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Abstract: Generating safety-critical scenarios, which are crucial yet difficult to1

collect, provides an effective way to evaluate the robustness of autonomous driving2

systems. However, the diversity of scenarios and efficiency of generation methods3

are heavily restricted by the rareness and structure of safety-critical scenarios.4

Therefore, existing generative models that only estimate distributions from obser-5

vational data are not satisfying to solve this problem. In this paper, we integrate6

causality as a prior into the scenario generation and propose a flow-based generative7

framework, Causal Autoregressive Flow (CausalAF). CausalAF encourages the8

generative model to uncover and follow the causal relationship among generated9

objects via novel causal masking operations instead of searching the sample only10

from observational data. By learning the cause-and-effect mechanism of how the11

generated scenario causes risk situations rather than just learning correlations from12

data, CausalAF significantly improves learning efficiency. Extensive experiments13

on three heterogeneous traffic scenarios illustrate that CausalAF requires much14

fewer optimization resources to effectively generate safety-critical scenarios. We15

also show that using generated scenarios as additional training samples empirically16

improves the robustness of autonomous driving algorithms.17

Keywords: Causal Generative Models, Scenario Generation, Autonomous Driving18

1 Introduction19

According to a recent report [1], several companies have made their autonomous vehicles (AVs)20

drive more than 10,000 miles without disengagement. It seems that current AVs have achieved great21

success in normal scenarios that cover most cases in daily life. However, we are still unsure about22

their performance under critical cases, which could be too rare to collect in the real world. For23

example, a kid suddenly running into the drive lane chasing a ball leaves the AV a very short time to24

react. This kind of situation, named safety-critical scenarios, could be the last puzzle to evaluate the25

safety of AVs before deployment.26

Generating safety-critical scenarios with Deep Generative Models (DGMs), which estimate the27

distribution of data samples with neural networks, is viewed as a promising way in recent works [2].28

Existing literature either searches in the latent space to build scenarios [3, 4] or directly uses opti-29

mization to find the adversarial examples [5, 6]. However, such a generation task is still challenging30

since we are required to simultaneously consider fidelity to avoid conjectural scenarios that will31

never happen in the real world, as well as the safety-critical level which is indeed rare compared with32

normal scenarios. In addition, generating reasonable threats to vehicles’ safety can be inefficient if33

the model purely relies on the unstructured observational data, as the safety-critical scenarios are rare34

and follow fundamental physical principles. Inspired by the fact that humans are good at abstracting35

the causation beneath the observations with prior knowledge, we explore a new direction toward36

causal generative models for this generation task.37
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Figure 1: (a) Diagram of the generation pipeline
using CausalAF. (b) Two scenarios obtained by
two Behavioral Graphs shows the causality behind
scenarios. The top one is safety-critical because
the view of vehicle A is blocked by vehicle B.

To have a glance at causality in traffic scenarios,38

we show an example in Figure 1(b). When a39

vehicle B is parked in the middle between the40

autonomous vehicle A and pedestrian C, the41

view of A is blocked, making A have little time42

to brake and thus have a potential collision with43

C. As human drivers, we believe B should be44

the cause of the accident. This scenario may45

take AVs millions of hours to collect [7]. Even46

if we use traditional generative models to gen-47

erate this scenario, the model tends to memo-48

rize the location of all objects without learning49

the reasons. As a remedy, we can incorporate50

causality into generative models for the efficient51

generation of such safety-critical scenarios.52

In this paper, we propose a structured generative53

model with causal priors. We model the causal-54

ity as a directed acyclic graph (DAG) named55

Causal Graph (CG) [8]. To facilitate CG in the56

traffic scenario, we propose another Behavioral57

Graph (BG) for representing the interaction be-58

tween objects in scenarios. The graphical repre-59

sentation of both graphs makes it possible to use the BG to unearth the causality given by CG. Based60

on BG, we propose the first generative model that integrates causality into the graph generation task61

and names it CausalAF. Specifically, we propose two types of causal masks – Causal Order Masks62

(COM) that modifies the node order for node generation, and Causal Visibility masks (CVM) that63

removes irrelevant information for edge generation. We show the diagram of CausalAF generation in64

Figure 1(a) and summarize our main contributions as following:65

• We propose a causal generative model CausalAF that integrates causal graphs with two novel66

mask operators for safety-critical scenario generation.67

• We show that CausalAF dramatically improves the efficiency and performance on three standard68

traffic settings compared with purely data-driven baselines.69

• We show that the training on generated safety-critical scenarios improves the robustness of 470

reinforcement learning-based driving algorithms.71

2 Graphical Representation of Scenarios72

We start by proposing a novel representation of traffic scenarios using a graph structure. Then, we73

propose to generate such graphical representation with an autoregressive generative model.74

2.1 Behavioral Graph75

Traffic scenarios mainly consist of interactions between static and dynamic objects, which can be76

naturally described by a graph structure. Therefore, we define Behavioral Graph GB to represent77

driving scenarios with the following definition.78

Definition 1 (Behavioral Graph, BG). Suppose a scenario has maximum m objects with n types. A79

Behavioral Graph GB = (V B , EB) is a directed graph with node matrix V B ∈ Rm×n representing80

the types of objects and edge matrix EB ∈ Rm×m×(h1+h2) representing the interaction between81

objects, where h1 is the number of edge types and h2 is the dimension of edge attributes.82

According to this definition, GB works as a planner that controls the behaviors of objects in the83

scenario based on the types of nodes V B and edges EB . For example, two nodes v1 and v2 represent84

two vehicles and the edge from v1 to v2 represent the relative velocity from v1 to v2. Specifically,85

a self-loop edge (i, i) represents that one object takes one action irrelevant to other objects (e.g., a86

2



car goes straight or turns left with no impact on other road users), while other edges (i, j) means87

object i takes one action related to object j (e.g., a car i moves towards a pedestrian j). The edge88

attributes represent the properties of actions. For instance, the attribute [x, y, vx, vy] of one edge has89

the following meaning: x and y are positions, and vx and vy are the velocities.90

2.2 Behavioral Graph Generation with Autoregressive Flow91

Generally, there are two ways to generate graphs: one is simultaneously generating all nodes and92

edges, and the other is iteratively generating nodes and adding edges between nodes. Considering93

the directed nature of GB , we utilize the Autoregressive Flow model (AF) [9], which is a type94

of sequentially DGMs, to generate nodes and edges of GB step by step. It uses a invertible and95

differentiable transformation Fϕ parametrized by ϕ to convert the graph GB to a latent variable z96

that follows a base distribution p(z) (e.g., Normal distribution N (0, I)). According to the change of97

variables theorem, we can obtain pϕ(GB) = p(Fϕ(GB))
∣∣∣det∂Fϕ(GB)

∂GB

∣∣∣ .To increase the representing98

capability, Fϕ contains multiple functions fi for i ∈ {0, . . . ,K}. The entire transformation is99

represented as GB = zK = f−1
K ◦ · · · ◦ f−1

0
∆
= F−1

ϕ (z0) by repeatedly substituting the variable for100

the new variable zi, where ◦ means the function composition. Eventually, we obtain the likelihood101

log pϕ(GB) = p(z0)−
K∑
i=1

log

∣∣∣∣det
df−1

i

dzi−1

∣∣∣∣ , (1)

which will be used to learn the parameter ϕ based on empirical distribution of GB . After training,102

we can sample from pϕ(GB) by using the reverse function F−1
ϕ . Let V B

[i] ∈ Rn and EB
[i,j] ∈ Rh1+h2103

represent node i and edge (i, j) of GB , then we can generate them with the sampling procedure:104

V B
[i] ∼ N

(
µv
i , (σ

v
i )

2
)
= µv

i + σv
i ⊙ ϵ and EB

[i,j] ∼ N
(
µe
ij , (σ

e
ij)

2
)
= µe

ij + σe
ij ⊙ ϵ, (2)

where ⊙ denotes the element-wise product and ϵ follows a Normal distribution N (0, I). Variables105

µv
i , σv

i , µe
ij , and σe

ij are obtained from Fϕ in an autoregressive manner:106

µv
i , σ

v
i = Fϕ

(
V B
[0:i−1], E

B
[0:i−1,0:m]

)
and µe

ij , σ
e
ij = Fϕ

(
V B
[0:i], E

B
[0:i,0:j−1]

)
, (3)

where [0 : i] represents the elements from index 0 to index i. After the sampling, we obtain the node107

and edge type by converting V B and part of EB from continuous values to one-hot vectors:108

V B
[i] ← onehot

[
argmax(V B

[i] )
)]

, EB
[i,j,0:h1]

← onehot
[
argmax(EB

[i,j,0:h1]
)
]
∀i, j ∈ [m]. (4)

Intuitively, the generation of one node depends on all previously generated nodes and edges. One109

node only has edges pointing to the nodes that are generated before it. To illustrate this autoregressive110

generation process, we provide an example with three nodes in Figure 2(a).111

3 Causal Autoregressive Flow (CausalAF)112

In this section, we discuss how to integrate causality into the autoregressive generating process of113

the Behavioral Graph GB . In general, we transfer the prior knowledge from a causal graph to GB by114

increasing the structural similarity. However, calculating such similarity is not easy because of the115

discrete nature of graphs. To solve this problem, we propose CausalAF with two causal masks, i.e.,116

Causal Order Masks (COM) and Causal Visible Masks (CVM), that make the generated GB follow117

the causal information.118

3.1 Causal Generative Models119

Definition 2 (Structural Causal Models [10], SCM). A structural causal model (SCM) C := (S,U)120

consists of a collection S of m functions, Xj := fj(PAj , Uj), ∀j ∈ [m], where PAj ⊂121

{X1, . . . , Xm}\{Xj} are called parents of Xj; and a joint distribution U = {U1, . . . , Um} over122

the noise variables, which are required to be jointly independent.123
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Figure 2: (a) The generation process of a BG, which starts from an empty graph. We add one node or
one edge at each step. COM is applied to select nodes following the CG and CVM is applied to mask
out non-parent nodes following the CG. (b) CG and BG used in the example. (c) The explanation of
CVM when generating edges for c, where irrelevant node b is masked out in both V B and EB .

Definition 3 (Causal Graphs [10], CG). The causal graph GC of an SCM is obtained by creating124

one node for each Xj and drawing directed edges from each parent in PAj(GC) to Xj . The125

representation of GC = (V C , EC) consists of the node vector V C ∈ {0, 1}m and the adjacency126

matrix EC ∈ {0, 1}m×m×h1 . Each edge (i, j) represents a causal relation from node i to node j.127

We formally describe the causality based on the above definitions of SCM and CG. In fact, the128

generative model pϕ(GB) mentioned in Section 2 shares a very similar definition with SCM except129

that GB does not follow the order of causality. This inspires us that we can convert pϕ(GB) to an130

SCM by incorporating the causal graph GC into the generation process. In this paper, we assume the131

causal graph GC can be summarized by expert knowledge. Therefore, we incorporate a given GC132

into pϕ(GB |GC) by regularizing the generative process with two novel masks as shown in Figure 2.133

3.2 Causal Graph Integration134

Causal Order Masks (COM) The order is vital during the generation of GB since we must ensure135

the cause is generated before the effect. To achieve this, we maintain a priority queue Q to store the136

valid child types according to the causal relation in GC . Q is initialized with Q = {i| PAi(GC) =137

∅ ,∀i ∈ [m]}, which contains all nodes that do not have parent nodes. Then, in each node generation138

step, we update Q by removing the generated node i and adding the child nodes of i. Since one node139

may have multiple parents thus it is valid only if all of its parents have been generated. We use Q to140

create a k-hot mask M0,i ∈ Rn, where the element is set to 1 if it is a valid type. Then, we apply141

COM to the node matrix by V B
[i] ← M0,i ⊙ V B

[i] , where V B
[i] is the node vector obtained from Fϕ142

for node i. Intuitively, this mask sets the probability of the invalid node types to 0 to make sure the143

generated node always follows the correct order.144

Causal Visible Masks (CVM) Ensuring a correct causal order is still insufficient to represent145

the causality. Thus, we further propose another type of mask called CVM, which removes the146

non-causal connections, i.e., non-parent nodes to the current node in GC , when generating edges.147

Specifically, we generate two binary masks M1,i ∈ Rm×n and M2,i ∈ Rm×m×(h1+h2) with148

M1,i
[j,:] = 0 and M2,i

[j,i,:] = 0 ,∀j /∈ PAi(GC). Then, we apply them to update node matrix and edge149

matrix by V B ←M1,i ⊙ V B and EB ←M2,i ⊙ EB . We illustrate an example of this process in150

Figure 2(c). Assume we are generating edges for node c. We need to remove node b since GC tells us151

that B does not have edges to node C. After applying Mv and Me, we move the features of node c152

to the previous position of b. This permuting operation is important since the autoregressive model is153

not permutation invariant.154
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3.3 Optimization of Safety-critical Generation155

After introducing the generative process of CausalAF, we now turn to the optimization procedure.156

The target is to generate scenarios τ = E(GB) with an executor E to satisfy a given goal, which is157

formulated as an objective function Lg. We define Lg(τ) = 1(D(τ) < ϵ), where D(τ) represents158

the minimal distance between the autonomous vehicle and other objects and ϵ is a small threshold.159

Therefore, the optimization is to solve the problem maxϕ EGB∼pϕ(GB |GC)[Lg(E(GB))]. Usually, Lg160

contains non-differentiable operators (e.g., complicated simulation and rendering), thus we have to161

utilize black-box optimization methods to solve the problem. We consider a policy gradient algorithm162

named REINFORCE [11], which obtains the estimation of the gradient from samples by163

∇ϕEGB∼pϕ(GB |GC)[Lg(E(GB))] = E[∇ϕ log p(GB |GC)Lg(E(GB))] (5)

Overall, the entire training algorithm is summarized in Algorithm 1. In addition, we can prove that164

the CausalAF guarantees monotonicity of likelihood in Theorem 1 at convergence. The detail of the165

proof is given in Appendix A.166

Theorem 1 (Monotonicity of Likelihood). Given the true causal graph GC∗
= (V C , EC∗

) and167

distance SHD [12], for CG GC1 = (V C , EC
1 ) and GC2 = (V C , EC

2 ), if SHD(GC1 ,GC∗
) <168

SHD(GC2 ,GC∗
), and ∃ e, s.t. EC

1 ∪ {e} = EC
2 , CausalAF converges with the monotonicity of likeli-169

hood for collision samples, i.e. pϕ(D(τ) < ϵ | GC2 ) < pϕ(D(τ) < ϵ | GC1 ) < pϕ(D(τ) < ϵ | GC∗
).170

3.4 Scenario Sampling and Execution171 Algorithm 1: Training process of CausalAF

Input: Causal Graph GC , Goal Lg , Learning
rate α, Maximum node number m

while ϕ not converged do
// Sample a BG GB ∼ pϕ(GB |GC)
for i < m do

Sample node matrix V B
[i] by (2)

Get node type V B
[i] by (4)

Apply COM M0,i to V B
[i]

Apply CVM M1,i, M2,i to V B
[i] , EB

[i,j]

for j ≤ i do
Sample edge matrix EB

[i,j] by (2)
Get edge type EB

[i,j] by (4)
Collect one scenario GB = {V B , EB}
// Learn model parameters

Calculate the likelihood pϕ(GB |GC)
Execute τ = E(GB) and get Lg(τ)
Use (5) to update ϕ← ϕ− α∇ϕLg(τ)

Thanks to the autoregressive generation of172

CausalAF, we are able to conduct generation173

conditioned on arbitrary numbers or types of174

nodes. Instead of generating from the scratch,175

we can start from an existing GBc for the genera-176

tion with GB ∼ pϕ(·|GBc ,GC). The conditional177

generation can be used for interactive scenarios,178

e.g., using the autonomous vehicle’s informa-179

tion or the data of partial scenarios in the real180

world as conditions to generate diverse and re-181

alistic scenarios. After sampling the scenarios,182

the physical properties (e.g., position and veloc-183

ity) defined in the generated GB are executed184

in the simulator E to create sequential scenarios185

τ . After the execution, the simulator outputs the186

objective function Lg(τ) as the result.187

4 Experiment188

We evaluate CausalAF using three top pre-crash traffic scenarios defined by U.S. Department of189

Transportation [13] and Euro New Car Assessment Program [14]. Our empirical results show that it190

may not be trivial for the generative models to learn the underlying causality even if such causality191

seems understandable to humans. Particularly, we conduct a series of experiments to answer the192

following main questions: Q1: How does CausalAF perform compared to other scenario generate193

methods? Q2: How does causality help the generation process? Q3: How can we use the generated194

safety-critical scenarios? In this section, we will first introduce the designed environment and baseline195

methods. Then we will answer the above questions by carefully investigating the experiment results.196

4.1 Experiment Design and Setting197

Scenario. We consider three safety-critical traffic scenarios (shown in Figure 3) that have clear198

causation. The causal graph GC for each scenario is displayed on the upper right of the scenario.199
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Figure 3: Three causal traffic scenarios are used in our experiments. The corresponding causal graphs
are shown in the upper right of each scenario. Please refer to Section 4.1 for details.

Table 1: Collision rate (↑) of generated safety-critical scenarios. Bold font means the best.

Environment L2C [5] MMG [4] SAC [15] STRIVE [16] Baseline Baseline+COM CausalAF

Intersection 0.63±0.28 0.31±0.54 0.47±0.61 0.64±0.12 0.29±0.84 0.69±0.52 0.98±0.01
Crossing 0.69±0.41 0.43±0.56 0.38±0.49 0.55±0.10 0.35±0.65 0.57±0.48 0.83±0.13
Highway 0.85±0.10 0.56±0.36 0.58±0.41 0.67±0.16 0.53±0.69 0.88±0.04 0.91±0.06

• Intersection. One potential safety-critical event could happen when the traffic light T turns from200

green to yellow to give the road right to an autonomous vehicle A. Here, A and R are influenced201

by T . R runs the red light, colliding with A perpendicularly, therefore, causing the collision C202

together with A. I does not influence other objects.203

• Crossing. A pedestrian P and an autonomous vehicle A are crossing the road in vertical directions.204

There also exists a static vehicle S parked by the side of the road. Then a potentially risky scenario205

could happen when S blocks the vision of A. In this scenario, S is the parent of A, and P and A206

cause the collision C. I does not influence other objects.207

• Highway. An autonomous vehicle A takes a lane-changing behavior due to a static car S parked208

in front of it. Meanwhile, a vehicle R drives in the opposite lane. Since S blocks the vision of209

A, A is likely to collide with R. In this scenario, S is the parent of A, and R and A cause the210

collision C. I does not influence other objects.211

Simulator. We implement the above scenarios in a 2D simulator, where all agents have radar sensors212

and are controlled by a simple vehicle dynamic. During the running, the autonomous vehicle is213

controlled by a rule-based policy, which will decelerate if it detects any obstacles in front of it within214

a certain range Thus, the safety-critical scenario will not happen unless the radar of one agent is215

blocked and the distance is smaller than the braking distance, avoiding the creation of unrealistic216

scenarios. The action space contains the acceleration and steering of all objects, and the state space217

contains the position and heading of all objects and the status of traffic lights if applicable.218

Baselines. We consider 7 algorithms as baselines, including 5 scenario generation methods and219

2 variants of our CausalAF. Learning to collide (L2C) [5] uses a Bayesian network to describe220

the relationship between objects. Multi-modal Generation (MMG) [4] uses an adaptive sampler221

to increase sample diversity. STRIVE [16] learns traffic prior from dataset and use adversarial222

optimization to generate risk scenarios. SAC is a standard RL algorithm using the objective as the223

reward function. To further investigate the contribution of COM and CVM, we design two variants224

that share the same network structure as CausalAF. Baseline does not use COM or CVM, and225

Baseline+COM only uses COM.226

4.2 Results Discussion227

How does CausalAF perform on safety-critical scenario generation? (Q1) We train all generation228

methods in 3 environments and report the final objective values in Table 1. We observe that CausalAF229

achieves the best performance among all methods. L2C performs better than MMG and SAC230

because it also considers the structure of the scenario. We also notice that both Baseline and231

Baseline+COM have performance drops compared to CausalAF, indicating that the COM and CVM232

modules contribute to the autoregressive generating process. Baseline+COM performs a little better233
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Figure 4: Training objective Lg(GB) of CausalAF and two variants under two sampling temperatures.
The higher the sampling temperature is, the more diverse the generated scenarios are.

Table 2: Collision rate of RL algorithms evaluated in different scenarios.

Method Intersection Crossing Highway
Norm L2C MMG Ours Norm L2C MMG Ours Norm L2C MMG Ours

SAC-Norm 0.05 0.57 0.64 0.91 0.04 0.54 0.67 0.92 0.03 0.79 0.75 0.95
SAC-Ours 0.01 0.03 0.04 0.08 0.00 0.04 0.06 0.11 0.02 0.01 0.04 0.09

PPO-Norm 0.07 0.44 0.48 0.86 0.03 0.53 0.61 0.80 0.02 0.62 0.64 0.92
PPO-Ours 0.00 0.04 0.01 0.12 0.02 0.03 0.03 0.08 0.01 0.02 0.03 0.13

DDPG-Norm 0.12 0.76 0.62 0.89 0.07 0.71 0.76 0.85 0.04 0.72 0.61 0.95
DDPG-Ours 0.01 0.02 0.05 0.13 0.02 0.01 0.04 0.12 0.03 0.03 0.03 0.16

MBRL-Norm 0.04 0.78 0.74 0.98 0.05 0.68 0.85 0.97 0.05 0.79 0.87 0.98
MBRL-Ours 0.00 0.01 0.01 0.07 0.00 0.01 0.02 0.09 0.00 0.03 0.01 0.10

than Baseline, which validates our hypothesis that COM is not powerful enough to represent causality.234

To investigate the training procedure, we plot the training objectives in Figure 4 with two different235

sampling temperatures T , which controls the sampling variance in ϵ ∼ N (0, T ). A large temperature236

provides strong exploration but causes slow convergence. However, we find that using a small237

temperature leads to unstable training with high variance due to the poor exploration capability.238
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Figure 5: The training objectives in the
Pedestrian scenario from different num-
bers of irrelevant vehicles.

How does causality help the generation process? (Q2)239

The design of the Baseline represents the model that uses240

the full graph. Therefore, the results in Table 1 also demon-241

strate that the causal graph is more helpful than the full242

graph. To investigate the reason why the causal graph243

helps the learning, we conduct an ablation study on the244

number of irrelevant nodes (I node), which does not have245

edges in the causal graph. In Figure 5, we can see that246

adding more irrelevant vehicles enlarges the gap between247

CausalAF and Baseline – the performance of Baseline248

gradually drops as the number of I nodes increases but249

CausalAF has consistent performance. The reason is that250

CausalAF is able to diminish the impact of irrelevant in-251

formation with COM and CVM.252

How can we use the generated scenarios? (Q3) Finally,253

we explore how to use generated safety-critical scenarios.254

We train 4 RL agents ({SAC, PPO, DDPG, MBRL}-Norm) under normal scenarios (uniformly255

sample the parameters of objects in the scenario) then we evaluate them under scenarios generated by256

four different methods: Normal, L2C, MMG, and Ours (CausalAF) to test the performance under257

safety-critical scenarios. We also train another 4 agents under scenarios generated by our method258

({SAC, PPO, DDPG, MBRL}-Ours) and evaluate under four different scenarios. We report the259

collision rate in Table 2. We find that scenarios generated by our CausalAF cause more collision to260

the RL agents, which also shows that training on normal scenarios is not enough for safety. After261

training on scenarios generated by CausalAF, the agents achieves lower collision in all scenarios,262

indicating the usefulness of training on safety-critical scenarios.263
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5 Related Work264

Goal-directed generative models. DGMs, such as Generative Adversarial Networks [17] and265

Variational Auto-encoder [18], have shown powerful capability in randomly data generation tasks [19].266

Among them, goal-directed generation methods are widely used [20]. One line of research leverages267

conditional GAN [21] and conditional VAE [22], which take as input the conditions or labels during268

the training stage. Another line of research injects the goal into the model after the training. [23]269

proposes a latent space optimization framework that finds the samples by searching in the latent270

space. This spirit is also adopted in other fields: [24] finds the molecules that satisfy specific chemical271

properties, [25] searches in the latent space of StyleGAN [26] to obtain targeted images. Recent272

works combine the advantages of the above two lines by iteratively updating the high-quality samples273

and retraining the model weights during the search [27]. [28] pre-trains the generative model and274

optimizes the sample distribution with reinforcement learning algorithms.275

Safety-critical driving scenario generation. Traditional scenario generation algorithms sample276

from pre-defined rules and grammars, such as probabilistic scene graphs [29] and heuristic rules [30].277

In contrast, DGMs [31, 32, 33, 34] are recently used construct diverse scenarios. Adversarial278

optimization is considered for safety-critical scenario generation. [35, 36, 37] manipulate the pose279

of objects in traffic scenarios, [38, 39] adds objects on the top of existing vehicles to make them280

disappear, and [3] generates the layout of the traffic scenario with a tree structure integrated with281

human knowledge. Another direction generates risky scenarios while also considering the likelihood282

of occurring of the scenarios in the real world. [40, 41, 42] used various importance sampling283

approaches to generate risky but probable scenarios. [34] merges the naturalistic and collision284

datasets with conditional VAE. [43, 16, 44, 45] learn traffic prior from pre-collected dataset.285

Causal generative models. The research of causality [8] is usually divided into two aspects: causal286

discovery finds the underlying mechanism from the data; causal inference extrapolates the given287

causality to solve new problems. A toolbox named NOTEARs is proposed in [46] to learn causal288

structure in a fully differentiable way, which drastically reduces the complexity caused by combinato-289

rial optimization. [47] show the identifiability of learned causal structure from interventional data,290

which is obtained by manipulating the causal system under interventions. Recently, causality has been291

introduced into DGMs to learn the cause and effect with representation learning. CausalGAN [48]292

captures the causality by training the generator with the causal graph as a prior, which is very similar293

to our setting. In CausalVAE [49], the authors disentangle latent factors by learning a causal graph294

from data and corresponding labels. Previous work CAREFL [50] also explored the combination of295

causation and autoregressive flow-based model and is used for causal discovery and prediction tasks.296

6 Conclusion and Limitation297

This paper proposes a causal generative model that generates safety-critical scenarios with causal298

graphs obtained from humans prior. To incorporate the causality into the generation, we use the299

causal graph to regularize the generation of the behavioral graph, which is achieved by modifying300

the generating ordering and graph connection with two causal masks. By injecting causality into301

generation, we efficiently create safety-critical scenarios that are too rare to find in the real world. The302

experiment results on three environments with clear causality demonstrate that CausalAF outperforms303

all baselines in terms of efficiency and performance. We also show that training on our generated304

safety-critical scenarios improves the robustness of RL-based driving algorithms. The proposed305

method can be naturally extended to other robotics areas since critical scenarios are vital for learning-306

based algorithms but rare to collect in the real world, e.g., risky scenarios for household robots that307

involve human interaction.308

The main limitation of this work is that the causal graph, summarized by humans, is assumed to be309

always correct, which may not be true for complicated scenarios. We will explore methods robust to310

human bias when attaining the causal graph, for example, automatically discovering causal graphs311

from the observational or interventional datasets. Although this work is evaluated in simulations,312

we believe the autonomous driving area still benefits from safety-critical scenarios with abstracted313

representation, which shares a smaller sim-to-real gap compared to directly using raw sensor input.314

8



References315

[1] California Department of Motor Vehicle Disengagement Report. https://www.dmv.316

ca.gov/portal/vehicle-industry-services/autonomous-vehicles/317

disengagement-reports/, 2022. [Online].318

[2] W. Ding, C. Xu, H. Lin, B. Li, and D. Zhao. A survey on safety-critical scenario generation319

from methodological perspective. arXiv preprint arXiv:2202.02215, 2022.320

[3] W. Ding, H. Lin, B. Li, K. J. Eun, and D. Zhao. Semantically adversarial driving scenario321

generation with explicit knowledge integration. arXiv e-prints, pages arXiv–2106, 2021.322

[4] W. Ding, B. Chen, B. Li, K. J. Eun, and D. Zhao. Multimodal safety-critical scenarios generation323

for decision-making algorithms evaluation. IEEE Robotics and Automation Letters, 6(2):1551–324

1558, 2021.325

[5] W. Ding, B. Chen, M. Xu, and D. Zhao. Learning to collide: An adaptive safety-critical326

scenarios generating method. In 2020 IEEE/RSJ International Conference on Intelligent Robots327

and Systems (IROS), pages 2243–2250. IEEE, 2020.328

[6] Q. Zhang, S. Hu, J. Sun, Q. A. Chen, and Z. M. Mao. On adversarial robustness of trajectory329

prediction for autonomous vehicles. arXiv preprint arXiv:2201.05057, 2022.330

[7] S. Feng, X. Yan, H. Sun, Y. Feng, and H. X. Liu. Intelligent driving intelligence test for331

autonomous vehicles with naturalistic and adversarial environment. Nature communications, 12332

(1):1–14, 2021.333

[8] J. Pearl. Causality. Cambridge university press, 2009.334

[9] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural autoregressive flows. In335

International Conference on Machine Learning, pages 2078–2087. PMLR, 2018.336

[10] J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and learning337

algorithms. The MIT Press, 2017.338

[11] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement339

learning. Machine learning, 8(3):229–256, 1992.340

[12] S. Acid and L. M. de Campos. Searching for bayesian network structures in the space of341

restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 18:342

445–490, 2003.343

[13] W. G. Najm, R. Ranganathan, G. Srinivasan, J. D. Smith, S. Toma, E. Swanson, A. Burgett,344

et al. Description of light-vehicle pre-crash scenarios for safety applications based on vehicle-345

to-vehicle communications. Technical report, United States. National Highway Traffic Safety346

Administration, 2013.347

[14] M. Van Ratingen, A. Williams, A. Lie, A. Seeck, P. Castaing, R. Kolke, G. Adriaenssens, and348

A. Miller. The european new car assessment programme: a historical review. Chinese journal349

of traumatology, 19(2):63–69, 2016.350

[15] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,351

P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,352

2018.353

[16] D. Rempe, J. Philion, L. J. Guibas, S. Fidler, and O. Litany. Generating useful accident-prone354

driving scenarios via a learned traffic prior. In Proceedings of the IEEE/CVF Conference on355

Computer Vision and Pattern Recognition, pages 17305–17315, 2022.356

9

https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/


[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and357

Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27,358

2014.359

[18] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,360

2013.361

[19] A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image362

synthesis. arXiv preprint arXiv:1809.11096, 2018.363

[20] A. Mollaysa, B. Paige, and A. Kalousis. Goal-directed generation of discrete structures with364

conditional generative models. arXiv preprint arXiv:2010.02311, 2020.365

[21] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint366

arXiv:1411.1784, 2014.367

[22] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional368

generative models. Advances in neural information processing systems, 28:3483–3491, 2015.369

[23] J. Engel, M. Hoffman, and A. Roberts. Latent constraints: Learning to generate conditionally370

from unconditional generative models. arXiv preprint arXiv:1711.05772, 2017.371

[24] A. Mollaysa, B. Paige, and A. Kalousis. Conditional generation of molecules from disentangled372

representations. 2019.373

[25] R. Abdal, Y. Qin, and P. Wonka. Image2stylegan++: How to edit the embedded images? In374

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages375

8296–8305, 2020.376

[26] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial377

networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern378

Recognition, pages 4401–4410, 2019.379

[27] A. Tripp, E. Daxberger, and J. M. Hernández-Lobato. Sample-efficient optimization in the380

latent space of deep generative models via weighted retraining. Advances in Neural Information381

Processing Systems, 33, 2020.382

[28] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang. Graphaf: a flow-based autoregressive383

model for molecular graph generation. arXiv preprint arXiv:2001.09382, 2020.384

[29] A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State, O. Shapira, and385

S. Birchfield. Structured domain randomization: Bridging the reality gap by context-aware386

synthetic data. In 2019 International Conference on Robotics and Automation (ICRA), pages387

7249–7255. IEEE, 2019.388

[30] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban driving389

simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.390

[31] J. Devaranjan, A. Kar, and S. Fidler. Meta-sim2: Unsupervised learning of scene structure391

for synthetic data generation. In European Conference on Computer Vision, pages 715–733.392

Springer, 2020.393

[32] S. Tan, K. Wong, S. Wang, S. Manivasagam, M. Ren, and R. Urtasun. Scenegen: Learning to394

generate realistic traffic scenes. arXiv preprint arXiv:2101.06541, 2021.395

[33] W. Ding, W. Wang, and D. Zhao. A new multi-vehicle trajectory generator to simulate vehicle-396

to-vehicle encounters. arXiv preprint arXiv:1809.05680, 2018.397

[34] W. Ding, M. Xu, and D. Zhao. Cmts: A conditional multiple trajectory synthesizer for398

generating safety-critical driving scenarios. In 2020 IEEE International Conference on Robotics399

and Automation (ICRA), pages 4314–4321. IEEE, 2020.400

10



[35] M. A. Alcorn, Q. Li, Z. Gong, C. Wang, L. Mai, W.-S. Ku, and A. Nguyen. Strike (with) a pose:401

Neural networks are easily fooled by strange poses of familiar objects. In Proceedings of the402

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4845–4854, 2019.403

[36] C. Xiao, D. Yang, B. Li, J. Deng, and M. Liu. Meshadv: Adversarial meshes for visual404

recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern405

Recognition, pages 6898–6907, 2019.406

[37] L. Jain, V. Chandrasekaran, U. Jang, W. Wu, A. Lee, A. Yan, S. Chen, S. Jha, and S. A. Seshia.407

Analyzing and improving neural networks by generating semantic counterexamples through408

differentiable rendering. arXiv preprint arXiv:1910.00727, 2019.409

[38] J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du, F. Cheng, and R. Urtasun. Physically410

realizable adversarial examples for lidar object detection. In Proceedings of the IEEE/CVF411

Conference on Computer Vision and Pattern Recognition, pages 13716–13725, 2020.412

[39] M. Abdelfattah, K. Yuan, Z. J. Wang, and R. Ward. Towards universal physical attacks on413

cascaded camera-lidar 3d object detection models. arXiv preprint arXiv:2101.10747, 2021.414

[40] D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa, and C. S. Pan. Accelerated415

evaluation of automated vehicles safety in lane-change scenarios based on importance sampling416

techniques. IEEE Transactions on Intelligent Transportation Systems, 18(3):595–607, 2017.417

doi:10.1109/TITS.2016.2582208.418

[41] M. O’Kelly, A. Sinha, H. Namkoong, J. Duchi, and R. Tedrake. Scalable end-to-end autonomous419

vehicle testing via rare-event simulation. arXiv preprint arXiv:1811.00145, 2018.420

[42] M. Arief, Z. Huang, G. Koushik Senthil Kumar, Y. Bai, S. He, W. Ding, H. Lam, and D. Zhao.421

Deep probabilistic accelerated evaluation: A robust certifiable rare-event simulation methodol-422

ogy for black-box safety-critical systems. pages 595–603, 2021.423

[43] W. Ding, B. Chen, B. Li, K. J. Eun, and D. Zhao. Multimodal safety-critical scenarios generation424

for decision-making algorithms evaluation. IEEE Robotics and Automation Letters, 6(2):1551–425

1558, 2021. doi:10.1109/LRA.2021.3058873.426

[44] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun. Advsim:427

Generating safety-critical scenarios for self-driving vehicles. In Proceedings of the IEEE/CVF428

Conference on Computer Vision and Pattern Recognition, pages 9909–9918, 2021.429

[45] N. Hanselmann, K. Renz, K. Chitta, A. Bhattacharyya, and A. Geiger. King: Generating430

safety-critical driving scenarios for robust imitation via kinematics gradients. arXiv preprint431

arXiv:2204.13683, 2022.432

[46] X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing. Dags with no tears: Continuous optimiza-433

tion for structure learning. arXiv preprint arXiv:1803.01422, 2018.434

[47] D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: The combination435

of knowledge and statistical data. Machine learning, 20(3):197–243, 1995.436

[48] M. Kocaoglu, C. Snyder, A. G. Dimakis, and S. Vishwanath. Causalgan: Learning causal437

implicit generative models with adversarial training. arXiv preprint arXiv:1709.02023, 2017.438

[49] M. Yang, F. Liu, Z. Chen, X. Shen, J. Hao, and J. Wang. Causalvae: disentangled representation439

learning via neural structural causal models. In Proceedings of the IEEE/CVF Conference on440

Computer Vision and Pattern Recognition, pages 9593–9602, 2021.441

[50] I. Khemakhem, R. Monti, R. Leech, and A. Hyvarinen. Causal autoregressive flows. In442

International Conference on Artificial Intelligence and Statistics, pages 3520–3528. PMLR,443

2021.444

11

http://dx.doi.org/10.1109/TITS.2016.2582208
http://dx.doi.org/10.1109/LRA.2021.3058873


445

Appendix446

Table of Contents
447
448

A Theoretical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12449

B Environment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14450

B.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14451

B.2 Definitions of Nodes and Edges in Causal Graph and Behavior Graph . . . . . . 15452

C Model Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15453

D More Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16454

D.1 Qualitative Results of Generated Scenarios . . . . . . . . . . . . . . . . . . . 16455

D.2 Diversity of Generated Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 16456

457
458
459

A Theoretical Proofs460

Definition 4 (Structural Hamming Distance (SHD)). For any two DAGs GC1 ,GC2 with identical461

vertices set V , we define the following function SHD: G ×H → R,462

SHD(GC1 ,GC2 ) = #{(i, j) ∈ V 2 | GC1 and GC2 have different edges eij}
∆
=

∑
j∈V

|PAj(GC1 )− PAj(GC2 )| (6)

where |PAj(GC1 )− PAj(GC2 )| is the number of the absolute difference in parental nodes for node j463

between causal graph GC1 and GC2 .464

Definition 5 (Nodes in Behavior Graph). Let Xj =
[
Vj , {Eij}i∈{PAj(GC)∪j}

]
, where Vi is the node465

type of the j-th node, and E·i is the arrows that point in the j-th node. All these components form the466

node Xj in the behavior graph.467

Definition 6 (Respect the graph). For any given behavior graph GB with a specific causal graph GC ,468

the transition model respects the graph if the distribution pϕ(GB |GC) can be factorized as:469

p(GB |GC) =
∏

j∈[m]

p(Xj |PAj(GC)) (7)

where m is the number of factorized nodes, and PAj(·) is for Xj’s parents based on the causal graph.470

Proposition 1 (CausalAF respects the graph).

pϕ(GB |GC) =
∏

j∈[m]

[
pϕ(Vj |PAj(GC))︸ ︷︷ ︸

COM

pϕ(Ejj |Vj ,PAj(GC))
∏

i∈PAj(GC)

pϕ(Eij |Vj ,PAj(GC))︸ ︷︷ ︸
CVM

]

=
∏

j∈[m]

[
pϕ(Vj , Ejj |PAj(GC))

∏
i∈PAj(GC)

pϕ(Eij |Vj ,PAj(GC))
]

=
∏

j∈[m]

pϕ(Vj , {Eij}i∈{PAj(GC)∪j}|PAj(GC))

=
∏

j∈[m]

pϕ(Xj |PAj(GC))

(8)
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The node generation process of CausalAF combines two phases: firstly, we use COM to determine the471

generation order of the node, which prevents the generation of child nodes before their parent nodes.472

This COM can also be interpreted as a node ordering with topological sorting, therefore CausalAF473

should always respect the term p(Vj |PAj(GC)),∀j in Equation (8).474

On the other hand, CVM is used to guarantee that the output of autoregressive flow model uses proper475

structural information (i.e. the parents of the current node) to generate the self-loop edge as well as476

edges between new nodes and their parents accordingly, the CVM trick thus guarantees that CausalAF477

respects the term p(Ejj |Vj ,PAj(GC))
∏

i∈PAj(GC) p(Eij |Vj ,PAj(GC)),∀j in Equation (8).478

Assumption 1 (Local Optimality). Let GC∗ be the ground truth causal graph, for any nodes479

Xj with its parental set PAj(GC1 ) ̸= PAj(GC
∗
). At convergence, CausalAF will have480

maxϕ pϕ(Vj |PAj(GC
∗
)) > maxϕ pϕ(Vj |PAj(GC1 )).481

Assumption 2 (Local Monotonicity of Behavior Graph). For a single node Xj , its local482

monotonicity of likelihood means for any conditional set PAj(GC1 ),PAj(GC2 ) ̸= PAj(GC), if483

|PAj(GC1 ) − PAj(GC)| < |PAj(GC2 ) − PAj(GC)|, and ∃ v, s.t. PAj(GC2 ) ∪ v = PAj(GC1 ), then484

maxϕ pϕ(Xj |PAj(GC1 )) > maxϕ pϕ(Xj |PAj(GC2 ))485

Proof of Theorem 1. Given that GB ∼ pϕ(GB |GC), τ = E(GB), by using the change of variable486

theorem, we have τ ∼ pϕ(E−1(τ)|GC)|det ∂E−1(τ)
∂τ | ∆= p̂ϕ(τ |GC).487

The optimization process of CausalAF can be rewritten as below:488

max
ϕ

EGB∼pϕ(GB |GC)[1(D(E(GB)]) < ϵ)

= max
ϕ

Ep̂ϕ(τ |GC)[1(D(τ) < ϵ)]

= max
ϕ

p̂ϕ(D(τ) < ϵ|GC)

= max
ϕ

p̂ϕ(GB ∈ A|GC), where A = {GB |D(E(GB)) < ϵ}

(9)

Since the CausalAF respects the graph, as is shown in Proposition 1, for true CG GC∗ and another489

CG GC1 ̸= GC
∗. By applying the local monotonicity in the previous assumptions, when CausalAF490

converges, we will have491

p̂ϕ(GB ∈ A|GC1 ) =
∏
j

p̂ϕ(Xj ∈ Aj |PAj(GC1 ))

=
∏

∀j,s.t.

PAj(GC
1 )=PAj(GC∗)

p̂ϕ(Xj ∈ Aj |PAj(GC1 ))
∏

∀j,s.t.

PAj(GC
1 )̸=PAj(GC∗)

p̂ϕ(Xj ∈ Aj |PAj(GC1 ))

<
∏

∀j,s.t.

PAj(GC
1 )=PAj(GC∗)

p̂ϕ(Xj ∈ Aj |PAj(GC
∗
))

∏
∀j,s.t.

PAj(GC
1 )=PAj(GC∗)

p̂ϕ(Xj ∈ Aj |PAj(GC
∗
))

=
∏
j

p̂ϕ(Xj ∈ Aj |PAj(GC
∗
))

= p̂ϕ(GB ∈ A|GC
∗
)

(10)
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Then we assume we have another Causal Graph GC2 ̸= GC1 , if SHD(GC1 ,GC∗
) < SHD(GC2 ,GC∗

),492

and ∃ e, s.t. EC
1 ∪ {e} = EC

2 ,493

p̂ϕ(GB ∈ A|GC2 ) =
∏
j

p̂ϕ(Xj ∈ Aj |PAj(GC2 ))

=
∏

∀j,s.t.

PAj(GC
1 )=PAj(GC

2 )

p̂ϕ(Xj ∈ Aj |PAj(GC2 ))
∏

∀j,s.t.

PAj(GC
1 )̸=PAj(GC

2 )

p̂ϕ(Xj ∈ Aj |PAj(GC2 ))

<
∏

∀j,s.t.

PAj(GC
1 )=PAj(GC

2 )

p̂ϕ(Xj ∈ Aj |PAj(GC1 ))
∏

∀j,s.t.

PAj(GC
1 )=PAj(GC

1 )

p̂ϕ(Xj ∈ Aj |PAj(GC1 ))

=
∏
j

p̂ϕ(Xj ∈ Aj |PAj(GC1 ))

= p̂ϕ(GB ∈ A|GC1 )
(11)

Based on the derivation above, we conclude that p̂ϕ(GB ∈ A|GC2 ) < p̂ϕ(GB ∈ A|GC1 ) < p̂ϕ(GB ∈494

A|GC∗
), which indicates that at convergence, the likelihood of collision samples converge with495

monotonicity guarantees:496

pϕ(D(τ) < ϵ | GC2 ) < pϕ(D(τ) < ϵ | GC1 ) < pϕ(D(τ) < ϵ | GC∗
) (12)

497

Table 3: Parameters of Environments

Parameter Description Value

Sego number of LiDAR sensor for ego vehicle 10
Sother number of LiDAR sensor for other vehicle 0
Sped number of LiDAR sensor for pedestrian 6
Mego maximal range (m) of LiDAR for ego vehicle 200
Mother maximal range (m) of LiDAR for other vehicle 200
Mped maximal range (m) of LiDAR for pedestrian 100

Dego braking factor of ego vehicle 0.1
Dother braking factor of other vehicle 0.05
Dped braking factor of pedestrian 0.01
Wego shape size (width, length) of ego vehicle [20, 40]
Wother shape size (width, length) of ego vehicle [20, 40]
Wped shape size (width, length) of ego vehicle [15, 15]
Vego initial velocity of ego vehicle 18
Vother initial velocity of other vehicle 18
Vped initial velocity of pedestrian 4

Tmax max number of step in one episode 100
C collision threshold 20
∆t step size of running 0.3

B Environment Details498

B.1 Simulator499

We conduct all of our experiments in a 2D traffic simulator, where vehicles and pedestrians are500

controlled by the Bicycle vehicle dynamics. The action is a two-dimensional continuous vector,501

containing the acceleration and steering. The ego vehicle is controlled by a constant velocity502
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model and it will decelerate if its Radar detects some obstacles in front of it. All other objects are503

controlled by the scenario generation algorithm. The parameters of simulators and 3 environments504

are summarized in Table 3.505

B.2 Definitions of Nodes and Edges in Causal Graph and Behavior Graph506

In our experiments, we pre-define the types of nodes and types for Causal Graph and Behavior Graph,507

which is summarized in Table 4. Both of them share the same definition of node types. Causal Graph508

does not have the type of edges since it only describes the structure.509

Table 4: Definitions of Nodes and Edges

Notation Category Description

nN Node type empty node used as a placeholder in the vector
nE Node type represents ego vehicle
nV Node type represents non-ego vehicles
nB Node type represents static objects in the scenario
nP Node type represents pedestrian

eN Edge type empty edge used as a placeholder in the vector
eT Edge type the source node go toward the target node
eS Edge type self-loop edge that does not rely on target node

ep Edge attribute the initial 2D position of source node relative to target node
ev Edge attribute the initial velocity of source node relative to target node
ea Edge attribute the acceleration of source node relative to target node
es Edge attribute the shape size of the object in source node

C Model Training Details510

Our model is implemented with PyTorch, using Adam as the optimizer. All experiments are conducted511

on NVIDIA GTX 1080Ti and Intel i9-9900K CPU@3.60GHz. We summarize the parameters of our512

model in Table 5. Note that the two variant models (Baseline and Baseline+COM) share the same513

parameters.514

Table 5: Parameters of Environments

Parameter Description Value

E episode number of REINFORCE 500
B Batch size of REINFORCE 128
α learning rate of REINFORCE 0.0001
T sample temperature 0.5

m maximal number of node 10
n number of node type 5
n number of node type 5
h1 number of edge type 2
h2 number of edge attribute 3
K number of flow layer 2
dh dimension of hidden layer 128
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Figure 6: Screenshots of three generated scenario in our simulator. The pink color represents the ego
vehicle, the green color represents the pedestrian, and the blue color represents other vehicles. The
red rectangle indicates the occurrence of a collision.

D More Experiment Results515

D.1 Qualitative Results of Generated Scenarios516

We show three qualitative results of generated safety-critical scenarios in Figure 6.517

D.2 Diversity of Generated Scenarios518

By injecting the causality into the generation process, we also restrict the space of generated scenario.519

Therefore, there usually exists a trade-off between the diversity and efficiency of generation. To520

analyze the diversity we lose by using the causal graph, we plot the variances of velocity and position521

of vehicles and pedestrians in Figure 7. We can see that the difference between the two models is522

very small, which indicates that the diversity of our CausalAF method is not decreased due to the523

injection of the causal graph.524

Figure 7: Variance of position and velocity of generated scenarios from two different models. One is
with causal graph and the other is without causal graph.
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