need to develop a new framework to align
compound Al systems.

While alignment techniques for monolithic models are well-studied [26, 144} [3]], aligning compound
systems remains an open challenge. Standard methods such as Direct Preference Optimization
(DPO) [26] and Reinforcement Learning from Human Feedback (RLHF) [19, 144} 3] are not directly
applicable to compound systems for three primary bottlenecks: (i) Non-differentiable interactions:
Components in a compound system often interact through non-differentiable channels, such as natural
language, preventing end-to-end optimization and making credit assignment across components
difficult. (ii) Non-decomposable preferences: Aligning each component independently is inadequate,
as system-level preferences are not simply decomposable into individual preferences. Moreover,
effective coordination between components is essential but cannot be captured through isolated
alignment. (iii) Lack of fine-grained benchmarks: Most alignment benchmarks are constructed to
evaluate the entire system; benchmarks for individual sub-tasks might not exist.

In light of these challenges, there is an urgent need to develop methodologies for aligning com-
pound Al systems. While recent studies investigate prompting techniques and instruction tuning
approaches [39, (16} 30|, and concurrent work [37] explores optimization using local reward models,
we take an alternative approach. Our main contributions are summarized below:

* We model compound Al systems as Directed Acyclic Graphs and propose SysDPO, a Direct
Preference Optimization (DPO)-based alignment framework with two variants—SysDPO-Direct
and SysDPO-Sampling—for settings with or without system-specific datasets (Section [2).

* We provide a theoretical analysis showing that SysDPO achieves [-perfect alignment in the
population setting, generalizing standard DPO guarantees to compound systems (Section [3).

* We demonstrate SysDPO with two applications: aligning an LLM and a text-to-image diffusion
model, as well as aligning two LLMs (Section ). Our experimental results indicate that aligning
compound Al systems increases the success rate in handling complex instructions (Section [5).

These results deepen our understanding of alignment challenges in compound Al systems and provide
a foundation for future research.

2 The SysDPO Framework

In this section, we introduce the framework of SysDPO through intuitive motivations, where the
theoretical justification is provided later in Section [3] We start by reviewing prior work on the
Bradley-Terry model [4] and DPO [26]], then move to introduce the SysDPO pipeline.

Bradley-Terry (BT) model. Given an input z, the system generates two pairs of outputs z, z’.
We represent the preference of the outputs as (z > 2z’ | z) if z is preferred over 2’ by a preference
oracle, e.g., human labelers. To model the preference, we use the Bradley-Terry model — a common



preference model used in alignment [26} 31}, 3], which represents the preference distribution as

exp(r*(z, 2))
exp(r (2, 2)) + exp(r*(z, )
where r*(z, z) is the ground truth reward model. Drawing preference from the preference oracle,
the winning sample is assigned to 2 < z and the losing sample is assigned to z! « 2’ with
probability pref(z > 2’ | ). Using the preference oracle, one can construct a preference distribution
D composed of preference pairs (, 2%, 2!).

pref(z = 2’ | x) = € (0,1), (1)

Direct Preference Optimization. DPO [26] aligns the model € using the preference distribution D
by minimizing the following loss:

po(z"|x) p9(2l|$)>}
L(0) = ~E(zz0 20)~p |1 log  Golz) P18 L iy )| ?
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where @ denotes the reference model of 6, o(-) stands for the sigmoid function. When it comes to
compound Al systems, the optimization challenge arises from the structure of ¢, which represents
a collection of model parameters. These models may communicate in complex ways that are non-
differentiable, e.g., by exchanging plain text or task-specific outputs. Moreover, for a compound
system with intermediate generations y, the system’s generation probability takes the form of an
integral pg(z | ©) = [ po(z,y | =) dy, raising challenges for optimization. Therefore, the alignment
of compound Al systems is an important yet difficult task.

2.1 SysDPO Framework

To circumvent the challenge of non-differentiability, we develop SysDPO. We start by modeling the
structure of compound Al systems as DAGs, which encode both the connections between models
and the underlying data flow from input to final output via intermediate results. The DAG structure
enables us to decompose the joint probability of generated outputs into several components. We
study two decomposition methods, depending on whether the intermediate outputs are observable or
not. Such decompositions lead to two variations of SysDPO: SysDPO-Direct and SysDPO-Sampling.
Both methods address the non-differentiability and optimization issues. We then define a DPO-based
loss function that can be optimized from end-to-end simply via gradient descent. This ensures that
the outputs of each component is aligned with human preferences.

Formulating Compound AI Systems as DAGs. We model a compound Al system as a Directed
Acyclic Graph (DAG), where nodes represent variables and edges capture the flow of information
between components. Specifically, we define nodes as z, {y; }icr, and {z;},es, where z € X is
the input, y; € ); are intermediate outputs, and z; € Z; are final outputs. Each non-input node is
generated by a single model that consumes inputs from its parent nodes. We denote the set of all
generated outputs by s = {y;, 2, }icr jcs. The directed edges represent the flow of the generated
data between components.

We illustrate this formulation with two examples. The first, shown in Figure[2](a), involves an LLM
generating image captions, followed by a diffusion model that synthesizes images—corresponding
to the motivating example in Figure[I] The second example, shown in Figure 2] (b), consists of two
LLMs collaborating in a multi-stage pipeline. This setup reflects recent interest in LLM collaboration
in improving reasoning, factuality, safety, and creativity through mechanisms such as verification,
debate, or response refinement [42} (8| [7] 36} 38]].

2.2 SysDPO-Direct

The DAG structure encodes the conditional independence of the generated data [20]], allowing the
decomposition of the probability of generated data into multiple terms. Assume that all intermediate
outputs {y; }ics are observed or given in the preference dataset. We can factorize the probability of
an associated DAG as

po(s|z) = H po, (il Pa(yi)) - po, (2;] Pa(z5)), 3
ieljed

where Pa(-) returns the parent nodes of a given node in the graph, and § = {0 : k € TU J}
denotes the parameter set of generative models in the compound Al system. This decomposition
breaks down the likelihood of the system into a product of multiple terms, where each term contains
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Figure 2: Corresponding DAGs of compound Al systems. (a) The user gives a prompt = which is processed
by the LLM 6; to produce three captions y1, y2, y3. The diffusion model 6 is queried to generate images z;
given y; fori = 1,..., 3. (b) The user gives a prompt = which is processed by the first LLM 6; to produce an
intermediate result y. Then, x and y are passed to the second model 6> to generate the final output z.

a single model. Note that the labels of the models 0;, 0; can refer to different queries to the same
model. Taking the case of Figure[2](a) as an example, and denoting the set of generated contents by

s = {1, Y2, Y3, 21, 22, 23}, we have p(s|x) = [T, pa, (vil) - pe, (2:]y:)-

Preference Dataset Construction. To learn the model parameters § = {0, : k € T U J}, we
first construct a system-specific preference dataset. We assume that all the variables in (3] are
observed. The dataset can be constructed in the following way: given an input z, the system
generates two variants of the final outputs as well as intermediate outputs in the system. We label
the preferred sample as s = {y;" | i € I} U{z}" | j € J}, and the non-preferred sample as
st={yl|iel}u {zé | 7 € J}. Consider the case of Figure (a) as an example, a preferred
sample is in the form of s* = {y}", y¥, v¥, 21", 2%, 2% }. Putting everything together, each preference
data pair is composed of (x, s, s'). This construction process is tightly coupled with the structure
of the underlying system. Different compound system architectures may involve different sets of
intermediate variables, and thus require generating distinct preference datasets

Loss Function Design. Given the dataset D composed of preference pairs (z, 5%, s') and a com-
pound Al system formulated as a DAG, we can apply the decomposition of (3)) to the DPO loss (2):

4 _ po(s”|x) po(s'|z)
LDlrect(e) - _E(x,s“’,sl)~D I:l()ga (6 IOg m - 610g pe(slz)>} ’ (4)

where  denotes the collection of reference models, o'(-) stands for the sigmoid function. We can then
find the optimal 6 by simply optimizing the loss function (@), resulting in an end-to-end optimization.

2.3 SysDPO-Sampling

SysDPO-Direct requires system-specific datasets with observations of the intermediate outputs,
whereas most existing preference datasets are composed of only inputs and ranked outputs. One
redress is to reversely sample the intermediate outputs given input and final output to construct a
semi-synthetic dataset. However, such a practice is costly and the samples might be of low quality.
To this end, we introduce a variation of SysDPO, termed SysDPO-Sampling. The key difference
between SysDPO-Sampling and SysDPO-Direct lies in how the probability py(z|z) is decomposed.

The key idea of SysDPO-Sampling is as follows. Recall that s := {y;, z;}ic1 je is the set of all the
variables generated by the system. Denote the collection of intermediate samples as y := {y; }ier,
where y € ). Thus, s = {z;};cs Uy. Assuming a discrete sample space (e.g., discrete tokens), by
the law of total probability:

po{zities l2) =D po(s|x) = T po.(w:l Pa(ys)) - pe, (2] Palz;)). Q)

yey yeyiel,jeJ

However, the summation of the right-hand side of (3)) is generally intractable, as it requires summing
over all possible sentences y. While one method is to use Monte Carlo sampling to approximate the
expectation, it is inefficient if the sample space is large. To efficiently approximate the summation,
we focus only on a small number of highly probable, distinct samples y5*, given that the less probable
samples contribute little to the summation. Therefore, having the highly probable distinct samples



{y£}i,a» we make the following approximation.

pe{zitsle) =Y I »o. (w1 Palyf)) - po, (2] Pa(z;)). ©)
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To generate the samples indexed by «, we employ Diverse Beam Search (DBS): an extension of
standard beam search that enforces diversity across the beam groups by adding a penalty to candidates
similar to those already selected within group partitions [34]]. During training, these intermediate
samples {y{* }; o are regenerated after each model update step, while SysDPO-Direct is always trained
on a fixed dataset. Plug this into the original DPO loss (2 and we arrive at the loss function Lsampling
as shown in Appendix [B] Note that, in this case, end-to-end gradient-based optimization is feasible.

3 A Theoretical Analysis on Compound Al System Alignment

We ask a fundamental question: Does SysDPO lead to the correct alignment? To answer this question,
we first define the concept of S-perfect alignment and show that, in the population setting, both
regular DPO and RLHF lead to perfect alignment. Then, we prove that SysDPO similarly achieves
[-perfect alignment on compound Al systems.

3.1 Perfect Alignment under Bradley-Terry Preference Model

Our theoretical analysis begins with defining the perfect alignment with respect to the preference
oracle (I)):

Definition 1 (8-Perfect Alignment). Define a probabilistic generative model 0* : X — Z associated
with a generative distribution pg-. We say 0* is [$-perfectly aligned with parameter 5 > 0 to the
preference oracle pref(-) if V2", 2l € Z, x € X:

pref(z¥ = 2! | x) _ (pe*(z“’ |x))5

pref(z! = 2% | x) po+ (24 | x)
An equivalent formulation is,

po- (2* | 2)°
po+ (2 | )P + pe- (2! | 2)”

pref(z¥ = 2! | z) =

This definition has several interpretations. First, for all 8 > 0, the above definition satisfies the order
consistency of the generative model §* and the preference oracle pref, i.e., pref(z* = 2! | z) >
pref(z! = 2% | x) if and only if pg« (2% | ) > py= (2! | z). Then, with varying 3, we can see that it
acts as a temperature parameter controlling how peaked the aligned policy must be to match a given
preference signal. Writing

-1
pref(z¥ = 2! | x) = (1 + (%)B) ,

one sees that smaller 5 forces larger likelihood ratios to represent the same preference score from the
oracle (thus a more deterministic policy), while larger 8 makes the required ratios closer to 1 (thus a
near-uniform policy). When the policy is viewed as Boltzmann rational py- (z | ) x exp(r*(z, z)/8)
with Bradley-Terry preferences pref(z* > 2! | z) = exp(r*(z,2z"))/(exp(r*(z,2z")) +
exp(r*(z, 2'))) (e.g., see [12]), then Definition [1{ holds exactly; in this view, 3 is an inverse ra-
tionality parameter. Alternatively, if we view the generative model pg- as a choice model, then it
recovers Luce’s choice axiom (independence from irrelevant alternatives) [17] when g = 1.

Moreover, the notion of perfect alignment has been implicitly used in prior work [26]. In the
following, we show that given the preference oracle, we can find a -perfectly aligned model by
optimizing the DPO objective (2), or equivalently the following RLHF objective:

max Erw'Dm,zwpg(zM) [T*(Z7 x)} - ﬂDKL(pG || pé)ﬂ (7)

Do

where D, is a distribution over X'; f is a reference model; and £3 is the strength of KL regularization.



Proposition 1. Suppose an optimal model 0* € © achieves the maximum of the RLHF objective
or the minimum of the DPO loss function (2) where data preference distribution D is given by the
preference oracle pref(-). Then, it follows that 0* is B-perfectly aligned with the preference oracle ()
when the output of the reference model 0 follows a uniform distribution given any input x € X.

The implication of the proposition is as follows. In ideal case where we have infinite ground truth
preference data, there is complete information about perfect alignment. In such cases, the alignment
objective should not rely on a reference model, which is why RLHF and DPO achieve perfect
alignment when the reference model is simply a uniform distribution. However, the reference model
has proven to be important in practice, where we only have insufficient preference data.

In the following, we investigate the proposed heuristics, SysDPO-Direct and SysDPO-Sampling,
which also achieve perfect alignment.

3.2 SysDPO Achieves Perfect Alignment

SysDPO-Direct works by simply replacing the final output z := {z;};c s in the original DPO loss
function by the set of all generated variables s := {y;};c; U2z € S. Then, the corresponding
preference oracle for two sets is inherited from the original preference oracle as follows.

w l

prefoo(s¥ = s' | ) := pref(z = 2 | z).

In the following theorem, we show that the generative system 6, aligned by SysDPO-Direct is
indeed [3-perfect given the following technical assumption. Intuitively, the assumption demands

diversity in the training distribution D used in SysDPO.
Assumption 1. Any s € YV X Z has a positive probability to be sampled from D.

Theorem 1. Under Assumption suppose an optimal model 07, € © achieves the minimum of the

SysDPO loss function @) where the preference for data is given by the preference oracle prefgys.
Then, 03, is p-perfectly aligned with the preference oracle pref(-) when the reference model follows
a uniform distribution.

Assumption [T highlights a fundamental challenge of compound Al system alignment. In compound
Al systems, intermediate outputs are typically hidden from the user, so preferences can only be given
over the final outputs. Since the evaluation of a component in a compound system must depend on
other components, there is no preference oracle to compare two intermediate outputs directly. Thus,
SysDPO-Direct may benefit from a training dataset of diverse intermediate outputs.

In cases where the preference dataset lacks intermediate results, we propose an alternative variant
of SysDPO, i.e., SysDPO-Sampling. It aims to directly optimize an approximated standard DPO
loss function with respect to py(z|z) through sampling. Therefore, at the population level where an
infinite number of samples can be drawn, Proposition [I|implies optimality of SysDPO-Sampling. We
further discuss the finite-sample setting through the lens of coresets in Appendix [E] suggesting that
SysDPO-Sampling may also benefit from a diverse sampling scheme.

4 Applications

In this section, we discuss two examples of compound Al systems corresponding to Figure[2] We
demonstrate how SysDPO-Direct and SySDPO-Sampling can be applied to these examples.

4.1 An LLM and a Diffusion Model

We apply SysDPO-Direct to the example in Figure |1} which involves an LLM % and a diffusion
model ¢. Given an input prompt x provided to the system, the LLM generates an intermediate output
y, which can be parsed into multiple captions y = (y1,¥2,---,Yn). Bachy;, i = 1,... n serves as
a prompt for the diffusion model. The diffusion model is then queried n times, generating images
21,22, ..., %n as the final outputs. Similarly to Figure[T] the generated images are expected to follow
a logical relationship. This demands that both the language model and the diffusion model not only
recognize their roles in the overall task but also execute them accurately and coordinate effectively to
ensure coherent system behavior. As such, this setting serves as a strong testbed for evaluating our
proposed method.



This multi-step process is modeled as a DAG whose special case (n = 3) is shown in Figure (a),
where we can decompose the generation process as p(s|x) = py (y|z) - [1;—, pe(2i|y:). We start by
applying the probability decomposition to the SysDPO-Direct loss function {@). However, although
the LLM’s generation likelihood py,(y|z) is accessible, the diffusion model’s py(z|y) is not. We
address this challenge by extending [35]] to accommodate our setting and obtain an upper bound of
the SysDPO loss function. We then optimize this upper bound to align the system. Detailed derivation
is elaborated in the Appendix [F}

4.2 Compound LLM Collaboration System

We also explore systems formed purely by the collaboration of language models. In such systems,
multiple LLMs cooperate to complete a complex task. Specifically, we study a two-stage question-
answering system, where a user poses a question as input x, the first-stage model v); generates an
intermediate answer ¥, and the second-stage model /5 refines it to produce the final output 2. This
setup serves as a simple yet representative compound Al system to demonstrate how multiple LLMs
can collaborate toward a shared objective. The overall generation process of the system can be
formalized as:

p(s|x) =py, (Y| 2) py,(2 | 2,9),

where s = {y, z} represents the intermediate and final outputs. Since both ¢, and v are language
models with tractable likelihoods, we can apply either SysDPO-Sampling or SysDPO-Direct to align
the system. SysDPO-Direct requires a preference dataset that includes both the intermediate prompt
(i.e., the output of 1) and the final output, which can be constructed using a ground-truth reward
model. In the absence of this constructed preference dataset, SysDPO-Sampling applies by only
requiring a ready-made preference dataset that contains only input and final response pairs.

S Experiments
5.1 Compound Al System of a LLLM and a Diffusion Model

This section evaluates the effectiveness of SysDPO-Direct for aligning compound Al systems.
Motivated by the example in Figure[I] we synthesize a preference dataset and experiment on the joint
alignment of an LLM and a diffusion model. Examples of synthetic data are shown in the Appendix[I|
Our evaluation focuses on the coherence of the generated image sequences and their alignment with
coherent system-level preferences.

Dataset Construction. We construct a custom dataset in three steps. First, we use the regressor
from Zhuang et al. [43]] to assign scores in [0, 1] to images based on 40 scene-related attributes (e.g.,
brightness, coldness, and boring). These attributes cover a wide range of visual concepts and provide
general, high-level labels that reflect diverse aspects of scene semantics. Second, for each attribute,
GPT-4 is used to generate 250 user prompts instructing the system to produce image sequences with
progressive changes. To increase prompt diversity, we adopt four prompt styles from Qin et al. [24].
Details are provided in Appendix [H| Third, for each prompt, four sequences are generated and ranked
using the Preference Score in Eq. (§). Six comparison pairs are constructed, with the higher scoring
sequence in each pair labeled as preferred, resulting in 6,000 total comparisons.

Preference Score. To compare the generated image sequences, we define a preference score q that
evaluates both the order consistency and the uniformity of the distribution. This metric is based on
the attribute scores assigned to the images by the regressor from Zhang et al. [43]]. Given a sequence
of three images with attribute scores a1, as, and as, the Preference Score ¢ is computed as:

q:—(al—a3+|a2—(a1+a3)/2|). )

Sequences with higher ¢ values are preferred as they reflect correct ordering and smoother distribu-
tions. In contrast, reversed or uneven sequences result in lower g. Further details, including examples
illustrating the calculation of g, are provided in Appendix

Models. For the construction and evaluation of the dataset, we use an instruction-tuned Llama-3-8B
model [2]. To generate image sequences for constructing chosen and rejected samples in the dataset,
we employ Stable Diffusion XL (SDXL) [23]]. For training purposes, we use Stable Diffusion 1.5 [28]]
which provides a balance between computational efficiency and generation quality.



Evaluation. The performance of the system is evaluated using two metrics. The first metric is
the Average Preference Score across all generated sequences from the test dataset. The second
evaluation metric is the Order Consistency Ratio, measuring the proportion of generated sequences
in the correct order, i.e., where a1 < as < as.

Baselines. To evaluate the effectiveness of the proposed SysDPO-Direct joint alignment approach,
we compare it against four baseline methods. (1) System Before Alignment: system prior to applying
SysDPO-Direct. Notably, Llama-3-8B is instruction-tuned, and it serves as a baseline for separately
aligned systems. (2) Best-of-N Sampling: from four generated sequences per prompt, the one with the
highest Preference Score is selected. (3) Only Train Language Model: the diffusion model is frozen,
and only the language model is aligned using the dataset and the loss function of SysDPO-Direct. (4)
Only Train Diffusion Model: the language model is frozen, and only the diffusion model is aligned.
All baselines use the same dataset and loss.

Results We evaluate the system using the Preference Score and Order Consistency Ratio. Examples
of system outputs before and after training can be found in the Appendix

The results in Table [I|demonstrate the importance of alignment in compound Al systems and the
effectiveness of the proposed SysDPO-Direct alignment approach. The “System Before Alignment”
baseline achieves poor performance, with a low Preference Score and a low Order Consistency Ratio
(32%), indicating that conventionally instruction-tuned components are insufficient to ensure coherent
collaboration required in compound systems. The “Only Train Language Model” baseline achieves
significantly better results, with a Preference Score of 0.23 and a ratio of 65%. This highlights that
the language model plays a critical role in guiding the overall behavior of the system, as it generates
captions that directly influence the outputs of the diffusion model. In contrast, the performance
gain from training only the diffusion model is inherently constrained by the captions produced by
the fixed language model, thus its performance gain is notably lower than that of the Only Train
Language Model baseline. SysDPO-Direct achieves the best Preference Score (0.25) and the highest
Order Consistency Ratio (73%). These results validate the effectiveness of our SysDPO algorithm,
demonstrating its ability to optimize both components together for superior performance in generating
coherent and progressive image sequences. The training dynamics of all three methods are provided
in Appendix [J]

Method Pref. Score  OC Ratio WR- WR-

SysI]))PO-Dlgect 0.25 73% Method Chosen  Prompted

( ropose ) SysDPO-Sampling 198 66.4
B ystem -0.20 32% Prompted System 12.8 /

efore Alignment

Best-of-Sampling 0.16 67% Separate-DPO 16.6 57.3

Only Train SysDPO-q 16.0 60.4
Language Model 0.23 65% SysDPO-1, 18.1 63.9
Dif?l?sli}(]) gﬁg del -0.03 38% Table 2: Overall Performance Comparison. WR-

chosen denotes the win rate (%) against human-
Table 1: Performance comparison of the pro- preferred responses in the dataset, and WR-
posed method and baselines. Higher Preference prompted measures the win rate against the
Scores (Pref. Score) and higher Order Consis- Prompted System baseline.

tency Ratios (OC Ratio) are better.

5.2 Compound LLM Collaboration System

This section aims to evaluate the performance of our joint alignment methods, SysDPO, in the
two-stage LLM collaboration system described in Section 4.2} In our implementation, we employ
two instances of Qwenl.5-1.8B-Chat [33] to serve as 1, and 15, respectively. The two models
are trained without sharing parameters. This two-LLM configuration represents a typical and
illustrative setting for analyzing system-level alignment dynamics, offering a clear view of inter-
model coordination and preference optimization.

We further extend our framework to a three-LLM system, demonstrating its scalability to larger
compound architectures. The setup and preliminary observations of this extension are presented in
Appendix D] In the following sections, we focus on the two-LLM system as the main case study for
detailed analysis and discussion.



Dataset. We employ the preference dataset Intel/orca-dpo-pairs [32] for DPO training, con-
sisting of 129000 instructions paired with corresponding preference examples (each instruction has a
pair of chosen/rejected responses). We sample 193 instruction data points as the evaluation set. The
remaining examples are used for the training process. We directly use the dataset without generating
intermediate outputs. Since no ground truth reward model is available to give preference scores to
intermediate samples, we focus on evaluating SysDPO-Sampling.

Evaluation. We adopt the evaluator weighted-alpaca-eval-gpt4-turbo [15]], an automatic
annotator based on gpt-4-turbo, to assess model performance through pairwise comparisons.
Given a pair of outputs—one from the evaluated system and one from a reference—the annotator
assigns preference between the pair. The Win Rate is defined as the proportion of cases where the
model output is judged superior to the reference output. To better understand the performance of
the model from different perspectives, we report two types of Win Rate. The first, WR-chosen,
uses the chosen response from the preference dataset as the reference, reflecting alignment with
human-labeled preferences. The second, WR-Prompted uses a prompting-based baseline system as
the reference, which will be introduced in detail later.

Baselines. We compare SysDPO-Sampling with several baseline approaches to evaluate its effec-
tiveness in aligning compound Al systems. As a simple baseline, we explore the prompting-based
composition of the two-stage system without any alignment or additional training. Specifically, we
directly connect two models and give task-specific prompts to guide their collaboration. This setup is
referred to as the Prompted System. The second baseline, Separate-DPO, follows a similar prompting
scheme to coordinate the two models but introduces alignment by training each stage individually
using the original DPO objective on the Intel/orca-dpo-pairs dataset. After alignment, the two
stages are composed into a compound system. Each stage is optimized independently with its own
preference signals, without joint training or system-level feedback. In contrast, SysDPO-Sampling
jointly aligns the entire two-stage system using holistic preference signals. Rather than optimiz-
ing each component in isolation, it directly optimizes the composed system based on end-to-end
preferences, allowing both stages to adapt cooperatively to user-aligned objectives.

Training Details For the results reported below, we sampled two intermediate outputs per step
during training. An analysis of the effect of sample method is provided in Section [5.2.3] During
both training and evaluation, we set the maximum token number at 256 in the sampling process. We
trained the models using LoRA with 8 = 0.5, a learning rate of 1 x 10~7, and an accumulated batch
size of 128. Aligning the entire system took approximately 30 hours on a single NVIDIA H200 GPU.

5.2.1 Is joint alignment necessary?

Results in Table[2]show that the non-optimized compound Al system (Prompted System) performs the
worst, underscoring the limitations of relying solely on prompt engineering for effective component
coordination. In contrast, SysDPO-Sampling achieves substantial gains, improving the win rate
against chosen responses from 12.8% to 19.8%—a 55% relative improvement. Its outputs are also
preferred 66.4% of the time over those of the prompted system.

The Separate-DPO baseline represents a conventional approach in which each component is aligned
individually, without considering preferences over the behavior of the composed system. Although
this method yields better performance than unaligned prompting, it is still outperformed by our joint
alignment method. Notably, in this setting, the collaboration between the two models is relatively
simple, and their roles are similar. Yet, even under these favorable conditions for Separate-DPO,
SysDPO-Sampling still achieves superior results. In more general scenarios, where the interaction
between components is more complex, their roles are more distinct, or there are no clean training
data available per component, the performance of Separate-DPO is likely to further degrade. These
results underscore the value of optimizing compound systems holistically rather than in isolation.

5.2.2 How much does each stage contribute to the final performance?

To better understand how system-level alignment affects each component, we design two variants
of SysDPO-Sampling where only one stage is updated during training, while the other is kept
frozen. Importantly, the training is still guided by system-level preference signals, and the overall
loss is computed using SysDPO-Sampling. In the SysDPO-v; setting, we train ¢); while freezing
19; conversely, in SysDPO-v5, we train 1o and freeze ;. As shown in Table [2] SysDPO-



achieves 16.0% WR-Chosen and 60.4% WR-Prompted, while SysDPO-1, achieves 18.1% and
63.9%, respectively. These results indicate that both components benefit from system-level alignment,
but ¥, plays a more critical role in determining the final quality of the output. This is likely because
1o directly generates the final response and has access to both the input « and the intermediate output
y. Crucially, both variants outperform the Prompted System, indicating that during joint training,
system-level preferences are effectively distributed across components, and each model is able to
learn and adapt accordingly. However, neither of them matches the full SysDPO-Sampling system,
emphasizing that jointly optimizing both components leads to better performance and more effective
collaboration.

We observe that SysDPO-Sampling converges more slowly than its stage-wise variants but achieves
the highest performance; detailed training dynamics are provided in Appendix [K]

5.2.3 Effect of Finite Sample Approximation on Performance

In Section[2.3] we approximate the loss function by sampling only a small number of highly probable
and distinct candidates y3*. In this section, we discuss how this sample set is generated and analyze
how the sampling strategy and sample size affect training performance.

Our main experiments are based on the Diverse Beam Search (DBS) method [34], which generates
k diverse candidates per input. We compare DBS with standard Monte Carlo (MC) sampling and
summarize the results in Table[3]

During training, we sample k intermediate candidates

y17 o ,yk ~ Dy ( ‘ x) and use them to compute the Method Sample Size  WR-Prompted (%)

loss. At evaluation time, we set the temperature to ~ DBS 2 68.5
0 and deterministically selecting the most probable ~ DBS 4 68.2
outputs‘ MC 2 66.8

' . ' MC 3 67.0
For DBS, we obtain k candidates using £ beam  MC 4 66.7
groups and a diversity penalty of 20, reporting results ~ MC 5 66.0

for £ = 2,4. For MC sampling, we independently
draw k samples with temperature 1.0 under different Table 3: Comparison between Diverse Beam
random seeds, evaluating k € {2,3,4,5}. Search (DBS) and Monte Carlo (MC) sam-

li der different le sizes k.
Table [3| summarizes the win rate (WR-Prompted) for PHNE under cItierent sample s1zes

each configuration. DBS consistently outperforms

MC with the same number of sampled candidates.

Both methods show stable performance as k varies, suggesting that as few as two samples may suffice
without significantly increasing computational costs. Compared with DBS, MC often produces near-
duplicate candidates, as illustrated by qualitative examples in Appendix [L] The training dynamics are
shown in Appendix [M]

6 Conclusion and Discussion

We propose a principled framework for aligning compound Al systems by modeling them as DAGs
and optimizing for system-level preferences. Our two methods, SysDPO-Direct and SysDPO-
Sampling, address settings with and without intermediate output, showing both theoretical and
empirical gains across two compound tasks. While demonstrated on specific systems, our approach
has broader potential in domains like healthcare and education, where complex multi-component Al
workflows require careful alignment to ensure safety and usability.

Despite these advances, several open challenges remain. For instance, extending SysDPO to systems
with more components and complex interactions is a natural next step. Another key direction
is improving training efficiency. SysDPO-Direct requires access to intermediate generations and
may become expensive when components produce high-dimensional or latent outputs (e.g., in
vision or multimodal systems). Exploring approximations or sample-efficient estimators would be
beneficial. For SysDPO-Sampling, better sampling strategies could improve gradient estimation when
intermediate states are unobserved. Moreover, the broader design space of compound Al systems,
such as dynamic routing, feedback loops, or interactive collaboration, raises new alignment questions
that extend beyond static DAGs. Future work should explore how to generalize SysDPO to settings
with non-static structures and latent coordination mechanisms.
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Appendix

A Complete Prompts in Figure

The complete prompts generated by GPT-4 for DALL-E to generate the six images in Figure[I] are as
follows.

Left picture

(a) A realistic image of a calm cat sitting comfortably on a soft cushion. The cat has a serene
expression, with its eyes half-closed in contentment. It has fluffy fur, predominantly grey with
white patches, and its tail is neatly curled around its body. The background is a cozy room with a
hint of sunlight filtering through a window, casting a warm glow on the cat.

(b) A realistic image of a slightly irritated cat sitting on a wooden floor. The cat has a
slight frown and its ears are tilted back slightly, indicating mild annoyance. It has short fur,
a mix of black and white, and is staring directly at the viewer with wide eyes. The back-
ground is simple, with a few scattered cat toys and a small plant, adding to the homey atmosphere.

(c) A realistic image of a very angry cat with its fur bristled and ears flattened against its head.
The cat’s eyes are narrowed and glowing, mouth slightly open in a hiss. It has thick, long fur
that is mostly black with some orange stripes. The background shows a stormy sky through a
window, enhancing the dramatic mood. The cat is on a dark rug, which contrasts with its bright,
intense eyes.

Right picture

(a) A cartoon-style image of a cat with a slightly annoyed expression. The cat has fluffy white
fur, bright green eyes, and its ears are slightly pulled back. It is sitting comfortably on a soft blue
cushion, with its tail flicking lightly to the side. The background is a simple, soft yellow to keep
the focus on the cat’s expression.

(b) A cartoon-style image of a cat with an angry expression. The cat has fluffy grey fur, narrowed
yellow eyes, and its ears are flat against its head. It is standing with an arched back on a wooden
floor, with its fur bristling and its claws slightly out. The background is a dimly lit room, adding
to the menacing atmosphere around the cat.

(c) A cartoon-style image of a cat with a furious expression. The cat has short black fur, glaring
red eyes, and its ears are pinned back. It is hissing aggressively, showing sharp teeth, with a
puffed tail. The cat stands on a stormy night background, with lightning in the sky, enhancing
the dramatic and intense mood.
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B Details of the Loss Function of SysDPO-Sampling L,,p1ing

To approximate the system-level preference probabilities in Equation (2), we apply the sampling-based
approximation in Equation (6)), which rewrites the system likelihood as a product over component-
level probabilities.

Plugging this into the original DPO loss, we obtain the following training objective:
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This formulation allows us to perform end-to-end gradient-based optimization over all model compo-
nents {6, } and {6} in a compound Al system. To generate the samples indexed by «, we employ
Diverse Beam Search [34], which still selects the highest-probability sample after applying the
diversity penalty. This ensures that the sampled trajectories are both diverse and high-probability,
which aligns well with our approximation.

C Theoretical Analysis

Proof of Proposition E] Given the reward function r*, it follows from prior work [26}, 22} 21} [14] that
the solution 7y~ to (7)) satisfies

r*(z,z) = Blog m + Blog G(x), (10)

with G(z) = [, ps(z | ) exp(8~17*(z,2))dz being the partition function. Then, we plug (T0)
into (TJ), with some algebraic manipulation, we arrive at

(pmz“’m)ﬁ
Pe(z7z)

. B B
) po= (21]2)
(pgwm) ) + ( D) )

When the reference model p is a uniform distribution, we conclude

pref(z¥ = 2' | z) =

po- (2" | )”
po- (2% | 2)7 + po- (2! | &)

showing that 6* is perfectly aligned (Definition [T).

pref(z¥ = 2! | z) =

Next, let us examine what is a solution to the DPO loss function (2). Given that the reference model
is a uniform distribution, the DPO loss is simplified to

L(0) = ~E(y 2w 2ty [log o (Blog pe(2*|z) — Blog pg(='[2))]
pe(Z“’lx))}
=-E T,2W 2t )~ logo lo
o e (e
po(="|z)” }
po(2*]x)? +po(2'x)” |

= _E(ac,zw,zl)wD log |: (1)

Let us review the definition of this preference data distribution D. Given any data triplet (z, z, 2) €
X x Z x Z sampled from a pre-preference data generation process D', the preference oracle would
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label (2% = z,2! = 2') with probability pref(z = 2’ | z), and label (2% = 2',z! = 2) with

probability 1 — pref(z > 2’ | x). Therefore, denoting

po(z]x)°
po(2|2)P + po(2'[x)"”

prefy(z = 2’ | x) :==

the DPO loss above can be written as
(1) = —E(z,»,.y~pr [pref(z = 2" | z)log prefy(z > 2 | )
+ (1 — pref(z = 2’ | z))logpref, (2’ = 2 | z)]
= —E(s,22)~p[pref(z = 2’ | 2) log prefy(z > 2’ | z)
+ (1 —pref(z = 2" | 2))log (1 — prefy(z = 2’ | 2))].

Noticing that the above is precisely a cross entropy term, we conclude that the minimum is achieved
when 0* satisfies

po- (2]x)"
po-(2[x)? + po+ (2’| )"

pref(z = 2’ | x) = prefy. (2 = 2’ | z) =

Thus, the solution #* to the DPO loss function agrees with S-perfect alignment.
O

Proof of Theorem[I} SysDPO-Direct works by simply replacing the final output z in the original
DPO loss function by the set of all generated variables s := {y;};c; U {z}. By definition, the
corresponding preference oracle for two sets is inherited from the original preference oracle as
follows.

prefgys(s® > st | x) := pref(z” > 2 | ), (12)

where z% € s* and 2! € st

Thus, Propositionimplies that if 63, minimizes the SysDPO loss function (@) with uniform prior, it
satisfies

B
prefays(s¥ = s' | ) _ (P&;;g(sw | x))

prefoys (st = sv | x) oz, (s' | x)

sys

Applying (12) and rearranging the above equality, we have

pref(z¥ = 2! | x) 1/8 [ prefgys (s - st x) 1/8 B pg;y&(s“’ | )
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A key observation from the above equations is: the LHS is independent from any y;. Thus, there
should be some freedom in what y; we include on the RHS. Concretely, Assumption [I] states that,
for any intermediate samples V{y; };c; € Y and final output z € Z, we know ({y; }ier, #) appear
with positive probability in the SysDPO loss. Recall minimizing the SysDPO loss require (13) holds
for all pairs (s, s') sampled from D. Thus, the above equation must hold for V{y;}icr € Y :
({H{wiYier, 2%}, {{yi}ier, #'}). Thus, it implies that the RHS is also independent from any ;.

13)

This result can be intuitively interpreted in the following way. Consider the assumptions that the
training data D is good enough and the optimal model 65, is capable enough to achieve the minimum
of the SysDPO loss. Then, the optimal model learns to extract sufficient information from all those
possible intermediate outputs y; such that it achieves perfect alignment no matter what y; is sampled
from the data distribution.

Given this observation, we can simply replace {y%};cr and {y!};cr in (I3) by any {y; }ic; € Y
without changing the value of (T3). Rearranging the equality and sum {y; };c over its sample space
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Y on both sides:
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Raising the above terms to the power of /3, we recover the definition of perfect alignment. O

D Extend to a three-LLM system

To further examine the scalability of our framework, we extend the two-LLM configuration described
in Section to a three-LLM system. In this setup, first-stage LLMs 1 and 5 independently
generate responses to the same input query, and the second stage LLM 15 serves as a synthesizer
that aggregates and refines these intermediate outputs into a final answer. This architecture intro-
duces an additional component of coordination and preference alignment across multiple generation
components, allowing us to test the framework’s ability to align compound systems beyond pairwise
interactions.

We train this system using the same SysDPO procedure employed in the main experiments, without
modifying any hyper-parameters. Evaluation is performed with the WR-Prompted metric, directly
comparing the post-alignment system with its pre-alignment counterpart. The aligned three-LLM
system achieves a 58 % win rate against the unaligned version, suggesting that the proposed method
effectively generalizes to larger multi-component architectures.

While large-scale experiments involving many components are currently constrained by our computa-
tional budget, these preliminary results provide encouraging evidence that our framework offers a
solid foundation for future scaling toward more complex compound Al systems.

E Discussion on Finite-sample analysis for SysDPO-Sampling

In this section, we discuss how a diverse sampling scheme may benefit SysDPO-Sampling through a
two-generative-model collaboration system (Figure [2] (b)).

As shown in Section [2.3] SysDPO-Sampling aims to approximate the intractable generation prob-
ability po(z | ) = >, cypo.(2 | y,2)pe, (y | x) with finite samples Y := {y*}, such that
approximately po(z | z) o< 3_,, po, (2 | y*, x)pa, (y* | z).

This can be viewed as a coreset selection problem. I.e., the goal is to find a diverse subset ﬁ of
representative points to approximate the full set ). Denoting py := ﬁ > yey Po (- |y, 2)po, (v | )
(similarly for 155 ), we aim to minimize the approximation error € := |y — u)7|.

Therefore, a strategically selected subset often outperform random Monte-Carlo (MC) sampled subset,
where the strategy typically involves selecting representative and diverse points [5, 41} 29]. Diverse
Beam Search (DBS) can be seen as a greedy coreset-selection algorithm where, at every decoding

step, it keeps the subset that jointly maximizes a combined objective of generation likelihood and
diversity.

The core of a finite-sample analysis is the rate of approximation error € w.r.t. the budget k := |JAJ|
Although it is unclear what the exact error € of DBS is, coreset algorithms generally achieve a
worst-case guarantee of € = O(ﬁ) [S)]. For example, consider finite sample space Z, and denote

the sampled probability mass function as v, := pg,(- | y,x)pe, (y | ) € RIZl. Assume all v, is
£5-bounded by D. The approximate carathéodory theory [18] states that we can always find a subset
Y C Y of size k such that the approximation error € = (9(%). To make the bound tighter, we need
fine-grained analysis that exploits the concrete structure of the distribution, which is an exciting but
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non-trivial future work. Nonetheless, in practice, coreset can be significantly better as shown in prior
works [5} 141, [29]] as well as our experiments.

F Deriving the Loss function of LLLM + Diffusion System

In this section of the appendix, we provide a detailed explanation of the DDPM diffusion model, and
the derivation of the loss function used for this system.

F.1 Denoising Diffusion Probabilistic Model (DDPM)

DDPM [10] is a widely used class of diffusion model. Below is a highlight of the key ingredient we
need for DPO for DDPM [35]], with our framework.

Given a real image zg, consider a diffusion process, which we call the forward process, gradually
making the original image into Gaussian noise zr after T’ steps, i.e.,

Z()—>Zl—>22—>"'—>ZTNN(O7I).

The goal of the diffusion model ¢ is to reverse this process that recovers an image from noise. The
forward process and the reverse process are denoted respectively as

a(zorly),  pelzor|y),
where y is the context, i.e., the prompt to the diffusion model.

Note that both the forward and backward processes are Markovian, and in particular we have the nice
property that the forward process

T
q(zo.rly) = q(20ly) H q(ze|ze-1), where each ¢(z¢|z;—1) is a Gaussian.
t=1
Similarly, the reverse process
T
pe(z0.7|y) = p(27) Hp¢(zt_1 |2, v), where each py(2:—1]2:,y) is a Gaussian. (14)
t=1

In this formulation, the ideal goal for the diffusion model is that ¢(zo.7|y) = ps(z0.7|y). However,
this is not easy to optimize directly. With some analysis, the DDPM paper [[10] proposes to minimize
for

Drr(q(zi—1|2t, 20, y) |Pg (2e—1|20,y))  for ¢t ~U([T]), 20 ~ q(20]y),

where U(-) denotes the uniform distribution on a set, and [T] denotes the set of {1,2,...,T}. This is
done by learning a denoiser €, operating in the following way. For a real image zo ~ ¢(z20|y), we
sample noise € ~ N (0, I), and have

220, €) = Vauzo + V1 — aye, (15)

where @, is some parameter such that z; ~ ¢(z¢|20). Then, the denoiser predicts the noise e that is
added to the zg. Le.,

€s(2¢(20,€),t,y) aims to predict €.
The denoiser €4 is essentially a reparameterization of the mean of py(z,—1|2¢, ).

The key ingredient is that, as shown in [10],

Drr(q(ze-12t, 20, Y) Ipg (2e—1126,y)) = Eenro,n) |we |€ — €4 (2¢(20, 6)>t7y)|\2} +C,  (16)

where w; is a weight parameter and C' is a constant independent of model ¢.

Therefore, modeling €4 by a neural net, the DDPM model ¢ is trained to minimize the above objective
averaged over samples of y, 2o, €, .
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F.2 Dealing with the Diffusion Model in SysDPO
Recall in the main text we obtain the System DPO loss function as:

)

y x p w yw
L<w,¢)=—Eu,srw,sgND[loga(ﬁ <log w0 +Zl o8 it w:y ;)
i 2

po(#1y)
- B log —|— log —— =~ Ps(2ily:) .
Z Pg(zlyi)
The next step is to convert the likelihood of the diffusion model py to something optimizable.

Consider the generated image as the whole process, i.e.,

Z2i,0:T = {Zz',o, Zidy e 7Zi,T}v

where z; ¢ is the generated image, while the others are things in the middle. Following the same
notation, we denote

Zit—1,t = {Zi,t—la ZLt}

The preference is considered to be given to the every processes that generates z, as the end outcome.
Following [35]], we have

L(e’(b) = _E(z’sw’sl)ND lloga<6E2$1:T“’q(zﬁy1:7‘|Zi,0)’zi,1:Tw‘J(zi‘1:TZzi,o)
Po(Yulz) Pz 0.7 |Y10) poyil) Ps (2 o.rl1)
log ———~= + log—————— | — [ log + log ————+ .
(( Pe(Yuw|z) zl: Ps (2, 0.7 Vi) pa(yilz) Z: Ps(20.rly))

Recall the decomposition of the reverse process (T4), we have

?:1:T|2L,0)vz§,1:T“’q(z§,1:TIzii,o)

L(97 ¢) = _]E(x,s"“,sl)ND [loga (BEZ;J:LTNQ(Z

wt 1‘ 1t’ w) 1T o\ 21t 1|zft’ lz)
(<10g DY g e ><1 ) | 573 g 2L ) )))]

i t=1 ’LUt 1‘27,t?y11))

Note that 2321 = TEiy () for t being a random variable uniformly distributed on 1,2,...,T.
Simply denoting ;7)) as E¢, we have

L(0’¢) - 7E($’sw’sl)’\‘D |}Og0 (ﬂEzﬁl;TNq(Zﬁ)l;T|ZL,U)’ZE,1:TN‘1(Z£,1;T|zzi,0)

i t=1 th 1|Zzt’yl)

(yw|x (wt 1|sz7yw) ‘ th 1|Z£t7yli)
log P2Yw) | pNT R, Jog PO + TS E, log 2 Cbtmt Zit A
(( Pg(Yw|z) Z ' t—11%, ‘ Z ' th 1|Zzt7yl)

pi)('zw t—1 |Zz t Vi)

= —E@,sv,s)~D

log g <6E22‘,}1:TNQ(Z§‘,}1:T|Z;,o)7zﬁ,1:T’”‘J(zi,1;TZzi,o) Et

Po(Yuw|T) Do (2 1112 Uiy polyilx) PN
<<log(w|x)+TZlog —— | — | log +TZI _—

)}

yl|x th 1|Zzt’yl)

Pgly p pd)(Zw,t—l‘Zi,w Yiy)
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Next, we may further simplify the equation by switching E .

2 p~a(zfy, rlz, o)v i1 TNQ(Zl 1rlzto) and
E; in the above, i.e.,

L(05 ¢) = 7E(w,s“’,sl)~D [IOgU (BEt IE z) gz "1 T|zw 0) ! lszq(Z-lL,lzT‘Zz;,O)
7 w 7 l %
z 28yl (2 z2t .,
logpe( wl|T )+TZlo (;utfl‘ Z,)t 1/.) B lg —|—TZIO 1,t— 1|ztyl)
Pg(Yw!T) P¢?( wt—l‘zi,t’yqlu) f th 1|Zzt’yl)

log o <6Et

= E(z sv,st)~D t—1,t ~q(z ziu,tfl,t‘qu,ﬂ)’Zf,t—l,twq(zf,t—l,t‘Zz,o)

128 Y ) lt 1|th’yli)
log +T§jlo Zwg1Pin o) | log +T§ log ———bt=1 7ot 717
<< pe( wtfl‘zi,t’yw) Pe Z/l|33 . Zu 1lzltﬂyl)

The rationale for the above can be illustrated as follows. Consider a random variables Z1, ..., Zp,
and any function f : (Z;_1, Z;) — R for any ¢ € [T']. Then, denoting &’ as the indicator function,
i.e., 6! = 1onlyif s = ¢, and &' = 0 otherwise, we can derive

T
Ez,.r By f(Zt-1,2t) = Ez,.0 Eenriqiy) 252 f(Zs-1,Zy)
s=1
T

= Epvi(1) Z 60 Bz f(Zs1,Zs)

s=1
T

= Eiu(m) Z 68 Bz, ,z.f(Zs-1,Zs)
s=1

=By Ez,_1,2,f(Zi-1,Z4).

Next, noting that q(z;, ; 1 42,0) = Q(sz}tp;;,o) q(24 41120 05 2{%;) (similarly for q(zll,t—l,t|2lz,0))’
we can first sample z;"; and then z;, ,_, separately, i.e.,

L(97¢) = _]E(w,S“’,SZ)ND [IOgU (fBEt Ezl‘ftNQ(ZE‘ft\Zj’,,‘o)azrlg,t"“(l(z/f,t|le,o) ]Ezrz;,t—qu(zij,t—l|Zju,07zz‘,)t)7zz,t—1Nq(zli‘t—1‘Z;,O’Zﬁ,t)
pe(2 wtq‘zzwtayi;) lt 1|th’yli)
log -I-Tzlog P — lg +TZI —_— .
p pé wt—l‘zi,t’yw) P th 1|Zzt’yl)

Since — log o is convex, by Jensen’s inequality, we have

L(H’ QS) < _E(wxsw>sl)NDEt Eew Va2 120 0020 a2 412 o) [loga<BEZ;,t1NQ(zl,t1|qu,0vzzlft)vzli,t—1“‘q<zli,t—1Z;,ovzﬁ,t)

w 7 l 7
2 y Jw Z7, )
1ogp9 Yulo +T§ :10 “_“ =i ) | 1g +T21 M ,
Po(Yuw|T) Zyp t— 1‘Zzt’yw) P th 1|Zzt’yl)

(a7

Recall that we we have been done so far are all for making the diffusion model’s log probability
efficiently computable. To complete the derivation, it left to convert the log-probabilities to the
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denoising loss via (I6). Specifically, with C being the constant appears in (I6), we can see that

(qu -1 |Zzwt7 yqlu)

z;,t71NQ(Zziu,t71 qu,ov i, ) log (23 e 1|th7yw)
—E_, 1 p¢ wt 1|Zz t7yw) 1 pqg(ziu,tfﬂzﬁ)t?y'ﬁu)
T2 Y q(z! P, t— l‘zw()’zlt | ) 0 ( 7 | % y))
Zyp 11 Zw07 it A\ 2y, t—11%w,00 %it
= —Drcr(a(zy-11700 Z”t)llqu w112 Ui)) + Drcr(a(2l o1 120,00 20 195 (20001125 vi)
= —Dicr(q(zy,— 1|Zu)07 2o (i e—1128% Yu)) + C + Dicr(a(zy -1 120,00 240 105 (210111285 v2)) —

= 7E€NN(O,I) |:wf/ ||6 - €¢(zt(z1z1),07 6)7 t, yqu || :| + ]ESN./\/'(O,I) [wt ||6 - ei(zt(zi;,m 6), t, yz;)||2:| .

To simplify the notation, we denote

Le(ost, zfa )5: [wtuef%( Zits 7yw || }

where the ¢ corresponds to the noise from which 2}, is derived (see (I5)). Similarly, we use
Le(Pst, Z Y yl) to denote the denoising loss for the losing data.

Thus we can write (T7) as

L(0,9) < —E (4 o SZ)NDEt E..

N‘I(z flzw 0)s%t it ~q(zk f‘zl o)

[10g0<ﬂ<<10g +TZ 2 7,t?yw)+€ (¢7 ) zta%u)))

| 1o PeWil2) _ )
<1 gpg(yz\x) +T;( gﬁ( 2 zt?yl)—i_g ((bv ’ ztvyl))>>> |t‘|‘|

Thus, we obtain a tractable loss function for SysDPO-Direct.

Since only approximate log-probabilities of the diffusion model are available, SysDPO-Sampling is
not applicable in this setting.

G Preference Score Calculation

Definition. The Preference Score ¢ evaluates the quality of a sequence of three images with attribute
scores ay, az, and az € [0, 1], and is computed as:

Properties. The Preference Score reflects two aspects: (1) Order Consistency: A correctly ordered
sequence (a; < az < ag) yields a higher ¢ value, while a reversed sequence results in a lower ¢
value. (2) Distribution Evenness: A sequence where as is closer to the midpoint between a1 and ag
maximizes the score.

a1+a3
2

Q(ala3+ az —

Example Calculation. Consider four sequences of attribute scores:

* Sequence a = [1,0.5,0]
* Sequence b = [0, 1,0.9]
* Sequence ¢ = [0, 0.5, 1]

1+0
Qo = (1—0+’05—;)_—1

For a:
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For b:

04+0.9
qb:—<0—0.9+‘1— +2 ’):0.35

For c:
0+1
qb:—(0—1+‘0.5—;>:1

Since g, < gqp, sequence b is preferred between sequence a and b. Sequence c is preferred
between sequence b and c. This illustrates how the Preference Score penalizes uneven intermediate
distributions or incorrect orderings.

H Prompt Styles and Examples

To ensure diversity in user prompts, we utilize four distinct prompt styles inspired by [24]. Each style
varies in how it frames the objective for image generation. For illustration, all the examples below
are based on the attribute "bright," showcasing how this attribute can be expressed in different styles.

H.1 Prompt Styles

Prompt-Based Style. This style of prompt directly describes the objective to be generated. It
provides a clear and concise target for the system. For example:

A series of images showing a garden with increasing brightness, from dawn to midday.

Instruction-Based Style. This style uses instructional language to explicitly direct the system on
what to generate. The phrasing is structured as a command or directive. For example:

Generate a series of images of a morning scene, increasing the brightness and cheerfulness.

Inspiration-Based Style. This style reflects a user’s desire or inspiration for what they want to see.
The prompt is expressed as a personal request or imaginative wish. For example:

I want to see a series of images of a mountain as it gets progressively brighter.

Hypothesis-Based Style. This style frames the generation task as a hypothetical scenario, often
using conditional or reasoning-based language. The prompt includes both the condition and the
desired outcome. For example:

If the scene becomes brighter, the series of images will show progressively more illuminated
scenes.

I Examples of Input and Output of Experiments

This appendix presents illustrative examples of the system’s inputs and outputs. Each example
consists of a user prompt as input and a sequence of three images as the output. Examples include:
(1) Success cases before training, highlighting potential alignment issues in untrained systems.

(2) Failed cases before training, showcasing issues with order consistency or uneven attribute
progression.

(3) Improved cases after training, demonstrating the effectiveness of the proposed SysDPO
alignment method.
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I.1 Success Case Before Training

Input Prompt

I want to see a series of images of a beach, with varying intensity of sunlight from overcast to
bright sun.

Attribute

Sunny

Intermediate Captions

(a) Generate an image of a serene beach on a cloudy day, with the sun hidden behind thick grey
clouds, casting a soft, diffused light on the sand and sea. The waves are calm, and a few seagulls
are flying overhead.

(b) Create an image of the same beach, but with the sun breaking through the clouds, casting
a warm, golden light on the sand and sea. The waves are slightly choppy, and a few beach
umbrellas and sun loungers are scattered along the shore.

(c) Produce an image of the beach on a bright, sunny day, with the sun high in the sky and shining
brightly down on the sand and sea. The waves are crashing against the shore, and a group of
people are enjoying the day, with some playing beach volleyball and others swimming in the
ocean.

Final Output Images

Figure 3: An example of a success output before training.

I.2 Failed Case Before Training

Input Prompt

I want to see a series of images of a lake as the ice increases.

Attribute

Ice
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Intermediate Captions

(a) Generate an image of a serene lake on a warm summer day, with calm water and lush
greenery surrounding it, but with no signs of ice or frost.

(b) Create an image of the same lake, but with a thin layer of ice starting to form on the surface,
with ripples and imperfections, and the surrounding landscape showing subtle signs of autumnal
change, such as fallen leaves and fading greenery.

(c) Produce an image of the lake completely frozen, with a thick layer of ice covering its surface,

and the surrounding landscape transformed into a winter wonderland, with snow-covered trees,
frozen waterfalls, and a crisp, blue-gray sky.

Final Output Images

Figure 4: An example of a failure case before training. The first and second images lack clear
progression in ice intensity.

I.3 Improved Case After Training

Input Prompt

Create a series of images of a lake, increasing the thickness of ice.

Attribute

Ice

Intermediate Captions

(a) Generate a serene summer day with a calm and clear lake shoreline, featuring lush green
trees and blooming vegetation, with water as the main focus. The water should be smooth and
reflective, with a few boats or sailboats in the background. Ignore the water conditions.

(b) Continue with the same shoreline and surroundings, but with the onset of autumn, add gentle
winds and decreasing temperatures. The vegetation should be dormant, and while the water is
still calm, start to notice a slight decrease in clarity. There should be no ice yet, but hint at the
changing conditions with minimal foliage or bare trees along the shore.

(c) In the dead of winter, depict a frozen landscape with the same shoreline, but now with thick,
rugged ice covering the entire lake. The trees should be bare and shown as silhouettes against
the harsh winter sky. The goal is a highly realistic, textured ice surface with no signs of water,
and incorporate any relevant winter elements like snow-covered ground or bare branches.
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Final Output Images

Figure 5: An example of an improved case after training. The sequence shows smooth and
consistent progression in the ice intensity.
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J Training Dynamics of the Compound AI System with an LLM and a
Diffusion Model

We present the training dynamics of SysDPO-Direct to illustrate how the joint optimization of the
language model and the diffusion model improves system performance over time. Figure[6|shows the
evolution of the Order Consistency Ratio throughout training, which exhibits steady and consistent
improvements.

Order Consistency Ratio Over Steps

Order Consistency Ratio

o > 3

Order Consistency Ratio

=

0 25 50 75 100 125 150 175
Steps

Figure 6: Order Consistency Ratio of SysDPO-Direct over training steps in Application 1. The
consistent upward trend demonstrates the effectiveness of joint optimization in improving system-
level coherence.
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Figure 7: Training Dynamics of Stage-wise and
Joint Alignment. WR-Prompted scores over
training steps for SysDPO-Sampling, SysDPO-
11, and SysDPO-1,. Stage-wise alignment
strategies converge more quickly, but SysDPO-
Sampling ultimately achieves the highest perfor-
mance.

Figure 8: Comparison of Sampling Strategies
During Training. WR-Prompted scores over
training steps using two sampling strategies: di-
verse beam sampling with two candidates, and
log-likelihood-guided contrastive selection from
four candidates. Both strategies achieve com-
parable final performance, suggesting that sam-

pling two diverse candidates is sufficient.

K Training Dynamics of the Compound LLM Collaboration System

To better understand the learning behavior of different alignment strategies, we present the training
dynamics of the two-stage LLM collaboration system in Figure[7] The curves show the WR-Prompted
scores (%) evaluated periodically during training for SysDPO-Sampling and its two stage-wise
variants, SysDPO-v; and SysDPO-1)s.

We observe that SysDPO-1); reaches its peak performance first, around step 10, but quickly exhibits
noticeable fluctuations thereafter. This suggests that while 1; can rapidly adapt to system-level
supervision, its progress is constrained by the fixed, untrained )5, limiting overall stability and further
improvement.

SysDPO-v5 shows a more gradual increase in performance, reaching its peak around step 40 and
maintaining a more stable trajectory. This may be attributed to the role of 1) as the final decision
maker, which benefits from direct access to both the input = and the intermediate response y, and
thus can learn more steadily from the system-level feedback.
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In contrast, SysDPO-Sampling improves more slowly during the early training steps, reflecting the
higher complexity of jointly optimizing two interdependent models. However, it continues to improve
throughout training and eventually achieves the highest performance, reaching its peak at around step
55. This demonstrates that joint training, although more challenging, enables both components to
co-adapt and better coordinate under shared supervision, leading to superior final results.

After reaching their respective peaks, all three methods experience a slight decline in performance. A
possible explanation for this trend is provided by recent findings [25} 9} [277], which show that running
DPO for too long can lead to overoptimization, causing a decline in evaluation performance. They
further observe that smaller models tend to degrade more quickly, whereas larger models show more
stable behavior. Since our system is built upon 1.8B-parameter models, some degradation is observed
in later stages of training.

L. Diverse Examples of Intermediate Samples

To complement Table [3] we provide qualitative examples of intermediate responses produced by
different sampling strategies for the same inputs. Consistent with our quantitative results, Diverse
Beam Search (DBS) yields semantically distinct candidates that support more informative preference
learning, whereas Multinomial (MC) sampling often produces near-duplicates that dilute the learning
signal.

Case 1: Extractive QA with abstention option.

Prompt

Extract the answer to the following question from the movie plot. If the question isn’t answerable,
please output "Can’t answer".

Question: What does Johanna cut from Katniss’s arm?

Title: The Hunger Games: Catching Fire Movie

plot: After winning the 74th Hunger Games, Katniss Everdeen (Jennifer Lawrence) and Peeta
Mellark (Josh Hutcherson) return home to District 12. President Snow visits Katniss at her home.
The two make an agreement to not lie to one another, and Snow explains that her actions in the
Games have inspired rebellions across the districts. He orders her to use the upcoming victory
tour to convince him that her actions were out of genuine love for Peeta, not defiance against the
Capitol, otherwise Katniss’s loved ones will be killed. He shows her the clip where Gale kisses
her as a warning that they are watching her. As the tour begins, Haymitch Abernathy, Katniss
and Peeta’s mentor, warns them that the "show" of their relationship must continue for the rest of
their lives. Katniss suggests a public engagement between herself and Peeta, which is carried
out and approved by Snow at his mansion in the Capitol. Returning home, Katniss warns her
friend Gale Hawthorne of Snow’s threat to kill both their families. Peacekeepers crack down on
District 12, and Gale is publicly whipped after attacking new Head Peacekeeper Romulus Thread.
Snow announces that the upcoming 75th Hunger Games, the Third Quarter Quell, will feature
tributes selected from previous victors. Katniss immediately devotes herself to ensuring Peeta’s
survival, and recruits Haymitch’s help to do so. At the reaping, Effie Trinket draws Katniss and
Haymitch’s names, but Peeta immediately volunteers to take Haymitch’s place. As they prepare,
Haymitch reveals that all the tributes are angry about being returned to the Games and advises a
reluctant Katniss to make allies. In the pre-Games interviews, Katniss wears a wedding dress, as
ordered by President Snow, but her stylist Cinna rigs it to transform into a representation of a
mockingjay. Peeta announces that he and Katniss have secretly married and are expecting a baby,
which causes outrage, and the audience of Capitol citizens begins shouting for the Games to be
stopped, to no avail. Just before Katniss enters the...

Answer:

Intermediate candidates produced by DBS sampling

y': Haymitch Abernathy’s arm.

y?: Can’t answer. The question is not answerable as it does not provide a specific scene or
moment in the movie where Johanna cuts from Katniss’s arm. The plot of the movie focuses on
the events leading up to the 75 ...
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Intermediate candidates produced by MC sampling

y': Haymitch Abernathy.
y?: Haymitch Abernathy.

Case 2: Data-to-text generation.
Prompt

Here is some data about a restaurant: name = The Golden Palace, eatType = coffee shop, food =
French, priceRange = £20-25, customer rating = high, area = city centre. Write a sentence that
includes the following data about a restaurant.

Intermediate candidates produced by DBS sampling

y': The Golden Palace is a fancy coffee shop in the city centre that serves delicious French food
for a price range of £20-25, and it has a high customer rating, making it a great place to enjoy a
meal with friends or family.

y?: There is a restaurant called The Golden Palace located right in the city centre, where they
serve delicious French cuisine at a price range of £18-22 per person, and customers have given it
a high rating for its excellent service and cozy atmosphere.

Intermediate candidates produced by MC sampling

y': The Golden Palace is a fancy coffee shop located in the heart of the city center, serving
satisfied customers who love dining there.

y?: The Golden Palace is a fancy coffee shop located in the heart of the city centre, where they
serve delicious French cuisine at a moderate price range of £20-25 per person, and customers
highly rate their experience.

M Effect of Sampling process in the Compound LLM Collaboration System

To examine how the sampling process influences training behavior and final performance, we compare
two strategies for generating intermediate samples used in the loss function[9]in the two-stage LLM
collaboration setting.

In the first strategy, we sample two intermediate candidate per input using diverse beam search [34].
We set the diversity penalty to 20 in our experiments. In the second strategy, we sample four interme-
diate responses for each input and then select a pair based on contrastive preferences. Specifically, we
compute the log-likelihood of the final output for each intermediate response using the second-stage
model, and choose the pair for which one sample leads to the highest likelihood of being preferred
and the other the lowest. This contrastive selection aims to encourage sharper preference signals
during training by focusing updates on clearly distinguishable pairs.

We further compare the training dynamics of the two sampling strategies by plotting WR-Prompted
scores over training steps. As shown in Figure[8] both methods exhibit similar performance throughout
training. This suggests that sampling only two candidates when combined with a sufficiently high
diversity penalty is sufficient to yield informative preference pairs. Additionally, we observe that the
contrastive selection strategy exhibits slightly greater fluctuations during training, potentially due to
the higher variance introduced by selecting extreme pairs based on model log-likelihoods.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We provide a detailed list of contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the last section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

29



Justification: Assumptions and proofs are provided. Proofs are provided in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details are in our main paper or appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: code will be published later.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: in our experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Aligning compound Al systems is computational demanding. With our
resources it is intractable to obtain a meaningful statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This research is conducted with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In our discussion section.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: this paper focuses on fundamental ML methods.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: no such assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: no new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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