
Towards a General Time Series Forecasting Model with Unified Representation
and Adaptive Transfer

Yihang Wang * 1 Yuying Qiu * 1 Peng Chen 1 Kai Zhao 2 Yang Shu 1 Zhongwen Rao 3 Lujia Pan 3 Bin Yang 1

Chenjuan Guo 1

Abstract

With the growing availability of multi-domain
time series data, there is an increasing demand for
general forecasting models pre-trained on multi-
source datasets to support diverse downstream pre-
diction scenarios. Existing time series foundation
models primarily focus on scaling up pre-training
datasets and model sizes to enhance generaliza-
tion performance. In this paper, we take a differ-
ent approach by addressing two critical aspects
of general forecasting models: (1) how to derive
unified representations from heterogeneous multi-
domain time series data, and (2) how to effectively
capture domain-specific features to enable adap-
tive transfer across various downstream scenarios.
To address the first aspect, we propose Decom-
posed Frequency Learning as the pre-training task,
which leverages frequency-based masking and re-
construction to decompose coupled semantic in-
formation in time series, resulting in unified repre-
sentations across domains. For the second aspect,
we introduce the Time Series Register, which
captures domain-specific representations during
pre-training and enhances adaptive transferabil-
ity to downstream tasks. Our model achieves the
state-of-the-art forecasting performance on seven
real-world benchmarks, demonstrating remark-
able few-shot and zero-shot capabilities.

1. Introduction
Time series forecasting plays a crucial role in various do-
mains, including energy, smart transportation, weather, and
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economics (Qiu et al., 2024; Wu et al., 2025a; Qiu et al.,
2025b). However, training deep learning models for each
specific dataset is resource-intensive and requires tailored
parameter tuning. This approach often suffers from limited
prediction accuracy due to data scarcity (Liu et al., 2024;
Wu et al., 2021b; 2024; 2025c). A promising solution is
to pre-train a general model on diverse time series datasets,
which can then be fine-tuned with minimal data for different
downstream scenarios or even used directly without fine-
tuning. Following this idea, foundation models for time
series forecasting have gained significant attention. Recent
efforts have focused on scaling up pre-training datasets and
model sizes to enhance generalization performance (Woo
et al., 2024; Goswami et al., 2024; Ansari et al., 2024). How-
ever, excessive scaling introduces high computational costs
during training and inference, undermining the practical-
ity of general models, particularly in resource-constrained
settings. Beyond scaling, the design of general time series
forecasting models can also be approached through pre-
training tasks and downstream transfer adaptation. From
these two perspectives, we identify the following challenges.

Obtaining a unified representation from time series data
across various domains is challenging. Time series from
each domain involve complex temporal patterns, composed
of multiple frequency components combined with each
other (Zhou et al., 2022; Wu et al., 2025b), which is fre-
quency superposition. As shown in Figure 1(a), different fre-
quency components contain distinct semantic information.
For example, low and high-frequency components represent
long-term trends and rapid variations, respectively (Zhang
et al., 2022). Furthermore, different datasets exhibit di-
verse frequency distributions, and the significance of low-
frequency and high-frequency components for time series
modeling varies across domains(Zhang et al., 2024). As a
result, large-scale time series data from different domains
introduce even more complex temporal patterns and fre-
quency diversity. Existing pre-training frameworks (Dong
et al., 2024; Nie et al., 2022; Lee et al., 2023), such as
masked modeling and contrastive learning, were proposed
to learn a unified representation from time domain. How-
ever, these methods overlook the frequency diversity and
complexity exhibited in heterogeneous time series that come
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Figure 1. (a) Pre-training on multi-domain datasets that exhibit combined frequency. Existing general time series forecasting models
only extract generalized representations for direct transfer to various downstream target domains. We propose to learn generalized and
specific representations during pre-training, and adaptively transfer them to each target domain. (b) The t-SNE visualization of the hidden
representations after direct transfer and adaptive transfer: In direct transfer, representations of different domains are mixed, but in adaptive
transfer, they show a clear clustering pattern. The detailed experiment setting is in the Appendix A.1.3

from various domains, making it difficult to capture intricate
patterns, thus limiting their generalization capabilities.

Adaptive transferring information from multi-domain
time series to specific downstream scenarios presents
a challenge. Multi-source time series data originate from
various domains (Woo et al., 2024), whose data exhibit
domain-specific information (Liu et al., 2024; Miao et al.,
2024; Zhao et al., 2023; Guo et al., 2014). Information from
the same or similar domain as the target domain is useful for
improving the model’s effectiveness in the target task (Chen
et al., 2023a). However, as shown in Figure 1(a), existing
time series pre-training frameworks (Woo et al., 2024; Liu
et al., 2024; Zhou et al., 2024) primarily focus on learning
generalized time series representations during pre-training
while overlooking domain-specific representations, called
direct transfer. While generalized representations are essen-
tial, directly transferring them to specific downstream tasks
without incorporating domain-specific information leaves
room for improvement. Therefore, it is necessary to learn
domain-specific information during pre-training and adap-
tively transfer the specific representations to target domain,
called adaptive transfer. Realizing adaptive transfer poses
two difficulties: 1) capturing domain-specific information in
pre-training. 2) adaptive use of domain-specific information
in various downstream tasks.

To address these challenges, we propose a register assisted
general time series forecasting model with decomposed fre-
quency learning, namely ROSE. First, we propose Decom-
posed Frequency Learning that learns generalized represen-
tations to solve the issue with coupled semantic information.
We decompose individual time series using the Fourier trans-
form with a novel frequency-based masking method, and
then convert it back to the time domain to obtain decoupled
time series for reconstruction. It makes complex temporal
patterns disentangled, thus benefiting the model to learn gen-

eralized representations. Second, we introduce Time Series
Register (TS-Register) to learn domain-specific information
in multi-domain data. By setting up a register, we generate
register tokens to learn each domain-specific information
during pre-training. In a downstream scenario, the model
adaptively selects Top-K vectors from the register that are
close to the target domain of interest. During fine-tuning,
we adjust the selected register tokens with a novel learn-
able low-rank matrix, which complements target-specific
information to perform more flexible adaptive transfer. As
shown in Figure 1(b), adaptive transfer successfully utilizes
domain-specific information in multi-domain time series,
which contributes to the model’s performance in target tasks.
The contributions are summarized as follows:

• We propose ROSE, a novel light weight general time
series forecasting model using multi-domain datasets
for pre-training and improving downstream fine-tuning
performance and efficiency.

• We propose a novel Decomposed Frequency Learning
that employs multi-frequency masking to learn com-
plex general temporal patterns from multi-domain data,
empowering the model’s generalization capability.

• We propose a novel TS-Register to capture domain-
specific information in pre-training and enable adap-
tive transfer of target-oriented specific information for
downstream tasks.

• Our experiments with 7 real-world benchmarks demon-
strate that ROSE achieves state-of-the-art performance
in full-shot setting and achieves competitive or supe-
rior results in few-shot setting, along with impressive
transferability in zero-shot setting.

2



Towards a General Time Series Forecasting Model with Unified Representation and Adaptive Transfer

Cluster

Patchify & Projection

Multifreq Mask

Transformer Encoder

Reconstruction
Decoder

Prediction
Decoder

copy

Prediction
head

Reconstruction
head

Patch token Register token

Patchify

Projection

BackwardForward

𝐚𝐫𝐠𝒎𝒊𝒏
𝒋"𝟏:𝑯

  ∥ 𝐱𝐞 − 𝒆𝒋 ∥𝟐

…

Register Register

Select

…

Training Freeze

…

…

𝐮

𝐯

Input Time Series Input Time Series

Projection

…

Patchify

Projection

Patchify

…
𝐚𝐫𝐠𝐓𝐨𝐩𝐤

𝒋"𝟏:𝑯
 

𝟏
∥ 𝐱𝐞 − 𝒆𝒋 ∥𝟐

𝐱𝐞

…

𝑒!

𝑒"

𝑒#
𝑒$

𝑒%

…

𝑒!

𝑒"

𝑒#
𝑒$

𝑒%

𝐱𝐞
Register

Cluster

𝐗𝐮 𝐗𝐫

(a) Overall architecture (b) Register in pretrain stage (c) Register in finetune stage

Figure 2. The model architecture of ROSE.

2. Related Work
2.1. Traditional Time Series Forecasting

The statistical time series forecasting models like
ARIMA (Box & Jenkins, 1968), despite their theoretical
support, are limited in modeling nonlinearity. With the rise
of deep learning, many RNN-based models (Cirstea et al.,
2019; Wen et al., 2017; Salinas et al., 2020) have been pro-
posed, modeling the sequential data with an autoregressive
process. CNN-based models (Luo & Wang, 2024; Liu et al.,
2022b) have also received widespread attention due to their
ability to capture local features. MICN (Wang et al., 2022)
utilizes TCN to capture both local and global features, while
TimesNet (Wu et al., 2022) focuses on modeling 2D tempo-
ral variations. However, both RNNs and CNNs struggle to
capture long-term dependencies. Transformer-based mod-
els (Zhou et al., 2022; Nie et al., 2022; Wu et al., 2021a; Liu
et al., 2023; Chen et al., 2024), with their attention mech-
anism, can capture long dependencies and extract global
information, leading to widespread applications in long-
time series prediction. However, this case-by-case paradigm
requires meticulous hyperparameter design for different
datasets, and its predictive performance can also be affected
by data scarcity.

2.2. Time Series Forecasting Foundation Model

Pre-training with multiple sources time series has recently
received widespread attention (Rasul et al., 2023; Dooley
et al., 2024; Garza & Mergenthaler-Canseco, 2023; Ka-
marthi & Prakash, 2023). MOMENT (Goswami et al.,
2024) and MOIRAI (Woo et al., 2024) adopt a BERT-
style pre-training approach, while Timer (Liu et al., 2024),
Chronos (Ansari et al., 2024) and TimsFM (Das et al.,

2023a) use a GPT-style pre-training approach, giving rise to
improved performance in time series prediction. However,
the above methods overlook domain-specific information
from multi-source data, thus limiting the performance of
the models. Different from previous approaches, ROSE pre-
trains on large-scale data from various domains and it con-
siders both generalized representations and domain-specific
information, which facilitates flexible adaptive transfer in
downstream tasks.

3. Methodology
3.1. Architecture

As illustrated in Figure 2, ROSE adopts an encoder-decoder
architecture for time series modeling. Its backbone com-
prises multiple Transformer layers, which effectively pro-
cess sequential information and capture temporal depen-
dencies (Vaswani et al., 2017). Both the reconstruction
decoder and prediction decoder share the same structure as
the Transformer encoder and are designed for reconstruc-
tion and prediction tasks, respectively. The reconstruction
task enables the model to gain a comprehensive understand-
ing of time series, while the prediction task enhances its
few-shot and zero-shot capabilities. ROSE is pre-trained in
a channel-independent way, which is widely used in time
series forecasting (Nie et al., 2022).

Input representations. To enhance the generalization of
ROSE for adaptive transferring from multi-domains to dif-
ferent target domains, we model the inputs x with patch
tokens and register tokens. Patch tokens are obtained by
partitioning the time series using patching layers (Nie et al.,
2022), to preserve local temporal information. Register
tokens that capture domain-specific information will be in-
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troduced in Section 3.3.

3.2. Decomposed Frequency Learning

As shown in Figure 1, time series data are composed of
multiple superimposed frequency components, resulting in
the overlap of different temporal changes. Furthermore,
low-frequency components typically contain information
about overall trends and longer-scale variations, and high-
frequency components usually contain information about
short-term fluctuations and shorter-scale variations, there-
fore, understanding time series from low and high frequen-
cies separately benefits general time series representation
learning. Based on the observations above, we propose
a novel frequency-based masked modeling that randomly
mask either high-frequency or low-frequency components
of a time series multiple times as the key to enable learning
of common time series patterns, such as trends and various
long and short term fluctuations. Finally, reconstruction task
assists the model in comprehending the data from various
frequency perspectives, enabling it to learn generalized rep-
resentations. In contrast, existing frequency masking meth-
ods (Zhang et al., 2022), which randomly mask frequencies
of a single time series once, show limited forecasting effec-
tiveness due to the lack of common pattern learning from
heterogeneous time series that come from various domains.

Multi-frequency masking. As shown in the green part of
Figure 3, given a time series x ∈ RL, we utilize the Real
Fast Fourier Transform (rFFT) (Brigham & Morrow, 1967)
to transform it into the frequency domain, giving rise to
xfreq ∈ CL/2+1.

xfreq = rFFT(x). (1)

To separately model high-frequency and low-frequency
information in time series, we sample Kf thresh-
olds τ1, τ2, τ3, ..., τKf

and Kf random numbers
µ1, µ2, µ3, ..., µKf

for multi-frequency masks, where
τ ∈ Uniform(0, a), a < L/2 + 1 , and µ ∈ Bernoulli(p).
Each pair of τi and µi corresponds to the ith frequency mask.
This generates a mask matrix M ∈ {0, 1}Kf×(L/2+1),
where each row corresponds to the ith frequency mask,
each column corresponds to the jth frequency, and each
element mij is 0 or 1, meaning that the jth frequency is
masked with the ith frequency mask or not.

mij =

{
µi , if j < τi

(1− µi) , if j > τi
, (2)

where τi and µi denote the threshold and random number
for the ith frequency domain mask. If µi = 1, it means that
frequency components above τi will be masked, indicating
to mask high frequency , as shown by the threshold τ1 in
Figure 3. Conversely, if µi = 0, it signifies that frequency

components below τi will be masked, indicating to mask
low frequency, exemplified by threshold τ2 in Figure 3.

After obtaining the mask matrix M, we replicate xfreq Kf

times to get the Xfreq ∈ CKf×L/2+1 and perform element-
wise Hadamard product with the mask matrix M to get
masked frequency of time series. Then, we use the inverse
Real Fast Fourier Transform (irFFT) to convert the results
from the frequency domain back to the time domain and get
Kf masked sequences Xmask = {xi

mask}
Kf
i=1, where each

xi
mask ∈ RL corresponding to masking with a different

threshold τi.

Xmask = irFFT(Xfreq ⊙M). (3)

Representation learning. As shown in the yellow part of
Figure 3, after obtaining the Kf masked sequences Xmask,
we divide each sequence xi

mask into P non-overlapping
patches, and use a linear layer to transforming them into P
patch tokens, and thus we get Xmp = {Xi

mp}
Kf
i=1 to capture

general information, where each Xi
mp ∈ RP×D, and D is

the dimension for each patch token. We replicate the reg-
ister tokens Xu Kf times to get Xu ∈ RKf×Nr×D, where
Xu is obtained by inputting the original sequence into the
TS-Register, as detailed in Section 3.3. Then, we concate-
nate the patch tokens Xmp with the register tokens Xu, and
feed them into the Transformer encoder to obtain the repre-
sentation of each masked series. These representations are
then averaging aggregated to yield a unified representation
Sm ∈ R(Nr+P )×D.

Sm = Aggregator(Encoder(Concat(Xmp,Xu))). (4)

Reconstruction task. After obtaining the representation
Sm, we feed it into the reconstruction decoder, which shares
same stucture as the Tranformer encoder, and ultimately
reconstruct the original sequence x̂ ∈ RL through the re-
construction head, which is a linear layer. As frequency
domain masking affects the overall time series, we compute
the Mean Squared Error (MSE) reconstruction loss for the
entire time series.

Lreconstruction = ||x− x̂||22. (5)

3.3. Time Series Register

By decomposed frequency learning, we can obtain the
general representations. Additionally, we propose the TS-
Register that learns domain-specific information from the
multi-domain datasets for adaptive transfer. It clusters
domain-specific information from the multi-domain datasets
into register tokens and stores such domain-specific informa-
tion in the register during pre-training. Then, it adaptively
selects domain-specific information from the register via a
Top-K selection strategy to enhance the performance in the
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Figure 3. An illustration of decomposed frequency learning. Based on the sampled thresholds, we randomly apply low/high-frequency
masking to the time series in the frequency domain and then transform it back to the time domain for reconstruction.

target domain. A novel learnable low-rank matrix is pro-
posed to set to complement the downstream dataset-specific
information through fine-tuning.

We set up a randomly initialized register E ∈ RH×Dr

with H cluster center vectors ei ∈ RDr , i ∈ {1, 2, . . . ,H}.
Each of input time series x ∈ RL is projected into a data-
dependent embedding xe ∈ RDr through a linear layer.

Pre-training stage. As shown in Figure 2(b), we use the
register to cluster these data-dependent embeddings, which
generate domain-specific information, and store them in
pre-training. Specifically, We find a cluster center vector
eδ from the register E where we use δ to denote the cluster
that the data-dependent embedding xe belongs to.

Lregister = ∥xe − eδ∥22, δ = argmin
j=1:H

∥xe − ej∥2 . (6)

To update the cluster center vectors in the register E that rep-
resents the domain information of the pre-trained datasets,
we set the loss function shown in Equation 6 that minimizes
the distance between the embedding xe and the cluster cen-
ter eδ . To solve the problem that the gradient of the argmin
function cannot be backpropagated, we use the stop gradient
operation to pass the gradient of eδ directly to xe.

In this way, the vectors in the register E cluster the em-
beddings of different data and learn the domain-specific
centers for pre-trained datasets, which can represent domain-
specific information. As a vector in the register E, eδ rep-
resents the domain-specific information for input x. eδ is
invariant under small perturbations in xe that represents x,
which promotes better representation of domain-specific in-
formation and robustness of the vectors in the register. This
also avoids their over-reliance on detailed information about
specific datasets.

The cluster center vector eδ is then patched into Xu ∈
RNr×D, where Nr is the number of the register tokens and

D is the dimensionality of Transformer latent space. Xu is
called register tokens, which are used as the prefix of the
patch tokens Xp ∈ RP×D and input for the Transformer
encoder to provide domain-specific information.

Fine-tuning stage. As shown in Figure 2(c), after obtain-
ing a register E that contains domain-specific information
through pre-training, we freeze the register parameters to
adaptively use this domain-specific information in the down-
stream tasks.

Since the target domain may not strictly fit one of the up-
stream domains, we propose a novel embedding learning of
the downstream data by employing a Top-K strategy that
selects k similar vectors in the register. As shown in Equa-
tion 7, the embedding of input time series xe picks the k
nearest vectors in the register E, and uses their average as
ēk to represent the domain-specific information from the
pre-train stage. ēk is also patched into Xd ∈ RNr×D and is
used as the domain specific register tokens.

ēk =
1

k

k∑
i=1

eδi , {δ1, · · · , δk} = argTopk
j=1:H

(
1

∥xe − ej∥2
).

(7)
Since the downstream data has its own specific information
at the dataset level in addition to the domain level, this
may not be fully represented by the domain information
obtained from the pre-trained dataset alone. Therefore, we
innovatively set a learnable matrix A ∈ RNr×D to adjust
Xd to complement the specific information of downstream
data. Since the pre-trained model has a very low intrinsic
dimension (Aghajanyan et al., 2020), in order to get better
fine-tuning results, A is set as a low-rank matrix:

A = u× vT, (8)

where u ∈ RNr and v ∈ RD, and only the vectors u and v
need to be retrained in the fine-tuning step. As illustrated
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in Equation 9, the register token Xr of the downstream sce-
nario is obtained by doing the Hadamard product of Xd,
which represents the domain-specific information obtained
at the pre-train stage, and A, which represents the down-
stream dataset-specific information.

Xr = Xd ⊙A. (9)

3.4. Training

To improve the prediction performance in zero-shot and few-
shot settings, we co-train supervised prediction with self-
supervised reconstruction that uses multi-frequency mask-
ing to learn unified features that are more applicable to the
downstream prediction task.

Prediction task. The input time series x ∈ RL is sliced
into P non-overlapping patches and then mapped to Xp ∈
RP×D. Based on common forecasting needs (Qiu et al.,
2024), we set up four prediction heads mapping to prediction
lengths of {96, 192, 336, 720} to accomplish the prediction
task. Patch tokens Xp are concatenated with the register
tokens Xu and then successively fed into the Transformer
encoder to yield the representation S ∈ R(Nr+P )×D:

S = Encoder(Concatenate(Xp,Xu)). (10)

We feed the representation S into the prediction decoder
and prediction heads to obtain four prediction results ŶF ,
where F ∈ {96, 192, 336, 720}. With the ground truth YF ,
the prediction loss Lprediction is shown in Equation 11.

Lprediction =
∑

F∈{96,192,336,720}

||YF − ŶF ||22. (11)

Pre-training. The reconstruction task learns generalized
features through the Transformer encoder and reconstruc-
tion decoder. To utilize these features for the prediction task,
the parameters of the reconstruction decoder are copied
to the prediction decoder during forward propagation. To
avoid prediction training affecting the generalization perfor-
mance of the model, the gradients of the prediction heads
are skipped at back-propagation. The overall loss of ROSE
in pre-training stage is shown in Equation 12.

Lpre-train = Lreconstruction + Lprediction + Lregister. (12)

Fine-tuning. We only perform a prediction task in fine-
tuning. Patch tokens Xp are concatenated with the adjusted
register tokens Xr. For a downstream task with a fixed
prediction length, we use the corresponding pre-trained pre-
diction head to fine-tune the model.

4. Experiments
Pre-training datasets. The datasets are crucial for pre-
training a general time series forecasting model. In light

of this, we gather many publicly available datasets from
various domains, including energy, nature, health, transport,
web, economics, etc. The details of these datasets are shown
in the Appendix A.1.1. To enhance data utilization, we
downsample fine-grained datasets to coarser granularity,
resulting in approximately 887 million time points.

Evaluation datasets. To conduct comprehensive and fair
comparisons for different models, we conduct experiments
on seven well-known forecasting benchmarks as the target
datasets, including Weather, Traffic, Electricity, and ETT (4
subsets), which cover multiple domains.

Baselines. We select the state-of-the-art models as base-
lines in full-shot and few-shot setting, including four spe-
cific models: iTransformer (Liu et al., 2023), PatchTST (Nie
et al., 2022), TimesNet (Wu et al., 2022), and DLinear (Zeng
et al., 2023), and two LLM-based models: GPT4TS (Zhou
et al., 2024) and S2IP-LLM (Pan et al., 2024). In ad-
dition, we select five foundation models for comparison
in zero-shot setting, including Timer (Liu et al., 2024),
MOIRAI (Woo et al., 2024), Chronos (Ansari et al., 2024),
TimesFM (Das et al., 2023b), and Moment (Goswami et al.,
2024).

Setup. Consistent with previous works, we adopted Mean
Squared Error (MSE) and Mean Absolute Error (MAE) as
evaluation metrics. Due to ROSE mostly aims at long-term
predictions, for fair comparison, all methods fix the look-
back window L = 512 and predict the future values with
lengths F = {96, 192, 336, 720}. More implementation
details are presented in the Appendix A.1.3.

4.1. In Distribution Forecasting

Setting. In full-shot setting, we utilize full downstream data
to fine-tune pre-trained ROSE and baselines. In few-shot set-
ting, we fine-tune all models with only 10% train data. The
"Drop Last" issue is reported by several researchers (Qiu
et al., 2024; 2025a; Li et al., 2025). That is, in some previous
works evaluating the model on test set with drop-last=True
setting may cause additional errors related to test batch size.
In our experiment, to ensure fair comparison in the future,
we set the drop last to False for all baselines to avoid this
issue.

Full-shot results. As shown in Table 1, we also present the
results of the ROSE in 10% few-shot setting. Key observa-
tions are summarized as follows. First, as a general forecast-
ing model, ROSE achieves superior performance compared
to the six state-of-the-art baselines with full-data training,
achieving an average MSE reduction of 15%, which shows
that our decomposed frequency learning and register help to
learn generalized representations from large-scale datasets
and adaptively transfer the multi-domain information to
specific downstream scenarios. Second, we observe that
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ROSE in 10% few-shot setting shockingly improves a large
margin as MSE reduction in average exceeding 12% over
the baselines trained with full data. This observation val-
idates the transferability of ROSE pre-trained with large
multi-source data.

Few-shot results. The results under the 10% few-shot set-
ting are presented in Table 13 in Appendix A.10.2. ROSE
outperforms advanced models when training data is scarce
in the target domain. Figure 4 shows the performance of pre-
trained ROSE and ROSE trained from scratch on ETTh1 and
ETTm2 with different fine-tuning data percentages, noting
the best baselines in full-shot setting. The pre-trained ROSE
shows stable, superior performance even with limited fine-
tuning samples. Specifically, the pre-trained ROSE exceeds
SOTA performance with only 1% train data for ETTh1
and 2% for ETTm2. Moreover, compared to the ROSE
trained from scratch, the pre-trained ROSE exhibits a slower
decline in prediction performance with the reduction of fine-
tuning data, demonstrating the impressive generalization
ability of ROSE through pre-training.
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Figure 4. The forecasting results of ROSE obtained by training
from scratch and fine-tuning from the pre-trained model. The right,
upper corner is the best case.

4.2. Zero-shot Forecasting

Setting. In this section, to ensure a fair comparison, we con-
duct zero-shot predictions for each foundational model on
downstream datasets not included in their pre-training data.
It is worth noting that, unlike a few foundation models (Woo
et al., 2024) that require much longer inputs to achieve bet-
ter predictive performance, we fix the input length of all
baselines to 512 without considering longer input lengths, as
many real-world scenarios could offer very limited samples.

Results. As shown in Table 2, ROSE significantly outper-
forms across the majority of datasets, achieving an average
reduction of 15% in MSE. In comparison to Timer and
Moirai, ROSE achieves average MSE reductions of 9% and
6%, respectively, and demonstrates a remarkable 43% rel-
ative improvement over Moment. Notably, ROSE stands
out not only for its superior performance but also for its
exceptionally lightweight and efficient design, which sets it
apart from other foundational models. Detailed analysis of
these aspects will be presented in Section 4.3.

4.3. Model Analysis

Efficiency analysis. To exhibit the performance and ef-
ficiency advantages of ROSE, we compare its parameter
count to other foundation models and evaluate their per-
formance and testing time averaged on ETTh1 and ETTh2
datasets in zero-setting. Similarly, for each specific model,
we evaluate its parameter count as well as its performance in
full-shot setting and training-to-testing time averaged on the
same datasets. Specific implementation details and results
can be found in Appendix A.2.
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Figure 5. Model performance, number of parameter and efficiency
comparison.

As shown in Figure 5, ROSE is a lightweight general model
with 7.4M parameters and short inference time, which are
only about one-tenth of the second fastest/smallest foun-
dation model (Timer). Importantly, ROSE uses the least
number of parameters among foundation models, with its
parameter count approaching that of specific models, while
exhibiting superior zero-shot performance. This is attributed
to our proposed decomposed frequency learning that en-
hances the comprehension of time series. Concurrently, the
TS-Register achieves the adaptive transfer thus efficiently
adapting to downstream tasks without the need of scaling up
to achieve strong generalizability. Compared to foundation
models with large scale, ROSE may better meet the need for
general models in real scenarios that require high computa-
tional and parameter efficiency as well as high prediction
accuracy with scarce downstream data.

Visualization of TS-Register. To validate the TS-Register’s
capability to transfer domain-specific information adaptively
from pre-training datasets to target datasets, we visualize the
cosine similarity of register vector selections from datasets
across different domains. As shown in Figure 6(a), the co-
sine similarity is higher for datasets within the same domain
and lower between different domains. We also visualize
the register vector selections from different datasets in Fig-
ures 6(b) and (c), where datasets from the same domain
show similar visualizations. This confirms the TS-Register’s
capability of adaptive transfer from multi-source to target
datasets across various domains.
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Table 1. The results for ROSE in full-shot setting and 10% few-shot setting, compared with other methods in full-shot setting. The average
results of all predicted lengths are listed here.

Models ROSE ROSE (10%) ITransformer PatchTST Timesnet Dlinear GPT4TS S2IP-LLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.391 0.414 0.397 0.419 0.439 0.448 0.413 0.434 0.582 0.533 0.416 0.436 0.427 0.426 0.406 0.427

ETTh2 0.331 0.374 0.335 0.380 0.374 0.406 0.331 0.381 0.409 0.438 0.508 0.485 0.354 0.394 0.347 0.391

ETTm1 0.341 0.367 0.349 0.372 0.362 0.391 0.353 0.382 0.490 0.464 0.356 0.378 0.352 0.383 0.343 0.379

ETTm2 0.246 0.305 0.250 0.308 0.269 0.329 0.256 0.317 0.317 0.358 0.259 0.325 0.266 0.326 0.257 0.319

Weather 0.217 0.251 0.224 0.252 0.233 0.271 0.226 0.264 0.329 0.336 0.239 0.289 0.237 0.270 0.222 0.259

Electricity 0.155 0.248 0.164 0.253 0.164 0.261 0.159 0.253 0.195 0.296 0.166 0.267 0.167 0.263 0.161 0.257

Traffic 0.390 0.264 0.418 0.278 0.397 0.282 0.391 0.264 0.623 0.333 0.433 0.305 0.414 0.294 0.405 0.286

Table 2. The results for ROSE and other foundation models in the
zero-shot setting. The average results of all predicted lengths are
listed here. We use ’-’ to indicate that the dataset has been involved
in the model’s pre-training, and thus not used for testing.

Models ROSE Timer MOIRAI Chronos TimesFM Moment

Metric MSE MSE MSE MSE MSE MSE

ETTh1 0.401 0.451 0.475 0.560 0.489 0.708

ETTh2 0.346 0.366 0.379 0.392 0.396 0.392

ETTm1 0.525 0.544 0.714 0.636 0.434 0.697

ETTm2 0.299 0.360 0.343 0.313 0.320 0.319

Weather 0.265 0.292 0.267 0.288 - 0.291

Electricity 0.234 0.297 0.241 0.245 - 0.861

Traffic 0.588 0.613 - 0.615 - 1.411

ETTh2Wind

Pems08 Traffic

PRSA Weather

Energy

Transport

Nature

(a) The cosine similarity of register vectors selection
from various domains

(b) The register vectors selection 
from pretrain data

(c) The register vectors selection 
from target data

Energy

Transport

Weather

Figure 6. Visualization of TS-Register. The calculation of cosine
similarity is in the Appendix A.3.

Scalability and sensitivity. The scalability analysis of
ROSE’s model size and pre-training data size are presented
in Appendix A.4. The sensitivity analyses for the upper
bound a of the thresholds, the number of masked series Kf ,
the number of register tokens Nr, the size of register H and
number of selections k in Top-K strategy are presented in
Appendix A.5.

4.4. Ablation Studies

Model architecture. To validate effectiveness of our model
design, we perform ablation studies on TS-Register, predic-
tion tasks, and reconstruction task in 10% few-shot setting.
Table 3 shows the impact of each module. The TS-Register
leverages multi-domain information during pre-training, aid-
ing adaptive transfer to downstream datasets, as further
discussed in Section 4.3. The prediction tasks enhance per-
formance in data-scarce situations. Without it, performance

significantly drops on ETTh1 and ETTh2 with limited sam-
ples. Without the reconstruction task, our model shows
negative transfer effects on ETTm1 and ETTm2, likely due
to the prediction task making the model more susceptible to
pre-training data biases.

Masking method. To further validate the effectiveness
of decomposed frequency learning, we replace the multi-
frequency masking with different masking methods, includ-
ing two mainstream time-domain methods: patch mask-
ing (Nie et al., 2022) and multi-patch masking (Dong et al.,
2024), as well as random frequency masking (Chen et al.,
2023b). The results in Table 4 show that random frequency
masking and patch masking led to negative transfer on
ETTm1 and ETTm2, likely due to significant disruption
of the original time series, causing overfitting. In contrast,
multi-patch masking and multi-frequency masking resulted
in positive transfer across all datasets by preventing exces-
sive disruption. Multi-frequency masking achieved better
results, demonstrating its ability to help the model under-
stand temporal patterns from a multi-frequency perspective.
We also compare with some other pre-training tasks in Ta-
ble 14 in Appendix A.10.3.

Table 3. Ablations on key components of model architecture, in-
cluding TS-register, prediction task and reconstruction task. The
average results of all predicted lengths are listed here.

Design
ETTm1 ETTm2 ETTh1 ETTh2

MSE MAE MSE MAE MSE MAE MSE MAE

ROSE 0.349 0.372 0.250 0.308 0.397 0.419 0.335 0.380

w/o

TS-Register 0.354 0.378 0.256 0.312 0.418 0.427 0.355 0.390

Prediction Task 0.360 0.384 0.257 0.314 0.422 0.438 0.372 0.410

Reconstruction Task 0.387 0.403 0.269 0.327 0.412 0.428 0.361 0.399

From scratch 0.371 0.391 0.261 0.318 0.470 0.480 0.400 0.425

Table 4. Ablations on decomposed frequency learning, where we
replace Multi-freq masking with other masking methods. The
average results of all predicted lengths are listed here.

Design
ETTm1 ETTm2 ETTh1 ETTh2

MSE MAE MSE MAE MSE MAE MSE MAE

ROSE 0.349 0.372 0.250 0.308 0.397 0.419 0.335 0.380

Random Freq Masking 0.381 0.397 0.261 0.324 0.410 0.427 0.374 0.405

Multi-Patch Masking 0.356 0.379 0.259 0.316 0.404 0.426 0.349 0.389

Patch Masking 0.378 0.400 0.261 0.319 0.408 0.432 0.375 0.407

From scratch 0.371 0.391 0.261 0.318 0.470 0.480 0.400 0.425

8



Towards a General Time Series Forecasting Model with Unified Representation and Adaptive Transfer

5. Conclusion and Future Work
In this work, we propose ROSE, a novel general model, ad-
dressing the challenges of leveraging multi-domain datasets
for enhancing downstream prediction task performance.
ROSE utilizes decomposed frequency learning and TS-
Register to capture generalized and domain-specific rep-
resentations, enabling improved fine-tuning results, espe-
cially in data-scarce scenarios. Our experiments demon-
strate ROSE’s superior performance over baselines with
both full-data and few-data fine-tuning, as well as its impres-
sive zero-shot capabilities. Future efforts will concentrate
on expanding pre-training datasets and extending ROSE’s
applicability across diverse time series analysis tasks, e.g.,
classification.
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A. Appendix
A.1. Implementation Details

A.1.1. PRE-TRAINING DATASETS

We use multi-source datasets in pre-training which contain subsets of Monash (Godahewa et al., 2021), UEA (Bagnall et al.,
2018) and UCR (Dau et al., 2019) time series datasets, as well as some other time series classical datasets (Zhang et al.,
2017; Wang et al., 2024; Liu et al., 2022a; McCracken & Ng, 2016; Taieb et al., 2012). The final list of all pre-training
datasets is shown in Table 5. There is no overlap between the pre-training datasets and the target datasets. It is worth
noting that the dataset weather in the pre-training dataset is a univariate dataset, which is different to the multivariate dataset
weather in the target task. The pre-trained datasets can be categorized into 6 different domains according to their sources:
Energy, Nature, Health, Transport, and Web. The sampling frequencies of the datasets show a remarkable diversity, ranging
from millisecond samples to monthly samples, which reflects the diverse application scenarios and complexity of the real
world. For all pre-training datasets, we split them into univariate sequences and train them in a channel-independent manner.

Table 5. List of pretraining datasets.
Domain Dataset Frequency Time Pionts Source

Energy

Aus. Electricity Demand Half Hourly 1155264 Monash(Godahewa et al., 2021)

Wind 4 Seconds 7397147 Monash(Godahewa et al., 2021)

Wind Farms Minutely 172178060 Monash(Godahewa et al., 2021)

Solar 10 Minutes 7200720 Monash(Godahewa et al., 2021)

Solar Power 4 Seconds 7397222 Monash(Godahewa et al., 2021)

London Smart Meters Half Hourly 166527216 Monash(Godahewa et al., 2021)

Nature

Phoneme - 2160640 UCR(Dau et al., 2019)

EigenWorms - 27947136 UEA(Bagnall et al., 2018)

PRSA Hourly 4628448 (Zhang et al., 2017)

Temperature Rain Daily 23252200 Monash(Godahewa et al., 2021)

StarLightCurves - 9457664 UCR(Dau et al., 2019)

Worms 0.033 Seconds 232200 UCR(Dau et al., 2019)

Saugeen River Flow Daily 23741 Monash(Godahewa et al., 2021)

Sunspot Daily 73924 Monash(Godahewa et al., 2021)

Weather Daily 43032000 Monash(Godahewa et al., 2021)

KDD Cup 2018 Daily 2942364 Monash(Godahewa et al., 2021)

US Births Daily 7305 Monash(Godahewa et al., 2021)

Health

MotorImagery 0.001 Seconds 72576000 UEA(Bagnall et al., 2018)

SelfRegulationSCP1 0.004 Seconds 3015936 UEA(Bagnall et al., 2018)

SelfRegulationSCP2 0.004 Seconds 3064320 UEA(Bagnall et al., 2018)

AtrialFibrillation 0.008 Seconds 38400 UEA(Bagnall et al., 2018)

PigArtPressure - 624000 UCR(Dau et al., 2019)

PIGCVP - 624000 UCR(Dau et al., 2019)

TDbrain 0.002 Seconds 79232703 (Wang et al., 2024)

Transport

Pems03 5 Minute 9382464 (Liu et al., 2022a)

Pems04 5 Minute 5216544 (Liu et al., 2022a)

Pems07 5 Minute 24921792 (Liu et al., 2022a)

Pems08 5 Minute 3035520 (Liu et al., 2022a)

Pems-bay 5 Minute 16937700 (Liu et al., 2022a)

Pedestrian_Counts Hourly 3132346 Monash(Godahewa et al., 2021)

Web Web Traffic Daily 116485589 Monash(Godahewa et al., 2021)

Economic

FRED_MD Monthly 77896 (McCracken & Ng, 2016)

Bitcoin Daily 75364 Monash(Godahewa et al., 2021)

NN5 Daily 87801 (Taieb et al., 2012)
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A.1.2. EVALUATION DATASETS

We use the following 7 multivariate time-series datasets for downstream fine-tuning and forecasting: ETT datasets1 contain 7
variates collected from two different electric transformers from July 2016 to July 2018. It consists of four subsets, of which
ETTh1/ETTh2 are recorded hourly and ETTm1/ETTm2 are recorded every 15 minutes. Traffic2 contains road occupancy
rates measured by 862 sensors on freeways in the San Francisco Bay Area from 2015 to 2016, recorded hourly. Weather3

collects 21 meteorological indicators, such as temperature and barometric pressure, for Germany in 2020, recorded every 10
minutes. Electricity4 contains the electricity consumption of 321 customers from July 2016 to July 2019, recorded hourly.
We split each evaluation dataset into train-validation-test sets and detailed statistics of evaluation datasets are shown in
Table 6.

Table 6. The statistics of evaluation datasets.
Dataset ETTm1 ETTm2 ETTh1 ETTh2 Traffic Weather Electricity

Variables 7 7 7 7 862 21 321

Timestamps 69680 69680 17420 17420 17544 52696 26304

Split Ratio 6:2:2 6:2:2 6:2:2 6:2:2 7:1:2 7:1:2 7:1:2

A.1.3. SETTING

We implemented ROSE in PyTorch (Paszke et al., 2019) and all the experiments were conducted on 8 NVIDIA A800 80GB
GPU. We used ADAM (Kingma & Ba, 2014) with an initial learning rate of 5× 10−4 and implemented learning rate decay
using the StepLR method to implement learning rate decaying pre-training. By default, ROSE contains 3 encoder layers and
3 decoder layers with head number of 16 and the dimension of latent space D = 256. The patch size for patching is set to
64.

Pre-training. We use Nr = 3 as the number of register tokens and P = 8 as the path tokens. We set the input length to 512
for the supervised prediction task with target lengths of 96, 192, 336, and 720. We also set the input length to 512 and mask
number Kf = 4. The batch size is set to 8192 in pre-training.

Fine-tuning. We fix the lookback window to 512, and perform predictions with target lengths of 96, 192, 336, and 720,
respectively. The number of register tokens Nr and patch tokens P is the same as in pre-training, and the parameter k = 3
in TopK is set when selection vectors are performed in the register.

The t-SNE visualization. We select three datasets (Pems08, PSRA, Electricity) from transport, nature and energy
domains respectively and compare the differences in hidden representations between direct transfer and adaptive transfer.
Specifically, direct transfer refers to the case where domain specific information is not considered, while adaptive transfer
considers domain specific information that is learned by register tokens. We visualized the output of the encoder’s hidden
representations using t-SNE.

A.1.4. BASELINES

We select the state-of-the-art models as our baselines in full-shot and few-shot setting, including four specific models:
iTransformer (Liu et al., 2023), PatchTST (Nie et al., 2022), TimesNet (Wu et al., 2022), and DLinear (Zeng et al., 2023),
and two LLM-based models: GPT4TS (Zhou et al., 2024) and S2IP-LLM (Pan et al., 2024). In addition, we selected five
foundation models for comparison in zero-shot setting, including Timer (Liu et al., 2024), MOIRAI (Woo et al., 2024),
Chronos (Ansari et al., 2024), TimesFM (Das et al., 2023b) and Moment (Goswami et al., 2024). The zero-shot experiment
of Moment is designed based on the reconstruction task in the pre-training phase. Specifically, to ensure consistency between
pre-training (reconstruction) and downstream prediction tasks, we actively mask the time periods to be predicted in the
input sequence, and directly use the model’s reconstruction output for this part as the prediction value. Moment itself is not
designed for zero-shot prediction and does not officially support zero-shot forecasting in this manner. The specific code base
for these models is listed in Table 7:

1https://github.com/zhouhaoyi/ETDataset
2https://pems.dot.ca.gov/
3https://www.bgc-jena.mpg.de/wetter/
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Table 7. Code repositories for baselines.
Model Types Models Code Repositories

Small Model

iTransformer https://github.com/thuml/iTransformer

PatchTST https://github.com/yuqinie98/PatchTST

TimesNet https://github.com/thuml/TimesNet

Dlinear https://github.com/cure-lab/LTSF-Linear

Foundation Model

Timer https://github.com/thuml/Large-Time-Series-Model

MOIRAI https://github.com/redoules/moirai

Chronos https://github.com/amazon-science/chronos-forecasting

TimesFM https://github.com/google-research/timesfm/

Moment https://anonymous.4open.science/r/BETT-773F/README.md

LLM-based Model
GPT4TS https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All

S2IP-LLM https://github.com/panzijie825/S2IP-LLM

A.2. Efficiency Analysis

As an important aspect of foundation models, inference efficiency is crucial. Therefore, we evaluate the testing time of
ROSE and five foundation models in the ETTh1 and ETTh2 dataset in zero-shot setting. Similarly, we evaluate the time
of the entire process of training, validation, and testing for four specific models in the same datasets in full-shot setting.
The above experiments all set the batch size to 32. The specific results are shown in Table 8 and Figure 5. We observe that
ROSE maintains its advantage in zero-shot performance while also being significantly faster compared to the baselines, even
being approximately ten times faster than the second-fastest foundation model, Timer. This raises our reflection on whether
time-series foundation models require extremely large parameter sizes and whether existing time-series foundation models
have validated their architectures’ scaling laws on time-series data.

Table 8. Efficiency analysis.

Model Parameters Pre-train datasize Averaged time

ROSE 7.4M 0.89B 0.652s
MOIRAI 311M 27B 7.920s

Timer 67.4M 1B 5.989s
Chronos 46M 84B 176s

TimesFM 200M 100B 10.5s
Moment 385M 1.13B 13s

Itransformer 3.8M - 34.18s
PatchTST 3.2M - 35.47s
TimesNet 1.8M - 146s
Dlinear 0.018M - 24.06s

A.3. Calculation of Cosine Similarity

In Figure 6, we visualize the cosine similarity of register vector selections. For each sample in a dataset, during the inference
process, k vectors are selected from the register based on the Top-K strategy. We iterate through all samples in the dataset
and count the number of times each vector is selected, which allows us to obtain a record vector of length equivalent to the
size of the register for each dataset. The ith position in the record vector represents the number of times the ith vector in the
register has been selected by samples in the dataset. For a pair of datasets, we can obtain a unique record vector for each
dataset, and then we are able to calculate the cosine similarity of two vectors.

A.4. Scalability

Scalability is crucial for a general model, enabling significant performance improvements by expanding pre-training data
and model sizes. To investigate the scalability of ROSE, we increased both the model size and dataset size and evaluated its
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predictive performance on four ETT datasets.
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Figure 7. (a)/(b): Larger ROSE demonstrates better performance on downstream forecasting. (c)/(d): ROSE pre-trained on larger datasets
demonstrates better performance on downstream forecasting.

Model size. Constrained by computational resources, we use 40% pre-training datasets. The results are shown in Figure
7(a) and (b). When maintaining the model dimension, we increased the model layers, increasing model parameters from
2M to 4.5M. This led to 10.37% and 9.34% improvements in the few-shot scenario with 5% and 10% downstream data,
respectively.

Data size. When keeping the model size, we increase the size of the pre-training datasets from 178M to 887M. The results
are shown in Figure 7(c) and (d). The performance of our model steadily improves with the increase in dataset size and
achieves improvements of 7.4% and 4.8% respectively.

A.5. Sensitivity

We perform the sensitivity analyses for the upper bound a of the thresholds, the number of masked series Kf , the number of
register tokens Nr, the size of register H and the number of selections k in Top-K strategy. All the sensitivity experiments
present the average results on the four ETT datasets: ETTh1, ETTh2, ETTm1 and ETTm2 under 10% few-shot setting.

Number of masked series. As described in Section 3.2, we propose decomposed frequency learning, which employs
multiple thresholds to randomly mask high and low frequencies in the frequency domain, thereby decomposing the original
time series into multiple frequency components. This allows the model to understand the time series from multiple frequency
perspectives. In this experiment, we study the influence of the number of masked series Kf on downstream performance.
We train ROSE with 1, 2, 3, 4, 5, or 6 mask series. We report the results of this analysis in Figure 8(a). We find that as the
number of masked sequences increases, the downstream performance gradually improves. This is because the model can
better understand the time series from the decomposed frequency components, which enhances the model’s generalization
ability. However, more masked series do not bring better downstream performance. This could be due to an excessive
number of masked sequences leading to information redundancy. In all our experiments, we keep 4 mask series.

Number of register tokens. The TS-register module presented in Section 3.3 supports the configuration of an arbitrary
number of register tokens. In Figure 8(b), we visualize the relationship between the performance on the ETT datasets under
a 10% few-shot setting and the number of register tokens. It is observed that when the number of register tokens ranges from
1 to 6, the model’s performance remains relatively stable, with an optimal outcome achieved when the number is set to 3.
This phenomenon may be because when the number of register tokens is too small, they contain insufficient domain-specific
information, which limits their effectiveness in enhancing the model’s performance. Conversely, an excess of register tokens
may introduce redundant information, hindering the accurate representation of domain-specific information. Additionally,
we compared the results without the adjustment of a low-rank matrix on the register tokens and found that the incorporation
of a low-rank matrix adjustment led to improvements across all quantities of register tokens. This finding underscores the
significance of utilizing a low-rank matrix to supplement the register tokens with downstream data-specific information.

Thresholds upper bound. Figure 9(a) illustrates the relationship between threshold upper bound and model performance.
We have observed that the upper bound of the threshold has a minimal impact on the model’s performance. Generally, the
information density is higher in low-frequency components compared to high-frequency ones. Therefore, the upper bound of
the threshold should be biased towards the low-frequency range to balance the information content between low-frequency
and high-frequency components. However, this bias should not be excessive. Our experiments indicate that an upper bound
of L/10 performs worse than L/5 as an overly left-skewed threshold results in insufficient information in the low-frequency
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Figure 8. (a): Analysis of the number of masked series. (b): Analysis of the number of register tokens.

range, making the reconstruction task either too difficult or too simple. Based on our findings, we recommend using L/5 as
the upper bound for the threshold.

Register size. Figure 9(b) illustrates the relationship between register size and model performance. The register size
determines the upper limit of domain-specific information that the register can store. We can observe that there is a significant
improvement in the model effect when the register size is increased from 32 to 128. When the register size exceeds 128, the
improvement of the model effect with the increase of register size is no longer obvious. Therefore, we believe that 128 is an
appropriate register size for the current pre-training datasets.

Number of selections in Top-K strategy. Figure 9(c) illustrates the relationship between the number of selections k in
Top-K strategy and model performance when we use the register to realize adaptive transfer of domain-specific information
in downstream tasks. It can be seen that the model effect performance peaks at 3 tokens at k = 3, which has some advantages
over selecting once (k = 1), indicating that the TopK strategy can compensate for the problem of incomplete matching of
upstream and downstream domains to some extent. However, too large k will also introduce redundant information and
limit the accuracy of domain-specific information transfer.
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Figure 9. (a): Analysis of the threshold upper bound. (b): Analysis of the size of register. (c): Analysis of the number of selections in
Top-K strategy.

A.6. Short-term Forecasting

We also try to apply ROSE to short-term forecasting on the M4 (Makridakis, 2018) dataset, which contains the yearly,
quarterly and monthly collected univariate marketing data. We follow TimesNet’s (Wu et al., 2022) setting and metrics
(SMAPE, MASE and OWA) for testing. As shown in Table 9, ROSE also exhibits competitive performance on the M4
dataset compared to the baselines.

Table 9. Full results on Short-term forecasting.

Metric
ROSE iTransformer PatchTST Timesnet Dlinear GPT4TS S2IP-LLM

SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

Yearly 13.302 3.014 0.833 13.238 2.952 0.823 16.766 4.331 1.018 13.387 2.996 0.786 16.965 4.283 1.058 13.531 3.015 0.793 13.413 3.024 0.792
Quarterly 9.998 1.165 0.885 10.001 1.278 0.949 12.132 1.513 0.966 10.100 1.182 0.890 12.145 1.520 1.106 10.100 1.194 0.898 10.352 1.228 0.922
Monthly 12.650 0.915 0.866 13.399 1.031 0.949 13.428 0.997 0.948 12.670 0.933 0.933 13.514 1.037 0.956 12.894 0.956 0.897 12.995 0.970 0.910
Others 4.668 3.126 1.020 6.558 4.511 1.401 6.667 4.834 1.417 4.891 3.302 1.035 6.709 4.953 1.487 4.940 3.228 1.029 4.805 3.247 1.071
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A.7. Model Generality

We evaluate the effectiveness of our proposed multi-frequency masking on Transformer-based models and CNN-based
models, whose results are shown in Table 10. It is notable that multi-frequency masking consistently improves these
forecasting models. Specifically, it achieves average improvements of 6.3%, 3.7%, 1.5% in Autoformer (Wu et al., 2021a),
TimesNet (Wu et al., 2022), and PatchTST (Nie et al., 2022), respectively. This indicates that multi-frequency Masking can
be widely utilized across various time series forecasting models to learn generalized time series representations and improve
prediction accuracy.

Table 10. Performance of multi-frequency masking.
Datasets ETTm1 ETTm2 ETTh1 ETTh2

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Autoformer
+Multi-frequency Masking

0.600 0.521 0.328 0.365 0.493 0.487 0.452 0.458

0.549 0.488 0.306 0.349 0.474 0.478 0.406 0.425

TimesNet
+Multi-frequency Masking

0.400 0.406 0.291 0.333 0.458 0.450 0.414 0.427

0.386 0.398 0.282 0.324 0.446 0.438 0.386 0.403

PatchTST
+Multi-frequency Masking

0.353 0.382 0.256 0.317 0.413 0.434 0.331 0.381

0.347 0.372 0.252 0.308 0.405 0.424 0.337 0.379

A.8. Results Deviation

We have conducted ROSE three times with different random seeds and have recorded the standard deviations for both the
full-shot setting and the 10% few-shot setting, as illustrated in Table 11. As the baselines didn’t report deviations in the
original paper, we only reported the deviations of the PatchTST in the full-shot setting as a comparison. It can be observed
that ROSE exhibits stable performance.

Table 11. Results deviation.
Models ROSE ROSE (10%) PatchTST confidence interval

Metric MSE MAE MSE MAE MSE MAE -

ETTm1 0.342±0.003 0.367±0.002 0.349±0.003 0.372±0.002 0.349± 0.004 0.383±0.003 99%
ETTm2 0.246±0.002 0.303±0.004 0.249±0.002 0.308±0.002 0.255±0.002 0.314±0.003 99%
ETTh1 0.392±0.004 0.413±0.004 0.397±0.003 0.419±0.003 0.411±0.003 0.432±0.005 99%
ETTh2 0.330±0.003 0.374±0.002 0.335±0.004 0.380±0.003 0.348±0.004 0.390±0.004 99%
Traffic 0.391±0.008 0.266±0.005 0.418±0.011 0.278±0.006 0.404±0.009 0.283±0.002 99%

Weather 0.217±0.008 0.250±0.007 0.224±0.007 0.252±0.009 0.223±0.011 0.263±0.014 99%
Electricity 0.156±0.007 0.249±0.009 0.164±0.004 0.253±0.004 0.163±0.009 0.261±0.013 99%
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A.9. Visualization

A.9.1. VISUALIZATION ANALYSIS

To showcase the benefits of cross-domain pre-training, we performed visualizations in both the zero-shot setting and full-shot
setting.

Zero-shot: We pre-train the baselines iTransformer and PatchTST on the energy domain dataset ETTm1 and test their
zero-shot performance on two different domains (weather, traffic) . ROSE, without fine-tuning, is evaluated to the same two
test-sets. As shown in the Figure 10, we find that the baselines generally perform worse during domain shift due to their poor
generalization. However, ROSE excels in scenarios across all domains, which demonstrates the benefits of cross-domain
pre-training for improving generalization.

Full-shot: We train the baselines on the train-set of downstream dataset ETTh2 and fine-tune ROSE on the same train-set.
As shown in the Figure 11, We find that the baselines is limited by data diversity, leading to poor performance on patterns
which rarely appear. However, ROSE excels in these cases, as the cross-domain pre-training allows ROSE to learn diverse
temporal patterns, and helps ROSE to predict the patterns which rarely appear in the downstream train-set well.

ROSE_Weather

ROSE_Traffic

ROSE_ETTh2

iTransformer_Weather

iTransformer_Traffic

iTransformer_ETTh2

PatchTST_Weather

PatchTST_Traffic

PatchTST_ETTh2

Figure 10. Visualization comparison of ROSE with cross-domain pre-training and other SOTA baselines in the zero-shot setting for three
domain datasets.

A.9.2. VISUALIZATION SHOWCASE

To provide a distinct comparison among different models, we present visualizations of the forecasting results on the ETTh2
dataset and the weather dataset in different settings, as shown in Figures 12 to Figures 15, given by the following models:
DLinear (Zeng et al., 2023), TimesNet (Wu et al., 2022), iTransfomrer (Liu et al., 2023), and PatchTST (Nie et al., 2022).
Among the methods, ROSE demonstrates the most accurate prediction ability.
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ROSE_ETTh2_RarePattern iTransfomer_ETTh2_RarePattern PatchTST_ETTh2_RarePattern

ROSE_ETTh2_CommonPattern iTransformer_ETTh2_CommonPattern PatchTST_ETTh2_CommonPattern

Figure 11. Visualization comparison of ROSE with cross-domain pre-training and other SOTA baselines in the full-shot setting for rare
and common patterns.

ROSE Dlinear TimesNet

Itransfomer PatchTST

Figure 12. Visualization of input-512 and predict-336 forecasting results on the ETTh2 dataset in full-shot setting.
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ROSE Dlinear TimesNet

Itransfomer PatchTST

Figure 13. Visualization of input-512 and predict-336 forecasting results on the ETTh2 dataset in 10% few-shot setting.

ReadyTS Dlinear TimesNet

Itransfomer PatchTST

Figure 14. Visualization of input-512 and predict-336 forecasting results on the weather dataset in full-shot setting.

ROSE Dlinear TimesNet

Itransformer PatchTST

Figure 15. Visualization of input-512 and predict-336 forecasting results on the weather dataset in 10% few-shot setting.
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A.10. Full Results

A.10.1. FULL-SHOT RESULTS

Table 12 shows the full results of ROSE in full-shot setting for four prediction lengths. ROSE shows the advantage over the
specific models and LLM-based models trained with the full training set.

Table 12. Full results in full-shot setting.
Models ReadyTS ITransformer PatchTST Timesnet Dlinear GPT4TS S2IP-LLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.354 0.385 0.386 0.405 0.370 0.400 0.470 0.470 0.367 0.396 0.376 0.397 0.366 0.396

192 0.389 0.407 0.424 0.440 0.413 0.429 0.568 0.523 0.400 0.417 0.416 0.418 0.401 0.420

336 0.406 0.422 0.449 0.460 0.422 0.440 0.595 0.547 0.428 0.439 0.442 0.433 0.412 0.431

720 0.413 0.443 0.495 0.487 0.447 0.468 0.694 0.591 0.468 0.491 0.477 0.456 0.440 0.458

avg 0.391 0.414 0.439 0.448 0.413 0.434 0.582 0.533 0.416 0.436 0.427 0.426 0.406 0.427

ETTh2

96 0.265 0.320 0.297 0.348 0.274 0.337 0.351 0.399 0.302 0.368 0.285 0.342 0.278 0.340

192 0.328 0.369 0.371 0.403 0.341 0.382 0.394 0.429 0.404 0.433 0.354 0.389 0.246 0.385

336 0.353 0.391 0.404 0.428 0.329 0.384 0.415 0.443 0.511 0.498 0.373 0.407 0.367 0.406

720 0.376 0.417 0.424 0.444 0.379 0.422 0.477 0.481 0.815 0.640 0.406 0.441 0.400 0.436

avg 0.331 0.374 0.374 0.406 0.331 0.381 0.409 0.438 0.508 0.485 0.354 0.394 0.347 0.391

ETTm1

96 0.275 0.328 0.300 0.353 0.293 0.346 0.405 0.421 0.303 0.346 0.292 0.262 0.288 0.346

192 0.324 0.358 0.345 0.382 0.333 0.370 0.508 0.473 0.335 0.365 0.332 0.301 0.323 0.365

336 0.354 0.377 0.374 0.398 0.369 0.392 0.523 0.479 0.365 0.384 0.366 0.341 0.359 0.390

720 0.411 0.407 0.429 0.430 0.416 0.420 0.523 0.484 0.418 0.415 0.417 0.401 0.403 0.418

avg 0.341 0.367 0.362 0.391 0.353 0.382 0.490 0.464 0.356 0.378 0.352 0.383 0.343 0.379

ETTm2

96 0.157 0.243 0.175 0.266 0.166 0.256 0.233 0.305 0.164 0.255 0.173 0.262 0.165 0.257

192 0.213 0.283 0.242 0.312 0.223 0.296 0.265 0.328 0.224 0.304 0.229 0.301 0.222 0.299

336 0.266 0.319 0.282 0.340 0.274 0.329 0.379 0.392 0.277 0.339 0.286 0.341 0.277 0.330

720 0.347 0.373 0.378 0.398 0.362 0.385 0.390 0.407 0.371 0.401 0.378 0.401 0.363 0.390

avg 0.246 0.305 0.269 0.329 0.256 0.317 0.317 0.358 0.259 0.325 0.266 0.326 0.257 0.319

Weather

96 0.145 0.182 0.159 0.208 0.149 0.198 0.193 0.244 0.170 0.230 0.162 0.212 0.145 0.195

192 0.183 0.226 0.200 0.248 0.194 0.241 0.320 0.329 0.212 0.267 0.204 0.248 0.190 0.235

336 0.232 0.267 0.253 0.289 0.245 0.282 0.363 0.366 0.257 0.305 0.254 0.286 0.243 0.280

720 0.309 0.327 0.321 0.338 0.314 0.334 0.440 0.404 0.318 0.356 0.326 0.337 0.312 0.326

avg 0.217 0.251 0.233 0.271 0.226 0.264 0.329 0.336 0.239 0.289 0.237 0.270 0.222 0.259

Electricity

96 0.125 0.220 0.138 0.237 0.129 0.222 0.182 0.287 0.141 0.241 0.139 0.238 0.135 0.230

192 0.142 0.235 0.157 0.256 0.147 0.240 0.193 0.293 0.154 0.254 0.153 0.251 0.149 0.247

336 0.162 0.252 0.167 0.264 0.163 0.259 0.196 0.298 0.168 0.271 0.169 0.266 0.167 0.266

720 0.191 0.284 0.194 0.286 0.197 0.290 0.209 0.307 0.203 0.303 0.206 0.297 0.200 0.287

avg 0.155 0.248 0.164 0.261 0.159 0.253 0.195 0.296 0.166 0.267 0.167 0.263 0.161 0.257

Traffic

96 0.354 0.252 0.363 0.265 0.360 0.249 0.611 0.323 0.411 0.294 0.388 0.282 0.379 0.274

192 0.377 0.257 0.385 0.273 0.379 0.256 0.609 0.327 0.421 0.298 0.407 0.290 0.397 0.282

336 0.396 0.262 0.396 0.277 0.392 0.264 0.616 0.335 0.431 0.304 0.412 0.294 0.407 0.289

720 0.434 0.283 0.445 0.312 0.432 0.286 0.656 0.349 0.468 0.325 0.450 0.312 0.440 0.301

avg 0.390 0.264 0.397 0.282 0.391 0.264 0.623 0.333 0.433 0.305 0.414 0.294 0.405 0.286
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A.10.2. FEW-SHOT RESULTS

Table 13 shows the full results of ROSE in 10% few-shot setting for four prediction lengths. ROSE shows the advantage
over the specific models and LLM-based models trained with the 10% training set.

Table 13. Full results in 10% few-shot setting
Models ReadyTS ITransformer PatchTST Timesnet Dlinear GPT4TS S2IP-LLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.367 0.395 0.442 0.464 0.458 0.463 0.579 0.522 1.355 0.816 0.458 0.456 0.481 0.474

192 0.399 0.416 0.476 0.475 0.481 0.490 0.641 0.553 1.210 0.825 0.570 0.516 0.518 0.491

336 0.405 0.423 0.486 0.482 0.465 0.475 0.721 0.582 1.487 0.914 0.608 0.535 0.664 0.570

720 0.416 0.443 0.509 0.506 0.478 0.492 0.630 0.574 1.369 0.826 0.725 0.591 0.711 0.584

avg 0.397 0.419 0.478 0.482 0.470 0.480 0.643 0.558 1.355 0.845 0.590 0.525 0.593 0.529

ETTh2

96 0.273 0.332 0.333 0.385 0.350 0.389 0.378 0.413 1.628 0.724 0.331 0.374 0.354 0.400

192 0.334 0.376 0.402 0.428 0.416 0.426 0.463 0.460 1.388 0.713 0.402 0.411 0.400 0.423

336 0.358 0.397 0.438 0.452 0.401 0.429 0.507 0.495 1.595 0.772 0.406 0.433 0.442 0.450

720 0.376 0.417 0.466 0.477 0.436 0.457 0.516 0.501 1.664 0.857 0.449 0.464 0.480 0.486

avg 0.335 0.380 0.410 0.436 0.401 0.425 0.466 0.467 1.569 0.766 0.397 0.421 0.419 0.439

ETTm1

96 0.287 0.336 0.353 0.392 0.317 0.363 0.481 0.446 0.454 0.475 0.390 0.404 0.388 0.401

192 0.331 0.362 0.385 0.410 0.351 0.382 0.621 0.491 0.575 0.548 0.429 0.423 0.422 0.421

336 0.362 0.379 0.422 0.432 0.376 0.398 0.521 0.479 0.773 0.631 0.469 0.439 0.456 0.430

720 0.416 0.412 0.494 0.472 0.435 0.430 0.571 0.508 0.943 0.716 0.569 0.498 0.554 0.490

avg 0.349 0.372 0.414 0.426 0.370 0.393 0.549 0.481 0.686 0.593 0.464 0.441 0.455 0.435

ETTm2

96 0.159 0.247 0.183 0.279 0.170 0.259 0.212 0.292 0.493 0.476 0.188 0.269 0.192 0.274

192 0.217 0.287 0.247 0.320 0.226 0.297 0.297 0.353 0.923 0.658 0.251 0.309 0.246 0.313

336 0.269 0.322 0.300 0.353 0.284 0.333 0.328 0.364 1.407 0.822 0.307 0.346 0.301 0.340

720 0.357 0.377 0.385 0.408 0.363 0.382 0.456 0.440 1.626 0.905 0.426 0.417 0.400 0.403

avg 0.250 0.308 0.279 0.340 0.261 0.318 0.323 0.362 1.112 0.715 0.293 0.335 0.284 0.332

Weather

96 0.145 0.184 0.189 0.229 0.166 0.217 0.199 0.248 0.230 0.318 0.163 0.215 0.159 0.210

192 0.190 0.227 0.239 0.269 0.211 0.257 0.249 0.285 0.357 0.425 0.210 0.254 0.200 0.251

336 0.245 0.269 0.294 0.308 0.261 0.296 0.297 0.316 0.464 0.493 0.256 0.292 0.257 0.293

720 0.317 0.328 0.366 0.356 0.328 0.342 0.367 0.361 0.515 0.532 0.321 0.339 0.317 0.335

avg 0.224 0.252 0.272 0.291 0.242 0.278 0.278 0.303 0.391 0.442 0.238 0.275 0.233 0.272

Electricity

96 0.135 0.226 0.184 0.276 0.161 0.256 0.279 0.359 0.227 0.334 0.139 0.237 0.143 0.243

192 0.150 0.240 0.192 0.284 0.163 0.257 0.282 0.363 0.265 0.366 0.156 0.252 0.159 0.258

336 0.166 0.258 0.216 0.308 0.173 0.266 0.289 0.367 0.339 0.417 0.175 0.270 0.170 0.269

720 0.205 0.290 0.265 0.347 0.221 0.313 0.333 0.399 0.482 0.478 0.233 0.317 0.230 0.315

avg 0.164 0.253 0.214 0.304 0.180 0.273 0.296 0.372 0.328 0.399 0.176 0.269 0.175 0.271

Traffic

96 0.398 0.270 0.458 0.314 0.421 0.299 0.705 0.386 0.616 0.385 0.414 0.297 0.403 0.293

192 0.405 0.270 0.473 0.319 0.439 0.313 0.710 0.393 0.710 0.480 0.426 0.301 0.412 0.295

336 0.417 0.277 0.491 0.329 0.448 0.318 0.863 0.456 0.723 0.481 0.434 0.303 0.427 0.316

720 0.452 0.294 0.536 0.361 0.478 0.320 0.928 0.485 0.673 0.436 0.487 0.337 0.469 0.325

avg 0.418 0.278 0.490 0.331 0.447 0.312 0.801 0.430 0.680 0.446 0.440 0.310 0.427 0.307
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A.10.3. ABLATION STUDY RESULTS

Novelty of decomposed frequency learning. Frequency masking is not a new concept, but past approaches randomly
mask frequencies of a single time series once (Chen et al., 2023b; Zhang et al., 2023), which show limited forecasting
effectiveness due to the lack of common pattern learning from heterogeneous time series that come from various domains.
While the multi-frequency masking we proposed randomly mask either high-frequency or low-frequency components of a
time series multiple times as the key to enable learning of common time series patterns, such as trends and various long and
short term fluctuations. Moreover, different from utilizing frequency masking as a way of data augmentation to enhance the
diversity of input data (Chen et al., 2023b; Zhang et al., 2023), we combine multi-frequency masking with reconstruction
task as a novel pre-training framework, that learns a universal and unified feature representation by comprehending the data
from various frequency perspectives, thereby enabling it to learn generalized representations.

Difference between frequency-domain masking and time-domain noise addition. Multi-frequency masking and
reconstruction are not equivalent to the pre-training methods of adding noise and denoising (Noise). Due to the sparsity of
time series, the process of adding noise and denoising may potentially disrupt the information of original time series (Dong
et al., 2024). In contrast, multi-frequency masking not only preserves the series from such disruption but also helps the
model understand temporal patterns from a multi-frequency perspective, thereby helping the model to learn general features
better.

Other pre-training tasks. Based on the two points above, we conduct experiments to compare two other pre-training
tasks: 1) using frequency-domain augmentation only for data expansion without reconstruction task (Aug); 2) replacing
multi-frequency masking and reconstruction task with adding time-domian noise and denoise task (Noise).As shown in
Table 14, we find that ROSE is significantly more effective than Aug and Noise, which demonstrates the effectiveness of
multi-frequency masking and reconstruction task in learning generalized features.

A.10.4. ZERO-SHOT RESULTS

Table 15 shows the full results of ROSE and other foundation models in zero-shot setting for four prediction lengths. ROSE
exhibits competitive performance.
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Table 14. Full results of ablation study

Design Pred_len
ETTm1 ETTm2 ETTh1 ETTh2

MSE MAE MSE MAE MSE MAE MSE MAE

ReadyTS

96 0.287 0.336 0.159 0.247 0.367 0.395 0.273 0.332

192 0.331 0.362 0.217 0.287 0.399 0.416 0.334 0.376

336 0.362 0.379 0.269 0.322 0.405 0.423 0.358 0.397

720 0.416 0.412 0.357 0.377 0.416 0.443 0.376 0.417

avg 0.349 0.372 0.250 0.308 0.397 0.419 0.335 0.380

Replace
Multi-Frequency Masking

Random Frequency Masking

96 0.330 0.370 0.170 0.262 0.391 0.399 0.303 0.359

192 0.352 0.392 0.232 0.298 0.406 0.430 0.356 0.395

336 0.390 0.389 0.276 0.342 0.411 0.432 0.417 0.428

720 0.452 0.438 0.366 0.392 0.432 0.447 0.420 0.439

avg 0.381 0.397 0.261 0.324 0.410 0.427 0.374 0.405

Multi-Patch Masking

96 0.302 0.348 0.168 0.257 0.377 0.408 0.282 0.343

192 0.336 0.367 0.228 0.297 0.404 0.423 0.343 0.379

336 0.364 0.385 0.277 0.328 0.405 0.420 0.374 0.403

720 0.423 0.416 0.364 0.381 0.431 0.455 0.396 0.430

avg 0.356 0.379 0.259 0.316 0.404 0.426 0.349 0.389

Patch Masking

96 0.318 0.366 0.168 0.259 0.388 0.412 0.303 0.359

192 0.355 0.388 0.228 0.298 0.402 0.422 0.370 0.399

336 0.388 0.406 0.279 0.331 0.411 0.435 0.413 0.428

720 0.450 0.438 0.370 0.388 0.431 0.459 0.413 0.443

avg 0.378 0.400 0.261 0.319 0.408 0.432 0.375 0.407

Other
pre-training tasks

Aug

96 0.304 0.357 0.178 0.266 0.376 0.405 0.281 0.348

192 0.343 0.379 0.254 0.318 0.409 0.429 0.345 0.389

336 0.373 0.400 0.299 0.354 0.435 0.453 0.382 0.417

720 0.444 0.432 0.387 0.408 0.452 0.471 0.434 0.452

avg 0.366 0.392 0.279 0.336 0.418 0.439 0.360 0.401

Noise

96 0.303 0.355 0.172 0.261 0.370 0.405 0.280 0.341

192 0.342 0.376 0.221 0.292 0.403 0.427 0.350 0.384

336 0.368 0.393 0.272 0.325 0.420 0.439 0.385 0.410

720 0.423 0.422 0.367 0.386 0.442 0.462 0.403 0.432

avg 0.359 0.387 0.258 0.316 0.409 0.433 0.355 0.392

w/o

TS-Register

96 0.297 0.345 0.164 0.252 0.379 0.399 0.276 0.336

192 0.334 0.367 0.221 0.290 0.419 0.420 0.350 0.380

336 0.360 0.384 0.275 0.325 0.438 0.442 0.393 0.411

720 0.424 0.416 0.364 0.379 0.435 0.448 0.400 0.432

avg 0.354 0.378 0.256 0.312 0.418 0.427 0.355 0.390

Prediction Task

96 0.301 0.348 0.166 0.255 0.380 0.407 0.295 0.359

192 0.343 0.374 0.221 0.291 0.410 0.426 0.372 0.406

336 0.374 0.393 0.275 0.327 0.440 0.443 0.403 0.429

720 0.424 0.420 0.366 0.384 0.458 0.476 0.418 0.446

avg 0.360 0.384 0.257 0.314 0.422 0.438 0.372 0.410

Reconstruction Task

96 0.329 0.371 0.175 0.265 0.374 0.399 0.296 0.355

192 0.363 0.391 0.233 0.304 0.407 0.422 0.354 0.389

336 0.394 0.407 0.287 0.340 0.437 0.440 0.385 0.413

720 0.461 0.442 0.379 0.396 0.430 0.453 0.408 0.438

avg 0.387 0.403 0.269 0.327 0.412 0.428 0.361 0.399

From Scratch

96 0.301 0.357 0.171 0.260 0.419 0.439 0.315 0.389

192 0.358 0.385 0.223 0.294 0.438 0.457 0.366 0.405

336 0.390 0.396 0.282 0.336 0.484 0.484 0.424 0.435

720 0.436 0.427 0.366 0.380 0.540 0.538 0.495 0.473

avg 0.371 0.391 0.261 0.318 0.470 0.480 0.400 0.425
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Table 15. Full results in zero-shot setting.
Models ROSE_512 Timer MOIRAI Chronos TimesFM Moment

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.382 0.408 0.414 0.439 0.405 0.397 0.494 0.409 0.432 0.405 0.706 0.561

192 0.400 0.420 0.440 0.455 0.458 0.428 0.561 0.443 0.492 0.438 0.716 0.579

336 0.404 0.426 0.455 0.463 0.509 0.454 0.580 0.460 0.519 0.458 0.705 0.583

720 0.420 0.447 0.496 0.496 0.529 0.494 0.605 0.495 0.512 0.477 0.705 0.597

avg 0.401 0.425 0.451 0.463 0.475 0.443 0.560 0.452 0.489 0.444 0.708 0.580

ETTh2

96 0.298 0.362 0.305 0.355 0.303 0.338 0.306 0.338 0.311 0.345 0.373 0.416

192 0.336 0.385 0.365 0.406 0.369 0.384 0.396 0.394 0.401 0.397 0.384 0.422

336 0.353 0.399 0.378 0.413 0.397 0.410 0.423 0.417 0.436 0.430 0.386 0.426

720 0.395 0.432 0.414 0.457 0.447 0.450 0.442 0.439 0.437 0.450 0.425 0.454

avg 0.346 0.394 0.366 0.408 0.379 0.396 0.392 0.397 0.396 0.405 0.392 0.430

ETTm1

96 0.512 0.460 0.440 0.422 0.660 0.476 0.514 0.443 0.366 0.374 0.679 0.544

192 0.512 0.462 0.505 0.458 0.707 0.500 0.608 0.475 0.413 0.401 0.690 0.550

336 0.523 0.470 0.570 0.490 0.730 0.515 0.690 0.507 0.445 0.429 0.701 0.557

720 0.552 0.490 0.659 0.534 0.758 0.536 0.733 0.555 0.513 0.470 0.719 0.569

avg 0.525 0.471 0.544 0.476 0.714 0.507 0.636 0.495 0.434 0.419 0.697 0.555

ETTm2

96 0.224 0.309 0.203 0.285 0.216 0.282 0.202 0.293 0.189 0.257 0.230 0.308

192 0.266 0.333 0.265 0.327 0.294 0.330 0.286 0.348 0.277 0.325 0.285 0.338

336 0.310 0.358 0.319 0.361 0.368 0.373 0.355 0.386 0.350 0.381 0.339 0.369

720 0.395 0.407 0.405 0.410 0.494 0.439 0.409 0.425 0.464 0.448 0.423 0.424

avg 0.299 0.352 0.360 0.386 0.343 0.356 0.313 0.363 0.320 0.353 0.319 0.360

Weather

96 0.200 0.260 0.190 0.236 0.188 0.250 0.209 0.244 - - 0.216 0.271

192 0.239 0.288 0.261 0.293 0.237 0.284 0.254 0.288 - - 0.264 0.306

336 0.279 0.315 0.332 0.340 0.282 0.323 0.301 0.332 - - 0.313 0.336

720 0.340 0.357 0.385 0.381 0.359 0.345 0.388 0.374 - - 0.369 0.380

avg 0.265 0.305 0.292 0.312 0.267 0.300 0.288 0.310 - - 0.291 0.323

Electricity

96 0.209 0.307 0.210 0.312 0.212 0.301 0.194 0.266 - - 0.844 0.761

192 0.219 0.315 0.239 0.337 0.225 0.320 0.218 0.289 - - 0.850 0.762

336 0.236 0.330 0.284 0.372 0.245 0.333 0.244 0.321 - - 0.862 0.766

720 0.273 0.328 0.456 0.479 0.282 0.358 0.324 0.371 - - 0.888 0.774

avg 0.234 0.320 0.297 0.375 0.241 0.328 0.245 0.312 - - 0.861 0.766

Traffic

96 0.572 0.407 0.526 0.368 - - 0.562 0.378 - - 1.390 0.800

192 0.575 0.406 0.561 0.385 - - 0.579 0.412 - - 1.403 0.802

336 0.588 0.411 0.614 0.412 - - 0.594 0.420 - - 1.415 0.804

720 0.618 0.422 0.749 0.464 - - 0.723 0.472 - - 1.437 0.808

avg 0.588 0.412 0.613 0.407 - - 0.615 0.421 - - 1.411 0.804
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