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ABSTRACT

Deciphering the pathways of protein folding and unfolding under tension is es-
sential for deepening our understanding of fundamental biological mechanisms.
Such insights offer the potential to develop treatments for a range of incurable and
fatal debilitating conditions, including muscular disorders like Duchenne Muscular
Dystrophy and neurodegenerative diseases such as Parkinson’s disease. Single
molecule force spectroscopy (SMFS) is a powerful technique for investigating
forces when domains in proteins fold and unfold. Currently, manual visual in-
spection remains the primary method for classifying force curves resulting from
single proteins; a time-consuming task demanding significant expertise. In this
work, we develop a classification strategy to detect measurements arising from
single molecules by augmenting deep learning models with the physics of the
protein being investigated. We develop a novel physics-based Monte Carlo engine
to generate simulated datasets comprising of force curves that originate from a
single molecule, multiple molecules, or failed experiments. We show that pre-
training deep learning models with the simulated dataset enables high throughput
classification of SMFS experimental data with average accuracies of 75.3± 5.3%
and ROC-AUC of 0.87± 0.05. Our physics augmentation strategy does not need
expensive expert adjudication of the experimental data where models trained using
our strategy show up to 25.9% higher ROC-AUC over the models trained solely
on the limited SMFS experimental data. Furthermore, we show that incorporating
a small subset of experimental data (∼ 100 examples) through transfer learning
improves accuracy by 6.8% and ROC-AUC by 0.06. We have validated our re-
sults on three new SMFS experimental datasets. To facilitate further research in
this area, we make our datasets available and provide a Python-based toolbox
(https://anonymous.4open.science/r/AFM_ML-2B8C).

1 INTRODUCTION

Many biological processes depend on controlling mechanical forces achieved via the folding and
unfolding of domains in molecules like titin (Rief et al., 1997; 1998; Oberhauser et al., 2000),
dystrophin and its homologue utrophin (Rajaganapathy et al., 2019; Ramirez et al., 2023), neurotoxic
proteins (Hervás et al., 2012), and extracellular matrix protein tenascin (Oberhauser et al., 1998). For
example, dystrophin and utrophin work as molecular shock absorbers that limit myofiber membrane
damage when undergoing reversible unfolding upon muscle stretching and contraction Ervasti (2007).
Evidently, studying mechanical properties of single proteins can provide vital insights for unravelling
mechanisms of diseases, that include neurodegenerative disorders (Hervás et al., 2012; Ruggeri
et al., 2018) and muscle degeneration disease Duchenne Muscular Dystrophy (Ramirez et al., 2023;
Hoffman et al., 1987). Instruments such as optical tweezers (Ashkin et al., 1986) and atomic force
microscopes (AFMs) (Binnig et al., 1986) have enabled single molecule force spectroscopy (SMFS),
where molecular forces in the femto to nano-Newton range, over sub-nanometer to micrometer
distances, can be measured and studied. In an SMFS experiment, measurements from a force probe
are recorded while it is made to interact with molecules of interest. Since the size of a typical force
probe is orders greater than a typical bio-molecule, the probe may come in contact with one or more
molecules. Measurements obtained from interactions involving more than one molecule confound
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the interpretation of results and are undesirable in characterizing the behavior of single molecules.
Thus, identifying measurements that originate from single molecules is important in SMFS.

The use of chemical functionalization of probes, along with molecular fingerprints has emerged as an
approach for identifying single molecule force curves (Yang et al., 2020). Chemical functionalization
modifies the surface of the force probe and substrate to enable site-specific attachment of proteins,
where fingerprints are well-characterized molecules that yield distinct unfolding patterns. However,
surface chemical functionalization is time-consuming, often taking at least 6 hours (Zimmermann
et al., 2010), and demands careful handling and practice, as probes are delicate and easy to break.
Here it is possible for multiple molecules to attach to the probe; however, fingerprints in the force
curves can be leveraged to discern single molecule force curves from force curves that result from
multiple molecules.. Moreover, advanced filtering techniques, informed by an understanding of all
molecules involved in the complex, are essential for effectively identifying single molecule force
curves (Yang et al., 2020).

In contrast, conducting experiments without functionalizing probes and introducing fingerprints into
the native protein has significant advantages. Probes without functionalization are easier and less
expensive to manufacture, and bio-molecules without fingerprints engineered into their structure are
easier to synthesize. Moreover, there is greater confidence that the experimental data characterizes the
unaltered native bio-molecule without any confounding effects introduced by fingerprints. Despite
these advantages, when there are no fingerprints, distinguishing data that originate from single
molecules and multiple molecules is more challenging. Currently, the most widely accepted method
for distinguishing the data is based on visual inspection, which is a time-consuming process that
demands a high level of expertise (Bornschlögl and Rief, 2011; Lyubchenko, 2018). Additionally,
force curves need to be collected from a large number of experiments, not only to ensure statistical
confidence but also because the protein concentration is generally lowered to minimize the possibility
of multiple molecules (Ramirez et al., 2023; Oberhauser et al., 2000). These factors make it chal-
lenging to obtain precise statistics of single molecular force curves and to generate a large, annotated
dataset appropriate for training deep learning models.

To address these challenges, we develop an effective classification strategy, where we augment deep
learning models with the physics of protein unfolding, that can accurately classify force curves
from real physical SMFS experiments into three classes: 1) no molecule, 2) single molecule, and 3)
multiple molecules. We propose a physics-based Monte Carlo simulation algorithm to generate a
large, well-annotated, and balanced dataset for model training. We also test our model performances
on three new SMFS experimental datasets, obtained from non-specific pulling of multi-domain
molecules: titin, utrophin, and dystrophin (Hua et al., 2024). Our results show deep learning models
pre-trained with simulated datasets achieve average accuracies of 75.3± 5.3% and area under the
receiver operating characteristic curve (ROC-AUC) (Fawcett, 2006) of 0.87 ± 0.05 across three
SMFS experimental datasets. Our physics augmentation strategy not only lessens the need for
expensive annotations from experts but also outperforms the models trained from limited SMFS
experimental datasets directly, achieving up to 25.9% higher ROC-AUC. Additionally, the accuracy
and ROC-AUC can be further improved by 6.8% and 0.06, respectively, when incorporating a small
subset of experimental data (∼ 100 examples) via the transfer learning technique (Pan and Yang,
2010). Furthermore, this work presents the first publicly accessible SMFS experimental datasets
derived from non-specific pulling of three unique multi-domain proteins and associated codes.

2 RELATED WORK

Single molecule classification A 1D convolutional neural network trained using a triplet loss
function (Hoffer and Ailon, 2018) was utilized to classify single molecule force curves into single,
multiple, or no molecule classes, with reported accuracy ranging from 65− 70% (Waite et al., 2023).
Moreover, a machine learning workflow was proposed to iteratively classify different unfolding
pathways of single molecule curves, achieving high accuracy after sufficient iterations (Doffini
et al., 2023). However, these two datasets were collected with chemically functionalized probes and
fingerprints. The chemical functionalization process is dependent on the specific protein and thus
cannot be made agnostic to the protein under investigation. Moreover, in the first dataset, each single
molecule curve contains only one unfolding event (Waite et al., 2023), simplifying the classification
problem; the second dataset comprises images rather than time series data (Doffini et al., 2023),
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Figure 1: Illustration of AFM based SMFS. (a) Schematic showing the desirable case of a single
protein molecule with four folded domains under tension between the tip of the AFM cantilever
and the substrate. The deflection d and the separation between the cantilever and the substrate z
are measured. The tensile force on the protein is computed from the deflection d. (b) Depictions
of possible scenarios, categorized into three classes: (1) no molecule present between the tip and
substrate, (2-3) a single molecule or a section of a single molecule present between the tip and the
substrate, and (4-6) multiple molecules or sections of multiple molecules between the tip and the
substrate. (c-e) Show example force curves representative of the three different classes, with blue
circles highlighting unfolding events.

yet which introduces redundancy given that force curves are inherently time series data. There are
currently no available time series datasets from non-specific pulling of multi-domain proteins. Here,
we construct such datasets for classification purposes.

Time series classification (TSC) More than hundreds of time series classification (TSC) algorithms,
including both non-deep learning methods (Bagnall et al., 2017) and deep learning methods (Fawaz
et al., 2019; Wang et al., 2016), are present in prior-art. Although more than 80 different datasets from
the University of California, Riverside (UCR) time series classification repositories (Dau et al., 2019)
are evaluated with these methods, none of these datasets include SMFS data. Moreover, methods that
do not use deep learning become computationally intensive and impractical to execute on large-scale
datasets (Bagnall et al., 2017; Fawaz et al., 2019). In this article, we leverage deep learning methods
to classify our SMFS datasets.

Data augmentation Data augmentation is shown to be successful in addressing the challenges posed
by limited data and reducing overfitting in time series datasets (Iwana and Uchida, 2021). Existing data
augmentation techniques primarily focus on manipulation of magnitude and timescale information
already present in the data, without explicitly incorporating information from the underlying physics
that generates the time series. In our study, we propose a strategy that employs the physics of protein
unfolding behavior toward data augmentation; we corroborate the effectiveness of such an approach
in Section 6.

3 SMFS PRELIMINARIES

We first describe an atomic force microscope (AFM) based SMFS setup that is employed to obtain
force curves of proteins with multiple domains. Here, a microcantilever with a sharp tip is pressed
against a substrate on which the proteins under study are deposited. Under applied force, parts of
one or more protein molecules are non-specifically attached to the cantilever tip; characterized by
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a stochastic adhesion event (Leite et al., 2012). Upon retraction of the cantilever from the surface,
sections of the proteins between the tip of the cantilever and the substrate experience a tensile force.
The record of the force experienced by the cantilever (and therefore the protein) versus protein
extension q is known as a force curve, as depicted in Figure 1c-e. If only one protein molecule
is present between the cantilever tip and substrate, the force curve unveils important mechanical
properties of the protein molecule. We illustrate such a scenario in Figure 1a, where a single protein
molecule with four folded domains is attached between the substrate and the tip of the cantilever. As
the cantilever retracts, the protein experiences mechanical tension, causing the stochastic unfolding of
a folded domain. The applied force drops abruptly when a domain unfolds, as highlighted by the blue
circles in Figure 1d. This process continues until either all domains are unfolded or the connection
between the cantilever and the substrate is broken (which is a stochastic detachment event (Rief et al.,
1997)), producing a saw-tooth pattern of force curves (Figure 1d).

In practice, the force curves can be categorized into one of three classes - 1) No molecule: where no
molecule is present between the tip and substrate, 2) Single molecule: when only a single molecule
or a section of a single molecule is present, or 3) Multiple molecules: where multiple molecules or
sections of multiple molecules are present between the tip and substrate. Example experimental force
curves corresponding to these three classes are depicted in Figure 1c, 1d, and 1e respectively. The
single molecule class may include traces with a portion of multi-domain protein (Figure 1b (2,3));
the multiple molecules class may involve a combination of different numbers of domains (Figure 1b
(4-6)). The no molecule traces do not contain useful information about the protein molecule. The
force curves originating from multiple molecules typically exhibit larger unfolding forces than those
with a single molecule (Figure 1e) and have a mixture of unfolding events that cannot be traced
back to a specific protein molecule, confounding useful interpretation. Therefore, excluding force
curves with no molecule and multiple molecules is necessary to obtain accurate and interpretable data
from SMFS. The identification of the single molecule force curves is challenging due to a number of
reasons: 1) a large number of force curves (1000-5000) need to be collected in a single experiment
since protein capture success rates are kept at 1-5% (Oberhauser et al., 2000; Ramirez et al., 2023),
2) the study of a specific protein involves at least three replications for confidence on results, 3)
the force curves are corrupted with substantial noise both from instrument measurement noise and
intrinsic thermal noise of the molecules, and 4) often the proteins under investigation have no prior
characterization which makes the adjudication time consuming and difficult even for domain experts.

4 METHODS

4.1 SIMULATING PROTEIN UNFOLDING

Monte Carlo Simulation based methods are used widely in the SMFS studies, yielding results that
closely align with experimental data (Liu et al., 2020; King et al., 2010). However, prior simulation
frameworks are restricted to the idealized case of force curves arising from single molecule. To
build a comprehensive training dataset, we incorporate the real cases of force curves generated by no
molecule and multiple molecules. Additionally, we model the cases where only partial sections of
molecules are present as well as the stochastic adhesion and detachment events, of the cantilever to
the protein, to better approximate experimental data.

For the simulations, N proteins are considered with i-th protein having D(i) folded domains attached
between the substrate and the force probe. The base of the cantilever probe is moved away at a
constant speed v; here the position of the base of the cantilever z is initialized at zero and is updated
every ∆t seconds. The protein extension q is determined by solving the equation,

kcd =

N∑
i=1

F
(i)
WLC(q, L

(i)
c , L(i)

p ), (1)

where kc is the spring constant of the cantilever, and d is the deflection (Fig 1a). Here,
F

(i)
WLC(q, L

(i)
c , L

(i)
p ) is the worm-like chain (WLC) model that relates the force applied to the

extension of i-th protein, given by (Rief et al., 1999),

F
(i)
WLC(q, L

(i)
c , L(i)

p ) :=
kBT

L
(i)
p

 1

4
(
1− q

L
(i)
c

)2 −
1

4
+

q

L
(i)
c

 , (2)
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Algorithm 1 Monte Carlo Simulation

Require: v, L(i)
c , L(i)

p , ∆L
(i)
c , ∆L

(i)
p , k0, ∆x‡, ∆G‡, N , D(i)

Initialization: z ← 0, U (i) ← 0
1: for t← 0 : ∆t : T do
2: z ← z + v∆t
3: Solve (1) for q
4: for i← 1 : 1 : N do
5: Calculate F

(i)
WLC using (2)

6: Compute koff (F
(i)
WLC) using (5)

7: Compute P
(i)
u (F

(i)
WLC) using (3)

8: Draw η(i) ∼ U[0,1]
9: if η(i) < P

(i)
u (F

(i)
WLC) then

10: L
(i)
c ← L

(i)
c +∆Lc, L(i)

p ← L
(i)
p +∆Lp

11: U (i) ← U (i) + 1
12: end if
13: Draw η

(i)
d ∼ U[0,1]

14: if U (i) == D(i) and η
(i)
d < Pd(F

(i)
WLC) then

15: L
(i)
c ← L

(i)
c + CLc, L(i)

p ← L
(i)
p + CLp

16: end if
17: end for
18: end for

where kB is the Boltzmann constant, T is temperature, and L
(i)
c and L

(i)
p are the contour length and

the persistence length of the i-th protein, respectively. For the i-th protein, the probability of a domain
unfolding during the time interval ∆t is found by

P (i)
u (F

(i)
WLC) = (D(i) − U (i))(1− e−koff (F

(i)
WLC)∆t), (3)

where U (i) is the number of unfolded domains which is initially set to zero, and koff (F
(i)
WLC) is the

transition rate that can be determined with the Dudko-Hummer-Szabo model (Dudko et al., 2008)
(See Appendix A.1).

For determining unfolding events of i-th protein, a random number η(i) is generated uniformly from
0 to 1 and is compared to the unfolding probability P

(i)
u (F

(i)
WLC). No unfolding event is triggered

if the random number is larger than P
(i)
u (F

(i)
WLC); the simulation will continue to the next time slot

by adding time interval ∆t. Otherwise, one of the domains is unfolded, leading to a increase in the
number of unfolded domains, U (i), by 1, and the simulation continues to the next unfolding event if
folded domains still exist after updating contour length and persistence length via adding increments
∆L

(i)
c , ∆L

(i)
p respectively.

Once all domains in i-th protein unfold, the protein detaches from either the cantilever tip or substrate
based on the detachment probability,

Pd(F ) =

{
Cd F ≥ Ftd

0 F < Ftd
, (4)

where Cd is a constant and Ftd is a random number sampled from the Gaussian distribution, denoting
the threshold at which the detection of detachment begins. Upon detachment of the i-th protein,
its WLC force is reduced to zero by adding large constants (CLc and CLp) to contour length L

(i)
c

and persistence length L
(i)
p respectively. To better replicate experimental force curves, we introduce

Gaussian noise to the WLC force immediately after its calculation at line 5 of Algorithm 1. The
adhesion force (see Appendix A.2) is added at the end of the simulation process.
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Figure 2: Deep learning models with reference curves, showcasing with Fully Connected Network
(FCN) architecture.

4.2 AUGMENTING DEEP LEARNING MODELS WITH THE PHYSICS OF PROTEIN UNFOLDING

Given the challenge of constructing a large, well-annotated dataset using SMFS experimental data, we
pre-train the deep learning models with simulation data. By utilizing simulation data, we effectively
incorporate the underlying physics of protein unfolding into our analysis. Our simulation (Sec 4.1) is
carried out using the WLC model. The WLC model encapsulates the physics of the protein unfolding,
accurately describing the entropic spring like behavior of the protein between two unfolding events of
the protein, which is also corroborated by experimental data. Subsequently, we test the performance
of these pre-trained deep learning models using experimental data.

Data augmentation via linear combinations of examples from different classes is shown to be effective
in image classification (Summers and Dinneen, 2019; Tokozume et al., 2018a; Huang et al., 2020)
and sound recognition (Tokozume et al., 2018b). Here, we incorporate M ∈ N reference curves
to augment the curve under classification. The reference curves are randomly sampled simulated
force curves from the training dataset. Each reference curve xi is augmented with the input curve
x via the difference between two curves (x − xi) as additional channels, resulting in a total of
M + 1 channels. The input curve x can be either a simulated or experimental force curve undergoing
classification. This augmented input [x, x− x1, · · · , x− xM ]

T , comprising the input curve and the
reference curves, is then passed through deep learning models (Figure 2). The output layer is a
softmax layer with three neurons, corresponding to the three classes.

We choose two baseline methods: multi layer perception (MLP) (Wang et al., 2016), which was
proposed as a baseline architecture for time series classification (TSC); and the triplet network
(Triplet), which was applied on the Discoidin domain receptors (DDRs) dataset (more details in
Section 5) (Waite et al., 2023). In addition to these baseline methods, we explore fully connected
neural networks (FCN), the residual networks (ResNet), which are two of the highest performing deep
neural networks on the UCR time series classification archive (Fawaz et al., 2019). We also investigate
the Inception network (InceptionNet) and InceptionTime, an ensemble of five InceptionNet models
initialized randomly, which is the current state-of-the-art deep learning model on the UCR archive
(Ismail Fawaz et al., 2020). More details of deep learning models can be found in Appendix B.1.

5 DATASETS

Here, we construct both simulated and experimental datasets from the non-specific pulling of three
multi-domain molecules: Titin I27O, an engineered protein composed of eight repeats of the Ig 27
domain of human titin; utrophin (UtrN-R3) and dystrophin (DysN-R3), fragments encoding the N
terminus through spectrin repeat 3. The simulated data were generated using our comprehensive
simulation engine, while the experimental data were collected from real physical experiments, as
previously described (Hua et al., 2024). For the experimental data, force curves were collected on
different days and at various pulling speeds, as outlined in Table 1. As a result, the lengths of the
force curves are different, and substantial variations exist even within the same class. Annotation
is performed through visual inspection of the unfolding force curves. The comparison between

6
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Table 1: Details of experimental datasets

Dataset Number of curves
per class Lengths Different days Pulling speeds

[nm/s]

DDRs
(Waite et al., 2023) [102,102,136] 400 NA 2000

Titin I27O [181,164,191] 736-4859 5 500, 1000, 2000
UtrN-R3

(Hua et al., 2024) [175,166,200] 1777-8890 11 500, 1000, 2000

DysN-R3
(Hua et al., 2024) [191,185,177] 1659-4814 6 500, 1000, 2000

simulated and experimental data is discussed in Section B.5. A dataset with n samples D =
[(F1, Y1), (F2, Y2), . . . (Fn, Yn)] is a collection of pairs (Fi, Yi), where Fi is the force data out
of the force curve and Yi ∈ {0, 1, 2} is its label corresponding one of three classes. The force
data F = [F1, F2, . . . FT ] is a sequential set of force values, where T represents the length of
F . Additionally, we include the DDRs dataset (Appendix B.2) Waite et al. (2023) to compare the
performance of different deep learning methods.

Titin I27O Monte Carlo simulations require molecular parameters like contour length, persistence
length, and their corresponding increments, which are estimated from experimental data, molecular
structure, and energy landscape parameters, which are listed in Table 2. The simulation data,
comprising 6400 force curves, is generated for three classes; Class 0 has no protein between the
substrate and cantilever tip, Class 1 has one protein, and Class 2 has at least two proteins attached.
The number of initially folded domains in each protein D(i) varies from 1 to 8, as illustrated in Figure
6a-c. The experimental dataset is balanced, with approximately 180 force curves for each class,
resulting in a total of around 550 force curves (Table 1), with examples illustrated in Figure 6d-f.

UtrN-R3 and DysN-R3 The simulation datasets for both UtrN-R3 and DysN-R3, each consisting
of 6,400 force curves, were generated using parameters in Table 2, and the experimental datasets
comprise approximately 180 force curves in each class (Hua et al., 2024). Example curves from
both simulation and experiment for UtrN-R3 and DysN-R3 can be found in Figure 7 and Figure
8, respectively. The noise in both UtrN-R3 and DysN-R3 datasets is more prominent compared to
Titin I27O dataset as UtrN-R3 and DysN-R3 unfold at smaller forces. Moreover, both UtrN-R3 and
DysN-R3 are natural proteins, unlike Titin I27O, which is an engineered protein. These factors make
both UtrN-R3 and DysN-R3 datasets more challenging for classification.

6 RESULTS AND DISCUSSION

For each of our three protein molecules, Titin I27O, UtrN-R3, and DysN-R3, unless otherwise
specified, all deep learning models were pre-trained using 80% of corresponding simulated data for
3-class classification, with the remaining 20% used for validation to monitor overfitting (A detailed
discussion of overfitting is provided in C.1). The pre-trained models were subsequently tested on
70% of the experimental datasets, while the remaining 30% was reserved for transfer learning or
direct training purposes. Each training was repeated five times, and the model performance was
evaluated based on overall accuracy, weighted F1-score, and weighted ROC-AUC. The data underwent
preprocessing, including trimming, resampling, and min-max normalization, with additional details
provided in Appendix B.3 and implementation details in Appendix B.4. Preprocessing and results for
DDRs are provided in Appendix C.2. Unless specified otherwise, one randomly selected reference
curve (M = 1) was used, as discussed in Section C.3.

We ranked each deep learning model based on its overall accuracy for each dataset, where rank
1 indicates the most accurate model. The datasets consist of both simulated validation sets and
experimental testing sets for all protein molecules. The average rank for each model across all
datasets was then computed and visualized using a critical difference diagram (Demšar, 2006). In
Figure 3, thick horizontal lines represent a group of classifiers that are not significantly different in
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terms of accuracy. For statistical analysis, we employed the Wilcoxon signed-rank test with Holm
correction as the post-hoc test following the Friedman test (Fawaz et al., 2019; Demšar, 2006).

Our data show that ResNet outperforms the other deep learning models, though its performance is
statistically equivalent to to InceptionTime, FCN, and InceptionNet (Figure 3). We selected ResNet
for further evaluation, with a focus on its performance on the experimental testing set, as this is our
primary objective.

Figure 3: Critical difference diagram of different deep learning models the simulated validation and
experimental testing sets for each protein molecule based on average accuracies. The most accurate
model is assigned a rank of 1, with a thick horizontal line representing a group of classifiers that do
not exhibit statistically significant differences in accuracy.

6.1 PHYSICS AUGMENTATION IMPROVES THE PERFORMANCE

We evaluate the physics augmentation strategy, via pre-training with simulation datasets, and compare
it to models trained directly from experimental data across three SMFS experimental datasets.

cba Titin I27O DysN-R3UtrN-R3

Figure 4: The performance of ResNet trained with different proportions of experimental datasets
(training proportion) across three datasets: (a) Titin I27O, (b) UtrN-R3, and (c) DysN-R3. Dashed
lines are the results of models trained directly from experimental data, while solid lines represent
results achieved via the physics augmentation strategy, with error bars indicating standard deviations
over five runs.

We trained deep learning models directly from experimental data, utilizing different proportions
ranging from 0.05 to 0.2 of the whole dataset. The training data were drawn from 30% of the
experimental datasets, while the remaining 70% were reserved as a common testing dataset, with
metrics presented as dashed lines in Figure 4. For a training proportion of 0.05, the models exhibit
poor performance, with ROC-AUC of 0.7 and accuracy of 0.5 across all three datasets. As the amount
of experimental data increases, the performance improves, achieving ROC-AUC of 0.8 and accuracy
of 0.7 across three datasets.

With the physics augmentation strategy, deep learning models were initially trained with simulation
data, and subsequently tested on 70% of the experimental data. ResNet achieves ROC-AUC of
at least 0.8 across all three datasets when no experimental data is used (training proportion = 0),
outperforming the performance of training directly from experimental data consistently as train
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size varies from 0.05 to 0.2. Moreover, the performance of physics-augmented models can be
further enhanced through transfer learning, which effectively bridges the gap between simulation and
experimental data. Particularly, the accuracy of transfer learning is approximately 0.2 and 0.1 higher
than training directly from experimental data when training proportion is 0.05 and 0.2, respectively
(Figure 4).

6.2 NON-HOMOGENEITY INTRODUCES MORE CHALLENGES

The ROC curves (Figure 5) for ResNet were generated using the One-vs-Rest strategy, where a
given class is regarded as the positive class and the remaining classes are regarded as the negative
class as a bulk. For Titin I27O, the ROC-AUC remains consistently high, above 0.94 in all cases,
regardless of whether experimental data is included in training (Figure 5a, Table 5). For both
utrophin and dystrophin, the no-molecule class consistently performs well (ROC-AUC is 1.0) whether
experimental data is used for training or not. However, significant improvements are observed for the
single-molecule and multiple-molecule classes when experimental data is used during training, with
ROC-AUC of single-molecule class increasing by approximately 0.2 for both utrophin and dystrophin
(Figure 5b-c, Table 5). This suggests notable differences between simulation and experimental data
for both utrophin and dystrophin.

cba

Transfer learning with 20% of experimental data:

Trained with simulation data only:

Titin I27O UtrN-R3 DysN-R3

Figure 5: ROC curves from a single run for three datasets, (a) Titin I27O, (b) UtrN-R3, and (c)
DysN-R3 using ResNet. ROC curves are plotted using One-vs-Rest strategy, with no molecule, single
molecule and multiple molecules classes depicted in yellow, red and blue, respectively. Solid lines
represent results trained with simulation data only, while dashed lines indicate results from transfer
learning with 20% of experimental data used for training. These ROC curves are generated using
70% of experimental data, with the corresponding ROC-AUC in Table 5.

The ROC curves allow us to adjust the optimal probability threshold. We can achieve high precision
but accept low sensitivity to ensure the reliability of single molecule data statistics. The probability
threshold can be chosen to tune for a minimum sensitivity or for a minimum specificity. For example,
we have selected the thresholds to achieve 97%, 83%, and 82% of the positive identifications of
single molecule are correct, for Titin I27O, UtrN-R3, and DysN-R3, respectively. Thus the method
can effectively filter data such that inferences can be drawn from true single molecule experiments.
Alternatively, we can aim for high sensitivity but accept low precision to avoid losing data, given the
scarcity and high cost of producing SMFS data (Appendix C.4).

We further investigated the possible reasons for the superior performances of Titin I27O compared
to UtrN-R3 and DysN-R3. Titin I27O has identical domains whereas utrophin and dystrophin have
heterogeneous domains. The simulation model we use assumes identical folded domains in a protein.
A model that can simulate a molecule with heterogeneous domains requires the model parameters for
each domain. These parameters are not available for UtrN-R3 and DysN-R3. Thus, we hypothesize
that when information about the molecular domains is missing in the simulation model, the addition
of a small batch of experimental data in training provides substantial improvements in performance.
This is the case with molecules with heterogeneous domains.
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7 CONCLUSIONS AND LIMITATIONS

Single-molecule force spectroscopy (SMFS) data of protein molecules are time and resource intensive
to collect. Currently, manual visual inspection remains the primary method for classifying force
curves resulting from single proteins. These factors make it challenging to obtain precise statistics
of single molecular force curves and to generate a large, annotated dataset appropriate for training
deep learning models. Consequently, the study of deep learning methods for single-molecule force
spectroscopy data is very limited. To address these challenges, we developed an effective classification
strategy, where we augment deep learning models with the physics of protein unfolding, enabling
accurate detection and classification of SMFS experimental data as originating from no molecules,
single molecules, or multiple molecules.

We introduce a physics-based simulation algorithm to generate large and well-annotated data across
classes of no molecule, single molecule, and multiple molecules. We also provide experimental
datasets, obtained from non-specific single molecule force spectroscopy of three molecules: Titin
I27O, UtrN-R3, and DysN-R3. We demonstrate that deep learning models exhibit better performance
when pre-trained with our physics-based simulation data than when trained directly using the labeled
experimental data. Our physics augmented strategy does not require labeling of the experimental data,
avoiding the need for expensive expert adjudication and human bias. In cases where the molecule
under study does not have accurate model parameters, we show that the addition of a small amount
(approximately 20%) supplemental experimental data to the training data and the use of transfer
learning, improves average accuracies improved by 6.8%.

We identify the following limitations in our study. First, we use the adjudication of a single expert to
label the SMFS experimental data used for testing performances. Second, the simulation algorithm
relies on energy landscape parameters, which are not straightforward to obtain and typically neces-
sitate experiments involving multiple pulling speeds or constant forces. Transforming our physics
augmented classification strategy to be agnostic to the energy landscape parameters is beyond the
scope of this study. However, our method does not heavily depend on accurate simulation parameters,
as discussed in Section C.5. Third, in our physics-based protein unfolding model, we assume every
protein domain behaves identically. However, many proteins, including utrophin and dystrophin
have folded domains that are significantly different from each other. Developing methods that can
extract the individual energy landscapes of the different dissimilar domains in a protein is likely to
aid in identifying single molecule force curves arising from proteins with dissimilar domains. The
development of techniques to extract distinct energy landscapes from a small amount of experimental
data should be investigated in the future.
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A MORE SIMULATION DETAILS

A.1 THE DUDKO-HUMMER-SZABO MODEL

Dudko-Hummer-Szabo (DHS) model (Dudko et al., 2008) provided an expression to find the force-
dependent transition rate koff (F ) by,

koff (F ) = k0

(
1− νF∆x‡

∆G‡

) 1
ν −1

e
β∆G‡

[
1−

(
1− νF∆x‡

∆G‡

)1/ν
]
, (5)

where k0 is the intrinsic transition rate, ∆x‡ is the distance to energy barrier, ∆G‡ is the energy
barrier height, and β = 1

kBT , and ν = 1/2 or 2/3, representing the cusp-like or linear-cubic energy
landscape. Here k0, ∆x‡, and ∆G‡ are defined in the absence of external force. The parameters for
Titin I27O are reported by (Dudko et al., 2006), while those for UtrN-R3 and DysN-R3 are reported
by (Hua et al., 2024).

Table 2: DHS model parameters of three molecules: Titin I27O, UtrN-R3, and DysN-R3

Molecules DHS ν = 1/2
ln(k0) ∆x‡ [nm] ∆G‡ [kBT ]

Titin I27O (Dudko et al., 2006) −9.210 0.400 20
UtrN-R3 (Hua et al., 2024) −2.501 0.375 9.300
DysN-R3 (Hua et al., 2024) −4.501 0.600 11.500
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A.2 ADHESION FORCE MODEL

The adhesive force can be composed of various components like van der Waals force, capillary
force, and chemical forces, which depend on environmental conditions such as roughness, interacting
angles, and wetness (Leite et al., 2012; Israelachvili, 2011). However, quantifying these environmental
conditions is challenging, and they can vary significantly between experiments. Consequently, we
adopt a straightforward yet versatile method to model adhesive force rather than a more intricate
approach,

Fa(t) =


t
t1
Fad 0 < t < t1

t−t2
t2−t1

Fad t1 < t < t2
0 else

, (6)

where the adhesive force increases linearly in the interval [0, t1], reaching the adhesive force threshold
Fad at t1, then adhesion between the cantilever tip and the substrate begins to disconnect at t1 and
vanishes at t2. The vanishing phase [t1, t2] should be much faster than the adhesive phase [0, t1],
with a common choice being to set t2 close to t1, for example, t2 = 1.1t1. To introduce stochasticity
and enhance generality, we assume both Fad and t1 to be Gaussian distributed random variables with
user-specified mean and standard deviation.

B DATASETS AND DEEP LEARNING MODELS

B.1 DEEP LEARNING MODELS

Baselines The MLP (Wang et al., 2016; Fawaz et al., 2019) contains three hidden fully connected
layers with 500 neurons each, with the RELU activation function. The final layer is a softmax
classifier with three neurons, corresponding to the three classes. Dropout rates of 0.1, 0.2, 0.2, and
0.3 are applied to the four layers, respectively. Additionally, a flatten layer is included to reshape the
augmented data. The categorical cross-entropy loss is employed in this case,

L(x) = −
K∑
j=1

yj log(ŷj), (7)

where x is the input time series, yj is j-th component of the one-hot encoding of the true label, and
ŷj is the predicted probability of x belonging to class j out of a total of K classes.

The triplet network (Hoffer and Ailon, 2018) takes three samples: the anchor x, the positive sample
x+, and the negative sample x−. Here, x is the sample under classification, x+ comes from the
same class as x, and x− is of different class. All three samples are passed through the same network
architecture, where the weights are shared, to learn representations in the embedding space. The
triplet loss is employed,

Ltriplet = max{0, ||Net(x+)−Net(x)||22 − ||Net(x−)−Net(x)||22 +m}, (8)

where || · || denotes the L2 norm, and m represents the margin parameter that controls the separation
between positive and negative samples in the embedding space. The objective is to minimize the
distance between the anchor and the positive sample while maximizing the distance between the
anchor and the negative sample in the embedding space. Subsequently, the resulting embeddings are
fed into the MLP described earlier to learn classification. The embedding network adopts the ResNet
structure, which will be elaborated on below.

FCN FCN (Wang et al., 2016) is composed of three convolutional blocks followed by a Global
Average Pooling (GAP) layer and a softmax layer, as illustrated in Figure 2. Each convolutional
block includes a 1D convolutional layer, batch normalization, and a Rectified Linear Unit (RELU)
activation layer. The output of the final convolutional block is passed through a GAP layer, followed
by a fully connected softmax layer. A stride of 1 with zero padding is used to preserve the length of
time series data. The filter sizes and kernel sizes of the three convolutional layers are {128, 256, 128}
and {8, 5, 3}, respectively.
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ResNet The ResNet (He et al., 2016) extends neural networks to very deep structures by incor-
porating shortcut connections. These connections enable the gradient flow directly through the
network, easing the training of deeper models. Our Residual Network (ResNet) comprises three
residual blocks followed by a GAP layer and a softmax layer. Each residual block contains three
convolutional blocks similar to those in the FCN architecture. The output of the last convolutional
block is added to the input of the residual block before proceeding to the next layer. The kernel size
for the three convolutional layers in each residual block remains consistent with FCN architecture,
set as {8, 5, 3}. The number of filters is the same within the same residual block, with filter sizes
specified as {64, 128, 128} for three residual blocks, respectively.

InceptionNet and InceptionTime InceptionTime ensembles the predictions of five InceptionNet
models, each with different initializations, to overcome the high variance across different runs
Ismail Fawaz et al. (2020). The InceptionNet model consists of two residual blocks, followed by a
global average pooling (GAP) layer and a softmax layer. Each residual block includes three Inception
modules instead of fully convolutional layers. The default hyperparameter values are used.

B.2 MORE DETAILS OF DATASETS

DDRs The dataset contains unfolding curves of interaction forces between DDRs and its ligand,
collagen, measured by AFM at the single molecule level (Waite et al., 2023). The dataset contains
three classes: 1) no molecule, 2) single molecule, and 3)multiple molecules. However, force curve
collection was conducted at a single pulling speed, and the dataset is standardized to have equal
lengths for each sample.

Figure 6 displays example force data traces for both simulation and experimental data of Titin I27O
across three classes. Similarly, Figure 7 and 8 show the corresponding examples for UtrN-R3 and
DysN-R3, respectively.

Experiment

d e f

cba

Simulation

Class 0 Class 1 Class 2

Figure 6: Titin I27O example traces from both simulation (a-c) and experimental (d-f) datasets of all
three classes; Class 0 has no protein between the substrate and cantilever tip, Class 1 has one protein,
and Class 2 has at least two proteins attached.

B.3 DATA PRE-PROCESSING

In both single molecule and multiple molecule cases, the force curve typically consists of two parts,
separated by the detachment of the event. Our interest lies in the region before detachment, where
unfolding events occur. Here, the force curves are trimmed to retain the region before detachment by
identifying the detachment point. This trimming process is illustrated in the transition from Figure 9a
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Experiment

d e f

cba

Simulation

Class 0 Class 1 Class 2

Figure 7: UtrNR3 example traces from both simulation (a-c) and experimental (d-f) datasets of all
three classes; Class 0 has no protein between the substrate and cantilever tip, Class 1 has one protein,
and Class 2 has at least two proteins attached.

Experiment

d e f

cba

Simulation

Class 0 Class 1 Class 2

Figure 8: DysNR3 example traces from both simulation (a-c) and experimental (d-f) datasets of all
three classes; Class 0 has no protein between the substrate and cantilever tip, Class 1 has one protein,
and Class 2 has at least two proteins attached.

to Figure 9b. To address the issue of unequal data length, linear interpolation is employed to resample
data to a uniform data length. This step is important since deep learning models require inputs of equal
length. Next, we normalize the time series, as depicted in the transition from Figure 9b to Figure 9c,
to ensure that the deep learning models focus on learning shapes rather than magnitudes. Magnitudes
might be misleading, given their wide range, as discussed in Section 4.2. For normalization, we
opt for min-max normalization, xscaled = x−xmin

xmax−xmin
, where xmin and xmax are minimum and

maximum values of the data x. We utilize tools from the publicly available time series library Tslearn
(Tavenard et al., 2020) to implement the two preprocessing steps: resampling and normalization.
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a

c

b

Figure 9: Data preprocessing example. (a) The original force curve. (b) The force curve after
trimming. (c) The force curve after normalization.

B.4 IMPLEMENTATION DETAILS

The MLP is trained with AdaDelta with learning rate 0.1 and decay rate 0.95 (Wang et al., 2016).
FCN, ResNet, InceptionNet, and InceptionTime are trained with Adam (Kingma and Ba, 2017) with
the learning rate 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 1e− 8. Triplet is also trained with the same
parameters to learn embeddings initially and then trained with the same parameters as MLP to learn
classifications. The best-performing model, determined by achieving the lowest training loss, is then
selected and evaluated on the experimental data. These models are trained with Apple M1 Pro, which
has 10-core CPU and 16-core GPU.

B.5 SIMILARITIES BETWEEN SIMULATED AND EXPERIMENTAL DATA

The experimental and simulated data are compared using statistically obtained unfolding forces,
with a particular focus on the most probable values. The unfolding force statistics originating from
single molecule are presented using violin plots for both experimental and simulated data of three
protein molecules: Titin I27O, UtrN-R3, and DysN-R3 (Figure 10). These violin plots illustrate data
distributions using kernel density estimation, represented as black lines on each side, where the width
of each curve indicates the relative frequency of data points. Black stars mark the most probable
values, corresponding to the widest sections of the violin plots.

We observe that the most probable values are quite similar between the simulated and experimental
data for all three protein molecules. Titin I27O shows the smallest difference at 1 pN, while UtrN-R3
and DysN-R3 exhibit differences of around 10 pN. However, there is a noticeable tail of high-
magnitude values in the experimental data, which may result from factors such as variations in sample
homogeneity or bond interactions.

C MORE RESULTS

C.1 DISCUSSION OF OVERFITTING

We have minimized the risk of overfitting by incorporating techniques such as dropout, global average
pooling, and batch normalization into the model (Goodfellow et al., 2016). Further, we evaluate
our model performances both on non-overlapping validation data derived from simulations and on
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Figure 10: Unfolding force distributions are depicted using violin plots, with black stars indicating
the positions of the most probable values. The violins represent data distributions through kernel
density estimation, shown as black lines on each side, with the width of each curve reflecting the
relative frequency of data points. Experimental and simulated data are visualized in purple and yellow,
respectively. The most probable values, from left to right, are 216.35, 217.75, 89.45, 96,65, 91.25,
and 79.75 pN.

test data consisting of previously unseen experimental data. We did not observe large deviations
in performance metrics between the training, validation, and test evaluations, indicating our risk of
overfitting is low.

The results for all deep learning models on simulated validation data from three protein molecules,
Titin I27O, UtrN-R3 and DysN-R3, are presented in Figure 11. FCN, ResNet, InceptionNet, and
InceptionTime outperform MLP and Triplet, achieving a near-perfect ROC-AUC of 1. This suggests
that our pre-trained models are not overfitting to the simulated training data.

a cbAccuracy F1-score ROC-AUC

Figure 11: The metrics, including (a) accuracy, (b) F1-score, and (c) ROC-AUC, for deep learning
models on simulated validation data from three protein molecules: Titin I27O, UtrN-R3, and DysN-
R3. Error bars indicate the standard deviations over five runs. One reference curve (M = 1) is used.

C.2 DDRS DATASET

All deep learning models except triplet were trained using 80% of the total dataset as the training
dataset and tested on the remaining dataset. Their performance is compared to that of the triplet
model reported in (Waite et al., 2023), as presented in Table 3. The dataset was pre-processed as
proposed in (Waite et al., 2023), which involves applying a numerical first-order derivative, followed
by a moving average filter with a window size of 13, and finally min-max normalization. Both FCN
and ResNet outperform Triplet, with at least 10% higher overall accuracy and F1 score.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: Overall accuracy, class accuracy, and F1-score of DDRs dataset for Triplet, MLP, FCN,
ResNet, InceptionNet, and InceptionTime are presented in the format of average (standard deviation)
from 5 runs. Among these models, InceptionNet demonstrates superior performance compared to the
others.

Models Overall
accuracy (%)

Class accuracy (%) F1-score
(%)Class 0 Class 1 Class 2

Triplet
(Waite et al., 2023) 66.70 73.30 63.30 63.30 66.70

MLP 34.84(3.53) 87.21(17.88) 10.94(12.49) 8.24(18.41) 22.59(8.54)
FCN 77.10(5.15) 81.22(4.96) 77.49(13.59) 73.48(10.06) 77.30(5.32)

ResNet 79.03(4.84) 81.90(10.52) 83.97(4.74) 70.92(7.44) 79.02(4.88)
IneptionNet 85.48(1.14) 97.14(2.61) 84.00(8.94) 72.50(12.96) 85.26(1.02)
IneptionTime 77.10(3.50) 87.97(6.99) 86.63(4.54) 57.48(12.95) 76.45(3.99)

Table 4: The accuracy, F1-score, and ROC-AUC for the Titin I27O dataset with M = 3 reference
curves are presented for the FCN and ResNet models. The performance is reported for both the
unbalanced and balanced reference curve selection methods, in the format of average (standard
deviation) over 5 runs. In the unbalanced criterion, reference curves are randomly selected without
regard to class balance, while in the balanced criterion, reference curves are equally selected from
each class. The unbalanced criterion slightly outperforms the balanced criterion across all metrics.

FCN ResNet
Balanced Unbalanced Balanced Unbalanced

Accuracy 0.8265(0.0366) 0.8519(0.0140) 0.7646(0.0556) 0.8108(0.0347)
F1-score 0.8220(0.0394) 0.8478(0.0145) 0.7559(0.0575) 0.8028(0.0322)

ROC-AUC 0.9460(0.0121) 0.9494(0.0068) 0.9187(0.0119) 0.9203(0.0257)

C.3 SIMULATED REFERENCE CURVES IMPROVE PERFORMANCE

We first empirically evaluated two different criteria for selecting reference curves—balanced and
unbalanced—using the Titin I27O dataset with M = 3 reference curves. FCN and ResNet were
selected for evaluation, as they are computationally lighter than InceptionTime while maintaining
competitive performance (Figure 3). The balanced criterion involved selecting reference curves
equally from each class in the training dataset, while the unbalanced criterion involved selecting
reference curves randomly from the entire training dataset without regard to class balance. As shown
in Table 4, the unbalanced criterion slightly outperformed the balanced criterion across all metrics.
Additionally, the unbalanced method does not require expert annotation, making it more efficient.
Therefore, the unbalanced criterion is used as the default method for selecting reference curves unless
otherwise specified.

We investigate the impact of the number of reference curves, M , on three datasets: Titin I27O,
UtrN-R3, and DysN-R3. The deep learning models were pre-trained with simulation data and
evaluated on all experimental data. For the Titin I27O dataset, when no reference curve is augmented
(M = 0), all models perform poorly on experimental data, with an accuracy of less than 0.8 (see
Figure 12). Augmenting one or three reference curves (M = 1 or M = 3) improves all metrics for
FCN, ResNet and InceptionNet, while no significant improvement can be observed for MLP and
Triplet. Particularly for FCN, the accuracy improves by more than 0.2. As the number of reference
curves increases to 5 or 7, the performance decreases. InceptionTime is not included in this analysis
for computational efficiency, as it is an ensemble of five InceptionNet models and is expected to yield
similar results.

For the UtrN-R3 dataset, FCN, ResNet, and InceptionNet exhibit similar performance across all
metrics, outperforming MLP and Triplet (Figure 13). Similarly, with the DysN-R3 dataset, FCN,
ResNet and InceptionNet demonstrate good performance, with MLP performing comparably as well
(Figure 14). However, the influence of the number of reference curves in both the UtrN-R3 and
DysN-R3 datasets is less pronounced compared to the Titin I27O dataset (Figure 12). In conclusion,
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cba Accuracy F1-score ROC-AUC

Figure 12: The metrics of deep learning models investigating the impact of the number of reference
curves M for Titin I27O experimental data, including (a) accuracy, (b) F1-score, and (c) ROC-AUC.
Each metric is plotted against the number of reference curves, which ranges from 0 to 7, with error
bars indicating the standard deviations over five runs.

using M = 1 as the number of reference curves emerges as the optimal choice, consistently yielding
superior performance with the Titin I27O dataset and comparable performance with the UtrN-R3 and
DysN-R3 datasets.

cba Accuracy F1-score ROC-AUC

Figure 13: The metrics of deep learning models investigating the impact of the number of reference
curves M for UtrN-R3 experimental data, including (a) accuracy, (b) F1-score, and (c) ROC-AUC.
Each metric is plotted against the number of reference curves, which ranges from 0 to 3, with error
bars indicating the standard deviations over five runs.

a cbAccuracy F1-score ROC-AUC

Figure 14: The metrics of deep learning models investigating the impact of the number of reference
curves M for DysN-R3 experimental data, including (a) accuracy, (b) F1-score, and (c) ROC-AUC.
Each metric is plotted against the number of reference curves, which ranges from 0 to 3, with error
bars indicating the standard deviations over five runs.
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Table 5: ROC-AUC of ROC curves in Figure 5 (ResNet).
Trained with

simulation data only
Transfer learning with

20% of experimental data
No

molecule
Single

molecule
Multiple

molecules
No

molecule
Single

molecule
Multiple

molecules
Titin 1.00 0.94 0.96 1.00 0.97 0.97

UtrN-R3 1.00 0.66 0.86 1.00 0.83 0.89
DysN-R3 1.00 0.62 0.82 1.00 0.82 0.82

C.4 ADJUSTING PROBABILITY THRESHOLDS

The primary goal is to identify single molecule force curves, so we simplify the problem from multi-
class to binary classification, focusing on distinguishing force curves from single molecules versus
those from no molecule and multiple molecules. By leveraging the ROC curve, which illustrates the
true positive rates (TPR) against the false positive rates (FPR) by varying the probability threshold tp,
we can choose the optimal probability thresholds top to classify these binary classes. The optimal
probability threshold top is determined by maximizing the difference between TPR and FPR with a
weight α ∈ R on FPR,

top = argmaxtp(TPR− α · FPR). (9)

Subsequently, optimal thresholds with varying α are applied to the binary classification task. The
results, compared to the original threshold, are presented in Figure 15 for ResNet. The models are
trained on simulation data and then evaluated on experimental data.

cba Titin I27O DysN-R3UtrN-R3

Figure 15: Performance of ResNet with varying probability thresholds for three datasets, (a) Titin
I27O, (b) UtrN-R3, and (c) DysN-R3 using ResNet.The x-axis represents values of α, with ’w/o
Threshold’ indicating no threshold is used.

A larger weight α imposes more a greater on false positive, thereby achieving high precision. For
example, the precision of single molecule class improved by 0.12 for UtrN-R3 when α = 10, 0.1 for
Titin I27O when α = 10, and 0.1 for DysN-R3 when α = 5. However, this improvement comes with
a trade-off in recall. This adjustment enhances the reliability of single molecule data statistics, as we
can be more confident that no-molecule and multiple-molecules force curves are not misclassified
as single-molecule class. Conversely, if the preference is to accept some false positives rather than
exclude any true positives as the data are expensive and scarce, α = 0.2 or 0.5 would be the choice to
achieve high recall, albeit with lower precision. The scenario where α = 10 is omitted for DysN-R3
because the ROC curve exhibits a gradual increase when the false positive rate is low (Figure 5c),
causing a negative difference in Equation 9.

C.5 THE DEGREE OF DEPENDENCE ON ACCURATE SIMULATION PARAMETERS

We intermingle the training and testing data to assess the degree of dependence on accurate simulation
parameters. We pre-trained ResNet using simulated data from three different protein molecules:
Titin I27O, UtrN-R3, and DysN-R3, each with distinct energy landscape parameters (Table 2). The
pre-trained models were then tested on three experimental datasets, with the results summarized in
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Table 6: Accuracy, F1-score, and ROC-AUC are recorded for ResNet pre-trained with different
simulation datasets across three experimental datasets: Titin I27O, UtrN-R3, and DysN-R3. Results
are presented as averages with standard deviations from five runs, and the best performance in each
row is bolded.

Pre-trained
with

Titin I27O
simulated data

Pre-trained
with

UtrN-R3
simulated data

Pre-trained
with

DysN-R3
simulated data

Pre-trained
with

Titin I27O +
UtrN-R3 +
DysN-R3

simulated data

Testing
accuracy

Titin I27O 0.8287(0.0217) 0.7724(0.0358) 0.7593(0.0165) 0.8716(0.0189)
UtrN-R3 0.5682(0.0784) 0.7320(0.0163) 0.6680(0.0072) 0.7094(0.0102)
DysN-R3 0.6090(0.0523) 0.6770(0.0120) 0.7164(0.0093) 0.7034(0.0077)

Testing
F1-score

Titin I27O 0.8221(0.0234) 0.7534(0.0504) 0.7459(0.0253) 0.8594(0.0223)
UtrN-R3 0.4808(0.0756) 0.6962(0.0288) 0.6504(0.0100) 0.6757(0.0139)
DysN-R3 0.5029(0.0549) 0.6107(0.0133) 0.6827(0.0126) 0.6550(0.0173)

Testing
ROC-AUC

Titin I27O 0.9474(0.0167) 0.9146(0.0145) 0.8960(0.0146) 0.9527(0.0076)
UtrN-R3 0.7987(0.0457) 0.8522(0.0090) 0.7664(0.0147) 0.8444(0.0069)
DysN-R3 0.7941(0.0535) 0.7753(0.0164) 0.8194(0.0190) 0.8301(0.0189)

Table 6. Although there is a performance drop when the training and testing datasets are mismatched,
the decrease is minimal, with a maximum reduction of 0.06 in ROC-AUC. Furthermore, by expanding
the pre-training dataset to include simulated data from all three molecules,Titin I27O, UtrN-R3, and
DysN-R3, we achieve performance comparable to that obtained with accurate simulation parame-
ters. Additionally, the ROC-AUC for Titin I27O and DysN-R3 improves further by 0.05 and 0.1,
respectively, as shown in the last column of Table 6.
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