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Abstract

Recent advances in large language models highlighted the excessive quadratic cost
of self-attention. Despite the significant research efforts, subquadratic attention
methods still suffer from inferior performance in practice. We hypothesize that
dynamic, learned content-based sparsity can lead to more efficient attention mecha-
nisms. We present Mixture of Sparse Attention (MoSA), a novel approach inspired
by Mixture of Experts (MoE) with expert choice routing. MoSA dynamically se-
lects tokens for each attention head, allowing arbitrary sparse attention patterns. By
selecting k tokens from a sequence of length 7', MoSA reduces the computational
complexity of each attention head from O(7?) to O(k* + T'). This enables using
more heads within the same computational budget, allowing higher specialization.
We show that among the tested sparse attention variants, MoSA is the only one
that can outperform the dense baseline, sometimes with up to 27% better perplex-
ity for an identical compute budget. MoSA can also reduce the resource usage
compared to dense self-attention. Despite using torch implementation without an
optimized kernel, perplexity-matched MoSA models are simultaneously faster in
wall-clock time, require less memory for training, and drastically reduce the size
of the KV-cache compared to the dense transformer baselines.

1 Introduction

Modern transformer architectures [1] have proven to be highly effective for sequence modeling
tasks and are the key to the success of large language models (LLMs; [2, 3, 4, 5]). The attention
mechanism enables expressivity, but requires quadratic computational and memory complexity in
terms of sequence length. This results in a high training and deployment cost of LLM. Furthermore,
the KV-cache memory footprint during inference presents a significant bottleneck, limiting practical
deployment and increasing operational costs.

To mitigate the attention costs, sparse attention methods have been investigated. Static sparse attention
methods [6] reduce the quadratic complexity by selectively attending to a subset of tokens to be
used in the attention. They use hand-defined coarse-grained patterns that are not data-dependent.
Typical examples of these methods are the block-sparse and strided attention [6, 7, 8]. On other
hand, content-based dynamic sparse attention [9, 10, 1 1] methods can, in principle, learn to attend to
individual tokens, regardless of their location in the input, while ignoring less useful tokens. The
Routing Transformer [ ! 1] clusters the tokens within each head using online K-means. However, it
fails to show significant performance gains over static sparse-attention methods, possibly due to the
slow convergence of online K-means [12].
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Figure 1: MoSA layer compared to the dense attention layer. MoSA replaces each dense head with
multiple heads with a learnable sparsity pattern. Each head selects its own k tokens to process. MoSA
calculates query, key, and value projections only for the selected token and computes the attention
only between them. It drops the rest of the tokens, leading to more efficient compute utilization.
This reduces the computational and memory complexity on a sequence of length 7" from O(7?) to
O(k? + T). The saved compute budget can be used to scale up the number of heads.

We propose a novel approach, inspired by Mixture-of-Experts [13, 14], to create a dynamic, content-
based, and head-specific selection of tokens for sparse attention. This is achieved with Expert-Choice
Routing [15], where each attention head is treated like an expert and selects its own specific tokens
from the input. This creates a perfectly balanced selection, avoiding the need for complicated
regularization techniques. We name our approach Mixture-of-Sparse Attention(MoSA).

By selecting k tokens from a sequence of length 7', MoSA reduces the computational complexity
of the attention head from O(T?) to O(k? + T'). Sparse attention techniques have historically
been employed out of necessity to manage long sequences that exceed available computational
capacities. In contrast, we also explore the use of the saved computation budget for creating
additional attention heads. Thus, in this setup, MoSA employs a large number of highly sparse
attention heads, encouraging their specialization. We show that this allows for better utilization of the
available compute budget and leads to substantially better iso-flop language modeling performance
compared to dense attention and investigated sparse attention baselines.

Following observations of sparse attention methods [0, | 1], we incorporate MoSA as part of a hybrid
model with a different type of attention. Our main results demonstrate that hybrid models with many
MoSA and four dense heads significantly improve the model’s quality by up to 27% in an IsoFLOP
setting. MoSA consistently improves perplexity across all model scales starting with baselines from
28M to 516M parameters. Furthermore, we demonstrate that for long sequences, MoSA combined
with local attention clearly outperforms other analyzed sparse attention methods with a fixed budget.

2 Method

Sparse attention methods model global dependencies by selecting specific tokens that can attend to
other specific tokens based on a hand-engineered set of rules [8, 7] or by blockwise aggregation
of tokens [16]. Both of these families of methods impose the mixing of information during token
aggregation, either explicitly or implicitly. Instead, we propose to select tokens adaptively for each
head based on the input. Thus, a flexible set of important tokens can be kept around, creating
content-based sparsity without strong information mixing. To achieve that, we take inspiration from
Expert-Choice routing in MoEs. MoSA is shown in Fig. 1.



In MoSA, in addition to the standard projections, each head has an additional router that selects which
tokens are used for that head. Formally, the router is defined using the weight matrix W” € R”. Let
X € RT*" be the T-long sequence of input tokens. The router calculates the selection scores for
each token r = o(XW") € R For o we use the non-competitive sigmoid function o (z) = 1-&-%
following observations from o-MoE [17]. Subsequently, we use expert choice for the selection of
tokens for each head:

r'P% [ = TopK (r, k)

where T'opK returns the highest k values of r called r'°?* ¢ RF, along with their indices I €
{0, ...,T — 1}*. I is used to select the subset of inputs for the MoSA head:

X* = (X, X1,, ..., X, ) € RF*P

where X; represents ¢'th row from matrix X. After that, queries, keys, and values are calculated
identically to the standard MHA: X® as Q = X°W® K = X°WX |V = X*WV. As our primary
target is language modeling, we also calculate the mask that prohibits attending to future tokens.
Unlike the standard MHA, this mask is not triangular and has to take into account the token indices
selected by the head: M; ; =0 <= I, > I;, —oo otherwise.

The sparse attention can be computed using the standard attention defined in Eq. 2. A =
Attention(Q, K, V, M). This allows the combination of MoSA with optimized attention implemen-
tations such as Flash Attention [18]. The resulting vectors A; are multiplied by the corresponding
router values r;. Then, after the output transformation W, they are moved back to their original
positions in the full-length sequence Y € RT*",

X° = diag(r) AW? € RF*h

{X;?’ ifj=1I forsomei € {1,...,k},
Yj: )

forj=1,...,T.
0,  otherwise, orJ B

diag(-) creates a diagonal matrix from a vector, used for elementwise scaling of the columns of the
matrix A by a vector r. This ensures that the token’s contribution is proportional to the router’s
output. This also enables the router to receive gradients, making it learnable by gradient descent. We
call the combined transformation of  into y, parameterized by §; = (W2, WX WV WO W) a
single MoSA head: Y = MoSApcqq(X; 0;). A MoSA layer parameterized by 0 = {6; }ic1.. 1 is:

H
MoSA(X;6) = > MoSApcaa(X; 6;) M

i=1

The entire transformation in the multihead version can be efficiently implemented in PyTorch [19]
using einsum, scatter and gather operations.

Sparse attention methods are usually combined with local attention [6, 1 1] when used on long
sequences. Sparse attention then captures global dependencies, while local attention preserves local
context. As our setup permits the use of dense attention, in our main experiments, we combine MoSA
or corresponding sparse attention baseline with 4 dense heads. In Appendix E, we demonstrate the
necessity of hybridization and motivate our selection of four dense heads for the models. In App. G,
we combine MoSA with local attention for long sequences and demonstrate that MoSA demonstrates
superior performance in this scenario as well.

3 Experiments

We empirically demonstrate MoSA’s performance in different settings by comparing MoSA to dense
and sparse baselines. In this section, we evaluate all the methods on language modeling under a fixed
FLOP budget. In App. F we demonstrate the practical benefits of MoSA by measuring wall-clock
time, memory usage, and KV cache size in a perplexity-matched setup. In App. G we investigate the
performance of MoSA on long sequences. Furthermore, in Appendix H, we analyze the performance
of different models in downstream zero-shot tasks.

Apart from a dense baseline, we compare MoSA with two sparse attention methods: Fixed sparse
attention with strided selected tokens that participate in the attention and Routing Attention that
represents a content-based sparse attention baseline. The baselines are described in detail and
compared with MoSA in App. B and visualized in Fig. 3. The models’details are described in App. J.
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Figure 2: Perplexity (].) of FLOP matched models under different sparsities. Each plot corresponds to
a specified FLOP budget per step. The number in parenthesis is the number of parameters of the dense
baseline. Sparsity 1 represents the dense baseline. As sparsity increases, MoSA’s perplexity improves
monotonically until reaching a saturation point around sparsity 32-64, beyond which performance
deteriorates. This is likely because at very high sparsity levels, each attention head selects only a
few tokens, which is insufficient to capture the complex relations. On the other hand, other sparse
methods fail to reach the perplexity of the dense baseline in the IsoFLOP setting.

We evaluate sparse methods by gradually increasing sparsity rate p = % This reduces the compute
requirements for each sparse head. We use the saved budget to increase the number of sparse heads.
Specifically, we choose the number of sparse heads to be the maximum such that the FLOPs of the
sparse model do not exceed the FLOPs of the baseline model for a given size. All sparse models
include four dense heads that we keep (see App. E), and are included in the FLOP calculations. Note
that increasing the number of attention heads also increases the memory requirements of all methods.
Consequently, for the larger FLOP-matched models, we restricted the explored sparsity values to
ensure that the models fit in the memory budget dictated by our hardware.

Starting from sparsity 1, which corresponds to the dense model, we gradually increase the sparsity
and measure the test-set perplexity of FLOP-matched models. Figure 2 illustrates the results for
each model class and size. Across all model sizes tested, All MoSA hybrids reduce the perplexity of
the baseline, sometimes by 27%. In constrast to MoSA, the sparse baselines for all p > 1 perform
worse than the dense baseline. They exhibit relatively constant, but worse, perplexity across different
sparsity values, with only minor fluctuations that reveal no discernible trend.

4 Conclusions

This paper introduces Mixture of Sparse Attention (MoSA), a novel attention architecture that
selectively focuses on the most relevant tokens for the attention head, redirecting saved compute to
create additional heads. MoSA reduces the computational complexity of attention from O(7?) to
O(k? + T, where T is the sequence length and k is the number of selected tokens per head.

Unlike other sparse attention methods that primarily show benefits for extremely long sequences,
MoSA delivers substantial performance gains even in standard-length contexts. MoSA significantly
outperforms both dense attention and sparse methods like fixed attention or the Routing Transformer,
achieving up to 27% perplexity improvement over dense baselines across models of different scales.
MoSA can also be used to reduce the resource requirements of the models, including a more than 50%
reduction in the K'V-cache size. Additionally, our results indicate that MoSA maintains its superiority
in long-sequence scenarios, outperforming other sparse attention methods in these contexts as well.

The efficiency and corresponding performance gains demonstrated by MoSA have significant im-
plications for the design of adaptive architectures. MoSA or subsequent adaptive models stemming
from MoSA can be used for reducing the training costs and environmental impact of large language
models, potentially enabling more economical scaling while lowering energy consumption and carbon
emissions. Given its versatility and performance advantages, we anticipate that MoSA will drive
innovations in both transformer architecture research and industrial applications.
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A Background

Attention Mechanism. Attention assigns input-dependent weights to tokens in a sequence, allowing
each token to gather context from the rest of the sequence. To do this, each token is projected to three
vectors: its guery, key, and value. For a given token, we compare its query vector with the key vectors
of all tokens (including itself), producing a set of similarity scores. The scores are then normalized
and used to calculate a weighted sum of the tokens’ value vectors. The result is a new representation
that dynamically integrates information throughout the sequence.

Let T be the sequence length, i the hidden dimension of the model, and &’ the hidden dimension in
each head. Q,K,V ¢ RT*H represents the query, key and value matrices, respectively.

The attention is computed as:

K'+M
Attention(Q, K, V, M) = softmax QK +M A\ 2)
VH
Here, M denotes the attention mask that represents hard modeling constraints. M; ; = 0 if and only
if +/th token is allowed to attend to j'th token, otherwise M, ; = —oo. In causal language models,
M, ; =0 <= ¢ > j ensures that no token can attend to the future.

The multi-head attention (MHA) creates multiple instances of query, key, and value matrices from an
input sequence X € RT*" and applies the attention to each instance independently. These instances

are called heads. Each head has its own mappings W WX WY € R"*"" and WQ e R *h,

where ¢ € {1..H} and H is the number of heads. k' is typically set to % Q; = XWZ-Q, K; =
XWE vV, =XW/.

H

Xout = Y _ Attention(Q;, K;, Vi, M)W 3)

i=1
The resulting mechanism allows the model to adaptively focus on relevant information while maintain-
ing differentiability. The lack of recurrence in the operations enables parallel processing of sequence
elements. However, QK ' is a 7' x T matrix and therefore introduces quadratic computational and
memory complexity as a function of the sequence length.

Mixture of Experts. Mixture of Experts (MoE) combines multiple specialized neural networks
(experts) with a gating mechanism that learns to route each input to the best-matching experts,
activating only a small subset of experts per example. An MoE layer then computes its output
as a sparsely weighted combination of the predictions of selected experts, with routing weights
dynamically determined by the gating network.

Formally, given an input € R”, the MoE layer with E experts and a scoring function (a router)
sel : R" — R™ can be expressed as y(x) = >, ri(x)E;(x) where y(x) is the final output of
the layer and F;(x) is the output of the expert i. £ is the set of selected experts, usually defined
as & = argtopk(r(x) + ¢, k), where k € N is the number of active experts, ¢ is a stochastic noise
present only during the training for exploration. The inputs are processed only by the active experts.

In contrast, Expert-Choice routing [15] ensures perfect load balancing by inverting the traditional
routing paradigm. Instead of the tokens choosing their experts, the experts choose inputs they prefer
to process. Given a batch of B inputs, each expert selects the top-k out of the B inputs to process.”

B Baselines

Apart from a dense baseline, we compare MoSA with two sparse attention methods: static, position-
based sparse attention, and content-based sparse attention.

Fixed Sparse Attention. Position-based static attention patterns have been shown to be a strong
sparse attention variant [6], outperforming strided sliding window attention. Fixed sparse attention

“In our case, each expert selects top-k tokens from the sentence to process independently for each batch.
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Figure 3: Attention variants visualized. In the plot, the colors indicate different heads. Sparse
attention methods are roughly FLOP-matched and have sparsity p = 2. One Routing Attention head
corresponds in FLOP-cost to p Fixed/MoSA heads. Fixed sparse attention uses only & = £ tokens in
specific positions, with regular stride. The Routing Attention clusters tokens within each head into
p clusters of size k based on their representations. MoSA selects k tokens for each attention head
independently based on their representations.

for a sparsity p selects k = % tokens with stride p. Using the notation introduced in Section 2, fixed
sparse attention can be written as a special case of MoSA, where I = [0, p,2p,...,T — p] and r = 1.

Fixed sparse attention reduces computational complexity in two ways. First, it decreases the O(T?)
cost of the full attention matrix by limiting attention to predefined token positions. Second, since
only these pre-selected tokens participate in attention calculations, the query, key, value, and output
transformations need only be computed for this subset rather than all tokens. This is important
because MoSA also benefits from calculating transformations only for a selected subset of tokens.
Hence, investigating this fixed sparse attention gives insight on whether pure benefits of sparsifying
over transformations can lead to performance improvements.

However, fixed sparse attention introduces information flow constraints. Pre-selected tokens must
aggregate necessary information in earlier layers. Furthermore, in the subsequent layers they have to
be routed back to the positions where they are most useful. This additional overhead in information
routing limits the model’s representational capacity and overall expressiveness.

The Routing Transformer. We also compare MoSA to the content-based attention proposed in the
Routing Transformer [ 1]. The Routing Attention is the most similar method to MoSA we found in
the literature. It groups tokens with online K-means into p clusters of size k = % inside each head.
This is implemented during training by the top-k tokens most similar to the cluster centers using the
dot-product distance metric. Cluster centers are learned using a moving average of the most similar
tokens.

The Routing Attention might resemble the Expert-Choice selection with MoSA. There are, however,
several crucial differences that, as our experiments show, lead to significant differences in the
performance of MoSA in comparison to the Routing Transformer. Specifically, online K-means, used
for clustering in the Routing Transformer is known for suffering from an extremely slow convergence
rate [12]. It is also unclear if clustering keys and queries is well aligned with the language modeling
objective. In contrast, the learned dynamic matching mechanism of MoSA is directly optimized by
the same objective as the model.

MoSA benefits from the sparsity in the W@, WX WV WO transformations, which need to be
computed only for selected tokens. In contrast, the Routing Transformer has to compute all keys and
queries before the clustering step. MoSA’s efficiency enables the use of more heads with specialized
weights in a smaller subset of tokens. Its selection can also lead to dynamic compute allocation,
where some more important tokens are processed by more heads than less important tokens.

Last but not least, the Routing Transformer performs best in language modeling when the clusters
share the same destination (query) tokens and source (keys and values) tokens. In our experiments, we
also found that MoSA performs better if the same tokens are selected for the source and destination
sides. However, to enforce this in the Routing Transformer, they require to set W@ = WX In
MoSA, however, the same selection for source and destination side can be enforced with W&
different from WX, allowing greater flexibility.

10



We visualize typical schematic attention patterns of the baselines and MoSA in Fig. 3. Note that
several previous works proposed combining different types of sparse attention to achieve synergic
performance in long-sequence tasks [8, 7, 20]. In this work, we focus on investigating sparse attention
methods in combination with a few dense attention heads, but without combining multiple sparse
attention types. We leave combining MoSA with other sparse-attention methods for future work.

C Related Work

The quadratic cost of attention in the 2017 transformer model [ 1] has led to a wide body of research
on efficient attention variants [21, 22]. Popular alternatives are different linear attention variants that
typically use a fixed vector or matrix memory and update it recurrently. The 1992 unnormalised linear
Transformers [23, 24, 25] trade performance for better computational efficiency. State space models
[26, 27, 28] are popular alternatives that offer efficient, parallel training while keeping linear cost and
efficient inference. The parallel training requirement forces only a linear recurrent relation between
the timesteps. A common characteristic of such models is the relatively small, fixed memory that
requires extreme compression. Despite recent progress, these models still underperform quadratic
attention on many benchmarks [29, 30].

Sparse attention methods aim to mitigate the quadratic cost of full attention by computing attention
scores for only a subset of token pairs rather than the full attention matrix. These methods typically
employ various heuristics to strategically identify which tokens and token relationships are the most
important to process. This is often done by introducing special tokens that serve as higher-level
representations of entire chunks of tokens, or by assuming emergent hierarchical structures within
the attention patterns. For example, SepLLM [3 1] uses separators in the sentence as special tokens
that sparse attention focuses on. Sparse Transformer [6] uses static attention patterns to reduce
computational complexity. Longformer [8] combines sliding window attention with additionally
selected tokens globally available. BigBird [7] combines sliding window attention and global attention
on selected tokens, while additionally including randomly selected tokens in the attention. Streaming
LLM [32] discovers and preserves attention sinks as a necessary component despite their inefficiency
and combines them with sliding window attention. Some methods [33, 34, 35] focus on post-training
attention reduction, motivated by KV-cache reduction. Hash Attention[36] uses top-k selection in the
attention scores to induce sparsity and improve efficiency. However, learnable sparse attention that
can also be used during training [|6] remains important as the quadratic cost of the self-attention
mechanism is also problematic in the very costly pretaining phase.

Mixture-of-Experts (MoE) [13] have emerged as a promising paradigm for scaling model capacity
without a proportional increase in computational cost. By adaptively routing input tokens to spe-
cialized experts, MoE architectures selectively activate only a part of the network. MoEs applied to
transformer feedforward networks [37, 14] have been widely adapted in LLMs [38, 39, 40].

A crucial challenge in MoE is to learn a balanced routing, so that experts are utilized uniformly.
Imbalanced routing leads to capacity bottlenecks when certain experts become overused while others
are completely ignored. This phenomenon is called expert collapse [13]. Most approaches mitigate
it by specific losses that penalize polarized expert selection [37], while others propose alternative
routing methods [4 1, 42]. Expert-Choice routing [15] inverts the selection problem, allowing each
expert to choose its preferred tokens. This way, Expert-Choice routing achieves perfect load balancing
by definition, at the cost that some tokens are ignored and some are overutilized. Expert-Choice
routing, however, cannot be directly applied to autoregressive modeling as it uses a non-autoregressive
top-k operation over the tokens. MoD [43] proposes methods to transfer nonautoregressive expert
choice routing to an autoregressive model. We leave the investigation of their adaptation to MoSA
for future work.

MOoE is most often applied to the feedforward part of the transformer. In contrast, some works explore
MoE:s in the attention mechanism to reduce the high computational cost and memory. Mixture-of-
Attention Heads(MoA) [44] selects k query transformations for each token and shares a single key
and value projections similarly to Multi-Query Attention(MQA) [45]. MoA allows for increasing the
total number of query heads when using MQA without significantly increasing the computational
cost. In contrast, MoSA selects tokens that are routed to full heads with separate queries, keys, and
values (and consequently, outputs) utilizing perfect load balancing from expert choice routing for
efficient sparse attention. This reduces the cost of each attention head significantly more than MoA
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and does not require MQA (although it might be combined for further benefits, which we leave for
future work). Moreover, MoSA allows for KV-cache savings by reducing the number of selected keys,
which is not possible with MoA, apart from the MQA benefit of having single KV transformations.
SwitchHead [46] reduces the number of heads (and therefore the number of computed attention
matrices) by adding internal experts that can compensate for the lower number of heads. This is
orthogonal to MoSA and possibly can be combined for further improvements. Multi-head attention
as Mixture of Head Attention [47] proposes to use dynamic weights for the output projection in order
to treat the heads as experts for tokens. However, it requires calculating all attention matrices, lacking
the benefits of sparse computation.

Mixture-of-Depths(MoD) [43] selects inputs to pass through a given entire transformer block to allow
adaptive computation. This includes the attention mechanism. This produces efficiency gains in an
FLOP-limited budget for the entire training. MoSA has multiple selection mechanisms, one for each
head, and by increasing the number of heads it processes the sentence in a distributed way - each
head processing its own chunk of the sentence.

D FLOPs Calculation.

Let T be the sequence length, i the hidden dimension of the model, 4’ the hidden dimension in each
head (after passing through the query, key or value projection), k the number of tokens selected for
each head, and the sparsity rate p = %

Multiplying matrices of shape [i, 7] and [j, k] takes precisely (25 — 1)ik FLOPs. For simplicity,
following common practice, we approximate it by 2j¢k.

In the dense attention layer, calculating each projection (e.g., Q; = xWy,) requires 2hh’'T FLOPs.

Computing the attention matrix QK ', and multiplying the attention matrix by values V' both cost
2h'T? FLOPs.

Calculating the projections and attention in the MoSA head is identical, except that now we are
operating on k tokens instead of 7. The MoSA head involves an additional routing overhead.
Calculating the routing scores costs 2h7T" FLOPs, and multiplying the intermediate values in the

matrix € RF*H by the scores costs an additional h’'k FLOPs per head.
FLOPs cost of a single head is equal to:

FLOPgense =  8hR'T  +
Q.K,V,0 mappings  Attention

FLOP 050 = Shh'k  + + 2hT + W'k
Q.,K,V,0 mappings  Attention  routing overhead
FLOPgyeq = S8hh'k +
Q.K,V,0 mappings  Attention
FLOPioying =  GhI'T — + + 2W'T = p(6hh'k + )+ 21T

Q=K,V,0 mappings  Agtention  cluster selection

Note that, typically k << T, hence the MoSA head is significantly cheaper compared to a dense
head.

The selection mechanism in MoSA introduces an additional overhead of 2hT + h'k (2hT comes from
token scoring and h'k comes from multiplying the output by the scores), which is small compared to
the rest. As a consequence, the cost of the MoSA head is comparable to that of the fixed sparsity
attention head, while allowing content-based dynamic sparsity.

In contrast to MoSA and fixed attention, the Routing Transformer must compute all tokens by query,
key, value, and output transformations. However, in the Routing Transformer for autoregressive
text K = @, therefore, only 3 projections need to be computed. Hence, the projection cost is equal
to 6hh’T. The attention in the Routing Transformer has multiple clusters inside each head. More
specifically, it has p clusters of size k, and therefore the attention cost of the head is equal to the
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Figure 4: Perplexity of IsoFLOP matching models under pure MoSA setting. Each curve corresponds
to a given FLOP budget. For a given sparsity, we replace all dense heads with a FLOP equivalent
number of MoSA heads. In contrast to Fig 2, sparse models fail to outperform the baseline (apart
from the Large model). This demonstrates the symbiotic relation between dense heads and MoSA
heads in the hybrid model.

attention cost of the cluster multiplied by the number of clusters. The Routing Transformer has an
additional layer normalization inside the head, which we omitted for simplicity.

FLOP-wise, one Routing Attention head more or less corresponds to p fixed attention or p MoSA
heads. Loosely speaking, MoSA with p heads is similar to the Routing Attention head, where each
cluster has its own custom linear transformation, rather than a single one shared among clusters.

For the multihead version, the FLOPs are multiplied by the number of heads H. There is an additional
cost caused by summing the head contributions to a single output (Equations 3 and 1). However,
this is already taken into account by the 2hh/T H cost of the output projection for multiple heads:
H@2KW —1)hT + (H —1)hT = (2h'H — 1)hT ~ 2hh/TH.

Note that in the standard notation [ 1], the heads are first concatenated and then transformed with a
single output projection instead of splitting the output operation into individual head transformations
and summing. Howeyver, the result and the derivation of the FLOP counts are the same.

In the feedforward block, the intermediate layer has a typical size of 4h. Therefore, the cost of the
block is equal to 16h>T. Therefore, the FLOP cost of the forward pass of the entire model with [
layers, a hybrid attention with H 4., 5. dense heads and H,,,,s, MOSA heads is equal to:

IHgense(ShI'T 4 4R'T?) + 1H 050 (8hR'k + 4R k2 + 20T + W'k) + 161h°T

We omit the operations related to layer normalizations, residuals, and token embeddings from the
FLOP calculations as they are negligible compared to the rest and represent an identical overhead
for both dense and MoSA models. Thus, incorporating them does not influence the FLOP-matching
process. This is also true for the feedforward block; yet, we still included it because it constitutes
a significant portion of the total cost. We present the FLOP cost of all of our model classes (7iny,
Small, Medium and Large) in Table 4.

All models are based on the transformer architecture with Pre-layer normalisation[48]. Each model
class Tiny, Small, Medium and Large follows the hyperparameters of the dense model. The necessary
forward pass FLOPs are calculated according to Sec. D. The number of heads in the sparse models is
set so that the resulting model is FLOP-matched to the dense baseline as closely as possible. When
this is not perfectly possible, we ensure that its FLOP count never exceeds that of the baseline. For
pure MoSA, all heads are replaced with MoSA heads. For the hybrid sparse models, 4 dense heads
are kept, and the remaining ones are replaced with sparse heads.

E Analysing Hybrid Models

While the learned sparse attention can theoretically capture any attention pattern, the introduction
of the routing mechanism complicates the learning dynamics. The router and the attention weights
must be learned jointly. The router needs to identify relevant token pairs, while the attention weights
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Figure 5: Training losses of the Tiny models comparing the baseline, pure MoSA, and hybrid
models. The dense baseline clearly divides the models into two groups: all pure MoSA models
perform worse (higher loss), while all hybrid models demonstrate superior performance (lower loss).
Notably, increasing sparsity intensifies the difference for both model types: hybrid models achieve
progressively lower loss with greater sparsity, whereas pure MoSA models show increasingly higher
loss as sparsity increases. Additionally, the early training phase (between 5,000 and 10,000 steps)
reveals a distinct pattern where pure MoSA models experience a more rapid slowdown in their
learning progress compared to both dense and hybrid models.

learn to process these selected interactions. This interdependence can lead to training instabilities,
particularly in the early stages, when router decisions are largely random. Poor initial routing can
prevent attention heads from learning meaningful patterns, while the lack of meaningful patterns
prevents the router from learning to select important tokens, creating a vicious circle.

Our preliminary experiments have shown that pure MoSA models without additional dense heads fail
to improve the perplexity of dense baselines. To verify this, we conducted a study similar to our main
results in Sec. 3. We gradually increase the sparsity by replacing all dense heads with MoSA heads
while maintaining an identical FLOP count to the baseline. We do this by finding the maximum
number of MoSA heads for which the FLOP count remains lower than the baseline. The results,
shown in Fig. 4, demonstrate that increasing sparsity monotonically worsens model performance in
most settings. This performance degradation with pure MoSA heads likely stems from the stability
issues explained in the previous paragraph.

Interestingly, the largest model is an exception, and initially there is a visible improvement from 12.20
baseline perplexity to 11.83 perplexity of the FLOP-matched pure MoSA model with sparsity 2. This
is still significantly worse than the 11.15 perplexity of the hybrid model with sparsity 4. Moreover,
the saturation is much faster than for hybrid models. For hybrid models, the sparsity around 32 or
64 seems to be optimal. In contrast, for the MoSA-only model, the best perplexity is reached for
sparsity 2 for the Large budget and 1 for the smaller ones. However, the conclusion is consistent
across all scales: hybrid MoSA models significantly outperform MoSA-only models, which generally
underperform the dense baseline. Thus, hybridization seems necessary.

The impact of sparsification is also visible in the training characteristics. Compared to the baseline,
pure MoSA models start to plateau faster. While the losses of dense and hybrid models continue
to show steep initial improvement, pure MoSA models slow down much sooner. This supports our
hypothesis about the difficulty of learning the routing and attention simultaneously. We compare the
training losses in Fig. 5.

Optimal Number of Dense Heads Hybrid models consistently outperform pure MoSA models.
This raises a natural question: What is the optimal ratio of dense to sparse heads and how does this
ratio relate to the sparsity rate?
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Figure 6: Perplexity of the FLOP matched models with a different number of dense heads for
sparsities 4 and 16. 9 dense heads correspond to the dense baseline.

To answer these questions, we conducted a series of experiments in which we varied both the sparsity
factor of MoSA heads and the number of dense heads while keeping the total FLOP budget constant.
We choose to use the small model and investigate sparsities p = 4 and p = 16, while we set the
number of dense heads in the hybrid model from 0 to 9 (full dense model) and adapt the number of
sparse heads to match the FLOP budget. Our results are shown in Fig. 6. We can see that the optimal
number of dense heads in this case is 4 and is sparsity-agnostic. Because of this, we chose to use 4
dense heads in our main experiments in Sect. 3. Furthermore, we observe that it is critical to have at
least one dense head. Having more than one has diminishing returns, and having more than 4 has a
negative effect on the performance. The plot also shows that the lack of dense heads is more hurtful
for models with higher sparsities. We conclude that in our case, 4 heads are sufficient to stabilize the
training, and it is better to allocate the remaining FLOP budget to the more efficient MoSA heads.

F Resource Optimization

The previous section demonstrates MoSA’s ability to achieve better perplexity than dense transformers
with an identical compute budget. In this section, we examine MoSA’s practical efficiency gains.
Specifically, we match the perplexity scores between the MoSA and the dense baseline to measure
wall-clock time, memory, and KV-cache size savings.

To find the perplexity-matched comparison, we select sparsity to be equal to 32 for model sizes Tiny,
Small and Medium. For Large we select p = 16 to keep sparsity closer to the range investigated in
Section 3. Then, we gradually increase the number of MoSA heads until the perplexity matches the
dense baseline. We do it for all four model scales defined in Section 3.

The results are shown in Table 1. MoSA can match the dense baseline, while being faster in wall-clock
time and using less memory at the same time. These findings show that MoSA not only improves
model quality in the FLOP-matched setting but can also be used to reduce computational and memory
requirements when targeting the same performance level. Furthermore, it shows that MoSA uses
computation more effectively than standard dense attention across all efficiency metrics. MoSA
achieves this without a specialized CUDA kernel using only PyTorch-level operations. We expect
that designing a specialized kernel would result in additional significant efficiency gains.

In addition to the speed and memory used for the training, we report the total number of key-value
pairs (KV) used, calculated as KV = T Hgepse + kHmosa, Where Hgense and H,y, s, represent the
number of dense and sparse heads, respectively. KV directly corresponds to the size of the costly
KV-Cache in the autoregressive setting. KV cache optimization has been the goal of many post-
training sparse-attention methods[33, 34, 35]. Our results demonstrate that MoSA offers a significant
reduction in KV-cache size while simultaneously improving speed and memory requirements.
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Tiny Small Medium Large
Dense MoSA | Dense MoSA | Dense MoSA | Dense MoSA
Dense Heads 9 4 9 4 9 4 16 4
MoSA Heads 0 17 0 14 0 12 0 16
Perplexity ({) 22.46 22.40 16.02 16.01 13.94 13.76 12.20 12.16
Wall-time/step | (ms) 137 127 326 319 619 592 807 703
Wall-time/step gain (%) - -7.3% - —2.1% - —4.4% - -12.9%
Memory | (GB) 21.1 19.0 324 314 50.2 494 104.1 94.5
Memory gain (%) - -10.0% - -3.1% - -1.6% - -9.2%
KV Total | (K) 9.2 4.5 9.2 44 9.2 44 16.4 5.0
KV Total gain (%) - —51.1% - —52.2% - —52.2% - —69.5%

Table 1: Resource usage reduction from perplexity-matched MoSA models. KV is the KV-cache size,
representing the total number of key-value pairs required (in thousands). MoSA models match the
perplexity of dense baselines while at the same time improving wall-clock time, using less memory,
and significantly smaller KV cache for all model sizes. Resource usage was measured on a single
A100 GPU for Tiny, Small and Medium models and on two A100 GPUs for Large.

G Scaling with Sequence Length

Traditionally, sparse attention methods have been introduced as a necessity when sequence length
makes dense attention computationally prohibitive. After demonstrating MoSA’s effectiveness in
standard-length sequences, we now investigate MoSA’s benefits in this long sequence setup.

In contrast to previous sections, here we combine MoSA or a baseline method with local attention [6,

]. We use local attention instead of dense attention because even a small number of dense attention
heads would result in prohibitive memory usage in a longer context scenario. This is a standard
practice in the sparse attention literature [6, | 1]. Local attention preserves local dependencies, while
global, sparse attention enables efficient processing of long dependencies.

We scale our sequence length from 1024 to 8192 tokens and keep the & constant equal to 64. Hence,
the sparsity increases from p = 16 for 7' = 1024 to p = 128 for T' = 8192. Contemporary sparse
attention methods for long sequences are trained in longer sequences [16]. However, due to our
limited hardware budget, we restrict our experiments to a sequence length of 8192. We treat this
investigation as a preliminary analysis that demonstrates the potential of MoSA for long sequences.
Importantly, it demonstrates that MoSA performs well when combined with local attention, which is
a typical long-sequence setup.

As in the previous section, we compare MoSA with fixed sparse attention and the Routing Attention.
All long sequence models have 6 layers and hidden dimension size of 1024. The Routing Transformer
has 4 local attention heads and 4 Routing Transformer heads in all layers, whereas the fixed sparse
attention and MoSA have 60 sparse heads and 4 local attention heads. We chose 60 sparse heads
to roughly FLOP match all models for 7" = 1024. However, as we keep k constant, for longer
sequences with 2048, 4096 and 8192 tokens, the FLOP cost for fixed attention and MoSA will be
much lower than for the Routing Attention. For 7" = 8192 FLOP cost of 60 MoSA’s heads is equal
to only 22.99% of 4 Routing Transformer heads.

The results are shown in Fig. 7. MoSA significantly outperforms other sparse attention methods
across all sequence lengths. This is true even at length 8192, where MoSA uses only a small fraction
of the computational cost of the Routing Transformer. The significant performance gap in the
results demonstrates the potential of MoSA for ultra-long sequences [2 1, 16, 49]. Given our limited
resources, we leave the investigation of MoSA in this context for future work.

16



—e— MoSA Fixed —e— Routing
22

Perplexity
IS
o
\
/.
°

1024 2048 4096 8196
Sequence Length

Figure 7: Perplexity of sparse-attention methods (MoSA, Fixed, and Routing) as sequence length
increases. Each method has a fixed size window size (cluster size for the Routing Transformer,
number of tokens selected for each head in MoSA and Fixed) regardless of total sequence length.
MoSA matches the computational cost of the fixed sparsity baseline while requiring fewer FLOPs
than the Routing Attention and consistently achieves the lowest perplexity.

H Downstream Tasks

We evaluate the zero-shot downstream performance of MoSA on six established bench-
marks: LAMBADA [50], WinoGrande [51], BLiMP [52], HellaSwag [53], PIQA [54] and
AI2ARC [55]—covering tasks from cloze-style completion to commonsense reasoning.

During training, MoSA operates on sequences of more or less constant size 7" = 1024. However, for
downstream tasks, some inputs will be much shorter. For example, most datapoints in the BLIMP
dataset do not exceed 10 tokens. In order to handle such situations, we adaptively choose the number

of tokens for each input to be k = max( L%J ,2) tokens for each head. This simulates the ratio

of tokens selected for the attention head during the training. Moreover, it ensures that at least 2
tokens are selected, which is the minimum necessary for the attention to model any cross-token
dependencies.

For each scale and sparse model type, we select the model with sparsity p > 1 that produced the best
perplexity in the IsoFLOP scenario (Sec. 3). We also include the dense baseline for each size. Table 2
reports the performance across the tasks. The best result for a given task across model types is bold.

For Tiny, Small, and Medium scales, MoSA generally outperforms other models. BLiMP stands as a
notable exception, where MoSA consistently underperforms. This weak performance on BLiIMP can
be attributed to the extremely short length of most examples in the dataset. With longer sequences seen
during training, each MoSA head can selectively process only the tokens it handles well. However,
in short sequences, the shortage of tokens forces MoSA heads to operate on tokens outside their
training distribution. Furthermore, when L%J = 1, resulting in only 2 tokens being selected, there is
a significant discrepancy between the percentage of selected tokens compared to training conditions.
Models with a high sparsity factor of 64 typically select only 1.56% tokens in a sequence for each
attention head. Yet for a sequence length of 7' = 10, 2 selected tokens represent 20% of the sentence,
creating a distribution mismatch.

Moreover, in Large scale, the Dense baseline outperforms MoSA despite having much higher
perplexity. We attribute the downstream performance gap of MoSA to two main factors. First,
MOoE architectures have been shown to suffer from expert overspecialization, which often leads to
decreased performance in downstream tasks [ 14, 56]. Instruction tuning has been shown to mitigate
this issue [57].

Furthermore, content-based sparse attention methods tend to struggle on shorter sequence’. Our
experiments confirm this pattern, as MoSA outperforms the Routing Attention in most tasks. Further-
more, some runs of the Routing Attention were unstable in context of downstream tasks (Medium
scale of the Routing Attention). Practitioners report that extending training by additional epochs on
truncated sequences can mitigate the issues of sparse attention methods on short sequences’.

See: https://github.com/lucidrains/routing-transformer?tab=readme-ov-file#issues
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Model LAMBADA WinoGrande BLiMP HellaSwag PIQA AI2ARC

Dense 18.7 50.3 72.0 27.5 59.4 28.0

Tiny MoSA 26.5 53.0 65.5 29.1 59.7 29.4

Routing 14.0 51.3 66.2 27.8 57.1 25.9

Fixed 17.1 50.6 72.5 27.7 58.6 28.1

Dense 25.8 52.1 76.2 30.9 624 30.1

Small MoSA 29.4 51.9 70.5 31.9 63.2 30.0

Routing 19.2 50.7 70.2 28.0 57.6 273

Fixed 24.6 51.6 75.3 30.1 63.2 30.2

Dense 314 51.2 77.8 33.8 64.5 31.5

. MoSA 36.1 52.1 66.1 34.2 63.3 314
Medium .

Routing 10.2 51.5 65.9 30.3 57.8 27.8

Fixed 294 514 77.3 33.0 64.6 31.5

Dense 36.2 52.5 80.4 38.7 67.1 33.8

Large MoSA 35.0 51.4 74.2 37.5 65.9 31.7

Routing 27.5 51.1 76.5 36.2 64.1 32.5

Fixed 32.3 51.7 79.6 359 66.0 32.2

Table 2: Accuracy on downstream zero-shot tasks. Each model is selected with the best sparsity in
the IsoFLOP comparison. Note that on downstream tasks, the token selection mechanism of MoSA
operates out of distribution. Despite this, MoSA often outperforms the dense baseline. Even when it
doesn’t, the performance gap is usually small.

I Limitations and Future work

Due to the top-k selection over tokens, MoSA is non-autoregressive in nature and requires adaptations
to be directly applicable to the autoregressive scenario. This is true not only for MoSA, but for all
expert-choice routing methods, as well as for the Routing Transformer that uses non-autoregressive
clustering. MoD proposed to solve this problem by learning an autoregressive classifier post-training
to predict if the given token would have been selected by the non-autoregressive router or not. We
consider exploring this issue in depth as an important future direction.

The perplexity gains do not always translate to downstream task performance (App. H). This dis-
crepancy stems from two distinct factors: First, sparse attention methods generally underperform
on tasks consisting of short sequence lengths. Practitioners have shown that additional training with
truncated sequences might alleviate this problem. Second, MoE architectures experience performance
gaps in downstream tasks despite strong language modeling capabilities, although recent research
demonstrates that instruction tuning can help significantly [57]. We consider exploring methods to
mitigate the discrepancy between perplexity and downstream task performance in future work.

Several promising research directions emerge from this work. Further exploration of MoSA’s
effectiveness on longer sequences remains an important direction. Furthermore, combining multiple
sparse attention methods often leads to synergic improvements on long sequences [7, 8]. Thus, we
expect that combining other sparse head types with MoSA could lead to additional benefits.

From an implementation perspective, developing specialized CUDA kernels would further improve
efficiency. MoSA could be integrated with complementary approaches such as MQA[45], GQA[58],
or SwitchHead[40] to improve the efficiency even further. Furthermore, exploring MoSA on other
modalities, particularly vision transformers, could yield valuable insights into the method’s versatility
across different data types and architectures.
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Model size | #Params Dense Dense ppl | MoSA Best ppl | Fixed Best ppl | Routing Best ppl |

Tiny 28M 22.46 16.37 (—27.1%)  23.28 (+3.7%) 23.33 (+3.9%)
Small 113M 16.01 12.97 (—19.0%) 16.51 (+3.1%) 16.43 (+2.6%)
Medium 210M 13.95 11.22 (—-19.6%) 14.35 (+2.9%) 14.21 (+1.9%)
Large 516M 12.20 11.15 (—8.6%) 12.40 (+1.6%) 12.24 (+0.3%)

Table 3: Comparing dense and sparse models (Fixed, Routing, MoSA) under a fixed computational
budget (see Section 3). For sparse models, the table contains the best perplexity across all sparsities
bigger than 1. The results for sparse models were selected as the best of all sparsities. Relative
difference to the dense baseline is displayed in the parentheses. MoSA significantly outperforms the
dense baseline, reducing perplexity by up to 27%. The fixed and the Routing Transformer baselines
both fail to reach the performance of the dense model.

J Details of the Models

We use four model sizes for our experiments: Tiny, Small, Medium and Large. Each size is defined by
the FLOP count of the forward pass of the corresponding dense transformer baseline. The parameter
count of dense models associated with each size is: 28M for Tiny, 113M for Small, 210M for Medium,
and 516M for Large.

In the Table 4 we list hyperparameters all of dense baselines.

Implementation details We use the SentencePiece [59] tokenizer based on sub-word units [60, 61]
a vocabulary size of 8000. All our models are trained on the C4 [62] dataset for 100k batches, with
batch size B = 64 and sequence length 7' = 1024. This means that we train on the 10°SB ~ 6.5B
tokens from the dataset. We use the Adam [63] optimizer with a learning rate of 0.00025, gradient
clipping above the norm of 0.25, and a linear warmup for 4k steps. For detailed hyperparameters,
please refer to Appendix J.

Positional encodings. All our experiments use Rotary Positional Encodings (RoPE) [64]. RoPE
applies positional encodings for each attention head after query and key mapping. It does this by
rotating them at an angle determined by the token’s position in a sentence. Similarly to the attention
mask, we must ensure that the rotations correspond to the token’s original position in the sequence X
rather than the selected subset X °. Thus, we adapt RoPE to be aware of token positions 1. Following
standard practice, we rotate half of the dimensions and leave the other half unchanged.

Resources Used. All the experiments in the paper were run on NVIDIA-A100 80GB nodes with
GPUs ranging from 1 for small experiments to 4 GPUs. Each experiment was limited by 24h
operation time.

| Tiny Small Medium  Large

FLOPs per pass (G) 5476 219.85 430.70 1,130.65
Layers 6 9 18 27
Hidden size 512 1,024 1,024 1,280
Feedforward hidden size | 2,048 4,096 4,096 5,120
Head hidden size 64 64 64 64
Number of heads 9 9 9 16

Table 4: Hyperparameters of the different model variants and the corresponding FLOP cost of the
forward pass for a sequence length of 7" = 1024.
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Sparsity

1 2 4 [ 8 [ 16 | 32 | 64 [ 128 [ 256
Perplexity (/) for given sparsity
_ MoSA 2246 | 2176 | 20.45 | 19.24 | 18.00 | 16.90 | 16.37 | 17.27 | 18.06
Tiny I e MosA | 22.46 | 22.96 | 2330 | 2478 | 2976 | - - - -
MoSA 1601 | 15.69 | 15.10 | 14.33 | 13.68 | 12.97 | 1330 | - ;
Small 1= MosA | 1601 | 1635 | 17.16 | 1961 | 2541 | - ; ; ;
MoSA 13.95 | 1352 | 1281 | 12.16 | 1147 | 1122 | - ; ;
Med. - eMosA | 13.95 | 14.03 | 1440 | 1587 | 2063 | - ; ; ;
MoSA 1220 | 11.67 | 11.15 | - - - - - -
Large I eMosA | 1220 | 11.83 | 1197 | - - - - - -
Number of parameters for given sparsity
. MoSA 28M | 34M | 48M | 78M | 136M | 242M | 423M | 693M | 1B
Tiny o e MosA | 28M | 39M | 65M | 119M | 222M | - ; ; ;
MoSA 113M | 127M | 163M | 229M | 360M | 599M | 1B - -
Small 1= MoSA | 113M | 142M | 203M | 324M | 550M | - - - -
MoSA 210M | 239M | 310M | 442M | 703M | 1.2B - - -
Med. - e MoSA | 210M | 267M | 390M | 632M | 1.1B | - ; ; ;
MoSA 516M | 650M | 943M | - ; ; _ _ _
Large = eMosA | 516M | 703M | 1B ; ; ; ; ; ;
Number of MoSA heads for given sparsity
_ MoSA 0 13 31 69 | 142 | 276 | 505 | 848 | 1277
Tiny I e MosA | 0 23 56 | 124 | 255 - - - -
MoSA 0 11 26 54 | 109 | 210 | 381 ; ;
Small 1= Mosa | 0 21 47 98 | 197 ; ; ; :
MoSA 0 11 26 54 | 109 | 210 - _ _
Med.
Pure MoSA 0 21 47 98 197 - - - -
MoSA 0 27 60 - - - - - -
Large I eMosa | 0 | 37 | 80 - - - - - -

Table 5: Detailed statistics of the main IsoFLOP experiments from Sec. 3. Models Tiny, Small,
Medium, and Large are as described in App.J. Sparsity 1 corresponds to dense baselines. Pure MoSA
models for sparsities > 1 have only MoSA heads, calculated as the biggest number of heads that
will not increase the FLOP budget of the dense baseline (other hyperparameters stay the same as
in the baseline). MoSA models have 4 dense heads and the rest of the heads are sparse, calculated
such that the flop cost of both dense and sparse heads is lower than the baseline. Therefore, the total
number of heads in hybrid models (with sparsity > 1) is the number shown in the bottom table + 4.
For perplexity, the best result for each row is bold.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims are justified quantitatively in the Section 3
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the Section I.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include any theoretical results. The calculation of the
FLOPs that is in the paper is detailed in the Appendix D.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the models used in the experimental section and specific details
of all models in the Appendix J.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data we used is public, we will include the code necessary to reproduce
the results as a supplementary material

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify the experimental and implementation details in the Section 3 and
Appendix J.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Each experiment corresponds to training a language model from scratch,
making it extremely expensive to create error bars. Furthermore, the consistency of MoSA
improvements across different sparsities together with the level of improvement strongly
suggest that the improvement is not by random chance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss the resources used in the experiments in App.J and in Sec. F.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We briefly discuss the broader impact in the Conclusions.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our released models are too small to pose a risk of misuse that could not be
done with other publicly available models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the datasets used for the models. In the included code we also list
explicitly the library dependencies.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Together with the code we release a documentation on how to recreate main
results.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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