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Abstract

Diffusion models represent a promising avenue for image generation, having
demonstrated competitive performance in pose-guided person image generation.
However, existing methods are limited to generating target images from a source
image and a target pose, overlooking two critical user scenarios: generating multi-
ple target images with different poses simultaneously and generating target images
from multi-view source images. To overcome these limitations, we propose IMAG-
Pose, a unified conditional framework for pose-guided image generation, which
incorporates three pivotal modules: a feature-level conditioning (FLC) module, an
image-level conditioning (ILC) module, and a cross-view attention (CVA) module.
Firstly, the FLC module combines the low-level texture feature from the VAE
encoder with the high-level semantic feature from the image encoder, addressing
the issue of missing detail information due to the absence of a dedicated person
image feature extractor. Then, the ILC module achieves an alignment of images
and poses to adapt to flexible and diverse user scenarios by injecting a variable
number of source image conditions and introducing a masking strategy. Finally, the
CVA module introduces decomposing global and local cross-attention, ensuring
local fidelity and global consistency of the person image when multiple source
image prompts. The three modules of IMAGPose work together to unify the task
of person image generation under various user scenarios. Extensive experiment
results demonstrate the consistency and photorealism of our proposed IMAG-
Pose under challenging user scenarios. The code and model will be available at
https://github.com/muzishen/IMAGPose.

1 Introduction

Pose-guided person generation [51, 29] aims to transform a source person image into a target person
image under a specific pose while maintaining appearance consistency. It has many applications,
including virtual reality, film production, and e-commerce. Besides, the generated images can be used
to enhance the performance of downstream tasks, such as person re-identification [32, 54, 48, 34].

Early methods [4, 57, 42] usually are developed based on generative adversarial networks (GANs).
However, GAN-based methods easily suffer from the instability of the min-max training objective
and the difficulty of generating high-quality images in a single forward pass. Recently, methods
based on diffusion models [1, 22, 11, 36] are becoming increasingly popular in the community.
As a promising alternative to GAN for image generation, diffusion models utilize the source im-
age and target pose as conditions. They generate the target image through a multi-step denois-
ing process instead of completing it in a single step. So, diffusion models help better retain the
input information. For example, PIDM [1] proposes a texture diffusion module that inserts fea-
tures of the source image, extracted by a frozen encoder, into different stages of the diffusion
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model’s UNet. Similarly, PoCoLD [11] further constrains the correspondence between the per-
son and the pose by introducing additional 3D Densepose [19] annotations and interacting with
the appearance features of the source image extracted by the frozen encoder. Additionally, the
PCDMs [36] introduce a three-stage diffusion model that is used for predicting the global fea-
tures of the target image, generating a coarse-grained person image, and refining texture details.
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Figure 1: Existing methods can only support
generating a target image from one source
image and one target pose.

Despite the above methods based on diffusion models’
impressive results compared to GAN-based approaches,
existing methods still exhibit 2 shortcomings. (1) For
methods based on diffusion models, they neglect un-
derlying texture detail information. As these methods
employ a frozen image encoder, e.g., CLIP, to extract ap-
pearance features from the source image, which is trained
on a general image dataset, it is not a specialized feature
extractor for person images and can only extract high-
level semantic features. (2) For existing methods, as
shown in Figure 1, they overlook two critical user sce-
narios: generating multiple target images with differ-
ent poses simultaneously and generating target images
from multi-view source images. In practice, users often
need to generate multiple consistent target images based on different poses simultaneously, such as in
portrait photography and clothing displays. In addition, users often upload multiple source images to
provide rich details for generating a target image. However, the fixed architecture of existing methods
limits the ability of users to make arbitrary modifications and extensions.

We propose a unified conditional framework named IMAGPose to address the above issues. For
the first issue, we devise that the feature-level conditioning (FLC) module extracts low-level texture
features from the VAE encoder and high-level semantic features from the image encoder. Because
the frozen VAE can almost reconstruct images losslessly, it can easily extract low-level information
without training. By leveraging the VAE’s encoding capability, we fuse the source image’s low-level
and high-level information, addressing the absence of a dedicated person image feature extractor. To
address the second issue, we propose the image-level conditioning (ILC) module randomly injecting
various numbers of source image conditions and introducing a masking strategy to adapt to different
user scenarios. Specifically, we combine all target images into a joint target, and then the masking
strategy randomly masks the target image into a joint mask according to user scenarios. Meanwhile,
the ILC extracts the pose from the source image and combines it with the target pose to form a joint
pose. Therefore, IMAGPose can inject image-level source image conditions from the input end,
achieving a one-to-one correspondence between the person’s image and pose. Further, we present
the cross-view attention (CVA) module, introducing decomposable global and local cross-attention
to ensure the person images’ local fidelity and global consistency when any user scenarios. We
summarize the contributions of this paper as follows,

• We are the first to explore pose-guided image generation tasks under different conditions
and propose a unified conditional framework for synthesizing high-fidelity person images.

• We present the FLC module, which addresses the issue of missing texture features due to
the absence of a dedicated person image feature extractor.

• We devise the ILC module to inject a variable number of source image conditions and
introduce a masking strategy, achieving an alignment of images and poses.

• We develop a CVA module to decompose global and local cross-attention, ensuring the joint
image’s local fidelity and global consistency when multiple-view source image prompts.

• Extensive experiments on two challenging datasets show that proposed IMAGPose surpasses
existing models. We also conduct a user study and applications for downstream tasks to
comprehensively evaluate the advantages of IMAGPose.

2 Related Work

Based on GAN Methods. Early approaches [24, 25, 37, 57, 37, 49, 30] view the synthesis task as
conditional image generation, utilizing conditional generative adversarial networks (CGANs) [26] to
generate target images based on source appearance images and target poses. For example, PG2 [24]
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proposed a two-stage method that refines the generated images in an adversarial manner. To decouple
pose and appearance information, VUNet [8] suggests learning pose-independent features to tackle the
complex structure problem of pose space transformation. Then, ADGAN [25] introduced a character
attribute decomposition module to explicitly parse the human body and blend and insert conditions.
VariGANs [53] combine variational inference with GANs to generate multi-view images from a single
image, refining results from coarse to fine [5, 7, 6]. However, GAN-based methods [24, 25, 37] often
suffer from issues such as blurred texture details and instability of the min-max training objective.
To address the issue of blurred texture details, Grigorev et al. [9] proposed a CNN-based framework
that first performs pose warping, followed by texture repair. Unselfie [18] introduced a pipeline
that first identifies the target’s neutral pose, then repairs appearance textures, and finally perfects
and synthesizes the character in the background. However, these multi-stage methods require the
introduction of multiple additional models and costs, impacting the efficiency of generation.

Based on Diffusion Models. Diffusion models have found extensive applications in virtual dress-
ing [33], story generation [35], and portrait animation [45]. To address the instability of GAN’s
min-max training, methods based on diffusion models [13, 44, 40, 38, 31, 28] are gradually becoming
more popular in the community. The core idea is to start from a simple noise vector and gradually
transform it into a high-quality image through multiple denoising iterations, making it suitable for
high-fidelity and context-aware generation. Besides unconditional generation [14, 39, 41], various
methods [50, 47, 27] have been introduced to incorporate user-provided control signals into the
generation process, thereby achieving more controllable image generation. For example, PIDM [1]
proposed a texture diffusion module that uses the source image features extracted by the frozen
encoder as conditions to be inserted into different stages of UNet. CFLG [22] proposed a mixed-
granularity attention module to inject multi-scale fine-grained character appearance features into the
generation process. PoCoLD [11] further constrains the correspondence between person images and
poses by introducing additional 3D Densepose [19] annotations of poses and source image appear-
ance features extracted by the frozen encoder. Subsequently, PCDMs [36] proposed a three-stage
diffusion model that predicts global features under the target pose, aligns images and poses, and
then refines texture details. Besides, APS [16] progressively couples target pose and appearance for
effective human image synthesis. PoSynDA [20] simulates 3D pose distributions to address the lack
of 2D-3D correspondences, enhancing data diversity. MotionEditor [43] uses a dual-branch structure
that decouples key-value queries, preserving the background and character appearance for efficient
content editing. However, the frozen encoders introduced in these diffusion model-based methods are
trained on generic image datasets and can only extract high-level semantic features of person, easily
overlooking low-level texture details. Furthermore, in real scenarios, these models do not support
generating multiple target images at once and target generation under multi-view image prompts.

3 Method

Figure 2 illustrates IMAGPose, a unified conditional framework that encompasses 3 core modules:
feature-level conditioning (FLC) module, image-level conditioning (ILC) module, and cross-view
attention (CVA) module. This framework aims to generate high-fidelity and high-quality target images
in any user scenario. The FLC module combines low-level texture features from the VAE encoder
with high-level semantic features from the image encoder, which addresses the issue of losing texture
details due to lacking a dedicated person image feature extractor. (Section 3.2). The ILC module
introduces a masking strategy for the target image and incorporates a variable number of source image
conditions. This module aligns the image and pose, making it suitable for different user scenarios.
(Section 3.3). The CVA module proposes the decomposition of global and local cross-attention. This
ensures the entire person images’ local fidelity and global consistency.(Section 3.4).

3.1 Preliminaries

Diffusion models belong to a class of generative models. And these models are trained to reverse a
diffusion process, which systematically introduces Gaussian noise to the data through a fixed Markov
chain over a series of timesteps, denoted as t. Concurrently, a denoising model is trained to generate
samples starting from this Gaussian noise. The training objective of a diffusion model, denoted as ϵθ
and parameterized by θ, typically employs a mean square error loss LDM . For each timestep t, this
loss is defined as follows,

LDM = Ex0,ϵ,c,t∥ϵ− ϵθ
(
xt, c, t

)
∥2, (1)
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Figure 2: The IMAGPose is a unified conditional framework designed to generate high-fidelity and high-quality
target person images under various conditions. IMAGPose aims to address the issue of detail texture loss, achieve
an alignment of person images and poses, and ensure the person images’ local fidelity and global consistency.

here, x0 represents the original data, supplemented by a condition c. The timestep t of the diffusion
process is represented by t ∈ [0, T ]. The noisy data at the t step, denoted as xt, is defined as
αtx0 + σtϵ. In this context, αt and σt are predefined functions of t that dictate the diffusion process.

Once the model ϵθ is trained, images can be synthesized from random noise through an iterative
process. During the sampling stage, the predicted noise is calculated based on the predictions of
both the conditional model ϵθ(xt, c, t) and the unconditional model ϵθ(xt, t), using classifier-free
guidance [15] according to Eq. 2.

ϵ̂θ(xt, c, t) = wϵθ(xt, c, t) + (1− w)ϵθ(xt, t), (2)

where w is the guidance scale used to adjust the condition c.

3.2 Feature-Level Conditioning Module

Existing methods typically depend on frozen encoders to extract appearance features from source
images. However, these frozen encoders are trained on general image datasets, not explicitly designed
for person image feature extraction. So, it can only capture high-level semantic features of the source
image. To address this, as depicted in Figure 2(a), given that the frozen VAE can almost reconstruct
images losslessly without training, we propose the FLC module, which simultaneously extracts
low-level texture information from a VAE encoder [17] and high-level semantic information from an
image encoder. Specifically, the FLC module consists of a frozen VAE encoder, an image encoder,
and a trainable tokenizer layer. Assume that the source image x ∈ Rc×h×w, where c, h, and w
represent the channel, height, and width of the image, respectively. First, we extract the latent features
Fl ∈ R4×h/8×w/8 of the source image from the frozen VAE encoder while simultaneously extracting
the high-level semantic features FH ∈ Rn×d of the person image from the frozen image encoder,
where n and d denote the token length and each token dimension, respectively. Then, we convert
latent features Fl into texture features FL ∈ Rm×d through a learnable tokenizer layer consisting of
a 2D convolution and a flattened operation, where m stand for the length of FL token. We ensure that
the dimension of each token from the texture features FL matches the dimension of each token from
the semantic features FH through the kernel size of the 2D convolution. Finally, according to Eq. 3,
we concatenate FL and FH along the token length to obtain the person’s appearance features.

FC = concat(FL, FH), (3)

where FC ∈ R(m+n)×d. Therefore, FLC leverages the frozen VAE encoder’s ability to preserve
detailed information, addressing the issue of not having a dedicated person image feature extractor.
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3.3 Image-Level Conditioning Module
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(b) Generating a target image from multi-view source image prompts.
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Figure 3: The masking strategy flexibly
unify different user scenarios.

As previously mentioned, existing methods only support the
generation setting of one source image and one target pose,
which limits user expectations in other use scenarios. To
address this, we propose the ILC module to inject a random
variable number of source image conditions and introduce
a masking strategy to adapt to different user scenarios. As
shown in Figure 3(a), when generating three target images
based on three target poses, the ILC first masks the three
target images to be generated, then combines them with
one source image to form a joint mask, while extracting the
target pose from the source image and combining it with the
three given target poses to form a joint pose; As shown in
Figure 3(b), when generating a target image based on three
source images, the ILC first masks one target image and then
combines it with three source images to form a joint mask while extracting the poses from the three
source images and combining them with one given target pose to form a joint pose. This achieves a
one-to-one correspondence between the person’s image and pose.

Specifically, we use a frozen VAE to extract latent space features from the joint target and add noise
to obtain the noise latent. Similarly, we use a frozen VAE to get the masked latent from the joint
mask. The ILC module concatenates the noise latent and masked latent along the channel dimension.
Then, we introduce a binary mask, the width and height of which are the same as the noise latent,
with 0 and 1 representing the masked and unmasked parts, respectively. This ensures that the model
correctly distinguishes the areas of the target image to be generated. Therefore, the input channels
of our model are 9, with the channel numbers of noise latent and masked latent both being 4, and
the binary mask being 1. Besides, noted that existing methods ignore the image-level conditions
of the source image and only inject the feature-level conditions of the source image through the
cross-attention module. In contrast, as shown in Figure 2(b), we inject the image-level conditions of
the source image combined with the masking strategy, achieving richer inherent context information
and spatial structure alignment between the person’s image and pose.

3.4 Cross-View Attention Module
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Figure 4: Illustration of the CVA module.

To ensure that each target image in the generated joint objec-
tives possesses realistic visual content and maintains consis-
tency in the person subject images, inspired by [2, 10], we
propose a cross-view attention (CVA) module to decompose
global and local cross-attention. As shown in Figure 2, the
CVA module is embedded after each cross-attention module in the denoising UNet. The schematic
diagram of the CVA module is shown in Figure 4, which mainly consists of the split, projection layer,
self-attention layer, and joint. We first take the output of the feature by cross-attention as the input
features of CVA, split the global input features into four smaller local person features, and then add a
new temporal dimension to learn the attention between each local character image. Subsequently,
the four person features are reshaped back into one global output feature, ignoring the temporal
dimension. This approach allows IMAGPose to capture both global and local attention, providing a
more nuanced understanding of the relationships between different parts of the persons’ image.

For the pose condition, we introduced a pose encoder identical to ControlNet 2 for injection after
the first convolutional layer. Therefore, the loss function LMSE of IMAGPose according to Eq. 4, as
follows. Here, FC , FI and FP denote the feature of the FLC module, the feature of the ILC module
and pose feature, respectively.

LMSE = Ex0,ϵ,FC ,FI ,FP ,t∥ϵ− ϵθ
(
xt, FC , FI , FP , t

)
∥2. (4)

In the inference stage, we use classifier-free guidance according to Eq. 5.

ϵ̂θ(xt, FC , FI , FP , t) = wϵθ(xt, FC , FI , t) + (1− w)ϵθ(xt, FP , t). (5)

2https://github.com/lllyasviel/ControlNet
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Table 1: Quantitative comparison of the proposed IMAGPose with several state-of-the-art models.
Dataset Methods SSIM (↑) LPIPS (↓) FID (↓)

DeepFashion [21]
(256× 176)

Def-GAN [37] 0.6786 0.2330 18.457
PATN [57] 0.6709 0.2562 20.751
ADGAN [25] 0.6721 0.2283 14.458
PISE [49] 0.6629 0.2059 13.610
GFLA [30] 0.7074 0.2341 10.573
DPTN [51] 0.7112 0.1931 11.387
NTED [29] 0.7182 0.1752 8.6838
CASD [56] 0.7248 0.1936 11.373
PoCoLD [11] 0.7310 0.1642 8.0667
PIDM [1] 0.7312 0.1678 6.3671
CFLD [22] 0.7378 0.1519 6.8040
PCDMs [36] 0.7444 0.1365 7.4734
IMAGPose (Ours) 0.7561 0.1284 5.8738

DeepFashion [21]
(512× 352)

CocosNet2 [55] 0.7236 0.2265 13.325
NTED [29] 0.7376 0.1980 7.7821
PIDM [1] 0.7419 0.1768 5.8365
PoCoLD [11] 0.7430 0.1920 8.4163
CFLD [22] 0.7478 0.1819 7.1490
PCDMs [36] 0.7601 0.1475 7.5519
IMAGPose (Ours) 0.7718 0.1396 5.6298

Market-1501 [54]
(128× 64)

Def-GAN [37] 0.2683 0.2994 25.364
PTN [57] 0.2821 0.3196 22.657
GFLA [30] 0.2883 0.2817 19.751
DPTN [51] 0.2854 0.2711 18.995
PIDM [1] 0.3054 0.2415 14.451
PCDMs [36] 0.3169 0.2238 13.897
IMAGPose (Ours) 0.3282 0.2104 12.659

4 Experiments

Datasets. We conducted experiments on the DeepFashion dataset [21], which consists of 52,712
high-resolution images of fashion models, and the Market-1501 dataset [54], which includes 32,668
low-resolution images with diverse backgrounds, viewpoints, and lighting conditions. We extracted
the skeletons using OpenPose [3] and followed the dataset splits provided by [1]. It’s important to
note that the person IDs of the training and testing sets do not overlap for both datasets.

Metrics. We conducted a comprehensive evaluation of the model, including both objective and
subjective metrics. Objective metrics include the structural similarity index measure (SSIM) [46],
learned perceptual image patch similarity (LPIPS) [52], and fréchet inception distance (FID) [12].
On the other hand, subjective assessments focus on user-oriented metrics, such as the percentage of
real images misclassified as generated (R2G) [24], the percentage of generated images misclassified
as real (G2R) [24], and the percentage of images considered superior among all models (Jab) [37].

Implementations. We conduct experiments on 8 NVIDIA V100 GPUs. Our configuration can
be summarized as follows: (a) We use the pre-trained Stable Diffusion V1.5 3 and modified the
first convolutional layer to accommodate additional conditions. Unless otherwise specified, we use
Dinov2-G/14 4 as the image encoder. In the tokenizer layer, both the kernel size and stride of the 2D
convolution are 16, and the dimensions of the input and output channels are 4 and 768, respectively.
(b) Following [1, 36], we train our model on the DeepFashion dataset with sizes of 256× 176 and
512×352. For the Market-1501 dataset, we used images of size 128×64. (c) In the masking strategy,
we defaulted to randomly occluding 1-4 images. (d) The model is trained for 300k steps using the
AdamW optimizer with a learning rate of 5e−5. Each batch size is 4, and a linear noise schedule of
1000 time steps is applied. (e) In the inference stage, we used a DDIM sampler with 20 steps, and set
w to 2.0 in the guidance scale.

4.1 Main Results
IMAGPose supports generating one or multiple target images under different conditions based on
user scenarios. For a fair comparison and adaptation to the IMAGPose framework, we use three

3https://huggingface.co/runwayml/stable-diffusion-v1-5
4https://github.com/facebookresearch/dinov2
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Figure 5: Qualitative comparisons with several state-of-the-art models on the DeepFashion dataset.

black images for padding in the masking strategy and replicate the target pose 3 times in the joint
pose during the inference stage. Then IMAGPose generates 3 same target images, and we randomly
select one generated image for qualitative and quantitative evaluation. Unless otherwise specified, the
above settings are the default configurations.

Quantitative Results. From Table 1, we quantitatively compared proposed IMAGPose with several
state-of-the-art methods including Def-GAN [37], PATN [57], ADGAN [25], PISE [49], GFLA [30],
DPTN [51], NTED [29], CocosNet2 [55], CASD [56], PoCoLD [11], PIDM [1], PCDMs [36] and
CFLD [22]. Compared to other generative methods, based on diffusion models [11, 1, 36, 22]
perform significantly better, especially proposed IMAGPose, which outperforms all methods. For
example, IMAGPose significantly leads the GAN-based method ADGAN on the SSIM metric since
the GAN framework’s unstable training fails to generate high-quality images. Compared to CFLD,
which is also based on a diffusion model framework, IMAGPose demonstrates absolute performance
advantages at both 256× 176 and 512× 352 scales. Because existing architectures overlook texture
details and only inject appearance features using a generic image encoder.

Table 1 also shows the quantitative results on the Market-1501. Like the DeepFashion, IMAGPose
outperforms all SOTA methods in SSIM, LPIPS, and FID. Compared to NTED, which uses fine-
grained texture features, ours shows more significant advantages, thanks to VAE’s inherent ability to
reconstruct low-level texture. Despite PCDMs’ additional refinement model, IMAGPose provides
richer context information by injecting source image features at both image and feature levels.

Qualitative Results. Figure 5 visually compares our IMAGPose with other SOTA methods on the
DeepFashion dataset. The results lead to several conclusions: (1) As shown in the first to third rows,
diffusion-based methods capture minute clothing textures, but IMAGPose generates higher-quality
details than other diffusion models. (2) In cases of large-scale pose transformations (as shown in
the fourth and fifth rows), CFLD and PCDMs exhibit clear overfitting to the pose (i.e., objects do
not should appear on the hand ), only our method can generate images aligned with the target and
consistent in detail texture. (3) As shown in the sixth to seventh rows, when generating complex
textures and invisible areas, IMAGPose reasonably infers detailed textures, providing better visual
consistency even if the results are inconsistent with the target. In summary, the proposed method
consistently produces more realistic and lifelike person images, demonstrating the advantages of the
image-level and feature-level conditions proposed by IMAGPose. Please see C.1 for more examples.
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Figure 6: User study results on DeepFashion in
terms of R2G, G2R and Jab metric. Higher values
in these three metrics indicate better performance.

User Study. The above quantitative and qualita-
tive comparisons reflect the significant advantages
of IMAGPose in generating results. Further, we con-
ducted a user study with 50 volunteers. This study
includes comparisons with basic facts (i.e., R2G and
G2R) and other methods (i.e., J2b). The higher the
score for these three indicators, the better the perfor-
mance. As shown in Figure 6, IMAGPose exhibits
commendable performance on all three indicators on
the DeepFashion dataset. For instance, volunteers
judged our generated images as 58.5% (G2R) real
images, nearly 18.4% higher than the second-best model. The proposed IMAGPose scored 42.3% on
the Jab index, indicating our method is more popular. Please see C.3 of the Appendix for more detail.

Uniformity. IMAGPose only needs to be trained once to support multiple user scenarios. Here,
IMAGPose simulates two user scenarios: generating a target image given a source image and a target
pose, and generating a target image given multiple source images and a target pose. As shown in
Figure 7, both T1 and T2 provide one source image and one target pose, similar to the previous SOTA.
The difference is that T1 replicates the target pose in the joint pose, while T2 replicates the source
image in the joint image. T3 randomly uses multiple different source images.
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Figure 7: Quantitative comparison of IMAGPose under different user scenarios on the DeepFashion dataset.

We found that under these 3 different settings, compared to Table 1, T1, T2, and T3 demon-
strate strong competitiveness on all metrics, indicating that IMAGPose can adapt to the above
scenarios only once training. For example, T2 surpasses all previous SOTA methods and beats
T1, suggesting the ILC module can effectively capture the appearance features of a person by
replicating the same source image multiple times during the inference stage. Then, when us-
ing multiple different source images to generate a target image, T3 achieves 0.7727, 0.1172,
and 5.3286 on SSIM, LPIPS, and FID, respectively, outperformers T2 and other SOTA meth-
ods, indicating that IMAGPose has uniformity when provided multiple different source images.
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Figure 8: Results of speed and performance.

Furthermore, IMAGPose can also adapt to the other sce-
nario: generating multiple target images from a source
image and multiple target poses, i.e., IMAGPose* in
Figure 8. Compared with the original IMAGPose, IMAG-
Pose* slightly reduces the SSIM performance but still
surpasses other diffusion model-based methods, which
proves that even when inferring multiple different target
images at once, IMAGPose* can still maintain high qual-
ity and fidelity. Regarding speed, due to the architectural
advantage of the masking strategy in ILC, it is nearly 8 times faster than PIDM, and nearly 3 times
faster than PoCoLD and CFLD. Noted that both the default settings of IMAGPose and IMAGPose*
are highly competitive regarding generation quality and speed. Therefore, once our method is trained,
users can choose the appropriate inference settings according to their needs in different scenarios.
The visual results of IMAGPose in different user scenarios are shown in Figure 9, which is consistent
with our above analysis. Overall, IMAGPose can unify different tasks in real-world scenarios. For
more results and discussions, please refer to C.2 of the Appendix.

4.2 Ablations

Effectiveness of the Module. Table 2 demonstrates the impact of different modules on the results of
IMAGPose. B0 denotes IMAGPose removes the CVA module, the texture features from the VAE in
the FLC module, and the image-level conditions in the ILC module, which results in a model with
only 5 input channels. B1 represents, based on B0, the addition of the CVA module. B2 denotes, based
on B0, adding the VAE’s texture detail features, resulting in a complete FLC module. B3 indicates,
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Figure 9: Visual comparison of our model’s uniformity across different user scenarios.

based on B1, that adding image-level conditions forms a complete ILC module with 9 input channels.
B4 represents IMAGPose using both the FLC and ILC modules, while ignoring the CVA module.

Table 2: Ablation study on DeepFashion.
Methods SSIM (↑) LPIPS (↓) FID (↓)

B0 0.7235 0.1704 8.2153
B1 0.7281 0.1646 7.8209
B2 0.7406 0.1471 7.3284
B3 0.7453 0.1390 6.3655
B4 0.7528 0.1326 6.0242

Ours 0.7561 0.1284 5.8738

As shown in Table 2, IMAGPose outperforms other settings
on three metrics and gradually improves performance as
more modules are included. Specifically, B1 surpasses B0
on SSIM, LPIPS, and FID, indicating that the CVA module
can enhance local fidelity and global consistency. B2 and
B3 outperform B1 by 0.0125 and 0.0172 on SSIM, suggest-
ing that FLC and ILC can effectively provide exemplary
texture detail guidance and ensure alignment of images and
poses. Moreover, noted that the combination of the three modules brings additional performance
improvements. For example, our method outperforms B2, B3, and B4 on all metrics, respectively.

Table 3: Performance of variant version.
Base. Image Enc. SSIM (↑) LPIPS (↓) FID (↓)

SD V1.5

CLIP-B/14 0.7516 0.1364 6.1342
CLIP-bigG/14 0.7548 0.1331 5.9645
CLIP-H/14 0.7552 0.1296 6.0231
Dinov2-B/14 0.7541 0.1343 5.9286
Dinov2-L/14 0.7556 0.1323 5.9432
Dinov2-G/14 0.7561 0.1284 5.8738

SD V2.1

CLIP-B/14 0.7562 0.1350 6.2736
CLIP-bigG/14 0.7535 0.1281 6.2239
CLIP-H/14 0.7542 0.1266 6.1239
Dinov2-B/14 0.7553 0.1304 5.9120
Dinov2-L/14 0.7579 0.1276 6.1315
Dinov2-G/14 0.7572 0.1294 5.8543

Model Variant. Table 3 summarizes the variants based on
IMAGPose. We keep other settings unchanged and only
modify the base model and image encoder. The overall
performance differences between various versions of the
base diffusion model and image encoder are insignificant,
indicating that the base diffusion model and image encoder
have a minimal impact on the results of the generated im-
ages. Specifically, the results suggest that when ‘Base.’ is
SD V1.5, Dinov2-G/14 slightly outperforms on all metrics.
Furthermore, when using the same image encoder, SD
V2.1 is superior to SD V1.5 in most cases.

4.3 Application
Table 4: Comparison with SOTA on per-
son re-identification. Standard denotes
not using generated person images.

Percentage of real imagesMethods 20% 40% 60% 80%

Standard 33.4 56.6 64.9 69.2

PTN [57] 55.6 57.3 67.1 72.5
GFLA [30] 57.3 59.7 67.6 73.2
DPTN [51] 58.1 62.6 69.0 74.2
PIDM [1] 61.3 64.8 71.6 75.3
PCDMs [36] 63.8 67.1 73.3 76.4

IMAGPose 66.4 69.2 75.1 77.6

Table 4 evaluates the applicability of images generated by
IMAGPose in downstream tasks, i.e., person re-identification.
Initially, we randomly selected 20%, 40%, 60%, and 80% sub-
sets from the training set of the Market-1501 dataset, ensuring
at least one image per identity, thereby creating a new dataset.
We adopt BoT [23] as the base network and perform baseline
training on each data subset for a fair comparison. Then, we
incorporate images generated by IMAGPose. These generated
images are synthesized from randomly selected images with
the same identity and pose from the new dataset. The Rank1
results are shown in Table 4. The experimental results indicate
that the IMAGPose algorithm significantly improves re-identification performance compared to the
Standard. Moreover, IMAGPose consistently demonstrates superior performance in re-identification
tasks compared to SOTA methods.

5 Conclusion
This paper presents IMAGPose, a unified conditional framework for pose-guided image generation.
This framework addresses the limitations of existing methods by enabling the generation of multiple
target images with different poses simultaneously and from multi-view source images. IMAGPose

9



incorporates three pivotal modules: a Feature-Level Conditioning (FLC) module, an Image-Level
Conditioning (ILC) module, and a Cross-View Attention (CVA) module. The FLC module effectively
combines low-level texture features with high-level semantic features, addressing the issue of missing
detail information. The ILC module aligns images and poses to adapt to diverse user scenarios,
while the CVA module ensures local fidelity and global consistency when multiple source image
prompts. The proposed framework has demonstrated competitive performance in both qualitative
and quantitative evaluations, showing consistency and photorealism under challenging user scenarios.
This work represents a significant step forward in the field of image generation, opening up new
possibilities for user interaction and customization. Limitations. (1) IMAGPose supports generating
images in different user scenarios and significantly improves the synthesis quality. However, due
to computational limitations, IMAGPose currently supports generating up to four images at a time.
Future work will continue to explore how to generate more target images in one forward process. (2)
The performance of the model is subpar for generating cartoon characters and non-photorealistic
styles because our training data consists of photorealistic human images for fair comparison. In
future work, we plan to include a broader range of data and design style transformation modules to
overcome this bias.
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Supplementary Material

This supplementary material offers a more detailed exploration of the experiments and methodologies
proposed in the main paper. Section A provides a series of symbols and definitions for enhanced
comprehension. Section B delves deeper into the implementation specifics of our experiments.
Section C presents additional experimental outcomes, including a broader range of qualitative
comparison examples with state-of-the-art methods, more results on different user scenarios, and a
detailed explanation of our user studies. Section D discusses potential societal harms and impacts.

A Some Notations and Definitions

The notations and definitions used in this paper are shown in Table 5.

Table 5: Some notations and definitions.
Notation Definition

x0 Target image
ϵ Gaussian noise
c Additional condition
t Timestep
θ Diffusion model
w Guidance scale
xt Noisy data at t step
FH High-Level semantic feature of source image
FL Low-Level texture feature of source image
FC Feature of FLC module
FI Feature of ILC module
FP Feature of joint point

B Implement Details

Table 6: Hyperparameters for the IMAGPose.
Hyperparameters IMAGPose
Diffusion Steps 1000
Noise Schedule Linear

Optimizer AdamW
Weight Decay 0.01

Batch Size 4
Iterations 300k

Learning Rate 5e− 5
Base Model Stable Diffusion V1.5

Image Encoder Dinov2-G/14

As shown in Table 6, our experiments are conducted on 8 NVIDIA V100 GPUs. We use the pre-
trained Stable Diffusion V1.5 and modify the first convolutional layer to accommodate additional
conditions. Dinov2-G/14 is used as the image encoder. In the tokenizer layer, we set both the kernel
size and stride of the 2D convolution to 16, and the dimensions of the input and output channels are
set to 4 and 768, respectively. We introduce a pose encoder identical to ControlNet, injected after
the first convolutional layer, to handle the pose condition. Our model is trained on the DeepFashion
dataset, following previous studies, with image sizes of 256x176 and 512x352. For the Market-1501
dataset, we use images of size 128x64. As part of our masking strategy, we default to randomly
occluding 1-4 images. The model is trained for 300k steps using the AdamW optimizer with a
learning rate 5e-5. We use a batch size of 4 and apply a linear noise schedule of 1000 time steps.
During the inference stage, we use a DDIM sampler with 20 steps and set the guidance scale to 2.0.
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C Additional Results

C.1 More Qualitative Comparisons for IMAGPose

We provide additional examples for comparison with the state-of-the-art (SOTA) methods in Figure 10.

Target Pose GTSource ImageTarget Pose GTSource Image OursPoCoLD CFLD PCDMsTarget Pose GTSource Image OursPoCoLD CFLD PCDMs

Figure 10: More qualitative comparisons between IMAGPose and SOTA methods on the DeepFashion dataset.
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Figure 11: (a) The schematic diagram of the common frameworks based on existing diffusion models can
only support generating a target image from a single source image and a single target pose. (b) During the
development of IMAGPose, we devised a proprietary model to address the scenarios of generating multiple
target images with different poses simultaneously.

Table 7: Comparison results between different architectures on DeepFashion.
Methods SSIM (↑) LPIPS (↓) FID (↓)

PIDM [1] 0.7312 0.1678 6.3671
M1 0.7145 0.1743 6.9406

Ours 0.7561 0.1284 5.8738

C.2 More Discussion on Different User Scenarios

As discussed in the main text, previous pose-guided image generation methods only support scenarios
where a target image is generated from a single source image and a target pose, as shown in Figure
11 (a). However, in practical user scenarios, it is also common and important to generate multiple
target images with different poses, as shown in Figure 1. To address these scenarios, we develop
a proprietary models M1 to generate multiple target images with different poses simultaneously
during the development of IMAGPose, as shown in Figure 11(b). Similar to [2, 10], M1 concatenates
different noise latents along the batch dimension. Then, we chose the PIDM [1] based on the diffusion
model as the representative for generating a target image from a single source image and a target
pose. M1 model are also included in our additional comparisons, as shown in Table 7.

The results in Table 7 indicate that while we can address the generation of target images from multiple
target poses by training a dedicated model M1, this approach increases the training burden and
introduces complexity for users. Users must continually switch between models to meet their specific
needs when generating target images. Moreover, from a performance metric perspective, the dedicated
model M1 does not offer any advantages, as it only injects semantic information from the source
image using a frozen image encoder. Most importantly, none of the current frameworks support
the task of generating target images through multiple image prompts. In contrast, our proposed
ILC module introduces a masking strategy to unify target image generation under different user
scenarios. As shown in Figure 2 (b), we also incorporate the masking strategy to inject image-level
conditions from the source image, and enhance the texture features of the VAE to achieve richer
context information and alignment between the image and pose.

As previously mentioned, once IMAGPose is trained, it can accommodate different user scenarios.
For generating a target image from a single source image and a target pose, IMAGPose only needs to
replicate the target pose multiple times in the joint pose during inference. For generating multiple
target images from a single source image and multiple target poses at once, IMAGPose only needs
to combine different poses in the joint pose during inference. For generating a target image from
multiple source images and a single target pose, IMAGPose only needs to combine different source
images in the joint image during inference. Therefore, IMAGPose has the ability to unify pose-guided
image generation under different user scenarios.
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C.3 User Study

To validate the disparity between the generated images and the real ones, and to evaluate the superiority
of our method compared to existing technologies, we conducted a user study involving 50 volunteers.
(1) For the R2G and G2R metrics, we selected 40 test samples at random and used each model to
generate a corresponding set of images. The volunteers were tasked with distinguishing between the
40 generated images and 40 real images. (2) For the Jab metric, we randomly selected 40 pairs of
source images and target poses, and each model was tested to generate a corresponding set of images.
The users were then asked to select the highest quality and most faithful image from the side-by-side
views. The user study allowed us to evaluate which model produced the most realistic results based
on human perception. Example questions are illustrated in 13.

D Ethics Statement

In this paper, we propose IMAGPose, a unified conditional framework designed to cater to various
user scenarios for generating different human images. However, it is well-known that virtually all
methods of human image synthesis, including ours, can be misused by malicious actors to create false
content and disseminate misinformation. This is a significant concern that we fully acknowledge.
Nevertheless, substantial progress has been made in the field of detecting and preventing such
malicious tampering. Our work aims to provide valuable support for research and external audits in
this area, helping to strike a balance between the value of our technology and the risks associated
with unrestricted access. This ensures that our technology can be used safely and beneficially.
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Figure 12: More visual comparison of our model’s uniformity across different user scenarios.
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23. Please indicate whether the following image is real or fake.
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Figure 13: An example question used in our user study for pose-guided person image synthesis.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate that existing works have over-
looked the user scenarios of pose-guided image generation. To address this issue, IMAGPose
is proposed. Extensive experiments have validated the effectiveness of IMAGPose.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the conclusion section, we have included a discussion of the limitations and
potential directions for future work.

3. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailed the hyperparameters and experimental settings in the main
text and the appendix of the paper.

4. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our code and models will be open-sourced upon acceptance.

5. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details, including data splits,
hyperparameters, how they were chosen, and the type of optimizer used, necessary to
understand the results.

6. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results reported in the paper are reproducible.

7. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources

8. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed.

9. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper describes safeguards for responsibly releasing high-risk data or
models, such as pretrained language models or image generators.

10. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Proper credit is given to the creators or original owners of assets used in the
paper, and the license and terms of use are explicitly mentioned and respected.

11. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Upon acceptance, documentation for the code, data, and logs will be provided
alongside the assets.

12. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The details of the user study, including the full text of instructions given to
participants and any relevant screenshots, are provided in the appendix.

13. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The user study adheres to relevant national laws and regulations regarding
participant safety and ethics. Risks incurred by study participants, as well as any necessary
disclosures, are described.
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