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Abstract

Parameterized Quantum Circuits (PQCs) have been acknowledged as a leading1

strategy to utilize near-term quantum advantages in multiple problems, including2

machine learning and combinatorial optimization. When applied to specific tasks,3

the parameters in the quantum circuits are trained to minimize the target function.4

Although there have been comprehensive studies to improve the performance of5

the PQCs on practical tasks, the errors caused by the quantum noise downgrade6

the performance when running on real quantum computers. In particular, when the7

quantum state is transformed through multiple quantum circuit layers, the effect8

of the quantum noise happens cumulatively and becomes closer to the maximally9

mixed state or complete noise. This paper studies the relationship between the10

quantum noise and the diffusion model. Then, we propose a novel diffusion-11

inspired learning approach to mitigate the quantum noise in the PQCs and reduce12

the error for specific tasks. Through our experiments, we illustrate the efficiency13

of the learning strategy and achieve state-of-the-art performance on classification14

tasks in the quantum noise scenarios.15

1 Introduction16

Quantum machine learning (QML) [4, 8, 21, 32] is an emerging and promising interdisciplinary17

research direction in the fields of quantum computing and artificial intelligence. In this area, quantum18

computers are expected to enhance machine learning algorithms through their inherent parallel19

characteristics, thus demonstrating quantum advantages to solve some computational tasks out of20

reach even of classical supercomputers [12]. With the increasing enormous efforts from academia and21

industry, current quantum devices (usually acknowledged as the noisy intermediate-scale quantum22

(NISQ) devices [28]) already can show quantum advantages on specific carefully designed tasks23

[1, 45] despite their limitations in quantum circuit width and depth. Moreover, prior experiments24

represent evidence for the utility of quantum computing on NISQ devices [17]. Thus, the NISQ25

devices open a direction to explore the quantum advantages of quantum machine learning tasks26

and leading strategies of hybrid classical-quantum algorithms, including parameterized quantum27

circuits. Parameterized Quantum Circuits (PQCs) contain trainable parameters, offer a concrete28

way to implement algorithms, and demonstrate quantum supremacy in the NISQ era. Even at low29

circuit depth, some classes of PQCs are capable of generating highly non-trivial outputs [12, 3].30

For example, classical resources cannot efficiently simulate the class of PQCs called instantaneous31

quantum polynomial time under well-believed complexity-theoretic assumptions. However, the32

behavior and impact of quantum noise remain critical questions for quantum computers today. The33

NISQ devices still suffer from a high error rate of 10−2 to 10−4, much higher than CPUs/GPUs with34

an error rate of 10−18. The quantum errors, unfortunately, introduce a detrimental influence on PQCs35

accuracy.36
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Noise mitigation techniques [38, 43, 20, 10, 36] have been proposed to reduce the noise impact.37

However, these methods do not utilize the unique characteristics of PQCs and can only be applied38

to the inference process of the PQCs. Meanwhile, prior PQCs work [11, 3, 15] does not study the39

impact caused by the quantum noise.40

Diffusion models are inspired by non-equilibrium thermodynamics [34, 13, 35]. They are defined as41

a Markov chain of diffusion steps to gradually add random noise to data and then learn to reverse42

the diffusion process to construct desired data from the noise. In quantum computing, random43

noise can be added into a quantum state by depolarizing until obtaining a maximally mixed state44

[18]. Inspired by the quantum depolarizing channel, some prior works propose diffusion models on45

quantum computing [5, 6]. However, more literature is needed to study the relationship between46

diffusion models and learnable quantum noise mitigation.47

Contributions of this Work: In this work, we present the insights of diffusion-inspired modeling48

in the problem of PQCs. We show the relationship between diffusion and denoising processes in49

diffusion models and the forward and reverse processes in quantum states. The contributions of this50

paper are three-fold. First, we investigate the quantum noise properties in the PQCs and express51

the similarity between diffusion models and quantum computing in the noised PQCs. Then, we52

introduce a diffusion-inspired quantum noise mitigation framework for the PQCs. Second, from53

the diffusion-inspired quantum noise mitigation framework, we propose a novel loss function, i.e.,54

forward-backward quantum divergence loss, to learn the quantum noise model for mitigation. Finally,55

our proposed method is benchmarked on various specific tasks and achieves State-of-the-Art (SOTA)56

results compared to the prior methods.57

2 Related Work58

Quantum Machine Learning. There has been recent interest in studying the combination between59

quantum computing and machine learning. Early studies explored the quantum algorithms in linear60

machine learning, including clustering [21], principal component analysis [22], least-squares fitting61

[33, 16], and binary classification [30], to utilize the quantum speedup over classical machine learning62

algorithms. Prior work focused on the quantum neural networks using the framework of variational63

quantum algorithms or parameterized quantum circuits [27, 23]. Cong et al. [9] introduced the64

quantum convolutional neural network that extends the fundamental properties of classical CNNs to65

quantum computing while requiring less trainable parameters. Meanwhile, Bausch [2] proposed the66

quantum recurrent neural networks by utilizing the structure of the variational quantum eigensolver67

circuits. Huang et al. [14] presented hybrid quantum generative adversarial networks to generate data68

via quantum computers effectively. Romero et al. [31] introduced quantum autoencoders to reduce69

the dimensionality of quantum states.70

Quantum Noise Mitigation. Prior studies on quantum noise in the quantum circuit and approaches71

to mitigate the errors caused by quantum noise exist. Li and Benjamin [20] and Temme et al. [38]72

introduced zero-noise extrapolation that tries to obtain zero-noise value by using data points at73

different circuit fault rates and computing the expected value at circuit fault rate zero. Temme et al.74

[38] also first presented the probabilistic error cancellation that reformulates the noise model as a75

linear combination and estimates this noise model via probability fitting with sampled quantum states.76

Czarnik et al. [10] and Strikis et al. [36] applied learning-based methods to obtain the error-mitigated77

expectation value using training circuits. QuantumNAT [40] was introduced to reduce the error78

in the PQCs via post-measurement processing to mitigate the difference between quantum feature79

distributions in noise-free and noisy cases. However, the mitigation processing on quantum circuit80

operations is not considered.81

3 Background82

Quantum Basics. In general, quantum information is described by quantum states [26]. An n-83

qubit quantum state is mathematically represented by a density matrix ρ ∈ C2n×2n with property84

Tr(ρ) = 1. If Rank(ρ) = 1, the quantum state ρ is a pure state; otherwise, it is a mixed state. A85

pure state can also be represented by a unit vector |ψ⟩ ∈ C2n , where ρ = |ψ⟩⟨ψ| and ⟨ψ| = |ψ⟩†. A86
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Figure 1: The divergence between the quantum state and maximally mixed state when running
operations on the IBM Quito quantum system. After a number of quantum state operations with
noise, the quantum state becomes closer to the full quantum noise, i.e., maximally mixed state. It
shows the relation between the effect of quantum noise and the number of quantum operations in
PQCs. Note that although the amplitude damping makes the quantum state close to the |0⟩ state, the
quantum state distribution still gets closer to the maximally mixed state in the first 1200 operations.

mixed state can be defined as a weighted sum of pure states and presented as in Eqn. (1).87

ρ =
∑
i

λi |ψi⟩⟨ψi| , λi ≥ 0,
∑
i

λi = 1 (1)

Specifically, a mixed state whose density matrix is proportional to the identity matrix is called the88

maximally mixed state 1n = I
2n . Physically, it is a uniform mixture of states on an orthonormal basis.89

It means that all states occur with the same probability.90

A quantum state ρ can be evolved to another state ρ′ through a quantum circuit (or gate) mathemati-91

cally represented by a unitary matrix U , i.e., ρ′ = UρU†. Typical single-qubit gates include Pauli92

gates:93

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(2)

and their corresponding rotation gates Rσ(θ) = e−iθσ/2 with a parameter θ and σ ∈ {σx, σy, σz}. A94

multi-qubit gate can be either an individual gate (e.g., CNOT) or a tensor product of single-qubit gates.95

To get classical information from a quantum state ρ′, one needs to perform quantum measurements,96

e.g., calculating the expectation value ⟨H⟩ = Tr(Hρ′) of a Hermitian matrix H , and we often call H97

an observable.98

Parameterized Quantum Circuits. The parameterized quantum circuits (PQCs), also known as99

variational quantum circuits (VQCs) [3, 23], are a special kind of quantum circuit with parameters100

that can be optimized or learned iteratively. The PQCs are composed of three parts, including data101

encoding, parameterized layer, and quantum measurements.102

PQCs use a hybrid quantum-classical procedure to optimize the trainable parameters iteratively. The103

popular optimization approaches include gradient descent [37], parameter-shift rule [42, 23], and104

gradient-free techniques [25, 7]. All learning methods take the training data as input and evaluate the105

model performance by comparing the predicted and ground-truth labels. Based on this evaluation,106

the methods update the model parameters for the next iteration and repeat the process until the model107

converges and achieves the desired performance. The hybrid method performs the evaluation and108

parameter optimization on a classical computer, while the model inference is processed on a quantum109

computer.110

Noise in Quantum Computing. Noise refers to the multiple factors that can affect the accuracy of111

the calculations a quantum computer performs. Because of the noise in quantum computing, the112

transformation of the quantum state can cause errors. Pauli channel error is one of the common113

noise models that cause probabilistic error between Pauli operations defined as ρ̃ = Λ̃(ρ) = ρ +114 ∑
σ∈K λσ(σρσ

† − ρ), where K is a set of Pauli operations and λσ is the probability that the error115

caused by σ. Here, we define ρi as a noise-free quantum state and ρ̃i as a quantum state in the noise116

scenario. These errors are cumulated via quantum circuit layers that make the quantum state closer to117
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the maximally mixed state, i.e., the fully noise quantum state as shown in Fig. 1. Moreover, the noise118

model Λ̃(ρ) can be formulated to an alternative model Λ(ρ):119

Λ(ρ) =
∏
σ∈K

(wσ ·+(1− wσ)σ · σ†)ρ (3)

where wσ = 2−1(1 + e−2λσ ). In the PQCs, the error caused by the noise can occur in the data120

encoding, parameterized layer, or even the quantum measurements. However, as the quantum121

operations are mostly in the parameterized layers, we focus on the quantum noise mitigation in this122

part of the PQCs.123

4 Diffusion-inspired Modeling for Quantum Denoising124

4.1 Diffusion Modeling Revisited125

Diffusion models [13] are a class of latent variable models that learn a generative model to reverse a126

fixed probabilistic noising process x0 → x1 → · · · → xT , where x1, . . . ,xT are latent variables of127

the same dimensionality of the data x0 ∼ q(x0). This probabilistic noising process gradually adds128

noise to clean data x0 until no information remains, i.e., pure noise xT ∼ p(xT ). The divergence of129

data in this process can be formulated as:130

D(q(x0)||NG) > D(q(x1)||NG) > · · · > D(q(xT )||NG) (4)

where NG is the probability distribution of the pure Gaussian noise. In most cases, the Kullback-131

Leibler divergence is applied to compute the difference between distributions of classical data. For132

continuous data, the forward process is defined as a fixed Markov chain q(xt|xt−1) with Gaussian133

transitions. The Markov chain of the reverse process can be obtained by approximating the true134

posterior q(xt−1|x0,xt) with a model pθ(xt−1|xt). Therefore, sampling new data x0 from the135

modeled data distribution pθ(x0) = p(xT )
∏T

t=1 pθ(xt−1|xt) is performed by starting from random136

noise xT ∼ p(xT ) and gradually denoising it over T steps xT → xT−1 → · · · → x0.137

4.2 Diffusion-inspired Quantum Noise Mitigation138

Quantum computing has similar properties to diffusion models when transforming the quantum state139

through quantum circuits. In the following, we derive a diffusion-inspired learning for quantum noise140

mitigation. The two main components of this learning strategy are forward and reverse processes.141

The forward process transforms a quantum state into a next state through a quantum circuit layer and142

adds noise to the quantum state as the nature of PQCs in the noise scenario. As the resulting quantum143

state has noise, a denoising process is considered to reduce the error. In the general diffusion models,144

this process is solved by the reverse process to train the denoising module.145

Given a quantum state ρi−1 and a transformed quantum state ρi from ρi−1, without noise, as the146

Shannon entropy of the quantum state is unchanged by the unitary circuit S(ρ) = S(UρU†), the147

divergence between ρi and the maximally mixed state 1n is the same as the divergence between ρi−1148

and 1n:149

D(ρi||1n) = D(ρi−1||1n) (5)
However, as shown in Fig. 1, in the noise case, the quantum noise makes the divergence of the noise150

quantum state ρ̃i closer to the maximally mixed state 1n after the quantum transformation:151

D(ρ̃i||1n) < D(ρ̃i−1||1n) (6)

This phenomenon is similar to the forward process of the diffusion model when the classical data152

becomes closer to the Gaussian noise, as shown in Eqn. (4). Moreover, as shown in Eqn. (3), the153

quantum noise in the PQCs can be considered as a Markov chain analogous to the diffusion process.154

On the other hand, as the quantum circuits are reversible, the quantum state ρi can be backward155

into the quantum state ρi−1 of the previous quantum circuit layer in the noise-free scenario. In the156

quantum noise scenario, as the quantum state ρ̃i has noise, the backward process causes errors that157

the resulting quantum state is not similar to its original state. Hence, a noise mitigation module158

models and reduces the quantum noise, making the backward quantum state closer to the original159

state. Fig. 2 illustrates the forward and backward processes. From this observation, we proposed a160

diffusion-inspired learning method to model the quantum noise distribution for noise mitigation.161
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(b) Noise-free PQC

(c) Noised PQC

(a) Diffusion Model

Figure 2: (a) In the traditional diffusion model, the distribution of the data q(xi) becomes closer
to the Gaussian noise NG through diffusion steps. (b) In the noise-free scenario, each quantum
transformation Vi(θi) can be reversed and maintain the quantum information of the previous circuit
layer via reverse operation V †

i (θi). (c) In the PQCs having quantum noise case, the quantum state
transformations Ṽi(θi) = Λi ◦ Vi(θi) are affected by noise Λi that makes the reversed quantum
state different from the original one. Motivated by this, we propose a learning-based method to
mitigate the quantum noise via computing the divergence between the quantum state and its noisy
forward-and-backward state.

5 The Proposed Method162

To address the quantum noise in the PQCs, we first consider the general PQCs framework and163

their quantum noise mitigation module in the noise scenario. Then, we study the distribution of164

the quantum noise and quantum states. Finally, we introduce a novel Forward-backward Quantum165

Divergence Loss for quantum noise mitigation.166

5.1 The Overall Framework167

Fig. 3 illustrates the overall framework of the quantum noise mitigation in PQCs. Given classical168

data x, a data encoder U is applied to encode the classical data into a quantum state ρ0. Then, the169

PQCs are trained to transform and measure the quantum state for a specific task. In the noise-free170

scenario, learnable unitary matrices Vi(θi) are applied to transform the quantum state:171

ρi = Vi(θi)ρi−1V
†
i (θi) (7)

The design of the parameterized circuits is described in Section 6. Because of the noise in quantum172

computing, we can model the noise by a matrix Λi:173

ρ̃i = Ṽi(θi)ρ̃i−1Ṽ
†
i (θi), Ṽi(θi) = Λi ◦ Vi(θi) (8)

It causes errors in the PQCs when training and inferring. Hence, quantum noise mitigation layers Λ−1
i174

are applied to reduce these errors. To obtain these quantum noise mitigation layers, the probabilities175

of the quantum noise have to be computed. Therefore, in this work, we aim to learn the noise model176

Λi to mitigate the error caused by the quantum noise.177
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Task-specific loss

Figure 3: An overall framework of PQCs with quantum noise mitigation. For every quantum circuit
layer Ṽi(θi) = Λi ◦ Vi(θi), a quantum noise mitigation layer Λ−1

i is applied to reduce the error.

5.2 Quantum Noise Distribution Learning178

As we want to learn the quantum noise model of Λi, we define a probability density function pω(Λi)179

where ω are learnable parameters of the overall model. Moreover, to train the PQCs for the specific180

task, we also learn the distribution of the quantum states ρ̃i where i ∈ {0, 1, . . . L− 1} to represent181

the data for specific tasks. Since Λi and ρ̃i−1 are independent, the objective of ω can be defined as:182

ω∗ = argmin
ω

L∑
i=1

(− log pω(Λi)− log pω(ρ̃i−1)) = argmin
ω

L∑
i=1

− log pω(Λi, ρ̃i−1) (9)

We also define the forward process from the quantum state ρ̃i−1 to the next quantum states ρ̃i as183

q(ρ̃i|ρ̃i−1). To optimize the objective function Eqn. (9), we optimize the upper bound on negative184

log-likelihood via Jensen’s inequality:185

L∑
i=1

− log pω(Λi, ρ̃i−1) ≤ Eq

[
−

L∑
i=1

log
pω(Λi, ρ̃i−1, ρ̃i)

q(ρ̃i|ρ̃i−1)

]
:= L (10)

Then L can be expanded as:186

L = Eq


L∑

i=1

DKL (pω(ρ̃i−1|Λi, ρ̃i)||q(ρ̃i−1|ρ̃i))︸ ︷︷ ︸
Lfb

−
L∑

i=1

log pω(Λi, ρ̃i)︸ ︷︷ ︸
Ltask

− log
q(ρ̃0)

q(ρ̃L)

 (11)

(See Supplementary for details of Eqn. (10) and Eqn. (11).) The Kullback-Leibler divergence in187

Eqn. (11) compares the original quantum state and its forward-backward in the quantum circuit layer.188

Thus, we propose a learning method to model the quantum noise via quantum divergence.189

5.3 Forward-backward Quantum Divergence Loss190

In quantum information theory, to measure the similarity between two quantum states, fidelity is191

defined as the probability that one state will pass a test to identify as the other. In this work, we192

utilize the fidelity of quantum states to define a forward-backward quantum divergence loss. Let193

F (ρ, σ) ∈ [0, 1] be the fidelity between quantum states ρ and σ, then F (ρ, σ) = 1 when ρ and σ are194

completely similar and vice versa.195

Given a quantum state ρ̃i−1 and its forwarded quantum state ρ̃i as Eqn. (8), we define a learnable196

noise mitigation layer Λ−1
i (·, ωi) to reduce the noise from quantum state ρ̃i.197

ρ̂i = Λ−1
i (ρ̃i, ωi) (12)
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Figure 4: The forward-backward quantum divergence loss in a quantum circuit. For each layer
Vi(θi) of the quantum circuit, the current quantum state ρ̃i is denoised by a learnable noise mitigation
layer Λ−1

i .

As the quantum circuits are reversible, the quantum state ρ̂i can be reversed to the previous state via198

the quantum circuit V †
i (θi).199

ρ̂i−1 = V †
i (θi)ρ̂iVi(θi) (13)

Then, we define a forward-backward quantum divergence loss to compute the similarity between200

quantum states ρ̃i−1 and ρ̂i−1 as:201

Lfb(ρ̃i−1, ρ̂i−1) = − logF (ρ̃i−1, ρ̂i−1) (14)

where F (ρ, σ) is the fidelity between two quantum states ρ and σ. As the forward-backward procedure202

can be processed in L quantum circuit layers, the overall forward-backward quantum divergence loss203

is computed as:204

Lfb =
1

L

L∑
i=1

Lfb(ρ̃i−1, ρ̂i−1) = − 1

L

L∑
i=1

logF (ρ̃i−1, ρ̂i−1) (15)

The forward-backward quantum divergence loss process is illustrated in Fig. 4. To compute the205

fidelity between quantum states, a widely used metric is the quantum Rényi divergence [24]:206

F (ρ, σ) = D(ρ||σ) = 2 logTr
[√√

σρ
√
σ

]
(16)

5.4 Task-specific Training207

In addition to learning the quantum noise model, the PQCs are also trained for specific tasks, such208

as classification and clustering. As shown in Eqn. (11), the PQCs can be trained to obtain a desired209

distribution of quantum states while learning the quantum noise model. Thus, a task-specific loss210

Ltask is defined for the PQCs. Let H be the observable of the PQC, a classical information obtained211

from the PQCs is measured as ⟨H⟩ = Tr(Hρ̂L). Given n qubits for the PQC, we define n observables212

Hi = I⊗i ⊗ σz ⊗ I⊗(n−i−1) where I ∈ R2×2 is the identity matrix and σz is the Pauli-Z matrix. A213

classical information vector z = {⟨Hi⟩}n−1
i=0 is defined for inference and task-specific loss computing.214

In this work, the PQCs are applied for the classification tasks. Then the task-specific loss Ltask is215

defined as:216

Ltask = −
c∑

i=0

ŷi log yi (17)

where c is the number of classes, ŷi ∈ {0, 1} is the classification ground-truth, and y = f(z) is the217

prediction from classical information vector z. Finally, the total loss of the quantum noise mitigation218

training for the PQCs is computed as:219

Ltotal = αfbLfb + αtaskLtask (18)

where αfb, αtask ∈ R is the training hyperparamter.220
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6 Experimental Results221

In this section, we evaluate the proposed method in the quantum noise context. We first describe the222

experiment setups, including datasets, implementation, and evaluation protocol. Then, we present223

the ablation studies to illustrate the effectiveness of our proposed method. Finally, we illustrate224

the numerical results of the proposed method and compare our approach with prior quantum noise225

mitigation methods.226

6.1 Experiment Setups227
Circuits Lfb

Step size
4 2 1

RX + CNOT 41.76± 1.46 41.90± 1.53 42.61± 1.37
✓ 44.30± 1.65 45.55± 1.46 45.89± 1.43

U2 + CNOT 40.58± 1.63 42.91± 1.78 43.17± 1.57
✓ 44.42± 1.69 45.50± 1.73 46.44± 1.60

U3 + CNOT 42.51± 1.46 43.18± 1.47 43.37± 1.39
✓ 45.36± 1.29 46.20± 1.45 46.37± 1.20

Table 1: Effectiveness of our approach on the
MNIST-4 benchmark. We compute the mean ac-
curacies (%) and their standard deviation to evalu-
ate the approach with different circuit designs, i.e.,
RX + CNOT, U2 + CNOT, and U3 + CNOT, with
different noise mitigation step sizes, and without
or with the forward-backward quantum divergence
loss Lfb.

Datasets. Following [40], we evaluate the228

proposed method on four classification tasks,229

including MNIST [19] 4-class (0, 1, 2, 3) and 2-230

class (3, 6); and Fashion [44] 4-class (t-shirt/top,231

trouser, pullover, dress) and 2-class (dress, shirt).232

The images are resized into 8× 8 and encoded233

via phase encoding using multiple rotation cir-234

cuits.235

Implementation. This work uses the quantum236

simulation for the PQCs and the quantum noise.237

For each layer, different learnable circuits are238

applied, including RX, U2 (RX + RY), and U3239

(RX + RY + RZ). The efficiency of each circuit240

is shown in the ablation studies. Then, a non-learnable circuit, i.e., controlled-NOT (CNOT), is used.241

We use four qubits for the experiment and run simulations of the IBM quantum systems via Qiskit242

SDK [29] on a Quadro RTX 8000 GPU. The PQCs model training and testing is implemented based243

on the TorchQuantum library [41].244

Figure 5: Ablation studies on different numbers of
circuit layers.

Evaluation Protocol. For evaluation, we245

compare the proposed method with other set-246

tings, i.e., training and testing on noise-free247

PQCs, training on noise-free PQCs and testing248

on noised PQCs, and training and testing on249

noised PQCs as a baseline. We also reimple-250

ment the training and evaluation of the prior251

quantum noise mitigation methods, i.e., Quan-252

tumNAT [40] normalizing and quantizing the253

measurement to match the output distribution254

with the noise-free case, and Van Den Berg et255

al. [39] learning the probabilistic quantum noise256

model by sampling random quantum states. The257

average accuracy metric is used in our experi-258

ments. The experiments are processed five times259

for each setting, and the standard deviation is260

used to compute the variance of the results.261

6.2 Ablation Studies262

Our ablative experiments study the effectiveness of our proposed method on the performance of the263

PQCs on the MNIST-4 benchmark.264

Effectiveness of the Forward-backward Quantum Divergence Loss. We evaluate the impact of265

Forward-backward Quantum Divergence Loss (Lfb) in improving the performance of the PQCs in266

the noise scenario. To demonstrate the efficiency of our proposed approach with diverse quantum267

circuit designs, we evaluate it with three different circuit designs: RX + CNOT, U2 + CNOT, and U3 +268

CNOT. As shown in Table 1, the forward-backward loss Lfb has significant improvements compared269

to using the noise mitigation with the task-specific loss Ltask only. In particular, the accuracy of270

the three circuit designs, i.e., RX + CNOT, U2 + CNOT, and U3 + CNOT, has been improved from271

42.61% to 45.89%, from 43.17% to 46.44%, and from 43.37% to 46.37%, respectively. It shows272
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Method MNIST-4 MNIST-2 Fashion-4 Fashion-2
Noise-free testing 49.87± 0.31 92.99± 0.19 49.53± 0.35 74.60± 0.47
Noise-free training 37.24± 1.88 79.07± 8.22 39.08± 1.88 66.35± 3.39
Baseline 43.06± 1.06 82.37± 4.62 43.70± 1.43 68.50± 3.12
QuantumNAT [40] 43.59± 1.15 82.32± 4.68 43.60± 1.40 68.55± 3.11
Van Den Berg et al. [39] 45.15± 1.45 84.32± 4.30 45.25± 1.89 69.15± 2.44
Ours 46.44± 1.60 85.32± 4.35 46.83± 1.81 70.50± 2.57

Table 2: Experimental accuracies (%) on 2- and 4-class benchmarks. A noise-free testing is
defined as training and testing on a noise-free PQC while the noise-free trained model is tested on the
quantum noise scenario. We show the mean accuracies and their standard deviation for variances of
the results.

that the forward-backward loss Lfb helps to learn the noise distribution better for quantum noise273

mitigation.274

Effectiveness on Different Noise Mitigation Step Sizes. We investigate the impact of the quantum275

noise mitigation step size on the performance. To achieve this, we conduct experiments on the276

MNIST-4 benchmark with a 4-layer PQCs model using three different step sizes, i.e., 4, 2, and 1.277

In this case, step size 4 means we forward the quantum state ρ̃0 through 4 layers of the PQCs and278

backward the resulting state ρ̃4 to the initial state ρ̂0 for the forward-backward quantum divergence279

loss Lfb. Similarly, step size 2 means we forward the quantum state ρ̃i through 2 layers and backward280

the resulting state ρ̃i+2 for the forward-backward loss Lfb, and step size 1 means we compute the281

loss for every layer. As depicted in Table 1, the performance gradually increases when the step size is282

decreased for all different circuit designs. It shows that quantum noise mitigation works effectively283

when the number of operation circuits for each process is negligible.284

Effectiveness on Different Numbers of Circuit Layers. We evaluate the robustness of the proposed285

quantum noise mitigation approach on different numbers of circuit layers of the PQCs. As illustrated286

in Fig. 5, when the number of layers is increased, the performance of the baseline is dramatically287

dropped. Meanwhile, our proposed approach shows a slight decline in accuracy. Hence, the proposed288

approach can mitigate the quantum noise effectively even if the PQCs have many operation circuits.289

6.3 Evaluation Results290

As shown in Table 2, our method outperforms previous methods evaluated on the two datasets, i.e.,291

MNIST and Fashion. In particular, in the MNIST dataset, our method achieves the accuracy of292

46.44% and 85.32% on the MNIST-4 and MNIST-2 benchmarks, respectively, which shows better293

than the previous methods. Meanwhile, the results for the Fashion dataset are 46.83% and 70.50%294

for the Fashion-4 and Fashion-2 benchmarks.295

7 Conclusions296

This paper has studied the quantum noise in PQCs and introduces a novel, learnable quantum noise297

mitigation approach to improve their robustness when running on NISQ devices. By revisiting the298

diffusion model and investigating the relationship between the diffusion and denoising processes and299

the forward and reverse processes in quantum states, we have shown the quantum noise distribution300

learning ability while training the PQCs for specific tasks. Hence, a novel forward-backward quantum301

divergence loss function has been introduced to learn the quantum noise model for quantum noise302

mitigation. The experimental results on various benchmarks have shown our state-of-the-art method.303

Limitations: Our paper has chosen specific configurations of quantum systems and hyperparameters304

to support our hypothesis theoretically in the simulation. However, other aspects, such as non-305

Markovian noise models, computational complexity, or learning hyperparameters, have yet to be fully306

investigated.307

Broader Impact: This work studies a diffusion-inspired approach to quantum noise model learning308

for noise mitigation in the PQCs. Our contributions emphasize the importance of quantum noise309

mitigation in quantum machine learning and provide a solution to reduce the error and increase the310

robustness of the PQCs when running in real quantum computers.311
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A Appendix / supplemental material413

A.1 Quantum Noise Mitigation Module414

In this work, we take account of the Pauli-Lindblad noise model for quantum noise mitigation. As shown in Eqn.415

(3), for each Pauli channel, the noise model is defined as (wσρ+ (1−wσ)σρσ) where wσ = 2−1(1 + e−2λσ ).416

Then, the inverse of the Pauli channel can be written as (2wσ − 1)−1(wσ ρ̃− (1− wσ)σρ̃σ). In overall, the417

quantum noise Λ(·) can be mitigated from the quantum noise mitigation layer Λ−1(·) as:418

Λ−1(ρ̃) = γ
∏
σ∈K

(wσ · −(1− wσ)σ · σ†)ρ̃ (19)

where γ =
∏

σ∈K(2wσ− 1)−1 = exp(
∑

σ∈K 2λσ) is sampling overhead. In this case, {λσ}σ∈K are learnable419

parameters for the quantum noise mitigation.420

A.2 Quantum Noise Mitigation Learning Algorithm421

The quantum noise mitigation learning process can be described in Algorithm 1.422

Algorithm 1: Pseudo-code for the implementation of Quantum Noise Mitigation
Data:
{xi}Ni=1 : a set of N classical inputs
{ŷi}Ni=1 ∈ RN : a set of N labels
n : the number of qubits
L : the number of layers in the PQCs
αfb, αtask : training hyperparameters
while not convergent do

ρ̃0 ← U(x) // Encode the classical data into a quantum state
Lfb ← 0 // Initialize the forward-backward quantum divergence loss to zero
for i ∈ [1..L] do

ρ̃i ← Ṽi(θi)ρ̃i−1Ṽ
†
i (θi) // Forward the quantum state in the noised case

ρ̂i ← Λ−1
i (ρ̃i) // Reduce the quantum noise

ρ̂i−1 ← V †
i (θi)ρ̂iVi(θi) // Backward the quantum state

Lfb ← logF (ρ̃i−1, ρ̂i−1) // Compute the forward-backward loss
end
Lfb ← 1

L
Lfb // Compute the average of the loss

z← {⟨Hi⟩}n−1
i=0 // Compute the classical information from the quantum state ρ̂L

y← f(z) // Compute the task-specific output
Ltask ← −

∑c
i=0 ŷi log yi // Compute the task-specific loss

Ltotal ← αfbLfb + αtaskLtask // Compute the total loss
θ ← θ − λ∇θLtotal // Do backpropagation

end

A.3 Proof of Eqn. (10)423

The upper bound of the objective function Eqn.(9) can be derived via Jensen’s inequality as follows:424

L∑
i=1

− log pω(Λi, ρ̃i−1) = −
L∑

i=1

log

∫
pω(Λi, ρ̃i−1, ρ̃i)dρ̃i

= −
L∑

i=1

log

∫
pω(Λi, ρ̃i−1, ρ̃i)

q(ρ̃i|ρ̃i−1)

q(ρ̃i|ρ̃i−1)
dρ̃i

= −
L∑

i=1

logEq
pω(Λi, ρ̃i−1, ρ̃i)

q(ρ̃i|ρ̃i−1)

≤ Eq

[
−

L∑
i=1

log
pω(Λi, ρ̃i−1, ρ̃i)

q(ρ̃i|ρ̃i−1)

]
:= L

(20)
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A.4 Proof of Eqn. (11)425

L = Eq

[
−

L∑
i=1

log
pω(Λi, ρ̃i−1, ρ̃i)

q(ρ̃i|ρ̃i−1)

]

= Eq

[
−

L∑
i=1

log
pω(ρ̃i−1|Λi, ρ̃i)

q(ρ̃i−1|ρ̃i)
pω(Λi, ρ̃i)

q(ρ̃i−1)

q(ρ̃i)

]

= Eq

[
−

L∑
i=1

log
pω(ρ̃i−1|Λi, ρ̃i)

q(ρ̃i−1|ρ̃i)
−

L∑
i=1

log pω(Λi, ρ̃i)− log
q(ρ̃0)

q(ρ̃L)

]

= Eq

[
L∑

i=1

DKL (pω(ρ̃i−1|Λi, ρ̃i)||q(ρ̃i−1|ρ̃i))−
L∑

i=1

log pω(Λi, ρ̃i)− log
q(ρ̃0)

q(ρ̃L)

]
(21)

It should be noted that the fraction q(ρ̃0)
q(ρ̃L)

could be considered as constants. Thus, it should be ignored during the426

optimization process.427

A.5 Parameterized Layer Diagram428

Fig. 6 shows the diagram of the actual i-th parameterized layer in the U2 + CNOT design. The learnable429

parameters θi,j:j+1 contain two parameters for X-axis and Y-axis rotation. The RX + CNOT and U3 + CNOT430

designs have similar diagrams.431

Figure 6: The parameterized layer diagram. The learnable parameters θi,j:j+1 contain two
parameters for X-axis and Y-axis rotation.
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