
Improving Learnt Local MAPF Policies with Heuristic Search

Primary Keywords: (2) Learning; (7) Multi-Agent Planning;

Abstract

Multi-agent path finding (MAPF) is the problem of finding
collision-free paths for a team of agents to reach their goal lo-
cations. State-of-the-art classical MAPF solvers typically em-
ploy heuristic search to find solutions for hundreds of agents
but are typically centralized and can struggle to scale to larger5

numbers of agents. Machine learning (ML) approaches that
learn policies for each agent are appealing as these could
be decentralized systems and scale well while maintaining
good solution quality. Current ML approaches to MAPF have
proposed methods that have started to scratch the surface of10

this potential. However, state-of-the-art ML approaches pro-
duce “local” policies that only plan for a single timestep
and have poor success rates and scalability. Our main idea
is that we can improve a ML local policy by using heuristic
search methods on the output probability distribution to re-15

solve deadlocks and enable full horizon planning. We show
several model-agnostic ways to use heuristic search with ML
that significantly improves the local ML policy’s success rate
and scalability. To our best knowledge, we demonstrate the
first time ML-based MAPF approaches have scaled to similar20

high congestion (e.g. 40% agent density) as state-of-the-art
heuristic search methods.

1 Introduction
The increasing availability of robotic hardware has increased
the importance of planning for robotic teams instead of in-25

dividual agents. These multi-agent robotic systems will en-
able a multitude of capabilities like rapid search and res-
cue, exploration on Mars, and efficient warehouse manage-
ment. Multi-agent systems are appealing as each robot can
be cheap and relatively simple while the entire system is30

scalable and can achieve complex goals.
A fundamental problem with multiple robots is figuring

out how each robot should move. Without careful considera-
tion, robots could be stuck in a deadlock or collide with each
other. Multi-agent path finding (MAPF) research focuses on35

developing algorithms for finding collision-free paths for a
team of agents to reach their target locations in an efficient
and safe manner. Although there are several possible ap-
proaches to tackle MAPF, the vast majority of these MAPF
methods are heuristic search-based methods. These methods40

have optimality or bounded suboptimality solution guaran-
tees and can solve long-horizon MAPF problems. However
these methods typically trade off solution quality with com-
pute time and require a centralized planner.

50 100 200 300 400
Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

0.88

0.38

0 0 0

1 0.97

0.8

0.92
0.88

Significantly Improving Success Rate and Scalability with CS-PIBT

MAGAT MAGAT w/CS-PIBT

Figure 1: We compare running MAGAT (Li et al. 2021)
with its default collision shielding (blue) vs running MA-
GAT with our PIBT collision shielding (orange). MAGAT is
a learnt local policy that predicts a one-step policy per agent
that could lead to collisions and therefore requires collision
shielding to prevent collisions. PIBT (Okumura et al. 2022)
is a heuristic search technique for solving MAPF. We see
that using the exact same learnt model with our PIBT-based
collision shielding dramatically improves performance and
scalability without any additional training or information.

Machine learning (ML) approaches which learn policies 45

for each agent are appealing as these could be decentralized
systems which scale well while maintaining good solution
quality. Current ML-based MAPF work methods are start-
ing to scratch the beginning of this potential. State-of-the-
art ML MAPF approaches learn “local” policies that take 50

in local observations and output a 1-step action distribu-
tion. However ML in general struggles with long-horizon
planning and low-error situations; both are critical in MAPF
which requires long-horizon planning across many agents
with very little room for errors which can cause collisions 55

or deadlock. Thus recent ML-based MAPF works have been
proposed for grid-worlds but currently do not reach the stan-
dards of state-of-the-art heuristic MAPF solvers.

Our main idea is that we can boost learnt MAPF ap-
proaches by using it with heuristic search methods. When 60

using learnt policies that could predict actions which cause
agents to collide, current ML approaches use a naive “colli-
sion shield” that replaces collisions with deadlock (see Fig-



ure 2). We instead show how we can use PIBT (Okumura
et al. 2022) (a heuristic search method) as a smart collision65

shield during execution. We demonstrate this approach sig-
nificantly boosts performance rather than solely using the
learnt policy. We then show how we can more closely in-
tegrate learnt local MAPF policies with LaCAM (Okumura
2022) (another heuristic search method) to further improve70

performance. We explore other neural network agnostic ap-
proaches of combining a learnt policy with PIBT and La-
CAM and show significant improvement in success rate and
costs over the learnt policy by itself.

Our goal in this paper is not to show that ML ap-75

proaches for MAPF are superior to classical heuristic search
approaches. Our objective instead is to show that given
a learnt local policy, we can use heuristic search based
model-agnostic methods to significantly improve the perfor-
mance of these policies. In regards to whether ML-based ap-80

proaches or heuristic search approaches are better, we offer
a more nuanced view. We demonstrate in our experiments
that given existing strong 2D heuristics (i.e. backward Dijk-
stra’s), current classical heuristic search approaches are ex-
tremely strong and will likely outperform ML approaches85

in 2D MAPF. However given imperfect heuristics, we see
that ML approaches can actually outperform certain heuris-
tic search methods. Section 4.4 discusses in further detail
where learning may be applicable given our findings.

Overall, the main point we attempt to show in this paper is90

that ML methods for MAPF should fully leverage heuristic
search. Doing so can substantially boost success rates and
scalability. Succinctly stated, our main contributions are:
1. Creating a “smart” collision shield using PIBT that post-

processes learnt policy conflicts instead of freezing con-95

flicting agents.
2. Showing a neural-network agnostic framework for using

a learnt 1-step policy with PIBT/LaCAM for full horizon
planning to enable theoretical completeness and boost
success rate, and experimenting with several variants.100

2 Related Works
There are many different approaches for MAPF which range
from optimization, heuristic search, and machine learning.
We first define MAPF and then focus on the relevant heuris-
tic search and machine learning approaches.105

2.1 MAPF Problem Formulation
We describe the classic single-shot 2D MAPF. Here, we are
given a known gridworld with free space and obstacles, and
a single start-goal pair for each agent. Each agent can move
in its 4 cardinal directions or wait for a total of 5 different110

actions per discretized timestep. Our objective is to find a
collision free space-time path for all the agents to reach their
goals without obstacle conflicts, vertex conflicts (two agents
at the same location at the same time), or edge conflicts (two
agents swapping locations across consecutive timesteps). In115

addition to finding a collision-free path, we hope to find effi-
cient collision-free paths which minimize the total flowtime
(sum of each agent’s path until they rest at the goal).

Single-shot MAPF is harder than lifelong (where agents
immediately move to a different goal if they reach their first120

goal) or disappear-at-goal MAPF variants as agents need to
rest at the goal location. Agents waiting at the goal requires
tough reasoning for learnt models as naively stopping these
agents at the goal can block later agents from reaching their
goal locations. Our framework is applicable to other MAPF 125

variants too but we choose to evaluate it on the more difficult
single-shot MAPF scenario.

2.2 Heuristic Search Approaches
Heuristic search methods aim to tackle the exponentially
growing search space by intelligently leveraging the semi- 130

independence of agents. Conflict-Based Search is a popular
state-of-the-art complete and optimal framework for MAPF
(Sharon et al. 2015). This technique plans for each agent in-
dividually and then resolves conflicts iteratively by applying
constraints and replanning. Improvements on this founda- 135

tional technique have been shown to scale up to solving hun-
dreds of agents optimally or bounded-suboptimally (Barer
et al. 2014; Boyrasky et al. 2015; Li, Ruml, and Koenig
2021; Sharon et al. 2013; Li et al. 2020a, 2019). These meth-
ods typically have good solution quality but computationally 140

scale poorly as the number of agents increases.

PIBT Recently, PIBT and its extensions (Okumura et al.
2022; Okumura 2022) have shown how greedy heuristic
search methods can scale extremely well at the expense of
solution cost. At its core, at each timestep, PIBT has each 145

agent greedily attempt its best action by following its indi-
vidual best path. If two agents have actions that would lead
to conflicts, the higher priority agent has precedence and
the lower priority agent must attempt its second-best action.
This procedure repeats until a conflict-free set of actions is 150

found, if not the first agent is forced to attempt its second-
best action (and logic repeats accordingly). PIBT interleaves
greedy 1-step planning and execution but is still effective in
long horizon MAPF tasks. PIBT uses backward Dijkstra’s
heuristic estimates to determine what actions are best (i.e. 155

the action leading to the state with the least heuristic esti-
mate is the best).

LaCAM LaCAM (Okumura 2022) builds on PIBT by us-
ing it as a successor generator within a Depth-First Search
(DFS) of the joint-configuration space. We describe LaCAM 160

in a simplified way to get the main idea across, but note that
LaCAM is more nuanced. Given N agents, imagine running
a “joint-configuration” space DFS. Specifically, given the
initial configuration, we generate all possible valid neigh-
boring joint-configuration successors, pick one we haven’t 165

seen, and repeat. Note that a valid joint-configuration suc-
cessor will move agents by only one step (or wait) and will
not have vertex, edge, or obstacle collisions. In 2D MAPF
with each agent having 5 actions, this means N agents can
generate up to 5N − 1 new successors (the minus 1 as all 170

agents waiting will not results in a new configuration). This
approach is clearly not scalable to many agents due to the
exponential number of successors.

LaCAM intelligently bypasses this issue by generating an
exponential number of successors lazily. The key insight is 175

that given a joint-configuration JA, we must generate all
possible successors, but we can do this sequentially as we
encounter them rather than all at once. They do this by



employing lazy constraints where each constraint specifies
that an agent should be at a specific location. Therefore, if180

we encounter JA multiple times when back-tracking in the
DFS, we will require different agents to be at different lo-
cations and generate different joint-configuration successors
that satisfy these constraints. Figure 2 shows an example
where DFS goes to the left, exhausts successors, and then re-185

visits the start configuration and lazily generates a new suc-
cessor to the right (e.g. by constraining the orange agent to
be in the middle). In the limit of time and memory, LaCAM
explores all possible successors of JA. It is therefore cru-
cial that the configuration generator be fast while satisfying190

the constraints. LaCAM found that PIBT performed well as
a configuration generator compared to other MAPF meth-
ods. Since LaCAM eventually explores all configurations,
LaCAM is theoretically complete. In practice, LaCAM im-
proves success rate over PIBT as the DFS over configura-195

tions allows getting out of local minima (e.g. deadlock). La-
CAM is extremely effective on existing 2D benchmarks.

2.3 Machine Learning Approaches

Machine learning approaches typically attempt to learn local
1-step policies for each agent which they then execute in200

parallel to solve the MAPF instance. Each local policy is
fed a local field-of-view of the map, nearby agents, and goal
representations, and outputs a probability distribution over
the 5 possible actions.

PRIMAL (Sartoretti et al. 2019) is a foundational machine205

learning method that uses reinforcement learning and super-
vised learning to learn local policies. PRIMAL2 (Damani
et al. 2021) improves the observation inputs from PRIMAL
to handle mazes by automatically annotating potential bot-
tlenecks. SCRIMP (Wang et al. 2023) uses the same frame-210

work but replaces the complicated PRIMAL2 inputs with
extremely small 3x3 observations and inter-agent communi-
cation via a modified transformer.

GNN (Li et al. 2020b) is a popular approach that solely
uses supervised learning to learn a local policy. They use215

a Graph Neural Network (Gama et al. 2019) for communi-
cation and symmetry breaking across agents. MAGAT (Li
et al. 2021) improves upon the message-passing neural net-
work architecture in GNN. GNN introduces (and MAGAT
also uses) a “collision shield” which takes each agent’s pre-220

ferred action and executes it if collision-free or freezes the
agent if it would cause a collision. Other works, e.g. PRI-
MAL and PRIMAL2, do not explicitly define their collision
shield but use similar implicit shielding.

A key problem highlighted by most ML works is dead-225

lock between agents. PRIMAL’s results show how deadlock
can commonly occur when agents rest at their goal location.
PRIMAL2 specifically aims to learn conventions to decrease
deadlock in maze structures. SCRIMP uses their learnt state-
values (an additional output of their model apart from their230

local policy) to calculate agent priorities that they use to
prioritize agents in deadlock, and show that this improves
performance over naive collision shielding. We qualitatively
noticed how MAGAT encounters deadlock as well. Our in-
sight is that we can resolve local deadlock using heuristic235

search methods on top of the learnt policy predictions.

3 Improving Learnt Local Policies with
Heuristic Search

Machine learning MAPF policy methods aim to learn a local
policy that each agent runs in a decentralized manner. Theo- 240

retically, these techniques should be able to scale well to an
increasing number of agents as the time should be roughly
constant regardless of the number of agents. However exist-
ing learnt methods iteratively plan and execute 1-step poli-
cies that get stuck in deadlock or live-lock, lack full hori- 245

zon planning and theoretical completeness guarantees, and
in practice struggle with poor success rates and scalability.

3.1 Collision Shielding: Handling 1-step Conflicts
with PIBT

One fundamental issue with using learnt 1-step policies is 250

that it is possible for the agents’ learnt policies to choose ac-
tions that lead to collisions. Figure 2 shows how two agents
could choose to move into the same empty cell and lead to
a collision if unchecked. Existing 1-step MAPF ML works
avoid this by post-processing the outputs to check if the ac- 255

tions are collision-free, and freeze agents that propose con-
flicting actions. GNN (Li et al. 2020b) introduces this pro-
cess as “collision shielding”.

Algorithm 1: Collision Shield PIBT (“CS-PIBT”)
Parameters: Current state si, action probability distribution
pi1:5 for each action agent i. Note ∥pi∥ is 5 as in 2D MAPF
we have 4 movements along with waiting. pi1:5 can be from
an arbitrary learnt model.
Output: Collision free actions and successor states ∀i

1: procedure GETSTRICTACTIONORDERING(pi1:5)
2: return action ordering sorted by decreasing pi1:5
3: procedure GETSAMPLEDACTIONORDERING(pi1:5)
4: return reorder action orders by pi1:5 biased sampling

without replacement
5: procedure CS-PIBT(si, pi,∀i ∈ [1, N ])
6: ai1:5 ← GetSampledActionOrdering(pi) ∀i
7: (s1:Nnew, a

1:N
best)← PIBT(s1:N , a1:N1:5 )

8: return (sinew, a
i
best) ∀i

Formally, collision shielding is a function that takes in
the current configuration and proposed action distribution 260

and returns the next valid configuration that avoids vertex,
edge, and obstacle collisions. Li et al. (2020b) describes the
following collision shielding process we term “CS-Naive”.
Given N agents in a joint-configuration s1:N and actions
a1:N , we simulate (si, ai) → sinew and detect collisions. 265

All agents with collisions are told to wait at their current
location. As the authors write themselves, this can cause
deadlock if multiple agents repeatedly propose actions that
lead to conflicts. Figure 2 shows an instance where colli-
sion shielding is necessary, and how two agents colliding 270

can cause other agents to be stuck in deadlock.
One critical observation is that this collision checking

does not take the full probability distribution of the agents’
proposed actions. Specifically, we either take the chosen ac-
tion or we wait, we never consider the other actions. Sup- 275

pose we have two agents at different locations proposing to



Learnt ML
MAPF Policy

Naive

Collisi
on Shield

PIBT
Collision Shield

Handling 1-step Learnt Local Policy Collisions with PIBT

Learnt Policy proposes actions that would cause a
collision if both agents followed their actions.

Full Horizon Planning by using
a Learnt Local Policy with LaCAM

No Deadlock

Deadlock

LaCAM naturally
backtracks if
exhausted all

possible
successor

configurations

T=0

T=1

T=2

Policy

w/CS-PIBT

Action Distribution
per Agent

Successors Lazily
Generated

Figure 2: Given a learnt local MAPF model, we need to resolve possible 1-step collisions that might occur if we followed the
proposed actions. We depict one such instance where blue and green would collide into each other. Existing work uses a “naive
collision shield” which only uses the agents’ picked actions and replaces collisions with wait actions, which can cause deadlock
between agents. We propose using PIBT collision shield (CS-PIBT) to resolve 1-step collisions without deadlock. Note that
CS-PIBT uses the entire action distribution of the agent. To enable full horizon planning, we can use the LaCAM framework
with the learnt policy with CS-PIBT as the configuration generator as defined in Okumura (2022). LaCAM in essence conducts
a DFS over the joint-configuration space, enabling it to escape local minima by backtracking and improving success rates.

go to the same location, what if we could let one go there
and the other agent pick its second best action? This could
significantly reduce idling and deadlock. But now the ques-
tion arises of which agent can attempt its primary action and280

which agent needs to try its second action. Priority-based
techniques naturally solve this question by assigning prior-
ity to agents and having the better priority agent have prece-
dence. We thus want a single-step priority-based approach
that takes in a preference of actions and returns a valid con-285

figuration. PIBT does exactly this.

Concretely, instead of solely taking in the single proposed
action per agent, we propose feeding the entire probabil-
ity distribution into PIBT along with agent priorities. PIBT
naturally resolves obstacle, vertex, and edge conflicts using290

agent priorities, backtracking, and the full action set. We
term this use of PIBT as a collision shield for a learnt pol-
icy as “CS-PIBT”. CS-PIBT will always return a valid con-
figuration as all agents waiting is a valid collision-free op-
tion. PIBT can be decentralized (Okumura et al. 2022) and295

CS-PIBT is decentralized similarly to CS-Naive in that only
colliding agents need to coordinate. We maintain the same
iterative 1-step planning and execution process as before.

One small detail is that PIBT does not take in an action
distribution but rather a strict action ordering (e.g. which ac-300

tion to try 1st, 2nd, ... 5th). We can easily convert an action
probability distribution to an action ordering by just prefer-
ring actions in order of highest probability. Interestingly, as
discussed later in our experiments, we found that although
this can significantly improve performance over CS-Naive,305

this strict ordering is a large bottleneck. We can get much
larger performance benefits by converting our action distri-
bution into an action ordering by biased sampling. Algo-
rithm 1 describes CS-PIBT with the two possible variants.

3.2 Full Horizon Planning with LaCAM 310

The previous section describes a PIBT-based “collision
shield” that handles 1-step conflicts. However, using a learnt
1-step policy with this collision shield does not enable any
theoretical guarantees as the 1-step policy can still get stuck
in deadlock or be arbitrarily bad. Ideally, we would like to 315

use a learnt 1-step policy in a manner that maintains theoret-
ical solution guarantees.

Section 2.2 describes in depth how normal LaCAM
works. The key observation is that LaCAM requires a fast
configuration generator that can satisfy lazily added con- 320

straints, and that PIBT satisfies this. We observe that a
learnt local MAPF policy with CS-PIBT can be modified to
be a valid configuration generator. Specifically, in order to
work with LaCAM, our learnt model with collision shield-
ing needs to handle constraints that get lazily added. Given 325

constraints on agents, we can easily do this by invalidating
proposed actions that violate constraints and having our col-
lision shielding only consider the valid subset (the same way
as is done in PIBT within regular LaCAM). Another per-
spective is that instead of LaCAM using PIBT informed by 330

a normal cost-to-goal heuristic, we can use PIBT informed
by the learnt local policy action distribution.

Since the learnt policy in this approach only reorders ac-
tion preferences, it only alters the order in which configu-
rations are searched and does not prune out any configura- 335

tions. Thus using a local 1-step learnt policy with CS-PIBT
within LaCAM enables full horizon planning with the same
completeness guarantee as LaCAM. Using LaCAM does
require a centralized search effort wrapping over the de-
centralized model with CS-PIBT, but this centralized struc- 340

ture is significantly weaker than other MAPF methods like
EECBS (Li, Ruml, and Koenig 2021) or MAPF-LNS2 (Li



et al. 2022) which requires iterations of sequential replan-
ning of agents. We note there currently exists no decentral-
ized MAPF method that ensures completeness.345

3.3 Combining a Local Policy with a Heuristic
As mentioned, one perspective of using a learnt model with
CS-PIBT as a configuration generator in LaCAM is that we
are using regular PIBT informed by the learnt local policy
π instead of by a cost-to-goal heuristic h(s). This perspec-350

tive implies that some middle ground is possible; we can use
PIBT informed by both the heuristic as well as the learnt
local policy. This can be done in various manners.

Concretely, normal PIBT from s picks the action
mina h(s

′) where s′ is a successor state of s after apply-355

ing a. In 2D MAPF, there are many instances where two
actions are tied for the minimum, and Okumura et al. (2022)
shows that tie-breaking randomly is important for good per-
formance. On the other hand, our local policy with PIBT
collision shielding picks the action maxa pπ(s). Note that360

there is a unit mismatch, i.e. heuristic values vs probabilities
between the two objectives.

Our first observation is that instead of tie-breaking ran-
domly in PIBT between two equally good h(s′) states, we
can tie-break using the learnt policy action preferences. This365

bypasses the unit mismatch and we thus pick the lexico-
graphic best action mina(h(s

′), 1 − pπ(a)). However, this
tie-breaking mechanism is not satisfactory as it only uses the
learnt policy sparingly in ties. We can generalize the utility
of the learnt policy by picking mina h(s

′)+R×(1−pπ(a))370

where R is a hyper-parameter that fixes the unit mismatch as
well as serves as a weight on how much we want to follow
our policy over the heuristic.

Altogether we have four possible ways of combining the
local policy with a heuristic:375

Oh = min
a

h(s′) (1)

Oπ = max
a

pπ(a) (2)

Otie−breaking = lexmina(h(s
′), 1− pπ(a)) (3)

Ocombined(R) = min
a

h(s′) +R× (1− pπ(a)) (4)

Note, Ocombined(R = 0) equals Oh and Ocombined(R →
∞) is identical to Oπ . In 2D MAPF with unit ac-
tions and a backward Dijkstra heuristic, given a state
s, neighboring heuristic values hBD(s′) ∈ {hBD(s) −
1, hBD(s), hBD(s) + 1}. By definition, pπ(s) ∈ [0, 1].380

Thus Ocombined(R) with R ∈ (0, 1] is equivalent to
Otie−breaking .

4 Experimental Results
We have described multiple techniques to boost the perfor-
mance of a learnt local MAPF policy with heuristic search.385

We seek to evaluate the following experimentally:
1. How does PIBT collision shielding compare against

naive collision shielding?
2. How does integrating a learnt policy with LaCAM boost

performance?390

3. What is the best way of combining a learnt policy with
heuristic information?

4.1 Learnt Policies used for Evaluation
All of our techniques are agnostic to the methodology or ar-
chitecture of the learnt policy. Implementing and incorporat- 395

ing PIBT collision shielding is straightforward given an arbi-
trary learnt policy as it is just a post-processing technique, so
we were able to evaluate it on the state-of-the-art pre-trained
MAGAT neural network. However, it is more complex to
implement the LaCAM framework and we were unable to 400

incorporate MAGAT’s policy with its existing implementa-
tion. We instead trained a significantly simpler network our-
selves that we were able to use within the more complex
LaCAM framework. We evaluate our results on the stan-
dard random-32-32-10 map (Stern et al. 2019) as MAGAT is 405

trained on environments with 10% randomly sampled obsta-
cles. All results are aggregated across 25 provided scenarios
and 5 seeds. For CS-PIBT and LaCAM, we used dynamic
priorities as defined in Okumura et al. (2022) which assigns
initial high priorities to farther agents and then sets priorities 410

to zero when agents reach their goal.

MAGAT MAGAT is a state-of-the-art model that uses a
graph neural network structure and supervised learning for
one-shot MAPF (Li et al. 2021). MAGAT was shown to
scale well given similar agent densities, i.e. they show that 415

MAGAT trained on 20x20 maps with 10 agents (density of
0.025) is able to scale to 200x200 maps with 1000 agents
(same 0.025 density) with an 80% success rate. Note that
most classical MAPF methods evaluate performance by in-
creasing the number of agents in the same map, i.e. in- 420

creasing agent density. Given a 50x50 map, MAGAT evalu-
ates performance up to 100 agents (density 0.04) and starts
to show performance degradation after 60 agents (density
0.024). They do not show results past 0.04 density, implying
MAGAT fails past this level. For context, existing heuristic 425

search methods like EECBS, PIBT, and LaCAM can work
in 40+% agent densities.

Simple Learnt Policy The objective of this simple learnt
policy is to see how our techniques can improve relatively
weak models. We intentionally train a simple policy to con- 430

trast MAGAT and avoid extra hyper-parameters and hyper-
parameter tuning.

We trained our simple policy πs similar using supervised
learning. Concretely, we ran EECBS on the random-32-32-
10 map for 20-200 agents and collected each state-action 435

pair as a training example. For each agent ai with (state,
action), we fed in 6 local 9x9 fields of view centered at
the state. The first 9x9 was the local map (0’s free space,
1 obstacle) and the 2nd 9x9 was a local backward Dijk-
stra’s heatmap (similar to PRIMAL2) guiding ai to its goal. 440

The other four 9x9 channels were the backward Dijkstra’s
heatmap of the four closest agents within the field of view,
with all-zero heatmaps if not enough agents. This is fairly in
line with existing work.

The main changes are that our neural network is signif- 445

icantly smaller than all existing work (just 1 CNN layer, 2
MLP layers) and critically has no inter-agent graph neural
network or communication structure. After the CNN encod-
ing, we also add in the relative coordinates of the four closest
agents within the field of view (or pad with zeros accord- 450

ingly). Due to its small nature, the model we trained was



Success Rate
hManhattan hBD MAGAT Simple Policy πs

Agents PIBT LaCAM PIBT LaCAM CS-Naive CS-PIBT Otie CS-Naive CS-PIBT LaCAM Otie + LaCAM
50 0 1 0.986 1 0.88 1 1 0 0.928 1 1
100 - 1 0.982 1 0.384 0.976 1 - 0.88 1 1
200 - 1 0.83 1 - 0.8 0.944 - 0.592 0.992 0.992
300 - 1 0.554 1 - 0.92 0.696 - - 0.896 0.928
400 - 0.952 0.4 1 - 0.888 0.728 - - 0.576 0.688
450 - 0.864 0.366 1 - 0.776 0.64 - - 0.528 0.512

Average Path Cost per Agent over Successful Instances
50 - 130 25.7 25.6 26.7 24.6 23.7 - 26.0 26.2 25.2
200 - 396 34.4 34.7 - 39.7 31.0 - 34.7 34.7 33.7
300 - 614 40.9 41.1 - 59.5 36.4 - - 41.0 39.7
400 - 904 - 49.3 - 114 45.2 - - 49.0 47.3

Table 1: The top table compares the success rates of using different learnt local policies with our proposed methods. We include
PIBT and LaCAM runs using a Manhattan (hManhattan) and backward Dijkstra’s (hBD) heuristic as baselines. Existing works
using naive collision shielding (CS-Naive) to handle 1-step conflicts, we propose using a PIBT-based collision shielding (CS-
PIBT). We see that CS-PIBT dramatically improves MAGAT’s success rate and scalability from under 100 agents to succeeding
over 70% with the maximum number of agents in the benchmark. CS-PIBT similarly significantly boosts our simple policy πs to
200 agents while πs with CS-Naive only succeeded up to 10 agents. The last two columns also show the significant performance
benefit of incorporating a learnt policy with LaCAM. Note that πs + LaCAM doubles scalability over πs with CS-PIBT and is
still only driven by the simple policy and has no access to additional information. The bottom table shows the average path cost
per agent over successful instances that all methods were able to solve. We finally evaluate how combining the learnt policy
with hBD affects performance. Note MAGAT Otie is MAGAT with CS-PIBT with actions ordered by Otie−breaking, while the
corresponding column for πs uses LaCAM with Otie−breaking . We see that combining both together leads to better costs than
using just the policies themselves.

unable to generalize to new maps so we just trained on the
same map we tested on with a subset of agents and start-
goals. As seen later on, the simple policy cannot succeed
past 10 agents with CS-Naive. However, with CS-PIBT and455

our LaCAM framework, our policy can scale up to 200 and
400 agents respectively. This implicitly reveals how integrat-
ing heuristic search can potentially allow ML practitioners to
learn simpler models (with potential computational benefits)
rather than existing larger models.460

4.2 Improving Scalability and Success Rate
CS-PIBT Table 1 evaluates the effectiveness of the colli-
sion shield, comparing CS-Naive to CS-PIBT on MAGAT
and our simple policy. All the methods were given a 60-
second timeout except for MAGAT which used the maxi-465

mum makespan limit described in their paper. MAGAT with
CS-Naive has reasonable success at 50 agents (≈ agent den-
sity 0.05) consistent with MAGAT’s results, but is unable
to scale to more agents. Using the same model predictions
with CS-PIBT, we see that it is able to have good success470

rate on 450 agents (the max number of agents in that bench-
mark). This is an almost 10x improvement in agent density
scalability with the exact same model. Likewise, our simple
policy is unable to solve 50 agents, and upon inspection can
only solve up to 10 agents well. With CS-PIBT, it can scale475

up to 200 agents (over a 10x improvement in scalability).
These results convincingly demonstrate that CS-PIBT can
significantly improve success rates and scalability in conges-
tion. When visualizing the different collision shields, we no-
ticed that CS-PIBT has two main strengths over CS-Naive.480

First, CS-PIBT allows robust movement when several agents
are grouped up in the same area, while in CS-Naive mainly

agents on the borders moved while the internal ones took
longer to get out. Second, CS-PIBT allows agents to more
easily go through agents resting on their goal, which was 485

common in most failures in CS-Naive for a low number of
agents and CS-PIBT at higher numbers. Both these behav-
iors are direct results of CS-PIBT’s usage of priority inheri-
tance and taking the full action probability distribution into
account. A small but crucial detail for using CS-PIBT as 490

discussed in the next section is that the action probability
should employ randomness.

One note on runtime is that the overhead of CS-PIBT is
heavily dependent on the programming language and im-
plementation of other processes. For πs, CS-PIBT was im- 495

plemented in C++ and took 0.05 milliseconds per CS-PIBT
call for 200 agents and had a negligible impact on overall
runtime which was dominated by neural network input and
inference time. However, CS-PIBT in Python for MAGAT
took about 0.05 seconds per call for 200 agents which trans- 500

lates to 40% of total runtime.

The Importance of Randomness The authors of PIBT
mention how random tie-breaking plays an important part
in improving performance (which we also found when test-
ing out baseline PIBT). Interestingly, we find that employing 505

randomness for converting the policy’s action distribution
into an action ordering is crucial to our CS-PIBT. Figure 3
shows the effect of using CS-PIBT using strict ordering vs
sampled action ordering (see Algorithm 1). We see that strict
ordering is strictly worse than sampling and that its perfor- 510

mance boost degrades fast as the number of agents increases.
One hypothesis to explain this difference is that the model

could be biased and certain actions’ probabilities could
consistently be higher than another, e.g. prob(up)=0.55 >



50 100 150 200
Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

0.84

0.52

0.16

0

1 0.976

0.848
0.8

0.84

0.52

0.36

0

0.92
0.88

0.704

0.592

Effect of Random Sampling for CS-PIBT

MAGAT w/CS-PIBT without sampling
MAGAT w/CS-PIBT with sampling

s w/CS-PIBT without sampling
s w/CS-PIBT with sampling

Figure 3: We plot the effect of using CS-PIBT with and with-
out biased sampling. We see that including sampling sig-
nificantly improves performance instead of always choosing
actions with the highest probability first. Note that CS-PIBT
with sampling allows MAGAT to scale to over 400 agents
(not shown here, see Table 1) whereas it fails without sam-
pling around 150 agents.

prob(down)=0.45. In this case, strict ordering will always515

try up before down, but with biased sampling we will try
up before down only 55% of the time, matching the in-
tended distribution. However, we quantitatively analyzed the
action ordering distributions induced by strict action order-
ings and sampled action orderings and found they had very520

similar distributions. Qualitatively, we observed that fail-
ure instances for CS-PIBT without sampling had many live-
locks where two agents alternated back and forth between
the same few states, and got stuck around obstacles. We did
not notice this as often with CS-PIBT with sampling, im-525

plying that sampling helps the agent overcome local minima
by trying out different actions instead of repeating the same
ones.

Full Horizon Planning with LaCAM Table 1 shows the
result of running the same simple policy πs within the La-530

CAM framework. We see that LaCAM improves both the
success rate and scalability over π with CS-PIBT. LaCAM’s
overall framework allows searching over multiple options
which enables the search to overcome local minima (e.g.
deadlock) and boost success rate. These results are consis-535

tent with LaCAM’s original results improving PIBT’s 1-step
planning. We highlight how πs + LaCAM significantly im-
proves scalability as it solves 200 agents nearly perfectly
while πs with CS-PIBT has a 59% success rate, and πs by
itself cannot solve 15 agents.540

4.3 Combining a Policy with a Heuristic
Figure 4 explores the different methods of combining a
policy with a heuristic. We compare LaCAM solution cost
against MAGAT w/CS-PIBT with action preferences sorted
as described in Section 3.3. Results are percent cost in-545

creases with respect to LaCAM on successful runs, thus
negative values denote cost improvements. We included an
additional LaCAM baseline denoted LaCAM2 which, when
given two equally good hbd(s

′), will tie-break to avoid agent

50 100 150 200 250 300 350 400 450
Number of Agents

15

10

5

0

5

10

15

Pe
rc

en
t C

os
t I

nc
re

as
e

Combining a Local Policy with a Heuristic

LaCAM
LaCAM2

MAGAT w/CS-PIBT: Tie
MAGAT w/CS-PIBT: R1.5

MAGAT w/CS-PIBT: R3
MAGAT w/CS-PIBT: R15

MAGAT w/CS-PIBT

Figure 4: We evaluate different methods of combining MA-
GAT’s local policy with the standard backward Dijkstra’s
heuristic used in LaCAM. We evaluate the performance in-
crease with respect to regular LaCAM informed by hBD and
random tie-breaking (blue). LaCAM2 (green) tie-breaks pre-
ferring locations without other agents which was shown to
improve solution cost (but reduce success rate) in Okumura
et al. (2022). “Tie” (red) tie-breaks hBD by using MAGAT’s
preferences. MAGAT (black) disregards hBD. Intermediate
“R” methods (purple, orange, cyan) sort using a weighted
combination of hBD and MAGAT’s probabilities. We see
that tie-breaking improves solution cost over LaCAM2 and
MAGAT, revealing how combining both hBD and a learnt
policy can lead to improvements over each individually.

collisions, which was shown in Okumura et al. (2022) to im- 550

prove cost at the expense of success rate. Note that LaCAM
performs full horizon planning while all the MAGAT results
are iteratively 1-step planning and executing using CS-PIBT.

We observe that using just MAGAT’s policy (black)
leads to worse solutions than LaCAM. However tie-breaking 555

(red), which primarily uses hBD and tie-breaks using MA-
GAT’s predictions, leads to a consistent cost improvement of
around 10%. Using Ocombined(R) with different R interpo-
lates between the two behaviors, with low values of R per-
forming better. One possible hypothesis for Otie−breaking’s 560

better performance is that MAGAT’s model simply prefers
to avoid 1-step collisions. However, LaCAM2’s tie-breaking
mechanism does exactly this but Otie−breaking is still better
than LaCAM2 by about 5%, with the performance improve-
ment increasing as the number of agents increases. This im- 565

plies that MAGAT is learning something more nuanced than
a simple rule to get performance benefits.

We observed similar trends with our simple policy πs

with respect to using Otie−breaking and Ocombining(R),
except since πs is much simpler all costs are shifted up. 570

πs with Otie−breaking still improves cost compared to La-
CAM from 1% to around 4% with larger benefits as the
number of agents increases, but it is worse than LaCAM2.
Ocombining(R) with πs showed similar interpolation behav-
ior as with MAGAT and similarly leads to worse perfor- 575

mance than Otie−breaking .



50 100 150 200 250 300 350 400 450
Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e
Effect of Imperfect Heuristics on Success Rate

lacam-0
pibt-0

lacam-5
pibt-5

lacam-10
pibt-10

lacam-20
pibt-20

MAGAT w/CS-PIBT

(a) Success Rate

50 100 150 200 250 300 350 400 450
Number of Agents

100

101

102

103

Su
bo

pt
im

al
ity

Effect of Imperfect Heuristics on Solution Cost

lacam-0 lacam-5 lacam-10 lacam-20 MAGAT w/CS-PIBT

(b) Solution Cost, 0-20% h̄BD imperfection

50 100 150 200 250 300 350 400 450
Number of Agents

0

10

20

30

40

Su
bo

pt
im

al
ity

Effect of Imperfect Heuristics on Solution Cost

lacam-5 lacam-6 lacam-7 lacam-8 MAGAT w/CS-PIBT

(c) Solution Cost, 5-8% h̄BD imperfection

Figure 5: We explore the effect of imperfect heuristics on PIBT and LaCAM. Given a setting of “K%” imperfection and
the perfect backward Dijkstra’s heuristic hBD(s), we uniformly sample from e ∼ [1 − K/100, 1] and obtain our imperfect
h̄BD(s) = e × hBD(s). (a) shows the performance with PIBT and LaCAM in K = 0 (cyan), 5 (brown), 10 (green), and 20
(red) h̄BD-imperfect settings. We additionally plot MAGAT which does not use hBD and is thus independent of the heuristic
imperfections. From the success rate, we see that PIBT completely fails starting at K = 10 (hidden by red triangle) and LaCAM
fails at K = 20. However, the solution cost in (b) reveals a worse picture; even though LaCAM succeeds with K = 10 or 20,
the solutions are extremely suboptimal with LaCAM finding 100 times worse solutions. (c) highlights that LaCAM can be
extremely brittle with it performing okay at 6% but producing substantially worse solutions at 7%.

4.4 Should We Even Use Learnt Policies?
One observation with Table 1 is that LaCAM serves as an
extremely strong baseline. LaCAM with the backward Di-
jkstra’s heuristic (hBD) has perfect success rate, good cost,580

and is extremely fast. LaCAM requires no complex train-
ing, hyper-parameters, and works on arbitrary 2D maps. All
learnt MAPF works require non-trivial data collection and
complex models but perform worse than LaCAM.

Our solution quality results in Section 4.3 show one pos-585

sible benefit of using learnt models; we can use them with
heuristic search to improve path costs. In scenarios where
cost is important, these 5-10% percentage improvements
could be worth the complications of learning a policy.

But what if small solution cost differences are not worth590

the infrastructure required for learning a MAPF policy, and
we primarily care about success rate? LaCAM seems clearly
superior to existing learnt MAPF models in this case.

However, one crucial assumption in 2D MAPF heuristic
search methods is that we have access to an extremely strong595

single-agent heuristic, the backward Dijkstra’s heuristic.
Given no inter-agent interactions, this heuristic is perfect.
Figure 5 shows that PIBT and LaCAM are extremely reliant
on this heuristic. We compute a “K%” imperfect heuristic
h̄BD(s) = e×hBD(s) where e ∼ [1−K/100, 1]. Note this600

heuristic is still admissible. Figure 5a shows that with 10%
imperfections, PIBT fails (bottom left covered by red trian-
gle) and 5b shows LaCAM outputs extremely suboptimal
to the extent of non-usable solutions. A finer manipulation
into K in Figure 5c shows that LaCAM is extremely brit-605

tle to heuristic imperfections as it succeeds reasonably with
K = 6 but produces highly suboptimal paths with K = 7, 8.
Table 1’s PIBT and LaCAM results with hManhattan show
similar results when using a Manhattan distance heuristic.
MAGAT is not reliant on hBD and outperforms PIBT and610

LaCAM for K ≥ 7 or hManhattan.
Thus in 2D MAPF, given a perfect backward Dijkstra’s

heuristic, LaCAM’s success rates are impressive and it
seems very hard for a learnt local policy to beat it. However,

in scenarios where we cannot obtain a perfect or nearly- 615

perfect backward Dijkstra’s heuristic, learnt policies have
the potential to outperform heuristic search algorithms. The
particular 2D MAPF scenarios where we think learnt poli-
cies may be useful are instances where hBD cannot be com-
puted, such as in partially observable MAPF (where only 620

part of the map is observed), or in extreme lifelong MAPF
where goals are frequently changing and the overhead for
computing hBD becomes prohibitively expensive.

Learnt policies instead will likely excel in high dimen-
sional state-space problems required for more realistic robot 625

models. For example, 2D warehouse agents are constrained
to move in grids at unit velocity in standard 2D MAPF
formulation, but in reality, can move at angles and non-
unit velocities. Realistic MAPF would then need to solve
at least a 4-dimensional problem (x,y,θ,velocity). Comput- 630

ing a perfect backward Dijkstra’s heuristic or other heuris-
tics within 6% imperfections will likely be impossible here.
Learnt MAPF policies, combined with CS-PIBT or LaCAM,
would be promising in these situations.

5 Conclusion 635

We showed several model-agnostic methods of improving
learnt local MAPF policies with heuristic search. We first
introduced CS-PIBT which is a collision shield using PIBT
that takes in a policy’s 1-step probability distribution and
outputs valid collision-free steps. We demonstrated how this 640

significantly improves scalability and success rate without
changing the model. We then showed how we can use a
learnt model with LaCAM to enable full horizon planning
with theoretical completeness and in practice further boosts
success and scalability. From our literature review, we have 645

shown results for the first time where a MAPF learnt policy
scales to similar agent densities (40%) of classical heuris-
tic search methods. We hope future methods that learn local
MAPF policies utilize these methods, and that more broadly,
researchers work more on improving learning with heuristic 650

search techniques.



References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Seventh Annual655

Symposium on Combinatorial Search.
Boyrasky, E.; Felner, A.; Sharon, G.; and Stern, R. 2015.
Don’t Split, Try To Work It Out: Bypassing Conflicts in
Multi-Agent Pathfinding. Proceedings of the International
Conference on Automated Planning and Scheduling, 25(1):660

47–51.
Damani, M.; Luo, Z.; Wenzel, E.; and Sartoretti, G. 2021.
PRIMAL 2: Pathfinding via reinforcement and imitation
multi-agent learning-lifelong. IEEE Robotics and Automa-
tion Letters, 6(2): 2666–2673.665

Gama, F.; Marques, A. G.; Leus, G.; and Ribeiro, A. 2019.
Convolutional Neural Network Architectures for Signals
Supported on Graphs. IEEE Transactions on Signal Pro-
cessing, 67(4): 1034–1049.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.670

2022. MAPF-LNS2: Fast Repairing for Multi-Agent Path
Finding via Large Neighborhood Search. Proceedings of the
AAAI Conference on Artificial Intelligence, 36(9): 10256–
10265.
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.675

2019. Improved Heuristics for Multi-Agent Path Finding
with Conflict-Based Search. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI-19, 442–449. International Joint Conferences
on Artificial Intelligence Organization.680

Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: A bounded-
suboptimal search for multi-agent path finding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 12353–12362.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;685

and Koenig, S. 2020a. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’20, 1898–1900. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent690

Systems. ISBN 9781450375184.
Li, Q.; Gama, F.; Ribeiro, A.; and Prorok, A. 2020b. Graph
Neural Networks for Decentralized Multi-Robot Path Plan-
ning. arXiv:1912.06095.
Li, Q.; Lin, W.; Liu, Z.; and Prorok, A. 2021. Message-695

Aware Graph Attention Networks for Large-Scale Multi-
Robot Path Planning. arXiv:2011.13219.
Okumura, K. 2022. LaCAM: Search-Based Algorithm for
Quick Multi-Agent Pathfinding. arXiv:2211.13432.
Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.700

2022. Priority inheritance with backtracking for itera-
tive multi-agent path finding. Artificial Intelligence, 310:
103752.
Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar, T. S.;
Koenig, S.; and Choset, H. 2019. Primal: Pathfinding via705

reinforcement and imitation multi-agent learning. IEEE
Robotics and Automation Letters, 4(3): 2378–2385.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66. 710

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence, 195: 470–495.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.; 715

Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. Symposium on Com-
binatorial Search (SoCS), 151–158.
Wang, Y.; Xiang, B.; Huang, S.; and Sartoretti, G. 2023.
SCRIMP: Scalable Communication for Reinforcement- 720

and Imitation-Learning-Based Multi-Agent Pathfinding.
arXiv:2303.00605.


