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Abstract
Motivated by the adaptability of human intel-001
ligence across various tasks and multi-modal002
environments, the research community is ac-003
tively engaged in developing interactive agents004
capable of engaging in natural conversations005
with humans and assisting them in real-world006
tasks. These agents need the ability to re-007
quest feedback in the form of situated clarifying008
questions when communication breaks down009
or instructions are unclear. This paper delves010
into an extensive investigation of the produc-011
tion of clarifying questions within the context012
of human-centered AI instruction-based inter-013
action, using a Minecraft environment as a014
grounding framework. The unique challenges015
presented by this scenario include the agent’s016
requirement to navigate and complete tasks017
in a complex, virtual environment, relying on018
natural language instructions and action states.019

In this paper, we made the following contri-020
butions: (i) a crowd-sourcing tool for collect-021
ing grounded language instructions along with022
clarifying questions in times when instructions023
are not clear at scale with low costs; (ii) a024
substantial dataset of grounded language in-025
structions accompanied by clarifying questions;026
and (iii) several state-of-the-art baselines for027
requesting feedback in case of unclear instruc-028
tions. These contributions are suitable as a029
foundation for further research.030

1 Introduction031

One of the long-lasting goals of AI agents (Wino-032

grad, 1972) is the ability to seamlessly interact with033

humans in natural language to help humans learn034

new skills (Narayan-Chen et al., 2019a; Kiseleva035

et al., 2022a; Zhang et al., 2021; Wang et al., 2023a)036

or assist in solving tasks (Shridhar et al., 2019; Kise-037

leva et al., 2022b). To achieve the latter, the agent038

must understand and respond to human language to039

execute instructions in a given environment (Skryn-040

nik et al., 2022; Kiseleva et al., 2022a,b). Over041

the years, researchers have proposed many tasks042

IDEATION STAGE 

Start from pre-built 
structure

Continue building 
structure

Describe actions as 
instructions

Build a row of blue blocks on 
top of the orange ones. Place 
two purple blocks centered on 
top of the blue row.

CLARIFYING QUESTIONS STAGE

Start from same world 
plus given instructions

Build a row of 
blue blocks on 
top of the orange 
ones. Place two 
purple blocks 
centered on top 
of the blue row.

Are instructions clear?

YES Follow 
instructions

NO

Ask 
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How many blue 
blocks?

Figure 1: An example of human-agent interactive col-
laboration, where the goal is to build a given structure,
and the agent needs to decide whether to follow the
instruction or ask a clarifying question

to tackle this human-AI collaboration challenge, 043

many centered around humans providing instruc- 044

tions to the agent to solve a goal (Gluck and Laird, 045

2018; Shridhar et al., 2020). An example is the 046

blocks world task, where the agent must understand 047

human instructions to move blocks on a grid (Wino- 048

grad, 1972; Bisk et al., 2016). Other setups use 049

Minecraft (Gray et al., 2019a), to move objects 050

around (Abramson et al., 2020), to simulate hu- 051

man behavior (Park et al., 2023), or to simulate 052

household tasks (Shridhar et al., 2019; Wang et al., 053

2023b). However, the instructions humans provide 054

are often inherently ambiguous for most tasks. To 055

complete these tasks successfully, agents need to 056

engage in conversation by asking clarifying ques- 057

tions (Aliannejadi et al., 2021a; Shi et al., 2022; 058

Press et al., 2022), which creates a naturally friendly 059

interface for humans (Nass and Moon, 2000). 060

We aim to provide an in-depth investigation into 061

the production of clarifying questions for grounded 062

instruction-based interaction using a Minecraft en- 063

vironment, which has shown its effectiveness in 064

studying human-AI collaboration (Fan et al.; Wang 065

et al., 2023a; Kanervisto et al., 2022). This sce- 066

nario presents a unique challenge, as the agent must 067
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Table 1: Comparison between relevant platforms.

Dataset Settings Size of dataset Collaborative
instructional (AI/Human)

Availability of
Data collection tool

Availability of
Training environment

SHRDLURN(Wang et al., 2016) Building game 100 games (10,223 utterances)
Voxelurn(Wang et al., 2017) building structures 230 structures (36,589 utterances)
CEREAL-BAR(Suhr et al., 2019) collaborative game 1202
ALFRED(Shridhar et al., 2019) Household tasks 25,743
CVDN(Thomason et al., 2019) Navigation 2050
TEACh(Padmakumar et al., 2022) Household tasks 3215
MineDojo (Fan et al., 2022) Minecraft 730K YouTube videos, 7K Wiki pages, 340K Reddit posts N/A N/A
MineRL (Guss et al., 2019) Minecraft 500 video hours
HoloAssist (Wang et al., 2023b) Physical tasks 166 video hours N/A N/A
Ours Collaborative building 9,111 utterances/1,1142 clarifying questions

navigate and complete tasks in a complex, virtual068

environment, relying solely on natural language069

instructions. To ensure successful task completion,070

the agent must identify gaps in the instructions071

and pose relevant clarifying questions, as demon-072

strated in Fig. 1. By tackling this problem head-on,073

we intend to pave the way for more effective and074

user-friendly human-AI agent interactions.075

A significant challenge hindering the exploration076

of building interactive agents (Narayan-Chen et al.,077

2019b; Bara et al., 2021) is the scarcity of appro-078

priate datasets, and scalable and easily extendable079

data collection tools. These deficiencies have im-080

peded progress in the field and pose a considerable081

obstacle to developing effective solutions. Our082

work addresses this challenge by proposing a novel083

dataset and scalable data collection methodology,084

thus contributing to the field’s progress. We believe085

our work will enable researchers to explore new086

avenues and enhance user experience in human-AI087

interactions by addressing this important obstacle.088

In summary, our main contributions are:089

C1 Crowdsourcing Tool for Collecting Interac-090

tive Grounded Language Instructions specif-091

ically designed for efficiently gathering inter-092

active grounded language instructions within093

a Minecraft-like environment. With low costs,094

we can do so at a large scale because it does095

not require multiple players to be online simul-096

taneously (Sec. 3).097

C2 Extendable Dataset of Human-to-Human098

Grounded Language Instructions that is ac-099

companied by clarifying questions (Sec. 4).100

This dataset represents a valuable resource for101

various research directions, including but not102

limited to building structures based on given103

instructions or predicting clarifying questions.104

C3 Baselines for Predicting Clarifying Ques-105

tions on the aforementioned dataset which106

serves as a benchmark for evaluating the per-107

formance of future models (Sec. 5).108

2 Related Work 109

Natural Language Interfaces (NLIs) have been 110

a subject of study in various disciplines, includ- 111

ing human-computer interaction and information 112

search, for several decades. Early works such 113

as (Woods et al., 1972; Codd, 1974; Hendrix et al., 114

1978) laid the foundation for understanding and 115

designing effective interfaces for human language 116

communication with computers. 117

Evolution of NLIs and Applications: Tab. 1 118

demonstrates a comprehensive set of related plat- 119

forms. In recent years, there has been a resurgence 120

of interest in NLIs due to advances in language un- 121

derstanding capabilities driven by large-scale deep 122

learning models (Devlin et al., 2018; Liu et al., 123

2019; Clark et al., 2020; Adiwardana et al., 2020; 124

Roller et al., 2020; Brown et al., 2020; OpenAI, 125

2023; Chowdhery et al., 2022) and the increasing 126

demand for various applications such as virtual 127

assistants, dialog systems (Li et al., 2019, 2020c; 128

Burtsev et al., 2017; Li et al., 2020b, 2021), and 129

question answering systems (Liu and Lane, 2017, 130

2018; Dinan et al., 2020; Zhang et al., 2019). NLIs 131

now extend beyond traditional databases to encom- 132

pass knowledge bases (Copestake and Jones, 1990; 133

Berant et al., 2013) to robots (Tellex et al., 2011), 134

personal assistants (Kiseleva et al., 2016b,a), and 135

other forms of interaction (Fast et al., 2018; Desai 136

et al., 2016; Young et al., 2013; Su et al., 2017). 137

Agent Interactivity and Learning: The focus 138

has shifted towards interactivity and continuous 139

learning, enabling agents to interact with users, 140

learning new tasks from instructions (Li et al., 141

2020a), assessing their uncertainty (Yao et al., 142

2019), asking clarifying questions (Aliannejadi 143

et al., 2020a, 2021b; Arabzadeh et al., 2022), and 144

leveraging feedback from humans to correct mis- 145

takes (Elgohary et al., 2020; Nguyen et al., 2022; 146

Nguyen and au2, 2019). Currently, LLMs are also 147

being studied to asses uncertainty and their own 148

errors (Press et al., 2022; Ren et al., 2023). 149
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Grounded Language Understanding: This150

paper focuses on grounded language understand-151

ing—connecting natural language instructions with152

real-world or simulated environment context and153

taking corresponding actions (Hermann et al., 2017;154

Mitsuda et al., 2022). This is crucial to enabling155

more effective communication between humans and156

intelligent agents. Our work focuses specifically on157

tackling grounded language understanding in the158

context of collaborative building tasks performed159

by agents, as highlighted in (Carta et al., 2023;160

Kiseleva et al., 2021, 2022b; Mehta et al., 2023;161

Mohanty et al., 2022; Skrynnik et al., 2022).162

Leveraging Minecraft for Grounded Lan-163

guage Understanding: We select Minecraft164

for grounded language understanding due to its165

distinct advantages. Szlam et al. (2019) high-166

lights the benefits of an open interactive assistant167

in Minecraft, offering a cost-effective alternative168

to real-world assistants. The game’s 3D voxel169

gridworld and adherence to simple physics rules170

provide ample research scenarios for reinforcement171

learning experimentation. Minecraft’s interactive172

nature, player interactions, and dialog exchanges173

offer diverse opportunities for grounded natural174

language understanding (Yao et al., 2020; Srinet175

et al., 2020; Narayan-Chen et al., 2019b). The176

game’s immense popularity ensures enthusiastic177

player interaction, facilitating rich human-in-the-178

loop studies. Minecraft’s advantage extends to the179

availability of the highly developed set of tools for180

logging agents interactions and deploying agents181

for evaluation with human-in-the-loop, including182

Malmo (Johnson et al., 2016), Craftassist (Gray183

et al., 2019b), TaskWorldMod (Ogawa et al., 2020),184

MC-Saar-Instruct (Köhn et al., 2020) and IGLU185

GridWorld (Zholus et al., 2022).186

3 Data Collection Tool187

Narayan-Chen et al., 2019b proposed a setup for188

a collaborative building task within the Minecraft189

environment where an Architect is provided with a190

target structure that needs to be built by the Builder.191

The Architect provides instructions through a chat192

on how to create the target structure, and the Builder193

can ask clarifying questions if an instruction is un-194

clear (Zhang et al., 2021). This approach required195

installing Microsoft’s Project Malmo (Johnson et al.,196

2016) client, which provides an API for Minecraft197

agents to chat, build, and the ability to save and load198

game states, which makes it limited to lab-based199

studies. The setup collects multi-turn interactions 200

between the Architect and the Builder, collabo- 201

ratively working towards building a given target 202

structure. However, having multiple players online 203

adds unnecessary complications, such as waiting 204

while one of the players is typing, and costs. 205

We have developed and released an open-source 206

data collection tool1 that is specifically designed 207

to facilitate the collection of data for multi-modal 208

collaborative building tasks. Our tool eliminates 209

the need for participants to install a local client and 210

allows multiple participants simultaneously annotat- 211

ing data, consequently streamlining the data collec- 212

tion process. As such, it enables 1) Integration with 213

Crowdsourcing platforms: Our work has the ability 214

to merge and integrate seamlessly into any crowd- 215

sourcing platforms for efficient participant scaling 216

and collecting more data. 2) Bidirectional Dataset: 217

While most datasets are one-way, our dataset is 218

bidirectional. It can be used to teach both architects 219

and builders, facilitating more comprehensive lan- 220

guage understanding in collaborative building tasks. 221

and 3) Game Environment for Testing: We employ 222

a game-type environment, which is more scalable 223

and easier for testing compared to video-based ap- 224

proaches. This choice of environment enhances 225

the practicality and efficiency of our approach. We 226

have used the Amazon Mechanical Turk (MTurk) 227

as the crowd-sourcing platform after obtaining ap- 228

proval from the Institutional Review Board (IRB). 229

Each participant or annotator submits a HIT (Hu- 230

man Intelligence Task). A HIT is comprised the 231

CraftAssist (Gray et al., 2019b) voxelworld and a 232

form which is customizable for different tasks. The 233

form includes rules for a given task and a segment 234

where task instructions or clarifying questions for 235

the building task. The CraftAssist voxelworld is a 236

framework that provides tools and a platform for 237

dialog-enabled interactive agents that learn from 238

natural language interactions. The library provides 239

a 3-d voxelworld grid where agents perform build- 240

ing actions that can be recorded as action states and 241

retrieved for following sessions. Current actions 242

supported by the integrated CraftAssist framework 243

include picking, placing, and removing blocks of 244

different colors within the voxelworld. Agents can 245

also jump to place blocks. These actions enable 246

agents to create structures of varying complexity. 247

Fig. 5 in the appendix illustrates the MTurk views 248

of the task with the embedded voxelworld. 249

1https://bit.ly/42ZUNf7
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Table 2: Statistics of Multi-Turn Dataset

Target Structures 31
Completed Games 127
Median Duration of
Completed Games 16 mins

Utterances 811
Avg. Length of Instructions 19.32 words
Clarifying Questions 126

4 Datasets250

We built corpora of multi-modal data, which could251

be used towards solving wide-ranging NLP and252

RL tasks, including training interactive agents253

by demonstrations given natural language instruc-254

tions (Skrynnik et al., 2022). Our research initially255

concentrates on multi-turn interactions, following256

a similar approach as presented by (Narayan-Chen257

et al., 2019b) (Sec. 4.1). To enhance the size of258

our dataset, we subsequently expanded our data259

collection efforts to a Single-Turn dataset (Sec. 4.2)260

to gather a larger corpus of data more efficiently.261

The datasets and accompanying code for analysis262

and visualization is openly available 2 .263

4.1 Multi-Turn Dataset264

The Multi-Turn dataset comprises dialog-behavior265

sequences, which we called game (Appendix Fig. 2).266

The sequences either start from scratch for a given267

goal structure or build on intermediate results. In268

each turn, an annotator takes on the role of either the269

Architect or the Builder. Architects provide the next270

step instruction, while the Builder starts with an271

empty world and executes the instruction or poses272

a clarifying question. We have improved the data273

collection process by introducing asynchronous274

turn-taking. This means the tool no longer relies on275

having the same annotators online throughout the276

game. We have implemented checks to prevent a277

single annotator from taking on both architect and278

builder roles for the same structure. Importantly,279

this asynchronous approach allows for the simul-280

taneous launch of multiple structures. Annotators281

can work on different structures concurrently with-282

out waiting for responses, saving time and making283

process scalable.284

Tab. 2 shows the summary of the Multi-Turn285

dataset. There are 31 goal structures presented to286

annotators to build. We process and clean the data287

by filtering out missing and low-quality submissions288

such as very short instructions. Finally, we have289

127 completed game sessions, with the median du-290

ration of a game being around 16 minutes. A game291

2https://bit.ly/43WhnGC

session is considered complete when the Builder 292

can completes building a given goal structure after 293

interacting with and following instructions provided 294

by the Architect. This is denoted by the Architect 295

marking the structure as “complete”. Across all 296

the games, we had 811 utterances or dialog interac- 297

tions between the Architect and Builder annotators. 298

The average length of instructions provided by the 299

Architects was around 19 words, and the number 300

of clarifying questions asked by the Builders – 126 301

( for all the filtered games). 302

To provide a deeper understanding of the covered 303

structures in our multi-turn dataset, we performed 304

manual labeling on the 31 structures. The labels 305

and the corresponding number of structures in the 306

dataset in brackets, are as follows: 1. flat [7]: all 307

blocks on the ground 2. flying [27]: there are blocks 308

that cannot be fully-added without removing some 309

other blocks 3. diagonal [6]: some blocks are 310

adjacent (in the vertical axis) diagonally 4. tricky 311

[6]: some blocks are hidden or they should be 312

placed in a specific order 5. tall [25]: a structure 313

cannot be built without the agent being high enough 314

(the placement radius is 3 blocks) We consider 315

different categories of the structures to make sure 316

the agent is using different skills and abilities and 317

also to make sure the target structures are diverse. 318

For instance, if all the structures are flat, the agent 319

will never learn to use other actions, such as flying. 320

This diversity is essential for training a robust and 321

adaptable agent. 322

4.2 Single-Turn Dataset 323

From our extensive study on Multi-Turn data col- 324

lection, we identified certain challenges that crowd- 325

sourced annotators encountered when engaging in 326

the collaborative building task and issuing instruc- 327

tions for specific target structures. To enhance the 328

crowd-sourcing process, we decided to simplify the 329

task. Our approach involved removing the added 330

complexity of building a predefined target structure. 331

Instead, participants were free to perform free-form 332

building actions within the voxelworld while provid- 333

ing instructions that should allow another worker 334

to rebuild the same structure. This modification led 335

to creating Single-Turn task segments, where anno- 336

tators collaborated asynchronously to construct the 337

same structure. With this adjustment, we were able 338

to collect data at a faster pace, resulting in a larger 339

corpus comprising of natural language instructions, 340

corresponding actions performed based on those 341
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instructions, and a set of clarifying questions. We342

record and save actions performed by annotators in343

a key-value pair format that stores the movement of344

the agent and positional changes of blocks within345

the voxelworld.346

To provide diverse starting canvases for anno-347

tators, we utilized the Multi-Turn dataset to load348

different world states, which served as varying ini-349

tial conditions for the building process. The process350

of collecting single-turn instructions and associated351

clarifying questions is in (Fig. 1):352

• An annotator is assigned a world state from the353

Multi-Turn dataset as the starting point for their354

building task (Fig. 1: Ideation Stage).355

• The annotator is prompted to perform a sequence356

of actions for a duration of one minute.357

• Then, the annotator is required to describe their358

set of actions in the form of an instruction.359

• Another annotator is shown the instruction and360

asked to perform the steps mentioned. If the361

instruction is unclear, the annotator specifies it362

as thus and asks clarification questions (Fig. 1:363

Clarification Question Stage).364

The instructors answered these clarifying questions,365

and the data related to these clarifying questions366

has also been released with this dataset. Tab. 3367

presents comprehensive statistics on the Single-368

Turn dataset, currently the largest dataset available369

for interactive grounded language understanding.370

We processed and cleaned the collected Single-Turn371

dataset by following a heuristic approach, which372

included filtering out samples where the length373

of instruction was very short. We also checked374

whether the instruction was in English and evaluated375

jobs to remove submissions by annotators who376

provided low-quality instructions, such as providing377

the same instruction repeatedly. As shown in Tab. 3,378

the Single-Turn corpus comprises 8,136 pairs of379

actions and instructions. On average, an instruction380

has 18 words, which indicates the instructions are381

descriptive enough for a one-minute of building.382

In addition to the processing steps for cleaning383

instructions, for the clarifying questions, if an an-384

notator marked the instruction as ambiguous, they385

were supposed to issue a clarifying question else386

the submission would be filtered out with a warn-387

ing provided to the annotator. This was to ensure388

that every instruction annotated as “not clear” is389

accompanied by at least one clarifying question.390

Out of 8,136 instructions, 1,056 (12.98%) were391

annotated as Not Clear, thus being ambiguous, and392

Table 3: Statistics of Single-Turn Dataset.

Instructions (train/test) Avg. Length (in words)

Total 8136 (6843/1293) Instructions 18.29
Clear 7080 (5951/1129) Clarifying Questions 12.05
Ambiguous 1056 (892/164)

7,080 (87.02%) as Clear instructions. The average 393

length of clarifying questions is around 12 words. 394

Tab. 6 in the appendix exemplifies a few instructions 395

marked as being unclear, along with clarifying ques- 396

tions issued by annotators. Majority of clarifying 397

questions fall into the following categories: 398

• Color: Questions clarifying the color of the 399

blocks to be used. 400

• Direction/Orientation: Questions clarifying the 401

direction and orientation in the world. 402

• Number of blocks: Questions that clarify the 403

number of blocks to be placed. 404

• Identifying blocks to be changed: Questions clar- 405

ifying which blocks need to be changed. 406

It is important to note that we reassessed the anno- 407

tations for 100 randomly selected instructions to 408

gauge the level of agreement among the annotators. 409

The agreement rate among the three annotators 410

for these 100 instructions falls within the range 411

interpreted as “fair” according to the Krippendorff 412

agreement measure. This suggests that the inter- 413

pretation of ambiguous instructions can be highly 414

subjective, and moreover, emphasizes the com- 415

plexity of such a task. While one annotator may 416

perceive an instruction as clear, another may find it 417

ambiguous. Furthermore, different annotators may 418

ask different clarifying questions about the same 419

instruction, as they may identify unclear aspects 420

from various perspectives. 421

The Single-Turn approach offers several advan- 422

tages over the sequential nature of the Multi-Turn 423

process, one of which is the independence of each 424

sample, allowing for easier utilization in different 425

tasks. Each turn can be interpreted as a complete 426

set of information, enabling flexibility and versa- 427

tility in its application as they do not rely on the 428

context of previous turns. This independence al- 429

lows researchers to extract valuable insights and 430

information from individual turns without consider- 431

ing the entire dialogue sequence. Furthermore, the 432

Single-Turn approach allows for collecting multiple 433

clarifying questions for each instruction augmenting 434

the richness and diversity of the dataset, enabling a 435

deeper understanding of the nuances and challenges 436

in generating clarifying questions. 437
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5 Baselines Models and Evaluation438

We have developed baselines for the prediction439

of clarifying questions in the Architect-Builder440

task mentioned in (Sec. 4.2) using the Single-Turn441

dataset. As such, we focus on the following key442

research questions:443

• When to ask clarifying questions?: Predicting444

whether an instruction provided by the Architect445

is ambiguous or insufficient for the Builder to446

complete a task successfully indicating further447

clarification is required.448

• What clarifying question to ask? When faced449

with an instruction that is considered ambiguous,450

this research question focuses on determining the451

appropriate question to ask for clarification.452

It is worth noting that issues related to determining453

When and What clarifying questions to ask have454

gained significant attention in the domains of NLP455

and information retrieval (IR) (Aliannejadi et al.,456

2019, 2021b, 2020b; Arabzadeh et al., 2022). How-457

ever, as far as we are aware, this aspect has not458

been explored to a great extent in the context of459

interacting with agents. The following sections460

present end-to-end pipelines that show promising461

performance in addressing each research question.462

All the baselines are made publicly available at 3463

In addition to the baselines discussed in the fol-464

lowing sections, we ran initial experiments using465

Large Language Models that highlight their appli-466

cation in solving this task is not a straightforward467

endeavor. The grounded nature of the task poses468

challenges when directly employing LLMs. Our469

experiments have shown that the transformation470

of voxel world information into textual format and471

the subsequent prompt engineering required to ad-472

dress these tasks using LLMs can be a complex and473

resource-intensive process. We recognize the poten-474

tial benefits of exploring the use of larger language475

models for this task, which aligns with our future476

research direction. Further details on employing477

LLMs for this task can be found in Appendix A.2.478

5.1 When: Clarification Need Prediction479

We report the performance of baselines in Tab. 4 and480

utilize the F-1 Score as the evaluation metric as it481

provides a balanced measure of precision and recall482

for this classification task of predicting ambiguity483

in instructions.484

3https://bit.ly/3qZ7QQD

Table 4: Results of the baselines on When to ask clarify-
ing questions.

Baseline F-1 score
Fine-tuned BERT (Sec. 5.1.1) 0.732
Text-Grid Cross Modularity (Sec. 5.1.2) 0.757
Textual Grid world State (Sec. 5.1.3) 0.761

5.1.1 BERT fine-tuning 485

Due to the substantial amount of training data 486

in our collected dataset, one straightforward base- 487

line (Aliannejadi et al., 2021b) to determine whether 488

an instruction requires a clarifying question would 489

be fine-tuning LMs such as BERT (Devlin et al., 490

2018) followed by a classification layer. This ap- 491

proach has shown promising performance on sim- 492

ilar classification tasks (Arabzadeh et al., 2022) 493

demonstrated in Tab. 4. 494

5.1.2 Text-Grid Cross Modularity 495

This baseline (Shi et al., 2023) has shown im- 496

provement over the BERT fine-tuning approach 497

(Sec. 5.1.1) and consists of the following major 498

components: 1)Utterance Encoder, where Archi- 499

tect and Builder annotations would be added before 500

each architect utterance 𝐴𝑡 and each builder utter- 501

ance 𝐵𝑡 , respectively. Then, the dialogue utterances 502

are represented as 𝐷𝑡 = 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝐴𝑡 ⊕ 𝑏𝑢𝑖𝑙𝑑𝑒𝑟𝐵𝑡 503

at the turn 𝑡, where ⊕ is the operation of sequence 504

concatenation. The dialogue is encoded through 505

pre-trained language models such as BERT. 2) 506

World state encoder aims to represent the pre-built 507

structure using a voxel-based grid. Each grid state 508

is encoded as a 7-dimensional one-hot vector, rep- 509

resenting either an empty space or a block of one of 510

six colors. This encoding results in a 7×11×9×11 511

representation of the world state. The structure of 512

the World State Encoder is similar to the approach 513

presented in (Jayannavar et al., 2020). It comprises 514

3D-convolutional layers followed by a Rectified 515

Linear Unit (ReLU) activation function. This con- 516

figuration allows the encoder to extract meaningful 517

features from the voxel-based grid representation 518

of the world state. By applying convolutional layers 519

and non-linear activation, the World State Encoder 520

captures spatial dependencies and abstract represen- 521

tations of the pre-built structure. 3) Fusion module 522

consists of three sub-modules: one Single-Modality 523

and two Cross-Modality. The former modules are 524

based on self-attention layers, and the latter on 525

cross-attention layers. These take as input the 526

world state representation and dialogue history rep- 527

resentation. Between every successive pair of grid 528
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single-modality modules or text single-modality529

modules, there is a cross-modality module. 4) Lin-530

ear projection layer, this component contains one531

linear projection to obtain a scalar value for the final532

binary classification through the Sigmoid function.533

Finally, the combination of the four aforementioned534

components obtained F-1 score of 0.757 on the task535

of When. While this approach might seem like the536

model is deciding whether the follower needs to537

speak, it aligns with the setup where the agent must538

decide whether to ask clarifying questions or to539

act on the most likely action that might lead to a540

successful task completion.541

5.1.3 Text-Grid World State542

This baseline focuses on mapping the GridWorld543

state to a textual context, which is then added as a544

prefix to the verbalizations of the Architect-Agent.545

This approach utilizes an automated description546

of the number of blocks per color in the pre-built547

structures. For instance, a voxel world can be auto-548

matically converted into a textual description like549

‘There are 4 levels. There are 15 different blocks.550

At level 0, there are 3 green blocks. Above the 1st551

level, there are 2 purple, 2 yellow, and 1 green block.552

Above level 2, there are 3 green blocks. Above the553

3rd level, there are 2 yellow and 2 green blocks.’554

This description provides important contextual in-555

formation about the voxel world and contributes556

to the improved performance of the simple LLM557

fine-tuning baseline. We note that the proposed558

approach could be applied to fine-tune any widely559

used Language Model such as BERT. However, the560

reported performance was achieved using Deberta-561

v3-base4. Overall, including a textual description562

of the voxelworld has enhanced the simple LM563

fine-tuning baseline by 4% in terms of performance564

(Tab. 4). This approach showcases the importance565

of incorporating relevant contextual information566

to enhance the understanding and classification of567

language-guided collaborative tasks.568

5.2 What: Clarifying Question Retrieval569

What to ask as clarifying questions has shown570

to be quite a challenging task (Aliannejadi et al.,571

2019). As such, similar to (Aliannejadi et al., 2020a,572

2021b), we simplify the task by ranking a pool of573

clarifying questions based on their relevance to574

ambiguous instructions to place the most pertinent575

clarifying questions at the top of the ranked list. At576

inference time, the pool was designed to include577

4https://bit.ly/3TldRTY

Table 5: Performance of the baselines on What to ask as
clarifying question.

Baseline MRR@20
BM25 0.3410
Text-World Fusion Ranker ( 5.2.1) 0.5360
State-Instruction Concatenation Ranker ( 5.2.2) 0.5960

all clarifying questions in the test set. Given that 578

the relevance judgments for this task are sparse. 579

Namely, only one clarifying question per ambigu- 580

ous instruction is annotated. We evaluate the task 581

using the Mean Reciprocal Rank (MRR) at cut- 582

off 20. This evaluation approach is consistent with 583

well-known benchmarks like MS MARCO (Nguyen 584

et al., 2016). Tab. 5 presents the performance of 585

BM25 (Robertson et al., 2009, 1995), which is a 586

widely used and well-known ranking function used 587

for Information Retrieval, followed by the two in- 588

troduced baselines, measured using the MRR@20. 589

5.2.1 Text-World Fusion Ranker 590

In this baseline, the instruction and the state of 591

the voxel world are represented individually as text 592

representation and world representation, respec- 593

tively. Further, the encoded text representation and 594

the world representation are concatenated, and the 595

vector is passed through a two-layer MLP to ob- 596

tain the final representation. The model is trained 597

using a CrossEntropy loss function over 10-fold 598

cross-validation. At inference time, the ensemble 599

predictions of the 10 models are used for the final 600

predictions. In the following, we elaborate on each 601

of the text and world representations: 602

Text Representation (TR): A frozen DeBERTa- 603

v3-base model has demonstrated promising per- 604

formance for ranking. This baseline encodes the 605

instructions, followed by a separator and a question. 606

The last 4 layers of DeBERTa are concatenated and 607

passed through a two-layer BiLSTM to acquire TR. 608

World Representation (WR): WR is utilized to 609

create a 3D grid. The 3D grid represents a three- 610

dimensional matrix representing the voxel world 611

environment. Each block within this grid is rep- 612

resented by a specific number corresponding to 613

different colors in the matrix. This is subsequently 614

passed through a 1D convolutional network to sim- 615

plify the height dimension (y), and then the resulting 616

vector is passed through a 2D convolutional net- 617

work to reduce the width/length (x, z) dimensions. 618

The underlying assumption is that height occupies a 619

different semantic space from the interchangeable x, 620

z dimensions. For example, an instruction might in- 621

clude references to a tower or column, which would 622

7

https://bit.ly/3TldRTY


be a stack of objects in the y direction, while a wall623

could extend in the x or z direction. Ultimately, the624

size of the 3D grid is reduced by an AvgPooling625

layer to a 1D vector. This assumption is essentially626

made to make the 3D structure simplified into a 2D627

and then into a 1D representation to reduce the com-628

plexity of the representation. This simplification629

is akin to dimensionality reduction techniques and630

helps make the problem more manageable (Huang631

et al., 2022; Sainburg et al., 2020; Cao et al., 2018).632

In addition, it has been revealed that certain633

straightforward post-processing tricks relying on634

certain assumptions about the content of questions635

given a world and instruction could be helpful. For636

example, the size of the ranking pool could be637

reduced by excluding questions that don’t overlap638

with the given instructions. If the instruction doesn’t639

mention a color like blue, and blue is also absent in640

the world, it can be assumed that the question will641

not reference the word blue. While these heuristic642

rules may seem somewhat aggressive, they have643

proven useful in excluding additional questions644

irrelevant to the instruction, as we see that Text-645

World Fusion Ranker utilized these approaches.646

5.2.2 State-Instruction Concatenation Ranker647

To comprehend the concept of relevance, the ap-648

proach of aligning queries and relevant items closely649

in embedding space while distancing queries from ir-650

relevant items in the same space has proven to be ef-651

fective (Izacard et al., 2021; Reimers and Gurevych,652

2019; Karpukhin et al., 2020; Zhan et al., 2021).653

Similarly, in this baseline, each positive question is654

paired with sampled irrelevant negative questions655

drawn from the candidate questions. The similarity656

between the instruction and the question is then657

measured using a BERT-like pre-trained LM.658

To include information from the world state and659

pre-built structure, state information, such as the660

colors and numbers of initialized blocks, is encoded661

in natural language and then concatenated with the662

instruction. It has been shown that clarifying ques-663

tions about the same instruction can differ based664

on the world states (Shi et al., 2022; Aliannejadi665

et al., 2019; Deng et al., 2023). To avoid redundant666

state information and improve the model’s gener-667

alization, randomly selecting only one color type668

of block as the state information has proven help-669

ful. The state information and raw instruction are670

then concatenated and labeled with the keywords671

state and instruction, respectively. For example,672

the input could be: state: There are 9 green blocks;673

instruction: put a green block on top of the yellow 674

and the two blue ones. To balance the data distri- 675

bution Easy Data Augmentation (EDA) has been 676

adapted (Wei and Zou, 2019), which could expand 677

the dataset by synonym replacement, random inser- 678

tion, random swap, and random deletion, according 679

to a pre-defined ratio. Moreover, taking inspiration 680

from DAPT (Gururangan et al., 2020), datasets 681

such as (Kiseleva et al., 2022b; Narayan-Chen et al., 682

2019b; Shi et al., 2022; Zholus et al., 2022) are used 683

for performing domain-adaptive fine-tuning. Fur- 684

ther, we propose to use the Fast Gradient Method 685

(FGM), inspired by adversarial training, to mitigate 686

the overfitting problem (Goodfellow et al., 2014). 687

Finally, taking cues from (Gao et al., 2021), the 688

list-wise loss is used to train the model. 689

6 Conclusions and Future Work 690

In conclusion, our paper addresses the crucial issue 691

of enabling natural interaction in grounded human- 692

AI agent collaboration. We achieve this by allowing 693

agents to clarify instructions through a familiar and 694

friendly interface, such as the use of clarifying ques- 695

tions. A significant obstacle hindering progress 696

in this field has been the scarcity of appropriate 697

datasets and scalable, extensible data collection 698

tools. To address this challenge, we developed a 699

crowdsourcing tool specifically designed for col- 700

lecting interactive grounded language instructions 701

within a Minecraft-like environment at a large scale. 702

We created a dataset of human-to-human grounded 703

language instructions, accompanied by clarifying 704

questions which could be useful for a wide range 705

of natural language understanding and reinforce- 706

ment learning tasks. Furthermore, we established 707

baselines for predicting clarifying questions, pro- 708

viding a benchmark for evaluating the performance 709

of future models and algorithms in this domain. As 710

future work, we plan to investigate how LLMs can 711

be applied for our task. We also plan to develop an 712

evaluation framework that incorporates human judg- 713

ments or task-specific metrics to provide a better 714

understanding of the performance and limitations 715

of the proposed methods. Additionally, we plan 716

to conduct comprehensive user studies to evaluate 717

the usability of the generated clarifying questions 718

in real-world scenarios. We anticipate that ex- 719

ploring these future directions will contribute to 720

even a greater understanding of the challenges and 721

potential solutions involved generating clarifying 722

questions for instruction based interactions. 723
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7 Limitations724

Our paper centers on the utilization of a Minecraft-725

like environment to examine human-AI interaction.726

While this emphasis may not comprehensively en-727

capsulate the intricacies of real-world scenarios, it728

affords the opportunity to scrutinize specific facets729

of the problem in an isolated and safe environment.730

Nevertheless, there are constraints within the task731

scenarios, including the consideration of potential732

variations in task complexity. This may constrain733

the understanding of how the generation of clar-734

ifying questions may vary in different contexts.735

Consequently, the generalizability and applicability736

of our findings to real-world settings may be influ-737

enced by these factors. However, we believe the738

suggested environment and the data collection tool739

allow exploration for further scenarios.740

Moreover, the paper relies on a crowdsourcing741

tool for data collection, which introduces the pos-742

sibility of biases in the dataset. The demographic743

composition, skill levels, and motivations of the744

crowd workers may impact the quality and repre-745

sentativeness of the collected data. To mitigate746

these biases, we introduced sophisticated training747

and tests for crowd-source workers to enable them748

to complete tasks. To address any potential ethical749

issues, all the crowd-source workers signed an IRB.750
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A Appendix1275

Figure 2: Example of multi-turn data collection, where
the Architect can see the goal structure and provides
instructions for the Builder. The blue arrows indicate
turns for the first goal structure, the orange arrows indi-
cate turns for the second goal structure. Annotators can
switch roles between architect and builder for different
structures.

A.1 Data Collection Details1276

Multi-turn Data Collection: In Figure 2, we il-1277

lustrate an example of multi-turn data collection.1278

In this scenario, the Architect can observe the goal1279

structure and offer instructions to the Builder. The1280

blue arrows represent the turns associated with the1281

first goal structure, while the orange arrows corre-1282

spond to the turns related to the second goal struc-1283

ture. Annotators can switch roles between architect1284

and builder for different structures. Fig. 2 illustrates1285

this concept of our data collection methodology1286

with different annotators (1, 3, 2, 4, and 6) col-1287

laborating to construct Structure 1. Annotators1288

can switch roles between architect and builder for1289

different structures.1290

Fig. 3 illustrates the overall design of the tool.1291

Our tool can be integrated with crowd-sourcing1292

platforms to provide an interface for participants to1293

complete tasks. Fig. 5 demonstrates MTurk views1294

of the Data Collection Tool (Sec.3) for the Multi-1295

Turn Dataset (Sec.4.1). We have the Architect1296

Task, where the Architect provides instructions to1297

the Builder based on the provided target structure.1298

Next, we have the Builder Task, where instructions1299

and the current structure built so far are shown.1300

The Builder can mark the instructions as unclear or1301

will follow the instructions by adjusting blocks in1302

the voxelworld. Finally, we have the Intermediate1303

Architect Task, where the Architect is shown the1304

Figure 3: The architecture of the data crowdsourcing
collection tool

progress of the structure built so far and provides 1305

the next instruction. 1306

Examples of Single-Turn Dataset: Tab. 6 pro- 1307

vides examples of instructions marked as unclear in 1308

the Single-Turn Dataset along with different kinds of 1309

clarifying questions posed by annotators (Sec.4.2). 1310

Clarifying questions consist of topics such as color, 1311

direction, and identification of blocks. 1312

A.2 Large Language Models as baselines 1313

In our earlier discussion in Section 5, we highlighted 1314

that applying Large Language Models (LLMs) to 1315

the task of determining when and what to ask as 1316

clarifying questions in our designed environment 1317

is not a straightforward process. This complexity 1318

arises primarily due to the multimodal nature of the 1319

task and the significant engineering efforts required 1320

to create effective prompts. While we do not suggest 1321

that leveraging LLMs for this task is impossible, 1322

it is important to clarify that our paper’s primary 1323

focus lies in benchmarking and dataset creation. 1324

Integrating LLMs into our study falls beyond the 1325

scope of this research. 1326

Additionally, We address the challenge of de- 1327

termining when and what clarifying questions to 1328

ask by employing a combination of classification 1329

and retrieval methods instead of relying on text 1330

generation. Our decision was influenced by several 1331

factors, including the absence of well-established 1332

evaluation procedures for LLM text generation and 1333

the need to handle complex structures like action 1334

states of the world, which serve as inputs to our 1335

current pre-trained model baselines. Nonetheless, 1336

we conducted preliminary experiments using GPT- 1337

3.5-Turbo to explore their potential applicability to 1338

this task. 1339

In these experiments, we randomly selected 50 1340

instructions and utilized their previous utterances 1341

as information to reconstruct the pre-built structure. 1342

We then prompted the LLM to determine whether, 1343

14



Table 6: Examples of Unclear Instructions and Clarifying Questions

Instruction Clarifying Question

Place four blocks to the east of the highest block, horizontally. Which color blocks?

Destroy 2 purple blocks and then build 3 green blocks diagonally. Which two purple blocks need to be
destroyed?

Destroy the 3 stacked red blocks on the east side. Replace them with 3
stacked blue boxes

Which three of the four stacked red
blocks on the east side need to be de-
stroyed?

Make a rectangle that is the width and height of the blue shape and fill it
in with purple blocks.

Which side I need to make the rectangle
is not clear

Facing South remove the rightmost purple block. Place a row of three
orange blocks to the left of the upper leftmost purple block. Place two
orange blocks above and below the leftmost orange block.

Which one of the rightmost blocks
should be removed?

Facing north and purple-green blocks will be arranged one by one. Where would you like to place the purple
and green blocks exactly?

You are participating in a game set in a Minecraft-like world. In this game, there are two roles: the Architect and the
Builder.
1. The Architect: This player provides instructions for building structures in the game environment.
2. The Builder: This player’s role is to follow the instructions given by the Architect and execute them within the game
environment.
During the game, the Builder has two response options:
- If the instruction provided by the Architect is clear and can be executed without any need for further clarification or
questions, the Builder responds with “yes. The instruction is clear.”
- If the instruction is unclear or requires clarification from the Architect before it can be executed, the Builder responds
with “no” and generates a clarification question.
reply only a “Yes. The instruction is clear” or a “No” followed by a relevant clarification question.

Previous Dialogue: <Architect> Facing North, Build a blue block in the left most corner.
<Architect> Destroy the blue block and build a purple block there.
<Architect> Facing East, place one green block on the very top right corner of the map.
Starting Grid world of 3D blocks in the format (𝑥, 𝑦, 𝑧, 𝑐𝑜𝑙𝑜𝑟) : (−5,−1,−5, 𝑝𝑢𝑟 𝑝𝑙𝑒) (−5, 9, 5,′ 𝑔𝑟𝑒𝑒𝑛′)

Current Instruction: <Architect> In the northeast corner place one blue block. In the southwest corner place one purple
block then a red block on top of that.

Figure 4: Example of using LLMs for solving the clarifying question need task.

given the pre-existing instructions from the Archi-1344

tect, the new instruction was clear or if the builder1345

needed to pose clarifying questions. An example of1346

such a prompt can be found in Figure 4, focusing on1347

the “when to ask clarifying questions” task. How-1348

ever, the results were far from satisfactory when1349

compared to the baseline models, yielding an F11350

score of 0.45, which was significantly lower than1351

the F1 scores achieved by our baseline models, as1352

reported in Table 4. All baseline models achieved1353

F1 scores above 0.732.1354

We believe that the performance of LLMs can1355

be enhanced through improved prompt engineering1356

and a better representation of the voxel world. How-1357

ever, we decided not to include these findings in the1358

paper to avoid potential misinterpretations. Our pri- 1359

mary aim was to establish a benchmark with clear 1360

and reproducible baselines. While we acknowledge 1361

the potential of LLMs for this task, we consider this 1362

aspect as part of our future work, which extends 1363

beyond the scope of the current study. 1364
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(a) Architect Task

(b) Builder Task

(c) Intermediate Structure Architect Task

Figure 5: View of MTurk Data Collection Tool
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