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Abstract

Layer Normalization (LayerNorm) is one of the fundamental components in trans-
formers that stabilizes training and improves optimization. In recent times, Pre-
LayerNorm transformers have become the preferred choice over Post-LayerNorm
transformers due to their stable gradient flow. However, the impact of LayerNorm
on learning and memorization across these architectures remains unclear. In this
work, we investigate how LayerNorm influences memorization and learning for Pre-
and Post-LayerNorm transformers. We identify that LayerNorm serves as a key fac-
tor for stable learning in Pre-LayerNorm transformers, while in Post-LayerNorm
transformers, it impacts memorization. Our analysis reveals that eliminating
LayerNorm parameters in Pre-LayerNorm models exacerbates memorization and
destabilizes learning, while in Post-LayerNorm models, it effectively mitigates
memorization by restoring genuine labels. We further precisely identify that early
layers LayerNorm are the most critical over middle/later layers and their influence
varies across Pre and Post LayerNorm models. We have validated it through 13
models across 6 Vision and Language datasets. These insights shed new light on
the role of LayerNorm in shaping memorization and learning in transformers2.

1 Introduction
Layer Normalization [Lei Ba et al., 2016] greatly contributes to stabilizing training and optimizing
performance in deep learning models, especially in transformers. It works by normalizing the
activations at each layer, ensuring a more consistent gradient flow during training. In recent years,
transformers are primarily designed with two options by LayerNorm (LN) placements: Pre-LN and
Post-LN. Post-LN transformer, introduced by Vaswani et al. [2017], applies normalization after the
addition of the layer’s output with the residual connection’s output and has been showing competent
performance in language modeling and machine translation. However, due to the issue of unstable
gradient flow [Liu et al., 2020] in Post-LN models, Pre-LN transformers [Xiong et al., 2020] were
introduced, where normalization is applied before self-attention and feed-forward layers. This
configuration stabilized training and achieved faster convergence by improving the gradient flow,
making it the preferred choice in modern architectures such as GPT, Llama, and Vision Transformers.

Even though transformers have demonstrated remarkable capabilities in learning rich representations
from data, they exhibit a strong tendency to memorize some samples due to their complex nature,
which is commonly known as Label Memorization [Feldman, 2020, Feldman and Zhang, 2020],
where a model memorizes labels in training without learning the relevant patterns that generalize
to unseen data, leading to overfitting. Recent studies have explored whether memorization can
be localized to specific layers [Maini et al., 2023, Baldock et al., 2021] or components such as
attention heads and the feed-forward network (FFN) [Haviv et al., 2023, Geva et al., 2023, Yu et al.,
2023]. Apart from the attention heads and the feed-forward network (FFN), LayerNorm stands as a
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Figure 1: Impact of LN layer on memorization and learning of Pre- and Post-LN models. (a)
shows a clear impact of LN in Pre-LN models, whereas (c) shows no impact of the removal of LN
parameters in Post-LN models for learning. (b) exhibits that, without LN layers, the Pre-LN models
struggle with high memorization and random predictions (red-color-family bars), while (d) exhibits
that in Post-LN models, removing LN parameters recovers a significant portion of correct predictions
(green bars).

pivotal component in the transformer architecture that further shapes its optimization dynamics and
performance. Outlier neurons in LN layers have been shown to impair transformer performance and
hinder quantization [Kovaleva et al., 2021, Puccetti et al., 2022, Bondarenko et al., 2023, He et al.,
2024]. [Xu et al., 2019] hints that LN may contribute to increased overfitting in Pre-LN models.

In our paper, we identify that in Pre-LN transformers, LN is critical to learning and removal of
its learnable parameters exacerbates overfitting and disrupts learning. On the contrary, in Post-LN
transformers, LN plays a significant role in memorization, where by eliminating LN parameters,
memorization is suppressed by recovering the true genuine labels without affecting the model’s
learning capability. We rigorously validate our claims through various models - BERT, Longformer,
RoBERTa, DeBERTa, ELECTRA, DistilBERT, GPTNeo, GPT2, Qwen2, RoBERTa-PreLayerNorm,
ViT-Base, ViT-Small, and DeiT, across both Vision and Language tasks. In summary, the core findings
of our paper regarding the impact of LN on memorization and learning in transformers are as follows:

• Learning Stability, Memorization Suppression & Label Recovery: We identify that LN
is crucial for learning in Pre-LN models, unlike Post-LN models. For Post-LN models, LN
learnable parameters removal suppresses memorization and recovers genuine labels, whereas
in Pre-LN models, LN removal exacerbates overfitting, with persistent memorization.

• Early LNs are Critical: We uncover that removal of LNs parameters in early layers is most
impactful in mitigating memorization for Post-LN models, and destabilizing the learning in
Pre-LN architectures.

• Gradients Explain LN’s Impact: We explain the divergent impacts of LN in Pre- and
Post-LN models by comparing learning and memorization gradients, which reveal why LN
parameter removal causes learning disruption and memorization suppression in Pre- and
Post-LN models, respectively.
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2 Related Works
Memorization & Learning: Transformers excel at learning general, simple patterns [Arpit et al.,
2017, Shah et al., 2020, Zhou and Wu, 2023], but also tend to memorize rare, mislabeled, or complex
examples [Stephenson et al., 2021, Baldock et al., 2021, Agarwal et al., 2022]. Feldman and Zhang
[2020], Feldman [2020] formally define label memorization, while Baldock et al. [2021] proposes
prediction depth to capture example difficulty. Other works [Jiang et al., 2020, Ravikumar et al.,
2024, Garg et al., 2023] associate high curvature and consistency with long-tailed or mislabeled
samples. Beyond identifying memorization, several studies [Haviv et al., 2023, Geva et al., 2023, Dai
et al., 2021] investigate how self-attention and feedforward layers contribute to factual recall across
transformer layers. More recent work [Yin et al., 2023, Lad et al., 2024, Men et al., 2024, Li et al.,
2024, Sun et al., 2025] highlights the limited effectiveness of deeper layers on learning in Pre-LN
transformers. Despite these insights, the distinctive impact of LayerNorm in shaping memorization
and learning across both Pre- and Post-LN architectures remains poorly understood.

Understanding LayerNorm (LN) in Transformers: In addition to self-attention and feedforward
networks (FFNs), Layer Normalization (LN) plays a critical role in transformer models. Prior work
[Brody et al., 2023, Wu et al., 2024] has demonstrated that LN is essential to the overall expressivity
of transformers. Beyond its utility, LN has been found to contain outlier neurons [Kovaleva et al.,
2021, Puccetti et al., 2022], whose removal severely degrades model performance. These outliers
have also been shown to hinder the quantization of transformer models [Bondarenko et al., 2023,
He et al., 2024]. Moreover, several studies [Xiong et al., 2020, Liu et al., 2020, Takase et al., 2022,
Xie et al., 2023, Kim et al., 2025] have highlighted that Post-LN architectures can cause gradient
instability during training, while Pre-LN configurations may lead to exploding gradients in early
layers—prompting the development of techniques [Shleifer et al., 2021, Wang et al., 2022, Kumar
et al., 2023, Qi et al., 2023, Jiang et al., 2023] to address them. Additionally, Xu et al. [2019]
suggested that LN parameters may contribute to overfitting in Pre-LN models.

However, we provide a far more nuanced understanding of LN’s role: in Pre-LN transformers,
LN is essential for learning but not memorization, whereas in Post-LN models, LN is crucial for
memorization but not learning. This distinction offers a novel contribution to understanding the
function of LN in transformers for learning and memorization.

3 Prelimnaries
3.1 Understanding LayerNorm in Transformers and Defining Memorization & Learning

LayerNorm Operation. Let x = (x1, x2, . . . , xd) be the input of size d to the LayerNorm function
LN(x) which first normalizes the input x as N(x) using mean µ and standard deviation σ. Then it
re-scales and re-centers N(x) using the learnable parameters w (weight) and b (bias). The output of
the LayerNorm layer is then given by:

LN(x) = w ⊙N(x) + b, µ =
1

d

d∑
i=1

xi, σ =

√√√√1

d

d∑
i=1

(xi − µ)2, N(x) =
x− µ

σ
, (1)

where ⊙ denotes the dot product operation.

Pre-LN & Post-LN Transformers. In the Pre-LN Transformer, LayerNorm is applied before each
sub-layer - Multi-Head Self Attention (MHSA) and Feed-Forward Network (FFN). On the other
hand, in the Post-LN Transformer, LN is applied after the residual connection. We represent the key
difference in the architectural design of the two configurations as follows:

Pre-LN: x′ = x+ MHSA(LN1(x)) Post-LN: x′ = LN1(x+ MHSA(x))

y = x′ + FFN(LN2(x
′)) y = LN2(x

′ + FFN(x′))
(2)

Understanding Learning and Label Memorization (LM). Deep neural network models, like trans-
formers, learn meaningful relationships between features and labels during training and generalize
the learned representations to unseen test data - the phenomenon is well understood as learn-
ing/generalization. At the same time, these models also have the tendency to memorize training
data points which are complex in nature, commonly known as label memorization (LM) [Feldman,
2020, Feldman and Zhang, 2020], where the model just memorizes the labels during training without
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capturing meaningful patterns that generalize to new data, resulting in overfitting. Label memorization
is known to occur due to multiple factors such as complex, ambiguous features, and noisy labels
[Baldock et al., 2021], which makes it difficult for the model to learn any meaningful relationship.

In this work, we specifically focus on introducing noisy labels as a way to study memorization, where
we change the label of a particular class sample to a randomly chosen class label that is different from
its original label. To ensure that the noisy label samples are memorized, we train the model until it
achieves 100% training accuracy. Throughout our experiments, we introduce random label noise in
all datasets by modifying 1% of the training set labels, maintaining consistency across evaluations.

3.2 Investigating LayerNorm (LN) Impact on Memorization and Learning

Removing LN parameters. To examine the role of LayerNorm (LN) in memorization and learning
within transformers, we analyze the effects of omitting its learnable parameters, during training. This
provides insights into how LN influences the balance between learning and memorization for both
Pre- and Post-LN models. We precisely analyze the impact of LN on memorization and learning in
Sec. 4. Please note that we use LN removal and LN parameters removal interchangeably in our paper.
They both refer to removal of learnable parameters of the LN layer, while keeping the normalization
operation, N(x), intact.

Effect of LN Removal across Layers. To further understand the impact of LN at different stages
of the model, we categorize the layers into - early, middle, and later layers (described in detail in
Appendix F.4). We then selectively remove LN parameters from one set at a time to analyze how
their absence affects learning and memorization. This analysis reveals which set of LNs is the most
influential towards memorization and learning behaviors in Pre- and Post-LN transformers. The
experiments and results are discussed in Sec. 5.

LN Gradients Analysis across Layers. To support our observations on the influence of LN, we
compute the gradient of the loss function (L) with respect to the input of LN, x, represented as
∇xL or gx = ∂L

∂x . This measure quantifies how much the input to the LN layer affects the model’s
loss, thereby its learning and memorization ability. To understand the sensitivity of each layer’s
LN towards memorization and learning, we compute the L2-norm of this gradient (i.e., ∥gx∥2).
Specifically, to quantify sensitivity towards learning, i.e., how the model generalizes the patterns to
the test set, we compute ∥gx∥2 for every test-set sample and average it across all of them, obtaining
learning gradient norm, denoted by ∥glearn

x ∥2. For memorization, we compute ||gx||2 for each of
the noisy labels samples that we injected into the train set and then averaged across all such noisy
samples to obtain memorization gradient norm, denoted by ∥gmem

x ∥2.

A higher gradient norm indicates that the layer’s LN significantly influences the model’s ability to
memorize or learn, while a lower gradient suggests minimal impact. The discussion of memorization
and learning gradients and their significance is shown in Sec. 6.

3.3 Key Metrics: Learning Accuracy, Memorization, Recovery & Random Predictions Score

To evaluate the impact of LN on the learning and memorization ability of the transformer models, we
focus on several key metrics that provide insights into their behavior and effectiveness in the presence
of noisy labels during training.

Learning (Test) Accuracy (%) refers to the model’s performance on the test set, depicting how well
it generalizes the learnt relationships to unseen data, marking it as a core indicator of the model’s
learning progress (#Correct predictions on test set

#Total test set samples × 100). A high learning accuracy signifies that the model
has learned meaningful patterns and is able to generalize well to unseen data. On the contrary, a low
learning accuracy depicts poor generalizability.

Memorization Score (%) serves as an indicator of the model’s tendency to memorize noisy labels
that are irrelevant or erroneous, rather than genuinely learning the true underlying relationships
(#Noisy label samples memorized

#Total noisy label samples × 100). A high memorization score indicates that the model has overfit the
noisy labels, effectively “memorizing” them.

Recovery Score (%) is a crucial metric that helps in understanding the impact of LayerNorm (LN)
on memorization of noisy labels. It measures the model’s ability to recover the genuine, true labels
after the removal of LN parameters (#Recovered noisy label samples as true labels

#Total noisy label samples × 100). A high recovery
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Table 1: Summary of the impact of LN layer in Pre- and Post-LN Models.
If LN Removed Learning Intact? Memorization Mitigated? Recovery Happens?
Pre-LN Model ✗ Learning Disrupted ✗ Memorization Still Present ✗ Negligible Recovery
Post-LN Model ✓ Stable Learning ✓ Memorization Mitigated ✓ Genuine Labels Inferred

score indicates that the model can successfully recover the original, correct labels by suppressing
memorization.

Random Prediction Score (%) measures the percentage of noisy label samples whose predictions
were changed to random labels after the removal of LN parameters. These predicted random labels
are neither genuine nor the noisy label (#Random predictions of noisy label samples

#Total noisy label samples × 100). Although this is not
ideal, it provides a complete picture of the impact of LN parameters removal and indicates the extent
to which the model can recover the true labels. A high percentage of random predictions suggests
that the model struggles to recover the true labels effectively.

3.4 Datasets & Models Used

We empirically verify all claims and show extensive results against both language and vision modali-
ties, including 3 language and 3 vision classification datasets, and 7 Pre-LN and 6 Post-LN transform-
ers architectures, as follows:
Datasets: CIFAR10 [Krizhevsky et al., 2009], NICO++ [Zhang et al., 2023], UTK-Face [Zhang
et al., 2017], Emotions [Saravia et al., 2018], News [Okite97, 2024], and TweetTopic [Antypas et al.,
2022]
Post-LN Models: BERT [Devlin et al., 2019], RoBERTa [Yinhan et al., 2019], DistilBERT [Sanh
et al., 2019], DeBERTa [He et al., 2020], ELECTRA [Clark, 2020], and Longformer [Beltagy et al.,
2020]
Pre-LN Models: ViT-B [Alexey, 2020], ViT-S [Assran et al., 2022], DeiT [Touvron et al., 2021],
GPT2 [Radford et al., 2019], GPT-Neo [Black et al., 2022], Qwen2 [Yang et al., 2024], and RoBERTa-
PreLayerNorm [Ott et al., 2019].

It needs to be acknowledged that only language modality is available for the Post-LN architec-
ture in practice/literature. We provide a thorough discussion of the datasets, models, and training
configurations in Appendix F. All our experiments are run across 3 random seeds.

4 Impact of LN on Memorization and Learning
In this section, we examine the distinct impact of Layer Normalization (LN) on memorization and
learning in Pre-LN and Post-LN transformers. To assess its influence, we train two versions of
the model — one with LN parameters removed and one with them intact — and compare their
performance using learning accuracy, memorization, recovery, and random prediction scores.

4.1 Learning Stability
From Figs. 1a & 1c, we observe that removing LN parameters in Pre-LN transformers significantly
disrupts learning, whereas Post-LN transformers remain robust, maintaining their learning accuracy
even after LN parameter removal.

This discrepancy becomes even more evident when analyzing the progression of learning in epochs,
as depicted for Qwen2 (Pre-LN) in Fig. 2a & ELECTRA (Post-LN) in Fig. 2d. For Qwen2, once
learning is disrupted by LN parameters removal, it does not recover till the end of training, indicating a
fundamental instability. However, ELECTRA maintains stable learning throughout training, showing
no signs of degradation, further highlighting its resilience to LN parameters removal. Similar results
are observed for other Post-LN (BERT, DeBERTa, Longformer, RoBERT) and Pre-LN models (GPT2,
GPTNeo, ViT-B, DeiT, ViT-S), as shown in Appendix G.1.

4.2 Memorization Suppression & Label Recovery
We now examine the role of LN in memorization and label recovery. From Figs. 1b & 1d, we observe
that in Post-LN models, LN governs memorization, its parameter removal mitigates memorization
and enhances true label recovery, reflected in lower memorization scores and higher recovery scores.
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Figure 2: LN removal destabilizes learning in Pre-LN models, while mitigates memorization
in Post-LN models (News Dataset): LN removal in Pre-LN models critically affects learning
(accuracy gap in (a)) while Post-LN models remain robust (negligible gap in (d)); LN removal helps
in effective mitigation of memorization and high recovery in Post-LN models (green bars in (e)),
while memorization/random predictions still persist in Pre-LN models (red-color-family bars in (e));
LN removal in Pre-LN models exacerbates overfitting explained by increasing train-test accuracy gap
in (c), and for Post-LN models it decreases due to memorization mitigation (see (f)).

In contrast, for Pre-LN models, LN parameters removal does not mitigate memorization, as indicated
by persistently high memorization and random prediction scores.

This effect is even clearer when analyzing memorization over epochs, as shown for ELECTRA
(Fig. 2e) and Qwen2 (Fig. 2b). In ELECTRA, memorization decreases over time, with label
recovery improving as training progresses. Conversely, in Qwen2, memorization persists throughout
training, and label recovery remains poor, indicating that LN parameter removal does not suppress
memorization or aid label recovery in Pre-LN models. Similar patterns are observed in other Post-LN
(BERT, DeBERTa, Longformer, RoBERT) and Pre-LN models (GPT2, GPTNeo, ViT-B, DeiT, ViT-S),
as shown in Appendix G.1. These findings offer a nuanced perspective on LN’s role: it is crucial for
learning in Pre-LN models but does not influence memorization, contrary to prior work [Xu et al.,
2019], which suggested that LN in Pre-LN models can contribute to overfitting.

In summary, LN is essential for stable learning in Pre-LN models, hence its parameters removal
significantly destabilizes learning and widens the train-test accuracy gap (∆Pre

overfit), i.e., exacerbating
overfitting/memorization as illustrated in Fig. 2c. In contrast, in Post-LN models, LN parameters
removal suppresses memorization and enhances true label recovery, thereby narrowing the
train-test accuracy gap (∆Post

overfit) as shown in Fig. 2f. This distinction is further illustrated in Table 1,
which provides a comparative overview of LN’s role in learning and memorization across Pre-LN and
Post-LN model. Similar observations are observed in other Pre-LN (GPT2, GPTNeo, ViT-B, ViT-S,
DeiT) and Post-LN (BERT, RoBERTa, DeBERTa, Longformer) models as reported in Appendix G.1.

5 The Pivotal Impact of LN in Early Layers
Building on the observation that LN has distinctive impacts on learning & memorization for Pre-
and Post-LN models, respectively, we now precisely investigate the impact of the early, middle, and
later LN layers on Pre- and Post-LN models. Fig. 3 depicts that early LNs are more significant than
middle/later LNs in driving learning and memorization in both Pre- and Post-LN models.

In the Pre-LN model (DeiT, Fig. 3a), the removal of early LNs parameters significantly disrupts the
learning process, highlighting their importance in learning for Pre-LN models. In the Post-LN model
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Figure 3: Pivotal impact of early LNs for learning and memorization across Pre- and Post-LN
models. (a) clearly shows impact of early LNs removal on destabilizing learning in Pre-LN models,
accompanied with higher train-test-accuracy gap, ∆Pre, early

overfit , than later layers, whereas (b) shows
early LNs removal help in suppressing memorization and improving recovery in Post-LN models,
alongwith lower train-test-accuracy gap, ∆Post, early

overfit , than later layers.

(DeBERTa, Fig. 3b), the removal of early LNs parameters mitigates memorization and enhances
true label recovery most significantly compared to the cases of middle or later layers. This contrast
highlights the pivotal impact of early LNs in shaping learning and memorization dynamics, positively
in Post-LN and negatively in Pre-LN models. Aligned trends are observed for other multiple Pre-
and Post-LN models, as presented in Appendix G.2. Prior studies [Gromov et al., 2024, Li et al.,
2024, Lad et al., 2024, Men et al., 2024] highlighted the limited effectiveness of deeper layers for
learning in Pre-LN models. Our observations take this a step further by precisely identifying that LN
in the early layers is a critical factor in memorization in Post-LN models, presenting a novel and
distinctive observation.

The distinctive effect of early LNs parameters removal—disrupting learning in Pre-LN models while
mitigating memorization in Post-LN models—is further supported by the train-test accuracy gap
(∆overfit). Specifically, in Pre-LN models, removing them leads to a more pronounced increase
in ∆Pre, early

overfit compared to middle or later LNs, whereas in Post-LN models, removing early LNs
parameters results in a sharper decrease in ∆Post, early

overfit . This trend is shown in Fig. 3 (bar plots) and
formalized as follows:

∆Pre, early
overfit > ∆Pre, middle

overfit > ∆Pre, later
overfit , and ∆Post, early

overfit < ∆Post, middle
overfit < ∆Post, later

overfit (3)

In summary, we observe that early layers LN are more significant than later layers LN, where their
removal disrupts learning, explained by high ∆Pre, early

overfit in Pre-LN models. On the other hand, their
removal suppresses memorization while recovering true labels in Post-LN models, illustrated by low
∆Post, early

overfit . Similar trends are observed in other Pre-LN (GPTNeo, Qwen2, GPT2, ViT-B, ViT-S) and
Post-LN (BERT, RoBERTa, ELECTRA, Longformer) models as illustrated in Appendix G.2.

6 Gradients Explain LN’s Impact
To better understand the role of layer normalization (LN) in learning and memorization, we compute
the gradient norms associated with both processes across different layers (gx). Specifically, we
measure the norms for learning (glearn

x ) and memorization (gmem
x ) gradients separately, allowing us to

quantify their relative contributions throughout the network.
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Figure 4: Learning vs. Memorization Gradients in Pre- and Post-LN Models: (in Emotions
Dataset) Results clearly exhibit high gradient norms of early layers LNs than later layers for both
learning and memorization in Pre-LN (GPTNeo) and Post-LN (DeBERTa) models. Importantly,
the learning gradient norm (

∥∥glearn
x

∥∥
2
) is consistently stronger than the memorization gradient norm

(∥gmem
x ∥2) across all layers. Furthermore, the ratio

∥∥glearn
x

∥∥
2

/
∥gmem

x ∥2 is significantly higher in
Pre-LN models compared to Post-LN models.

Theorem 1 (Learning Gradient Norm, ∥glearn
x ∥2 is greater than or equal to Memorization

Gradient Norm, ∥gmem
x ∥2 across all layers). It is formally represented as follows:∥∥glearn

x

∥∥
2
≥ ∥gmem

x ∥2 , across all layers (4)

A proof of Theorem 1 is provided in Appendix B.

From Theorem 1, we observe that the learning gradient norms are generally greater than the memo-
rizing gradient norms across all layers for both Pre- and Post-LN models. This observation is further
validated empirically from the trend as seen in Fig. 4.

6.1 Understanding the Distinctive Impact of LN in Pre and Post-LN Architectures
Having identified the importance of early layers LNs (Sec. 5), we now focus on explaining why
the removal of Layer Normalization (LN) in Pre-LN models hinders learning, while in Post-LN
models, it mitigates memorization without disrupting learning. To do so, we focus on the ratio of
learning-to-memorization gradients norms (∥g

learn
x ∥2

∥gmem
x ∥2

, red-color line plots in Fig. 4a & 4b) across layers.
Based on the results, we uncover the following phenomenon:

∥glearn
x ∥2

∥gmem
x ∥2

∣∣∣
Pre-LN

≫ ∥glearn
x ∥2

∥gmem
x ∥2

∣∣∣
Post-LN

, across all layers (5)

This indicates that in Pre-LN models, LayerNorm primarily facilitates learning, as evidenced by the
dominance of ∥glearn

x ∥2 over ∥gmem
x ∥2. Consequently, the removal of its parameters disrupts learning

and exacerbates overfitting. In contrast, in Post-LN models, ∥glearn
x ∥2 and ∥gmem

x ∥2 are of comparable
magnitudes. As a result, removing LN parameters effectively mitigates memorization by restoring
genuine labels without disturbing learning. Consistent trends are observed for other Pre-LN (GPT2,
Qwen2, ViT-B, DeiT, ViT-S) and Post-LN (RoBERTa, BERT, Longformer, ELECTRA) models,
illustrated in Appendix G.3.

6.2 Why are LNs in Early Layers Important for Memorization and Learning?

In this section, we explain why the early layers LN are pivotal in governing memorization and
learning across Post and Pre-LN models, through the lens of gradient analysis.
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Theorem 2 (Gradient norm of loss L w.r.t input of LN is upper bounded).
Post-LN: Let zi denote the input to LN1 of the ith Post-LN model layer. Then,

∥gzi∥2 =

∥∥∥∥ ∂L∂zi
∥∥∥∥
2

≤smax(P1) ·

 1∏N
j=i

∣∣∣1−√Var(FFN(x′
j))
∣∣∣ ∣∣∣1−√Var(MHSA(xj))

∣∣∣
 ·

·
N∏
j=i

(
1 + smax(J

x′
j

FFN)
)
·

N∏
j=i+1

(
1 + smax(J

xj

MHSA)
)

(6)

Pre-LN: Let xi denote the input to LN1 of the ith Pre-LN model layer. Then,

∥gxi
∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

≤ smax(P2) ·
N∏
j=i

(
1 + smax(J

LN2(x
′
j)

FFN J
x′
j

LN2
)
)
·

N∏
j=i

(
1 + smax(J

LN1(xj)
MHSA J

xj

LN1
)
)

(7)

A proof of Theorem 2, along with the expressions for LN2 in both Pre- and Post-LN setup, is provided
in Appendix C.

Theorem 3 (Upper bound of the gradient norm of Early Layers LN are higher than those of
Later layers LN). It is formally represented as follows:

UB(∥gx1
∥2) ≥ UB(∥gx2

∥2) ≥ · · · ≥ UB(∥gxN
∥2) ; for both Pre- and Post-LN models (8)

where UB(∥gxi
∥2) denotes the upper bound of ∥gxi

∥2, and xi is the input to the ith layer’s LN.

A proof of Theorem 3 is provided in Appendix D.

The results depicted in Fig.4 empirically confirm the trend established in Theorem 3. Specifically,
we observe that both ∥glearn

x ∥2 and ∥gmem
x ∥2 are significantly higher in the earlier layers compared

to the later ones. This gradient decay trend is consistent across both Pre-LN (GPTNeo, Fig.4a) and
Post-LN (DeBERTa, Fig.4b) architectures. Similar trends are observed for other Pre-LN (GPT2,
Qwen2, ViT-B, DeiT, ViT-S) and Post-LN (RoBERTa, BERT, Longformer, ELECTRA) models, as
shown in Appendix G.3.

Thus, the theoretical upper bounds not only provide an analytical explanation for the gradient
magnitude behavior but also align closely with the empirical patterns observed across a wide range of
transformer variants. This alignment helps explain why the removal of early layers LN parameters
leads to disruption of learning in Pre-LN models and mitigation of memorization in Post-LN models,
highlighting their predominant role in the entire network because of their higher gradient norm.

In addition to the isolation of learning and memorization in early layers, we observe another interesting
pattern. For Post-LN models (Fig. 4b), both ∥glearn

x ∥2 and ∥gmem
x ∥2 decrease gradually over layers

LN. However, for Pre-LN models (Fig. 4a), the gradient norms are predominantly high in the first
layer, with the following layers having almost negligible norms. This observation explains why the
removal of early layers LN parameters did not significantly affect learning for Post-LN models. That
is because, in Post-LN models, later LNs can compensate for the absence of the early ones, recovering
learning, while mitigating memorization, due to their comparable gradient norms. However, this does
not hold for Pre-LN models, where the high gradient norms in the early layers LN are critical, and
their absence severely disrupts learning.

Similar observations are observed in other Pre-LN (GPT2, Qwen2, ViT-B, DeiT, ViT-S) and Post-LN
(RoBERTa, BERT, Longformer, ELECTRA) models, as shown in Appendix G.3.

In summary, gradient analysis highlights why removal of LN parameters significantly affects both
learning and memorization: (1) disrupts learning in Pre-LN models and mitigates memorization
in Post-LN models due to the distinct behavior of their gradient norms ratio; and (2) it reveals the
particular significance of early layer LNs, which exhibit stronger gradient norms and thus play a
more influential role in both learning and memorization processes.
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7 Conclusion

In conclusion, our study highlights the pivotal role of Layer Normalization (LN) in governing both
memorization and learning across two different Transformer configurations: Pre-LN and Post-LN.
We identified that the removal of LN parameters in Pre-LN models significantly destabilizes the
learning process, leading to persistent overfitting. In contrast, removing LN parameters from Post-LN
architectures effectively mitigates memorization and enables the recovery of genuine labels. More
precisely, we find that LNs in the early layers are especially critical—removing them has the strongest
impact in disrupting learning in Pre-LN models and mitigating memorization in Post-LN models.
By analyzing the learning and memorization gradient norms, we further reveal how LN distinctively
influences these two mechanisms across Pre- and Post-LN models. We show that this distinctive
behavior across a wide range of model architectures, spanning several vision and language datasets.
Overall, our findings uncover a crucial connection on how layer normalization impacts learning and
memorization in transformer models, with its broader impacts discussed in Appendix K.
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Appendix

Table 2: Comparison of Post-Layer Normalization (Post-LN) and Pre-Layer Normalization (Pre-
LN) Transformer Setup. MHSA = multi-head self attention, FFN = feed-forward network, LN:
LayerNorm, N = number of transformer layers, xi = input to ith layer, yi = output of ith layer, zi &
zi′ = intermediate vectors in Post-LN model, which are inputs to LN1 & LN2 respectively.

Post-LN Transformer Setup Pre-LN Transformer Setup
zi = MHSA(xi) + xi x′

i = MHSA(LN1(xi)) + xi

x′
i = LN1(zi) yi = FFN(LN2(x

′
i)) + x′

i
z′i = FFN(x′

i) + x′
i

yi = LN2(z
′
i)

yout = classification-head(yN )
L = CrossEntropyloss(yout, ytrue)

A Problem Setup for Gradients Analysis:

Consider a training dataset Dtrain consisting of C classes. We make an assumption that all samples
in class c well represent class c. Then, we introduce a single noisy label by selecting a sample
(x1, yc) from class c, where c ∈ C, and modify its label to a different (incorrect) label, yNL, where
NL(∈ C) ̸= c. The noisy sample is now represented as (x1, yNL). At the same time, we do not
modify any other training samples from class c to ensure that the model has access to correctly labeled
examples for effective learning as well. Next, we train a transformer model on this modified dataset
until it reaches 100% training accuracy. At this stage, the model has fully memorized the noisy-
labeled sample (x1, yNL) while also learning class c features from correctly labeled training samples.
Now to measure the notion of memorization and learning, we compute memorization gradient norm
(∥gmem

x ∥2) and learning gradient norm (∥glearn
x ∥2) as discussed in Sec.3.2, and compare them.

B Theorem 1: Learning Gradient Norm, ∥glearn
x ∥2 is greater than or equal

to Memorization Gradient Norm, ∥gmem
x ∥2 across all layers.

It is formally represented as follows:∥∥glearn
x

∥∥
2
≥ ∥gmem

x ∥2 , across all layers (9)

Proof:

Based on the Problem Setup as discussed in Sec. A, we prove that
∥∥glearn

x

∥∥
2
≥ ∥gmem

x ∥2 across all
layers, for both Pre- and Post-LN models as follows:

B.1 For Post-LN model:

Firstly, we elucidate the architecture of Post-LN transformer in Tab. 2. Based on the Post-LN
architecture, during backpropagation, we compute derivatives of loss w.r.t input of LN for every ith-
layer. Since there are two LNs in every layer, we compute and compare the learning and memorization
gradients corresponding to the inputs of both LNs, i.e., gzi′ and gzi (refer to Tab. 2).

B.1.1 Backpropagating gradient analysis for LN2 (gz′
i
):

The backpropagating gradient for gzi′ can be expressed as follows:

gz′
i
=

∂L
∂z′i

=
∂L
∂yout

· ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂z′j

·
∂z′j
∂x′

j

·
∂x′

j

∂zj
· ∂zj
∂xj

)
· ∂yi
∂z′i

(10)

where xi+1 = yi because ith layer’s output yi is the input of (i + 1)th layer, xi+1. To measure
memorization and learning, we compute these gradients for both (x1, yNL) and (x2, yc), denoted as
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gmem
zi′

and glearn
zi′

, respectively. In both gradients, yout, yj , z
′
j , x

′
j , zj , xj are only dependent on the input

samples x1 and x2, respectively, and not on their labels, where both x1 and x2 genuinely represent
class c. Therefore, ∂yout

∂yN
,
∂yj

∂z′
j
,
∂z′

j

∂x′
j
,
∂x′

j

∂zj
,
∂zj
∂xj

, ∂yi

∂zi
will not be significantly different for both gmem

x and

glearn
x , thus we regard the term, ∂yout

∂yN
·
∏N

j=i+1

(
∂yj

∂z′
j
· ∂z′

j

∂x′
j
· ∂x′

j

∂zj
· ∂zj
∂xj

)
· ∂yi

∂z′
i
, as A1 for both cases (as

it does not vary across inputs). The only difference between the two gradients is due to ∂L
∂yout

, because
the loss L is dependent on the label of both samples, i.e., yc and yNL, as follows:

L = −
C∑

ki=1

yki
log(ŷki

) (11)

where yki
= 1 if ki is the ground truth class, otherwise 0, and ŷki

is the predicted softmax probability
of class ki. As a result, gmem

zi′
and glearn

zi′
can be respectively represented as follows:

gmem
zi′

=
∂Lmem

∂ymem
out

·A1 & glearn
zi′

=
∂Llearn

∂ylearn
out

·A1 (12)

Comparing learning and memorization gradients Now the problem boils down to comparing
the L2-norms of ∂Lmem

∂ymem
out

and ∂Llearn

∂ylearn
out

. To do so, we need to first define ∂L
∂yout

We know that L is the
CrossEntropyLoss between the predicted softmax probability vector ŷ = Softmax(yout) and the
ground truth y as defined in Eq. (11). Hence, ∂L

∂yout
can be written as follows:

∂L
∂yout

= ŷ − y (13)

Now we can understand what it really means for memorization and learning. During inference of
(x1, yNL), ˆymem will be a vector which consists of very high probability (≈ 1) for class yNL while
assigning extremely low probabilities (≈ 0) to remaining classes due to overfitting. Therefore,
ˆymem − yNL will almost be a 0-vector, i.e., all the elements in the vector would be almost 0. This

phenomenon is formally represented as follows:

ŷmem ≈ [0, . . . , 1, . . . , 0],

yNL = [0, . . . , 1, . . . , 0],

ŷmem − yNL ≈ [0, . . . , 0, . . . , 0].

(14)

where the index corresponding to class yNL is 1, and all other elements are (close to) 0.

Now, we can take the L2-norm of both sides in Eq. (13) for the memorizing sample. Since ˆymem −yNL
is close to a 0-vector, its L2-norm ≈ 0. Therefore,∥∥∥∥∂Lmem

∂ymem
out

∥∥∥∥
2

≈ 0 (15)

On the other hand, for (x1, yc), even though the model has learned generalizable features for class c,
it has also been overfitted on noisy label samples. Hence, ˆylearn will not assign a very high probability
to yc but instead will distribute some probability mass across multiple classes. Therefore, ˆylearn − yc
contains non-trivial, not near-zero values. This behavior is formally presented as follows:

ŷlearn = [p1, p2, . . . , pyc
, . . . , pC ],

yc = [0, . . . , 1, . . . , 0],

ŷlearn − yc = [p1, p2, . . . , pyc − 1, . . . , pC ].

(16)

where pyc
is not close to 1, and other probabilities pi are non-negligible.

Now, by taking the L2-norm on both sides of Eq. (13) for the learning sample. Since ˆylearn − yc
contains non-trivial, non zero values, its L2-norm ≫ 0. Therefore,
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∥∥∥∥∂Llearn

∂ylearn
out

∥∥∥∥
2

≫ 0 (17)

Therefore, by comparing Eq. (15) & (17), we can establish the following relationship:∥∥∥∥∂Llearn

∂ylearn
out

∥∥∥∥
2

≥
∥∥∥∥∂Lmem

∂ymem
out

∥∥∥∥
2

, (18)

because overfitting on noisy samples, causes the memorizing gradients to be smaller than learning
gradients. However, note that an ideal case of perfect learning, where 100% memorization and 100%
learning co-exist, is not achievable in practice as memorization inherently hinders generalization.
Hence, the equality from the inequality can be disregarded in almost all cases.

Now, substituting the relation found in Eq. (18) to the L2-norms of glearn
z′
i

and gmem
z′
i

in Eq. (12), we
can formally conclude that: ∥∥∥glearn

z′
i

∥∥∥
2
≥
∥∥∥gmem

z′
i

∥∥∥
2

(19)

This proof explains why
∥∥∥gmem

z′
i

∥∥∥
2

is lower than
∥∥∥glearn

z′
i

∥∥∥
2

across all layers, as also empirically observed
in Fig. 4.

B.1.2 Backpropagating gradient analysis for LN1 (gzi):

Similar to gz′
i
, we can express gzi as follows:

gzi =
∂L
∂zi

=
∂L
∂yout

· ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂z′j

·
∂z′j
∂x′

j

·
∂x′

j

∂zj
· ∂zj
∂xj

)
· ∂yi
∂z′i

· ∂z
′
i

∂x′
i

· ∂x
′
i

∂zi
(20)

Here, xi+1 = yi because ith layer’s output yi is the input for (i+ 1)th layer, xi+1.

We compute gmem
zi and glearn

zi for both memorization (x1, yNL) and learning (x2, yc) samples, respec-
tively. Based on the discussion in Sec. B.1.1 on the similarity of x1 and x2, since they both originally
belong to the same class c, we can write gmem

zi′
and glearn

zi′
as follows:

gmem
zi =

∂Lmem

∂ymem
out

·A2 & glearn
zi =

∂Llearn

∂ylearn
out

·A2 (21)

where, A2 = ∂yout
∂yN

·
∏N

j=i+1

(
∂yj

∂z′
j
· ∂z′

j

∂x′
j
· ∂x′

j

∂zj
· ∂zj
∂xj

)
· ∂yi

∂z′
i
· ∂z′

i

∂x′
i
· ∂x′

i

∂zi
, which does not vary across

inputs.

To compare gmem
zi and glearn

zi , we use the argument made in Eq. (14) & (16), which explains why∥∥∥∂Llearn

∂ylearn
out

∥∥∥
2
≥
∥∥∥∂Lmem

∂ymem
out

∥∥∥
2
.

Using the above results and subsituting the relation in the L2-norms of glearn
zi and gmem

zi in Eq. (21),
we can conclude that: ∥∥glearn

zi

∥∥
2
≥
∥∥gmem

zi

∥∥
2

(22)

In conclusion, both Eq. (19) & (22) formally demonstrate that the L2-norm of learning gradient,
glearn
x is greater than or equal to memorization gradient, gmem

x across all layers of a Post-LN model.

B.2 For Pre-LN model:

Firstly, we describe the architecture of the Pre-LN transformer in Tab. 2. Based on the Pre-LN
architecture, during backpropagation, we compute derivatives of loss wrt input of LN for every ith

layer. Since there are two LNs in every layer, we compute and compare the learning and memorization
gradients corresponding to the inputs of both LNs, i.e., gxi′ and gxi

.
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B.2.1 Backpropagating gradient analysis for LN2 (gx′
i
):

The backpropagating gradient for gxi′ can be expressed as follows:

gx′
i
=

∂L
∂x′

i

=
∂L
∂yout

· ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂x′

j

· ∂xj′

∂xj

)
· ∂yi
∂x′

i

(23)

where xi+1 = yi because ith layer’s output yi is the input of (i + 1)th layer, xi+1. To measure
memorization and learning, we then compute these gradients for both (x1, yNL) and (x2, yc). In both
gradients, yout, yj , x

′
j , xj are only dependent on the input samples x1 and x2, respectively, and not on

their labels, where both x1 and x2 genuinely represent class c. Therefore, ∂yout
∂yN

,
∂yj

∂x′
j
,
∂x′

j

∂xj
, ∂yi

∂x′
i

will not

be significantly different for both glearn
x and gmem

x , thus we regard the term, ∂yout
∂yN

·
∏N

j=i+1

(
∂yj

∂x′
j
· ∂x′

j

∂xj

)
·

∂yi

∂x′
i
, as B1 for both cases (as it does not vary across inputs.) The only difference between the two

gradients is due to ∂L
∂yout

, because the loss L is dependent on the label of both samples, i.e., yc and yNL

as shown in Eq. (11). As a result, gmem
xi′

and glearnxi′
can be respectively represented as follows:

gmem
xi′

=
∂Lmem

∂ymem
out

·B1 & glearn
xi′

=
∂Llearn

∂ylearn
out

·B1 (24)

Comparing learning and memorization gradient norms Now the problem boils down to com-
paring the norms of ∂Lmem

∂ymem
out

and ∂Llearn

∂ylearn
out

.

From Eq. (18), we know the following relation:∥∥∥∥∂Llearn

∂ylearn
out

∥∥∥∥
2

≥
∥∥∥∥∂Lmem

∂ymem
out

∥∥∥∥
2

, (25)

Now, substituting the relation found in Eq. (18) to the l2-norms of glearn
x′
i

and gmem
x′
i

in Eq. (24), we can
formally conclude that: ∥∥∥glearn

x′
i

∥∥∥
2
≥
∥∥∥gmem

x′
i

∥∥∥
2

(26)

This proof explains why
∥∥∥gmem

x′
i

∥∥∥
2

is lower than
∥∥∥glearn

x′
i

∥∥∥
2

across all layers, as also empirically
consistently observed in Fig. 4.

B.2.2 Backpropagating gradient analysis for LN1 (gxi
):

Similar to gxi′ , we can express gxi
as follows:

gxi
=

∂L
∂xi

=
∂L
∂yout

· ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂x′

j

· ∂xj′

∂xj

)
· ∂yi
∂x′

i

· ∂x
′
i

∂xi
(27)

where xi+1 = yi because ith layer’s output yi is the input for (i+1)th layer, xi+1, and compute gmem
zi

and glearn
zi to measure memorization and learning respectively. Based on the discussion in Sec. B.1.1

on the similarity of x1 and x2 since they both genuinely belong to the same class c, we can write
gmem
xi

and glearnxi
as follows:

gmem
xi

=
∂Lmem

∂ymem
out

·B2 & glearn
xi

=
∂Llearn

∂ylearn
out

·B2 (28)

where, B2 = ∂yout
∂yN

·
∏N

j=i+1

(
∂yj

∂x′
j
· ∂xj′

∂xj

)
· ∂yi

∂x′
i
· ∂x′

i

∂xi
, which does not vary across inputs. To compare

gmem
xi

and glearn
xi

, we use Eq. (18), which states that
∥∥∥∂Llearn

∂ylearn
out

∥∥∥
2
≥
∥∥∥∂Lmem

∂ymem
out

∥∥∥
2
.
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Using the above results and substituting the relation in the L2-norms of glearn
xi

and gmem
xi

in Eq. (28),
we can conclude that: ∥∥glearn

xi

∥∥
2
≥
∥∥gmem

xi

∥∥
2

(29)

In conclusion, both Eq. (26) & (29) formally demonstrate that the L2-norm of learning gradient,
glearn
x is greater than or equal to memorization gradient, gmem

x across all layers of a Pre-LN model.

C Theorem 2: Gradient norm of loss L w.r.t input of LN is upper bounded.

Post-LN: Let zi denote the input to LN1 of the ith Post-LN model layer. Then,

∥gzi∥2 =

∥∥∥∥ ∂L∂zi
∥∥∥∥
2

≤smax(P1) ·

 1∏N
j=i

∣∣∣1−√Var(FFN(x′
j))
∣∣∣ ∣∣∣1−√Var(MHSA(xj))

∣∣∣
 ·

·
N∏
j=i

(
1 + smax(J

x′
j

FFN)
)
·

N∏
j=i+1

(
1 + smax(J

xj

MHSA)
)

(30)

Pre-LN: Let xi denote the input to LN1 of the ith Pre-LN model layer. Then,

∥gxi
∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

≤ smax(P2) ·
N∏
j=i

(
(1 + smax(J

LN2(x
′
j)

FFN J
x′
j

LN2
)
)
·

N∏
j=i

(
(1 + smax(J

LN1(xj)
MHSA J

xj

LN1
)
)

(31)

Proof:

C.1 For Post-LN model:

The Post-LN model setup for ith layer can be represented as follows:

x′
i = LN1(xi + MHSA(xi))

yi = LN2(x
′
i + FFN(x′

i))
(32)

where xi + MHSA(xi) and x′
i + FFN(x′

i) are the inputs to LN1 and LN2, respectively. Later, we
substitute and use them as

zi = xi + MHSA(xi)

zi′ = x′
i + FFN(x′

i)
(33)

Since there are two LayerNorm (LN) operations in every layer, we prove it seperately for both of
them.

C.1.1 Backpropagation analysis for LN2 (gz′
i
):

By applying Eq. (33), we obtain z′j = x′
j + FFN(x′

j), zj = xj + MHSA(xj). Hence, we can write
gz′

i
(from Eq. (10)) for the ith layer as follows:

gz′
i
=

∂L
∂z′i

=
∂L
∂yout

· ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂z′j

·
∂z′j
∂x′

j

·
∂x′

j

∂zj
· ∂zj
∂xj

)
· ∂yi
∂z′i

(34)

Here, ∂L
∂yout

· ∂yout
∂yN

, is independent of the transformer’s layers as they are computed using the classifica-
tion head’s output. Therefore, we can treat them as P1 (which does not vary across layers). We also
compute the corresponding derivatives of zj′ and zj . Lastly, xi+1 is same as yi, because yi is the
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output of the ith layer which becomes input xi+1 of the (i+ 1)th layer. By applying all of these, we
obtain the following equation:

gz′
i
=

∂L
∂z′i

= P1 ·
N∏

j=i+1

(
∂yj
∂z′j

·
∂(x′

j + FFN(xj′))

∂x′
j

·
∂x′

j

∂zj
· ∂(xj + MHSA(xj))

∂xj

)
· ∂yi
∂z′i

(35)

= P1 ·
N∏

j=i+1

(
∂yj
∂z′j

· (I +
∂FFN(x′

j)

∂x′
j

) ·
∂x′

j

∂zj
· (I + ∂MHSA(xj)

∂xj
)

)
· ∂yi
∂z′i

(36)

We also acknowledge that ∂yj

∂zj
,
∂x′

j

∂z′
j
, and ∂yi

∂z′
i
, are derivatives of output of LN w.r.t their input, which

can be simply represented as Jacobian matrices, Jzj
LN2

, J
z′
j

LN1
, and J

z′
i

LN2
, respectively. Likewise,

∂FFN(x′
j)

∂x′
j

and ∂MHSA(xj)
∂xj

are also derivatives of the output of FFN and MHSA w.r.t their inputs, and

can be represented as Jacobian matrices, J
x′
j

FFN and J
xj

MHSA, respectively. After substituting these terms,
we obtain the following:

gz′
i
=

∂L
∂z′i

= P1 ·
N∏

j=i+1

(
J
z′
j

LN2
· (I + J

x′
j

FFN) · J
zj
LN1

· (I + J
xj

MHSA)
)
· Jz′

i
LN2

(37)

Now, we take the L2-norm on both sides of Eq. (37) as follows:

∥gz′
i
∥2 =

∥∥∥∥ ∂L∂z′i
∥∥∥∥
2

=

∥∥∥∥∥∥P1 ·
N∏

j=i+1

(
J
z′
j

LN2
· (I + J

x′
j

FFN) · J
zj
LN1

· (I + J
xj

MHSA)
)
· Jz′

i
LN2

∥∥∥∥∥∥
2

(38)

We know that L2-norm of a matrix is equivalent to its largest singular value [Horn and Johnson,
1991]. Hence, we can further write Eq. (38) as follows:

∥gz′
i
∥2 =

∥∥∥∥ ∂L∂z′i
∥∥∥∥
2

= smax(P1 ·
N∏

j=i+1

(
J
z′
j

LN2
· (I + J

x′
j

FFN) · J
zj
LN1

· (I + J
xj

MHSA)
)
· Jz′

i
LN2

) (39)

where smax outputs the largest singular value of (P1 ·∏N
j=i+1

(
J
z′
j

LN2
· (I + J

x′
j

FFN) · J
zj
LN1

· (I + J
xj

MHSA)
)

· J
z′
i

LN2
). From the properties of singular

values [Horn and Johnson, 1991], we know that

smax(A1A2 . . . An) ≤ smax(A1)smax(A2) . . . smax(An)

smax(A1 +A2) ≤ smax(A1) + smax(A2)
(40)

where smax(Ak) is the maximum singular value of matrix Ak. After applying these properties to
Eq. (39), we get the following:

∥gz′
i
∥2 =

∥∥∥∥ ∂L∂z′i
∥∥∥∥
2

≤ smax(P1) ·
N∏

j=i+1

(
smax(J

z′
j

LN2
) ·
(
smax(I) + smax(J

x′
j

FFN)
)
·

smax(J
zj
LN1

) ·
(
smax(I) + smax(J

xj

MHSA)
))

· smax(J
z′
i

LN2
)

(41)

According to Xiong et al. [2020], we can rewrite the Jacobian of LNs as follows:

J
zj
LN1

=
I

σzj

, J
z′
j

LN2
=

I
σz′

j

, and J
z′
i

LN2
=

I
σz′

i

(42)
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where σzj , σz′
j
, and σz′

i
are the standard-deviations of zj , z′j , and z′i, respectively. Therefore, we

obtain the following equation:

∥gz′
i
∥2 =

∥∥∥∥ ∂L∂z′i
∥∥∥∥
2

≤ smax(P1) ·
N∏

j=i+1

(
smax

(
I

σz′
j

)
·
(
smax(I) + smax(J

x′
j

FFN)
)
·

smax

(
I

σzj

)
·
(
smax(I) + smax(J

xj

MHSA)
))

· smax

(
I
σz′

i

)
.

(43)

Another property of singular values states that all singular values of identity matrix I are 1 [Horn and
Johnson, 1991], i.e., sk(I) = 1. Therefore substituting with that in Eq. (43), we obtain the following:

∥gz′
i
∥2 =

∥∥∥∥ ∂L∂z′i
∥∥∥∥
2

≤ smax(P1) ·
N∏

j=i+1

(
1

σz′
j

· (1 + smax(J
x′
j

FFN)) ·
1

σzj

· (1 + smax(J
xj

MHSA))

)
· 1

σz′
i

(44)

By re-arranging the terms, we finally obtain the following equation:

∥gz′
i
∥2 =

∥∥∥∥ ∂L∂z′i
∥∥∥∥
2

≤ smax(P1) ·

(
1∏N

j=i σz′
j

)
·

(
1∏N

j=i+1 σzj

)

·
N∏

j=i+1

((
1 + smax(J

x′
j

FFN)
)
·
(
1 + smax(J

xj

MHSA)
)) (45)

Now, we need to investigate how σzj and σzj′ behave. We know that σzj =
√

Var(zj) and σz′
j
=√

Var(z′j), where Var(·) represents a variance. Therefore, we can instead focus on Var(zj) and

Var(z′j). We know that zj = xj + MHSA(xj) and z′j = x′
j + FFN(x′

j). Therefore, their variances
can be written as follows:

Var(zj) = Var(xj + MHSA(xj))

Var(z′j) = Var(x′
j + FFN(x′

j))
(46)

Now to compute the upper bound of Eq. (45), we need to substitute the lower bound of σzj and σz′
j

as they are in the denominator. The lower bounds of σzj and σz′
j

would basically be lower bounds of
Var(zj) and Var(z′j), respectively.

From Hössjer and Sjölander [2022], we know that for any two matrices A and B,

Var(A + B) ≥
(√

Var(A) −
√

Var(B)
)2

(47)

Therefore, the lower bounds of Var(zj) and Var(z′j) can be written as follows,

Var(zj) ≥
(√

Var(xj)−
√

Var(MHSA(xj))

)2

Var(z′j) ≥
(√

Var(x′
j)−

√
Var(FFN(x′

j))
)2 (48)

Since xj and x′
j are the outputs of the two LN layers, their variance is 1. Therefore, we can rewrite

Eq. (48) as follows:

Var(zj) ≥
(
1−

√
Var(MHSA(xj))

)2

⇒ σzj ≥
∣∣∣∣1−√Var(MHSA(xj))

∣∣∣∣
Var(z′j) ≥

(
1−

√
Var(FFN(x′

j))
)2

⇒ σz′
j
≥
∣∣∣1−√Var(FFN(x′

j))
∣∣∣ (49)
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Hence, we can re-write Eq. (45) as follows:

∥gz′
i
∥2 =

∥∥∥∥ ∂L∂z′i
∥∥∥∥
2

≤smax(P1) ·

 1∏N
j=i

∣∣∣1−√Var(FFN(x′
j))
∣∣∣
 ·

 1∏N
j=i+1

∣∣∣1−√Var(MHSA(xj))
∣∣∣


·
N∏

j=i+1

((
1 + smax(J

x′
j

FFN)
)
·
(
1 + smax(J

xj

MHSA)
))

(50)

C.1.2 Backpropagation analysis for LN1 (gzi):

Similar to gz′
i
, we can express gzi as follows:

gzi =
∂L
∂zi

=
∂L
∂yout

· ∂yout

∂yN
·

N∏
j=l+1

(
∂yj
∂z′j

·
∂z′j
∂x′

j

·
∂x′

j

∂zj
· ∂zj
∂xj

)
· ∂yi
∂z′i

· ∂z
′
i

∂x′
i

· ∂x
′
i

∂zi
(51)

Here, ∂L
∂yout

· ∂yout
∂yN

, is independent of the transformer’s layers as they are computed using the classifica-
tion head’s output. Therefore, we can treat them as P1 (which does not vary across layers). We also
compute the corresponding derivatives of zj′ and zj . Lastly, xi+1 is same as yi, because yi is the
output of the ith layer which becomes input xi+1 of the (i+ 1)th layer. By applying all of these, we
obtain the following equation:

gzi =
∂L
∂zi

= P1 ·
N∏

j=i+1

(
∂yj
∂z′j

·
∂(x′

j + FFN(x′
j))

∂x′
j

·
∂x′

j

∂zj
· ∂(xj + MHSA(xj))

∂xj

)

· ∂yi
∂z′i

· ∂(x
′
i + FFN(x′

i))

∂x′
i

· ∂x
′
i

∂zi

(52)

=P1 ·
N∏

j=i+1

(
∂yj
∂z′j

·

(
I +

∂ FFN(x′
j)

∂x′
j

)
·
∂x′

j

∂zj
·
(

I +
∂ MHSA(xj)

∂xj

))

· ∂yi
∂z′i

·
(

I +
∂ FFN(x′

i)

∂x′
i

)
· ∂x

′
i

∂zi

(53)

Clearly, we can see that ∂yj

∂zj
,
∂x′

j

∂z′
j
, ∂yi

∂z′
i
, and ∂x′

i

∂zi
are derivatives of output of LN w.r.t their input, which

can be simply represented as Jacobian matrices, Jzj
LN2

, J
z′
j

LN1
, Jz′

i
LN2

, and Jzi
LN1

, respectively. Likewise,
∂FFN(x′

j)

∂x′
j

and ∂MHSA(xj)
∂xj

are also derivatives of the output of FFN and MHSA w.r.t their inputs, and

can be represented as Jacobian matrices, J
x′
j

FFN and J
xj

MHSA, respectively. After substituting these terms,
we obtain the following:

gzi =
∂L
∂zi

= P1 ·
N∏

j=i+1

(
J
z′
j

LN2
· (I + J

x′
j

FFN) · J
zj
LN1

· (I + J
xj

MHSA)
)
· Jz′

i
LN2

· (I + J
x′
i

FFN) · J
zi
LN1

(54)

Now, we take the L2-norm on both sides of Eq. (54) as follows:

∥gzi∥2 =

∥∥∥∥ ∂L∂zi
∥∥∥∥
2

=

∥∥∥∥∥∥P1 ·
N∏

j=i+1

(
J
z′
j

LN2
· (I + J

x′
j

FFN) · J
zj
LN1

· (I + J
xj

MHSA)
)
· Jz′

i
LN2

· (I + J
x′
i

FFN) · J
zi
LN1

∥∥∥∥∥∥
2

(55)
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We know that the L2-norm of a matrix is equivalent to its largest singular value [Horn and Johnson,
1991]. Hence, we can further write Eq. (55) as follows:

∥gzi∥2 =

∥∥∥∥ ∂L∂zi
∥∥∥∥
2

= smax(P1 ·
N∏

j=i+1

(
J
z′
j

LN2
· (I + J

x′
j

FFN) · J
zj
LN1

· (I + J
xj

MHSA)
)
· Jz′

i
LN2

· (I + J
x′
i

FFN) · J
zi
LN1

)

(56)
where smax outputs the largest singular value of (P1 ·∏N

j=i+1

(
J
z′
j

LN2
· (I + J

x′
j

FFN) · J
zj
LN1

· (I + J
xj

MHSA)
)
· Jz′

i
LN2

· (I + J
x′
i

FFN) · J
zi
LN1

). Now from properties
of singular values defined in Eq. (40), we can further rewrite Eq. (56) as follows:

∥gzi∥2 =

∥∥∥∥ ∂L∂zi
∥∥∥∥
2

≤ smax(P1) ·
N∏

j=i+1

(
smax(J

z′
j

LN2
) ·
(
smax(I) + smax(J

x′
j

FFN)
)
· smax(J

zj
LN1

) ·
(
smax(I) + smax(J

xj

MHSA)
))

· smax(J
z′
i

LN2
) ·
(
smax(I) + smax(J

x′
i

FFN)
)
· smax(J

zi
LN1

)
(57)

From Xiong et al. [2020], we can rewrite the Jacobian of LNs as follows:

J
zj
LN1

=
I

σzj

, J
z′
j

LN2
=

I
σz′

j

, J
z′
i

LN2
=

I
σz′

i

, and Jzi
LN1

=
I
σzi

(58)

where σzj , σz′
j
, σz′

i
and σzi are the standard-deviations of zj , z′j , z′i, and zi respectively. Therefore,

we obtain the following equation:

∥gzi∥2 =

∥∥∥∥ ∂L∂zi
∥∥∥∥
2

≤ smax(P1) ·
N∏

j=i+1

(
smax

(
I

σz′
j

)
·
(
smax(I) + smax(J

x′
j

FFN)
)
· smax

(
I

σzj

)
·
(
smax(I) + smax(J

xj

MHSA)
))

· smax

(
I

σz′
i

)
·
(
smax(I) + smax(J

x′
j

FFN)
)
· smax

(
I
σzi

)
(59)

Another property of singular values states that all singular values of identity matrix I are 1 [Horn and
Johnson, 1991], i.e., sk(I) = 1. Therefore substituting with that in Eq. (59), we obtain the following:

∥gzi∥2 =

∥∥∥∥ ∂L∂zi
∥∥∥∥
2

≤ smax(P1) ·
N∏

j=i+1

(
smax

(
1

σz′
j

)
·
(
1 + smax(J

x′
j

FFN)
)
· smax

(
1

σzj

)
·
(
1 + smax(J

xj

MHSA)
))

· smax

(
1

σz′
i

)
·
(
1 + smax(J

x′
j

FFN)
)
· smax

(
1

σzi

)
(60)

By re-arranging the terms, we finally obtain the following equation:

∥gzi∥2 =

∥∥∥∥ ∂L∂zi
∥∥∥∥
2

≤ smax(P1) ·

(
1∏N

j=i σz′
j
σzj

)
·

N∏
j=i

(
1 + smax(J

x′
j

FFN)
)
·

N∏
j=i+1

(
1 + smax(J

xj

MHSA)
)

(61)
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Now, based on Eq. (49), we can re-write Eq. (61) as follows:

∥gzi∥2 =

∥∥∥∥ ∂L∂zi
∥∥∥∥
2

≤smax(P1) ·

 1∏N
j=i

∣∣∣1−√Var(FFN(x′
j))
∣∣∣ ∣∣∣1−√Var(MHSA(xj))

∣∣∣
 ·

·
N∏
j=i

(
1 + smax(J

x′
j

FFN)
)
·

N∏
j=i+1

(
1 + smax(J

xj

MHSA)
) (62)

C.2 For Pre-LN model:

The Pre-LN model setup for ith layer can be represented as follows:

x′
i = xi + MHSA(LN1(xi))

yi = x′
i + FFN(LN2(x

′
i))

(63)

where xi and x′
i are the inputs to LN1 and LN2, respectively.

Since there are two LayerNorm (LN) operations in every layer, we separately prove for both of them

C.2.1 Backpropagation analysis for LN2 (gx′
i
):

We can write gx′
i

for the ith layer as follows:

gx′
i
=

∂L
∂x′

i

=
∂L
∂yout

· ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂x′

j

·
∂x′

j

∂xj

)
· ∂yi
∂x′

i

(64)

Here, ∂L
∂yout

·∂yout
∂yN

, is independent of the transformers layers as they are computed using the classification
head’s output. Therefore we can treat them as P2 (which does not vary across layers). Furthermore,
we expand yj = x′

j + FFN(LN1(x
′
j)), x

′
j = xj + MHSA(LN2(xj)), using Eq. (63), and compute

their corresponding derivatives in Eq. (64). Lastly, xi+1 is same as yi, because yi is the output of the
ith layer which becomes input xi+1 of the (i+ 1)th layer.

After substituting, we get the following equation:

gx′
i
=

∂L
∂x′

i

=P2 ·
N∏

j=i+1

(
∂(x′

j + FFN(LN2(x
′
j)))

∂x′
j

· ∂(xj + MHSA(LN1(xj)))

∂xj

)
· ∂(x

′
i + FFN(LN2(x

′
i)))

∂x′
i

(65)

=P2 ·
N∏

j=i+1

(
(I +

∂FFN(LN2(x
′
j))

∂x′
j

) · (I + ∂MHSA(LN1(xj))

∂xj
)

)
· (I + ∂FFN(LN2(x

′
i))

∂x′
i

)

(66)

=P2 ·
N∏

j=i+1

(
(I +

∂FFN(LN2(x
′
j))

∂LN2(x′
j)

·
∂LN2(x

′
j)

∂x′
j

) · (I + ∂MHSA(LN1(xj))

∂LN1(xj)
· ∂LN1(xj)

∂xj
)
)

· (I + ∂FFN(LN2(x
′
i))

∂LN2(x′
i)

· ∂LN2(x
′
i)

∂x′
i

)

(67)

Here, in Eq. (67), ∂LN1(xj)
∂xj

,
∂LN2(x

′
j)

∂x′
j

, are both derivative of output of LN w.r.t their inputs, and hence

can be represented as Jacobian matrices, Jxj

LN1
and J

x′
j

LN2
respectively. Similarly, ∂MHSA(LN1(xj))

∂LN1(xj)
and
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∂FFN(LN2(x
′
j))

∂LN2(x′
j)

, are derivatives of output of MHSA/FFN w.r.t their inputs, and can also be represented

as Jacobian matrices, JLN1(xj)
MHSA and J

LN2(x
′
j)

FFN respectively.

Using these relations, we can re-write Eq. (67) as follows:

gx′
i
=

∂L
∂x′

i

= P2 ·
N∏

j=i+1

(
(I + J

LN2(x
′
j)

FFN · Jx′
j

LN2
) · (I + J

LN1(xj)
MHSA · Jxj

LN1
)
)
· (I + J

LN2(x
′
i)

FFN · Jx′
i

LN2
)

(68)

We can further re-arrange the terms in Eq. (68) as follows:

gx′
i
=

∂L
∂x′

i

= P2 ·
N∏
j=i

(
I + J

LN2(x
′
j)

FFN · Jx′
j

LN2

)
·

N∏
j=i+1

(
I + J

LN1(xj)
MHSA · Jxj

LN1

)
(69)

Now, we take the L2-norm at both sides of Eq. (69) and since we know that L2-norm of a matrix is
equivalent to its maximum singular value. Therefore, we get the following equation:

∥gx′
i
∥2 =

∥∥∥∥ ∂L∂x′
i

∥∥∥∥
2

= smax(P2 ·
N∏
j=i

(
I + J

LN2(x
′
j)

FFN · Jx′
j

LN2

)
·

N∏
j=i+1

(
I + J

LN1(xj)
MHSA · Jxj

LN1

)
) (70)

where smax is the maximum singular value of (P2 ·
∏N

j=l

(
I + J

LN2(x
′
j)

FFN · Jx′
j

LN2

)
·∏N

j=l+1

(
I + J

LN1(xj)
MHSA · Jxj

LN1

)
).

From the singular values properties, discussed in Eq. (40), we can write the upper bound of ∥gx′
i
∥2

as follows:

∥gx′
i
∥2 =

∥∥∥∥ ∂L∂x′
i

∥∥∥∥
2

≤ smax(P2) ·
N∏
j=i

(
smax(I) + smax(J

LN2(x
′
j)

FFN · Jx′
j

LN2
)
)
·

N∏
j=i+1

(
smax(I) + smax(J

LN1(xj)
MHSA · Jxj

LN1
)
)

(71)

We know that all singular values of an Idenitiy matrix I are 1, i.e., sk(I) = 1. Thus,

∥gx′
i
∥2 =

∥∥∥∥ ∂L∂x′
i

∥∥∥∥
2

≤ smax(P2) ·
N∏
j=i

(
1 + smax(J

LN2(x
′
j)

FFN · Jx′
j

LN2
)
)
·

N∏
j=i+1

(
1 + smax(J

LN1(xj)
MHSA · Jxj

LN1
)
)

(72)

C.2.2 Backpropagation analysis for LN1 (gxi
):

We can write gxi for the ith layer as follows:

gxi =
∂L
∂xi

=
∂L
∂yout

· ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂xj′

·
∂x′

j

∂xj

)
· ∂yi
∂xi′

· ∂xi′

∂xi
(73)

Here, ∂L
∂yout

·∂yout
∂yN

, is independent of the transformers layers as they are computed using the classification
head’s output. Therefore we can treat them as P2 (which does not vary across layers). Furthermore,
we expand yj = x′

j + FFN(LN1(x
′
j)), x

′
j = xj + MHSA(LN2(xj)), using Eq. (63), and compute

their corresponding derivatives in Eq. (73). Lastly, xi+1 is same as yi, because yi is the output of the
ith layer which becomes input xi+1 of the (i+ 1)th layer.
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After substituting, we get the following equation:

gxi
=

∂L
∂xi

= P2 ·
N∏

j=i+1

(
∂(x′

j + FFN(LN2(x
′
j)))

∂x′
j

· ∂(xj + MHSA(LN1(xj)))

∂xj

)

· ∂(x
′
i + FFN(LN2(x

′
i)))

∂x′
i

· ∂(xi + MHSA(LN1(xi)))

∂xi

(74)

= P2 ·
N∏

j=i+1

(
I +

∂FFN(LN2(x
′
j))

∂x′
j

)
·
(

I +
∂MHSA(LN1(xj))

∂xj

)

·
(

I +
∂FFN(LN2(x

′
i))

∂x′
i

)
·
(

I +
∂MHSA(LN1(xi))

∂xi

) (75)

=P2 ·
N∏

j=l+1

(
(I +

∂FFN(LN2(x
′
j))

∂LN2(x′
j)

∂LN2(x
′
j)

∂x′
j

) · (I + ∂MHSA(LN1(xj))

∂LN1(xj)

∂LN1(xj)

∂xj
)

)

· (I + ∂FFN(LN2(x
′
i))

∂LN2(x′
i)

∂LN2(x
′
i)

∂x′
i

) · (I + ∂MHSA(LN1(xi))

∂LN1(xi)

∂LN1(xi)

∂xi
)

(76)

Here, in Eq. (76), ∂LN1(xj)
∂xj

,
∂LN2(x

′
j)

∂x′
j

, are both derivative of output of LN w.r.t their inputs, and hence

can be represented as Jacobian matrices, Jxj

LN1
and J

x′
j

LN2
respectively. Similarly, ∂MHSA(LN1(xj))

∂LN1(xj)
and

∂FFN(LN2(x
′
j))

∂LN2(x′
j)

, are derivatives of output of MHSA/FFN w.r.t their inputs, and can also be represented

as Jacobian matrices, JLN1(xj)
MHSA and J

LN2(x
′
j)

FFN respectively.

Using these relations, we can re-write Eq. (76), as follows

gxi
=

∂L
∂xi

=P2 ·
N∏

j=i+1

((
I + J

LN2(x
′
j)

FFN · Jx′
j

LN2

)
·
(

I + J
LN1(xj)
MHSA · Jxj

LN1

))

·
(

I + J
LN2(x

′
i)

FFN · Jx′
i

LN2

)
·
(

I + J
LN1(xi)
MHSA · Jxi

LN1

) (77)

We can further re-arrange the terms in Eq. (77) as follows:

gxi
=

∂L
∂xi

= P2 ·
N∏
j=i

(
I + J

LN2(x
′
j)

FFN · Jx′
j

LN2

)
·

N∏
j=i

(
I + J

LN1(xj)
MHSA · Jxj

LN1

)
(78)

Now, we take the L2-norm at both sides of Eq. (78) and since we know that L2-norm of a matrix is
equivalent to its maximum singular value. Therefore, we get the following equation:

∥gxi
∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

= smax(P2 ·
N∏
j=i

(
I + J

LN2(x
′
j)

FFN · Jx′
j

LN2

)
·

N∏
j=i

(
I + J

LN1(xj)
MHSA · Jxj

LN1

)
) (79)

where smax is the maximum singular value of (P2 ·
∏N

j=l

(
I + J

LN2(x
′
j)

FFN · Jx′
j

LN2

)
·∏N

j=l+1

(
I + J

LN1(xj)
MHSA · Jxj

LN1

)
).

From the singular values properties, discussed in Eq. (40), we can write the upper bound of ∥gx′
i
∥2

as follows:
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∥gxi
∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

≤ smax(P2) ·
N∏
j=i

(
smax(I) + smax(J

LN2(x
′
j)

FFN · Jx′
j

LN2
)
)
·

N∏
j=i

(
smax(I) + smax(J

LN1(xj)
MHSA · Jxj

LN1
)
)

(80)

We know that all singular values of an Idenitiy matrix I are 1, i.e., sk(I) = 1. Thus,

∥gxi
∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

≤ smax(P2) ·
N∏
j=i

(
1 + smax(J

LN2(x
′
j)

FFN · Jx′
j

LN2
)
)
·

N∏
j=i

(
1 + smax(J

LN1(xj)
MHSA · Jxj

LN1
)
)

(81)

D Theorem 3: Upper bound of the gradient norm of Early Layers LN are
higher than those of Later Layers LN.

It is formally represented as follows:

UB(∥gx1∥2) ≥ UB(∥gx2∥2) ≥ · · · ≥ UB(∥gxN
∥2) ; for both Pre- and Post-LN models (82)

where UB(∥gxi∥2) denotes the upper bound of ∥gxi∥2 and xi is the input to the ith layer’s LN.

Proof:

D.1 For Post-LN model:

D.1.1 Analysis for LN2 (gz′
i
):

We prove that UB(∥gz′
i
∥2) ≥ UB(∥gz′

i+1
∥2), corresponding to ith and (i+ 1)th layer.

We can compute UB(∥gz′
i
∥2) and UB(∥gz′

i+1
∥2) using Eq. (50) as follows:

UB(∥gz′
i
∥2) =smax(P1) ·

 1∏N
j=i

∣∣∣1−√Var(FFN(x′
j))
∣∣∣
 ·

 1∏N
j=i+1

∣∣∣1−√Var(MHSA(xj))
∣∣∣


·
N∏

j=i+1

((
1 + smax(J

x′
j

FFN)
)
·
(
1 + smax(J

xj

MHSA)
))

(83)

UB(∥gz′
i+1

∥2) =smax(P1) ·

 1∏N
j=i+1

∣∣∣1−√Var(FFN(x′
j))
∣∣∣
 ·

 1∏N
j=i+2

∣∣∣1−√Var(MHSA(xj))
∣∣∣


·
N∏

j=i+2

((
1 + smax(J

x′
j

FFN)
)
·
(
1 + smax(J

xj

MHSA)
))

(84)

We then substitute these expressions in the inequality UB(∥gz′
i
∥2) ≥ UB(∥gz′

i+1
∥2), to prove that

early layers have higher gradient norms in comparison to later layers.
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smax(P1) ·

 1∏N
j=i

∣∣∣1−√Var(FFN(x′
j))
∣∣∣
 ·

 1∏N
j=i+1

∣∣∣1−√Var(MHSA(xj))
∣∣∣


·
N∏

j=i+1

((
1 + smax(J

x′
j

FFN)
)
·
(
1 + smax(J

xj

MHSA)
))

≥ smax(P1) ·

 1∏N
j=i+1

∣∣∣1−√Var(FFN(x′
j))
∣∣∣
 ·

 1∏N
j=i+2

∣∣∣1−√Var(MHSA(xj))
∣∣∣


·
N∏

j=i+2

((
1 + smax(J

x′
j

FFN)
)
·
(
1 + smax(J

xj

MHSA)
))

(85)

This can be further rewritten as follows:

(1 + smax(J
x′
i+1

FFN ))(1 + smax(J
xi+1

MHSA))∣∣∣1−√Var(FFN(x′
i))
∣∣∣ ∣∣∣1−√Var(MHSA(xi+1))

∣∣∣ ≥ 1 (86)

From Horn and Johnson [1991], we know that every singular value of a matrix A is greater than or
equal to 0, i.e., sk(A) ≥ 0,∀k. Hence, for every transformer layer,

(1 + smax(J
xj

MHSA)) ≥ 1 and (1 + smax(J
x′
j

FFN)) ≥ 1 (87)

Now, to prove Eq. (86) to be true, we need to prove that

0 <

∣∣∣∣1−√Var(FFN(x′
i))

∣∣∣∣ ≤ 1 & 0 <
∣∣∣1−√Var(MHSA(xi+1))

∣∣∣ ≤ 1 (88)

We do not consider the scenario where either
∣∣∣1−√Var(FFN(x′

i))
∣∣∣ = 0 or∣∣∣1−√Var(MHSA(xi+1))

∣∣∣ = 0, because if either/both of them becomes 0 then the gradi-
ent norm would go infinity, which we do not observe in real-world models either.

We prove Eq. (88) for the FFN component as follows (MHSA component will also have a similar
proof):

Firstly,
∣∣∣1−√Var(FFN(x′

i))
∣∣∣ can be rewritten as follows:∣∣∣∣1−√Var(FFN(x′
i))

∣∣∣∣ = {1−√Var(FFN(x′
i)), if

√
Var(FFN(x′

i)) < 1√
Var(FFN(x′

i))− 1, if
√

Var(FFN(x′
i)) > 1

(89)

We then apply the inequality described in Eq. (88) and Eq. (89) together as follows:

0 <

∣∣∣∣1−√Var(FFN(x′
i))

∣∣∣∣ ≤ 1 ⇒
{
0 < 1−

√
Var(FFN(x′

i)) ≤ 1, if
√

Var(FFN(x′
i)) < 1

0 <
√

Var(FFN(x′
i))− 1 ≤ 1, if

√
Var(FFN(x′

i)) > 1
(90)

Further solving Eq. (90), we obtain the following:

0 <

∣∣∣∣1−√Var(FFN(x′
i))

∣∣∣∣ ≤ 1 ⇒
{
0 ≤

√
Var(FFN(x′

i)) < 1, if
√

Var(FFN(x′
i)) < 1

1 <
√

Var(FFN(x′
i)) ≤ 2, if

√
Var(FFN(x′

i)) > 1
(91)
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Hence, the inequality 0 <
∣∣∣1−√Var(FFN(x′

i))
∣∣∣ ≤ 1 holds true when

σFFNi
=
√

Var(FFN(x′
i)) ∈ [0, 2]− {1} (92)

Likewise, the inequality 0 <
∣∣∣1−√Var(MHSA(xi+1))

∣∣∣ ≤ 1 holds true when

σMHSAi+1 =
√

Var(MHSA(xi+1)) ∈ [0, 2]− {1} (93)

Hence, from Eq. (92) & Eq. (93), we prove that (1+smax(J
x′
i+1

FFN ))(1+smax(J
xi+1
MHSA ))

|1−
√

Var(FFN(x′
i))|

∣∣∣1−√Var(MHSA(xi+1))
∣∣∣ ≥ 1, further

proving that UB(∥gz′
i
∥2) ≥ UB(∥gz′

i+1
∥2).

Consequently, we prove that the upper bound of L2-norm of gradients for Early Layers LN2 are
higher than the one of Later Layers LN2 in Post-LN models, formally represented as follows:

UB(∥gz′
1
∥2) ≥ UB(∥gz′

2
∥2) ≥ · · · ≥ UB(∥gz′

N
∥2), (94)

when 0 <
∣∣∣1−√Var(FFN(x′

i))
∣∣∣ ≤ 1 and 0 <

∣∣∣1−√Var(MHSA(xi+1))
∣∣∣ ≤ 1.

D.1.2 Analysis for LN1 (gzi):

We need to prove that UB(∥gzi∥2) ≥ UB(∥gzi+1∥2), corresponding to ith and (i+ 1)th layer.

We can compute UB(∥gzi∥2) and UB(∥gzi+1
∥2) using Eq (62) as follows:

UB(∥gzi∥2) =smax(P1) ·

 1∏N
j=i

∣∣∣1−√Var(FFN(x′
j))
∣∣∣ ∣∣∣1−√Var(MHSA(xj))

∣∣∣
 ·

·
N∏
j=i

(
1 + smax(J

x′
j

FFN)
)
·

N∏
j=i+1

(
1 + smax(J

xj

MHSA)
) (95)

UB(∥gzi+1
∥2) =smax(P1) ·

 1∏N
j=i+1

∣∣∣1−√Var(FFN(x′
j))
∣∣∣ ∣∣∣1−√Var(MHSA(xj))

∣∣∣
 ·

·
N∏

j=i+1

(
1 + smax(J

x′
j

FFN)
)
·

N∏
j=i+2

(
1 + smax(J

xj

MHSA)
) (96)

We then substitute these expressions in the inequality UB(∥gzi∥2) ≥ UB(∥gzi+1
∥2), to prove that

early layers have higher gradients in comparison to later layers.

smax(P1) ·

 1∏N
j=i

∣∣∣1−√Var(FFN(x′
j))
∣∣∣ · ∣∣∣1−√Var(MHSA(xj))

∣∣∣


·
N∏
j=i

(
1 + smax(J

x′
j

FFN)
)
·

N∏
j=i+1

(
1 + smax(J

xj

MHSA)
)

≥ smax(P1) ·

 1∏N
j=i+1

∣∣∣1−√Var(FFN(x′
j))
∣∣∣ · ∣∣∣1−√Var(MHSA(xj))

∣∣∣


·
N∏

j=i+1

(
1 + smax(J

x′
j

FFN)
)
·

N∏
j=i+2

(
1 + smax(J

xj

MHSA)
)

(97)
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This can be further rewritten as follows:

(1 + smax(J
x′
i

FFN))(1 + smax(J
xi+1

MHSA))∣∣∣1−√Var(FFN(x′
i))
∣∣∣ ∣∣∣1−√Var(MHSA(xi))

∣∣∣ ≥ 1 (98)

We already know that (1 + smax(J
xi+1

MHSA)) ≥ 1 and (1 + smax(J
x′
i

FFN)) ≥ 1 from Eq. (87).

Now, to prove Eq. (98) to be true, we need to prove that

0 <

∣∣∣∣1−√Var(FFN(x′
i))

∣∣∣∣ ≤ 1 & 0 <
∣∣∣1−√Var(MHSA(xi))

∣∣∣ ≤ 1 (99)

We do not consider the scenario where either
∣∣∣1−√Var(FFN(x′

i))
∣∣∣ = 0 or∣∣∣1−√Var(MHSA(xi))

∣∣∣ = 0, because if either/both of them becomes 0 then the gradient
norm would go infinity, which we do not observe in real-world models either.

From Eq. (92) & Eq. (93), we know Eq. (99) holds true under the defined conditions.

Hence, we prove (1+smax(J
x′
i

FFN))(1+smax(J
xi+1
MHSA ))

|1−
√

Var(FFN(x′
i))|

∣∣∣1−√Var(MHSA(xi))
∣∣∣ ≥ 1, further proving that UB(∥gzi∥2) ≥

UB(∥gzi+1
∥2). This then inductively proves that the upper bound of L2-norm of gradients for

Early Layers LN1 are greater than the one of Later Layers LN1 in Post-LN models, formally
represented as follows:

UB(∥gz1∥2) ≥ UB(∥gz2∥2) ≥ · · · ≥ UB(∥gzN ∥2), (100)

when 0 <
∣∣∣1−√Var(FFN(x′

i))
∣∣∣ ≤ 1 and 0 <

∣∣∣1−√Var(MHSA(xi))
∣∣∣ ≤ 1.

E For Pre-LN model:

E.0.1 Analysis for LN2 (gx′
i
):

We need to prove that UB(∥gx′
i
∥2) ≥ UB(∥gx′

i+1
∥2), corresponding to ith and (i+ 1)th layer.

We can compute UB(∥gx′
i
∥2) and UB(∥gx′

i+1
∥2) using Eq. (72) as follows:

UB(∥gx′
i
∥2) = smax(P2) ·

N∏
j=i

(
1 + smax(J

LN2(x
′
j)

FFN J
x′
j

LN2
)
)
·

N∏
j=i+1

(
1 + smax(J

LN1(xj)
MHSA J

xj

LN1
)
)
(101)

UB(∥gx′
i+1

∥2) = smax(P2) ·
N∏

j=i+1

(
1 + smax(J

LN2(x
′
j)

FFN J
x′
j

LN2
)
)
·

N∏
j=i+2

(
1 + smax(J

LN1(xj)
MHSA J

xj

LN1
)
)

(102)

We then substitute these expressions in the inequality UB(∥gx′
i
∥2) ≥ UB(∥gx′

i+1
∥2), to prove that

early layers have higher gradients in comparison to later layers.

smax(P2) ·
N∏
j=i

(
1 + smax

(
J

LN2(x
′
j)

FFN J
x′
j

LN2

))
·

N∏
j=i+1

(
1 + smax

(
J

LN1(xj)
MHSA J

xj

LN1

))

≥ smax(P2) ·
N∏

j=i+1

(
1 + smax

(
J

LN2(x
′
j)

FFN J
x′
j

LN2

))
·

N∏
j=i+2

(
1 + smax

(
J

LN1(xj)
MHSA J

xj

LN1

)) (103)

29



This can be further re-written as follows:(
1 + smax

(
J

LN2(x
′
i)

FFN J
x′
i

LN2

))
·
(
1 + smax

(
J

LN1(xi+1)
MHSA J

xi+1

LN1

))
≥ 1 (104)

We know that every singular value of a matrix A is greater than or equal to 0, i.e., sk(A) ≥ 0 ∀k.
Hence, for every transformer layer,(

1 + smax

(
J

LN2(x
′
i)

FFN J
x′
i

LN2

))
≥ 1 and

(
1 + smax

(
J

LN1(xi)
MHSA Jxi

LN1

))
≥ 1 (105)

This proves that Eq. (104) is true, hence also proving that UB(∥gx′
i
∥2) ≥ UB(∥gx′

i+1
∥2) ∀i.

This then inductively proves that the upper bound of L2-norm of gradients for Early Layers LN2

are greater than the one of Later Layers LN2 in Pre-LN models, formally represented as follows:

UB(∥gx′
1
∥2) ≥ UB(∥gx′

2
∥2) ≥ · · · ≥ UB(∥gx′

N
∥2) (106)

E.0.2 Analysis for LN1 (gxi
):

We need to prove that UB(∥gxi∥2) ≥ UB(∥gxi+1∥2), corresponding to ith and (i+ 1)th layer.

We can compute UB(∥gxi
∥2) and UB(∥gxi+1

∥2) using Eq. (81) as follows:

UB(∥gxi
∥2) = smax(P2) ·

N∏
j=i

(
1 + smax(J

LN2(x
′
j)

FFN J
x′
j

LN2
)
)
·

N∏
j=i

(
1 + smax(J

LN1(xj)
MHSA J

xj

LN1
)
)

(107)

UB(∥gxi+1
∥2) = smax(P2) ·

N∏
j=i+1

(
1 + smax(J

LN2(x
′
j)

FFN J
x′
j

LN2
)
)
·

N∏
j=i+1

(
1 + smax(J

LN1(xj)
MHSA J

xj

LN1
)
)

(108)

We then substitute these expressions in the inequality UB(∥gxi
∥2) ≥ UB(∥gxi+1

∥2), to prove that
early layers have higher gradients in comparison to later layers.

smax(P2) ·
N∏
j=i

(
1 + smax

(
J

LN2(x
′
j)

FFN J
x′
j

LN2

))
·

N∏
j=i

(
1 + smax

(
J

LN1(xj)
MHSA J

xj

LN1

))

≥ smax(P2) ·
N∏

j=i+1

(
1 + smax

(
J

LN2(x
′
j)

FFN J
x′
j

LN2

))
·

N∏
j=i+1

(
1 + smax

(
J

LN1(xj)
MHSA J

xj

LN1

)) (109)

This can be further re-written as follows:(
1 + smax

(
J

LN2(x
′
i)

FFN J
x′
i

LN2

))
·
(
1 + smax

(
J

LN1(xi)
MHSA Jxi

LN1

))
≥ 1 (110)

We know that
(
1 + smax

(
J

LN2(x
′
i)

FFN J
x′
i

LN2

))
≥ 1 and

(
1 + smax

(
J

LN1(xi)
MHSA Jxi

LN1

))
≥ 1 from

Eq. (105).

This proves that Eq. (110) is true, hence also proving that UB(∥gxi
∥2) ≥ UB(∥gxi+1

∥2) ∀i.
This then consequently proves that the upper bound of L2-norm of gradients for Early Layers
LN1 are greater than the one of Later Layers LN1 in Pre-LN models, formally represented as
follows:

UB(∥gx1∥2) ≥ UB(∥gx2∥2) ≥ · · · ≥ UB(∥gxN
∥2) (111)
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F Training Details

This section outlines the detailed configurations of the datasets and models used in our experiments,
including dataset splits, pre-processing steps, model architectures, and training settings.

F.1 Datasets

Below we discuss the 6 datasets used in our paper.

Emotions dataset, proposed in Saravia et al. [2018], consists of 16,000 train, 2,000 validation and
2,000 test samples, each sample belonging to one of the 6 classes (class 0-5): sadness, joy, love,
anger, fear and surprise. To induce the notion of noisy labels, we randomly flip labels of 1% of class
5 train samples to any another random class label and let the model train till we reach 100% train
accuracy (memorizing the noisy labels).

TweetTopic dataset, developed in Antypas et al. [2022], consists of 2,858 train, 352 validation, and
376 test samples, spanning across 6 classes (class 0-5): arts_&_culture, business_&_entrepreneurs,
pop_culture, science_&_technology, sports_&_gaming, daily_life. To introduce memorization of
noisy labels, we flip labels of 1% of class 3 train samples to any another random class label while
training the model till it reaches 100% train accuracy.

News dataset, proposed in Okite97 [2024], consists of 4,686 train and 828 test samples, spanning
across 6 classes (class 0-5): business, sports, politics, health, entertainment and tech. We then split
the train set to train & validation using 90:10 stratified split over the class labels. Also, we introduce
noisy labels, by flipping labels of 1% of class 5 train samples to any another random class label, while
letting the model overfit to 100% train accuracy.

CIFAR10 dataset, first introduced in Krizhevsky et al. [2009], consists of 60,000 samples, with
each belonging to one of the 10 classes (class 0-9): airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. In our setup we consider a subset of - 16,000 train, 4,000 validation and 10,000
test samples. We also resize the images to size (224x224x3) for training the transformer model. To
introduce noisy labels, we flip labels of 1% of class 9 train samples to any another random class label,
and train the model till it reaches 100% train accuracy.

UTK-Face dataset, proposed in Zhang et al. [2017], consists of 23,705 samples and 5 classes
(classs 0-4) depicting ethnicity: white, black, asian, indian and others. We split the dataset into train,
validation and testing using 65:15:20 stratified split. We also resize the images to size (224x224x3)
for training the transformer model. We then introduce noisy labels, by flipping labels of 1% of class
2 train samples to any another random class label, and train the model till it achieves 100% train
accuracy.

NICO++ dataset [Zhang et al., 2023] consists of approximately 60,000 images distributed across
60 categories of everyday objects. In this study, we select a subset of 15 object categories, including
car, flower, penguin, camel, chair, monitor, truck, wheat, sword, seal, lion, fish, dolphin, lifeboat,
and tank. The dataset is partitioned into training (80%), validation (10%), and testing (10%) sets
using stratified sampling. Images are resized to (224x224x3) for consistency with the model input
requirements. We then introduce noisy labels, by flipping labels of 1% of class 6 train samples to any
another random class label, and train the model till it achieves 100% train accuracy.

F.2 Models

Below we discuss the 13 transformer models (6 Post-LN and 7 Pre-LN) considered as part of our
paper. We utilize the Sequence Classification variant of all the models available on Huggingface3.

3https://huggingface.co/docs/transformers/index
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Post-LN Models Description
BERT [Devlin et al., 2019] 12-layer bidirectional transformer for masked language modeling

and next sentence prediction.
DeBERTa [He et al., 2020] 12-layer model with disentangled position/content embeddings

and decoding-enhanced attention.
RoBERTa [Yinhan et al.,
2019]

12-layer robustly optimized BERT variant trained with dynamic
masking and more data.

ELECTRA [Clark, 2020] 12-layer model using replaced token detection for sample-
efficient pre-training.

DistillBERT [Sanh et al.,
2019]

6-layer distilled BERT that is smaller and faster variant of BERT,
retaining strong performance.

Longformer [Beltagy et al.,
2020]

12-layer model with sparse attention for efficient long-sequence
processing.

Pre-LN Models Description
GPT2-Medium [Radford
et al., 2019]

24-layer unidirectional transformer trained for causal language
modeling.

GPTNeo-125M [Black et al.,
2022]

12-layer open-source causal language model trained on The Pile
dataset

Qwen2-0.5B [Yang et al.,
2024]

24-layer efficient LLM optimized for generative tasks, using
RMSNorm [Zhang and Sennrich, 2019]

RoBERTA-PreLayerNorm
[Ott et al., 2019]

24-layer variant of RoBERTa with Pre-LN setting for improved
training stability.

ViT-B [Alexey, 2020] 12-layer Vision Transformer Base model for image classification.
ViT-S [Assran et al., 2022] 12-layer smaller ViT variant trained with Masked Siamese Net-

works (MSN).
DeiT [Touvron et al., 2021] 12-layer Data-efficient Image Transformer trained with distilla-

tion, without external data.
Table 3: Overview of the 13 transformer models categorized into 6 Post-LN and 7 Pre-LN architec-
tures.

F.3 Training Settings & Hyperparameters

In our study, we explore various combinations of different models and datasets across our experiments,
as follows - (1) Emotions dataset with BERT (Post-LN), DeBERTa (Post-LN), DistillBERT (Post-LN),
GPTNeo (Pre-LN), (2) News dataset with ELECTRA (Post-LN), Longformer (Post-LN), Qwen2
(Pre-LN), (3) Tweets dataset with RoBERTa (Post-LN), GPT2 (Pre-LN), RoBERTa-PreLayerNorm
(Pre-LN), (4) CIFAR10 dataset with ViT-B (Pre-LN), (5) UTK-Face dataset with DeiT (Pre-LN),
and (6) NICO++ dataset with ViT-S (Pre-LN). We fully unfreeze all layers of the pre-trained models
during training.

Regarding the hyperparameters, we consider a learning rate of 2e-5 and a batch size of 16 for all
models. Then, we train the Post-LN models for 40 epochs and Pre-LN models for 70 epochs. We
run 70 epochs for Pre-LN models, because after removal of LN parameters, the learning accuracy is
impacted significantly in Pre-LN models from the start. Hence, we examine if the accuracy would
increase by letting the model train more. In addition to that, we do not use any data augmentation in
our training procedures. We also provide the code for our experiments in the supplementary file.

F.4 Grouping of Early, Middle, and Later Layers
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(a) Pre-LN architecture
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Figure 5: Pre-LN vs. Post-LN architectures depicting LN placement and categorization of early,
middle and later layers
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To investigate which group of layers’ Layer Normalization (LN) contributes most to memorization
and learning, we divide the transformer layers into three subsets: Early, Middle, and Later layers as
shown in Fig. 5.

Formally, for a transformer model with N layers (where N is divisible by 3), we define:

Early Layers = {1, 2, . . . , N
3 }

Middle Layers =
{

N
3 + 1, . . . , 2N

3

}
Later Layers =

{
2N
3 + 1, . . . , N

} (112)

This grouping helps separately examine which set of layers most significantly influences learning and
memorization in transformers.

G Additional Experiments & Results

This section presents additional experiments (on top of the ones discussed in Sec. 4, Sec. 5 and
Sec. 6)and results on supplementary datasets and models, expanding on the analyses in Sec. G.1,
G.2, and G.3. These experiments aim to: (1) establish the distinctive impact of Layer Normalization
(LN) on memorization and learning in Pre-LN vs. Post-LN models, (2) assess the role of LN in early
layers, and (3) investigate how gradient behavior accounts for the observed phenomena.

G.1 Impact of LN on Memorization & Learning in Pre- and Post-LN models

In this section, we present the results corresponding to the distinctive impact of LN of memorization
and learning for the remaining Pre and Post LN models spanning multiple datasets. These results
further corroborate our finding that removal of LN parameters in pre-LN models critically destabilizes
learning while exacerbating overfitting, while for Post-LN models, LN parameters removal, suppresses
memorization and facilitates true label recovery without impacting learning.

The results are verified against Pre-LN models - GPTNeo, GPT2, ViT-B, DeiT, ViT-S, RoBERTa-
PreLayernorm and Post-LN models - BERT, DeBERTa, Longformer, RoBERTa, DistilBERT spanning
across multiple language and vision datasets - Emotions, News, Tweets, CIFAR10, NICO++, UTK-
Face, are provided in Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14,15. and 16.

G.1.1 Pre-LN models - Learning Destabilized
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Figure 6: LN removal destabilizes learning in Pre-LN model - GPTNeo, Emotions Dataset:
LN removal critically affects learning while memorization still persists in GPTNeo. This further
exacerbates overfitting, explained by increasing train-test accuracy gap when LN is removed, due to
the drop in test-accuracy.
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Figure 7: LN removal destabilizes learning in Pre-LN model - GPT2, TweetTopic Dataset:
LN removal critically affects learning while memorization still persists in GPT2. For GPT2, the
overfitting gap decreased after LN removal, because the model could not even stabilize during training
due to the destabilization of learning. Hence both train and test accuracies remain low and comparable.
However, the learning accuracy still remains low when LN is absent in comparison to when LN was
present, and struggle with high memorization and random predictions (red-color family bars).
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Figure 8: LN removal destabilizes learning in Pre-LN model - ViT-B, CIFAR10 Dataset: LN
removal critically affects learning while memorization still persists in ViT-B. This further exacerbates
overfitting seen by increasing train-test accuracy gap when LN is removed, due to the drop in test-
accuracy.
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Figure 9: LN removal destabilizes learning in Pre-LN model - DeiT, UTK-Face Dataset: LN
removal critically affects learning while memorization still persists in DeiT. This further exacerbates
overfitting seen by increasing train-test accuracy gap when LN is removed, due to the drop in test-
accuracy.
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(a) Learning (Test) accuracy over
epochs for Pre-LN Model (ViT-S)
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(b) Memorization, Recovery and Ran-
dom Predictions over epochs for Pre-
LN Model (ViT-S)
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Figure 10: LN removal destabilizes learning in Pre-LN model - ViT-S, NICO++ Dataset: LN
removal critically affects learning while memorization still persists in ViT-S. This further exacerbates
overfitting seen by increasing train-test accuracy gap when LN is removed, due to the drop in test-
accuracy.
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(a) Learning (Test) accuracy over
epochs for Pre-LN Model (RoBERTa-
PreLayerNorm)
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(b) Memorization, Recovery and Ran-
dom Predictions over epochs for Pre-
LN Model (RoBERTa-PreLayerNorm)
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Figure 11: LN removal destabilizes learning in Pre-LN model - RoBERTa-PreLayerNorm,
TweetTopic Dataset: LN removal critically affects learning while memorization still persists in
RoBERTa-PreLayerNorm. For RoBERTa-PreLayerNorm, the overfitting gap decreased after LN
removal, because the model could not even stabilize during training due to the destabilization of
learning. Hence both train and test accuracies remain low and comparable. However, the learning
accuracy still remains low when LN is absent in comparison to when LN is present, and struggles
with high memorization and random predictions (red-color family bars).
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G.1.2 Post-LN models - Suppression of Memorization & True Labels Recovery
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(a) Learning (Test) accuracy over
epochs for Post-LN Model (BERT)
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Figure 12: LN removal suppresses memorization & facilitates true label recovery in Post-LN
model - BERT, Emotions Dataset: LN removal in BERT suppresses memorization and facilitates
true label recovery, while keeping learning intact. This further reduces overfitting seen by decreasing
train-test accuracy gap when LN is removed.
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(a) Learning (Test) accuracy over
epochs for Post-LN Model (DeBERTa)
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Figure 13: LN removal suppresses memorization & facilitates true label recovery in Post-LN
model - DeBERTa, Emotions Dataset: LN removal in DeBERTa suppresses memorization and
facilitates true label recovery, while keeping learning intact. This further reduces overfitting seen by
decreasing train-test accuracy gap when LN is removed.
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(a) Learning (Test) accuracy over
epochs for Post-LN Model (Long-
former)
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(b) Memorization, Recovery and Ran-
dom Predictions over epochs for Post-
LN Model (Longformer)
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Figure 14: LN removal suppresses memorization & facilitates true label recovery in Post-LN
model - Longformer, News Dataset: LN removal in Longformer suppresses memorization and
facilitates true label recovery, while keeping learning intact. This further reduces overfitting seen by
decreasing train-test accuracy gap when LN is removed.
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(a) Learning (Test) accuracy over
epochs for Post-LN Model (RoBERTa)
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(b) Memorization, Recovery and Ran-
dom Predictions over epochs for Post-
LN Model (RoBERTa)
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Figure 15: LN removal suppresses memorization & facilitates true label recovery in Post-LN
model - RoBERTa, TweetTopic Dataset: LN removal in Longformer suppresses memorization and
facilitates true label recovery, while minimal drop in learning. This further reduces overfitting seen
by decreasing train-test accuracy gap when LN is removed. Note: For RoBERTa we see a slight
drop in learning accuracy which is much lower in comparison to the huge drop which happens in
GPT2 setup in Fig. 7. Furthermore, memorization is still suppressed in comparison to GPT2 where
memorization still persisted.
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(a) Learning (Test) accuracy over
epochs for Post-LN Model (Distil-
BERT)
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Figure 16: LN removal does not suppress memorization in DistilBERT (Emotions Dataset) but
does not affect learning: LN removal in DistilBERT does not suppress memorization (but it does
not impact learning) as we observe for all other 5 Post-LN models. We think other components in
the Transformer architecture might have a more profound impact on memorization in DistilBERT.
But, since this work is primarily about LN impact, we refrain from dealing with other components,
making it an interesting future work.

G.2 Significance of Early Layers LN

In this section, we illustrate the results corresponding to the significance of Early Layers LN in im-
pacting learning and suppressing memorization for remaining Pre- and Post-LN models, respectively,
across multiple datasets.

The results verified against Pre-LN models - GPTNeo, Qwen2, GPT2, RoBERTa-PreLayernorm,
ViT-B, ViT-S, and Post-LN models - BERT, ELECTRA, Longformer, RoBERTa, DistilBERT are
shown in Figs. 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27.

G.2.1 Pre-LN Models: Early Layers LN drives learning
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Figure 17: Pivotal impact of early LNs for learning in Pre-LN model (GPTNeo, Emotions
Dataset). We can clearly observe the impact of early layers LN removal on destabilizing learning in
GPTNeo, accompanied with higher train-test-accuracy gap, ∆Pre, early

overfit , than for later layers, ∆Pre, later
overfit ,

and poor memorization suppression.
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Figure 18: Pivotal impact of early LNs for learning in Pre-LN model (Qwen2, News Dataset).
We can clearly observe the impact of early layers LN removal on destabilizing learning in Qwen2,
accompanied with higher train-test-accuracy gap, ∆Pre, early

overfit , than for later layers, ∆Pre, later
overfit , and poor

memorization suppression.
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Figure 19: Pivotal impact of early LNs for learning in Pre-LN model (GPT2, TweetTopic
Dataset). We can clearly observe the impact of early layers LN removal on destabilizing learning
in GPT2, accompanied with higher train-test-accuracy gap, ∆Pre, early

overfit , than for later layers, ∆Pre, later
overfit ,

and poor memorization suppression. Note: When all layers LNs are removed, ∆Pre, all
overfit is low because

when we removed all LNs from GPT2 then the model could not stabilize in training, reaching very
low train accuracy, similar train-test accuracy as seen in Fig. 7a, hence low ∆Pre, all

overfit . However, when
we just removed early LNs, the model is able to converge to a sufficiently high train accuracy, but the
learning is impacted much severely in comparison to later layers.
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Figure 20: Pivotal impact of early LNs for learning in Pre-LN model (RoBERTa-PreLayerNorm,
TweetTopic Dataset). We observe that for RoBERTa-PreLayerNorm, removing early layers LN
impacts learning, however, memorization also seems to get suppressed, when compared with removing
all LNs where we observe persistent memorization and destabilized learning (Fig. 11a). Despite this
unique trend of RoBERTa-PreLayernorm (not following the consistent trend just as in the other 6
Pre-LN models), early layers LN still remain the most significant.
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Figure 21: Pivotal impact of early LNs for learning in Pre-LN model (ViT-B, CIFAR10 Dataset).
We can clearly observe the impact of early layers LN removal on destabilizing learning in ViT-B,
accompanied with higher train-test-accuracy gap, ∆Pre, early

overfit , than for later layers, ∆Pre, later
overfit , and poor

memorization suppression.
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Figure 22: Pivotal impact of early LNs for learning in Pre-LN model (CIFAR100, ViT-S Dataset).
We can clearly observe the impact of early layers LN removal on destabilizing learning in ViT-S,
accompanied with higher train-test-accuracy gap, ∆Pre, early

overfit , than for later layers, ∆Pre, later
overfit , and poor

memorization suppression.

G.2.2 Post-LN Models: Early Layers LN suppresses memorization
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Figure 23: Pivotal impact of early LNs on memorization in Post-LN model (BERT, Emotions
Dataset). We can clearly observe the impact of early layers LN removal on suppressing memorization
& achieving true label recovery in BERT, accompanied with higher train-test-accuracy gap, ∆Pre, early

overfit ,
than for later layers, ∆Pre, later

overfit , while learning being intact.
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Figure 24: Pivotal impact of early LNs on memorization in Post-LN model (ELECTRA, News
Dataset). We can clearly observe the impact of early layers LN removal on suppressing memorization
& achieving true label recovery in ELECTRA, accompanied with higher train-test-accuracy gap,
∆Pre, early

overfit , than for later layers, ∆Pre, later
overfit , while learning being intact.
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Figure 25: Pivotal impact of early LNs on memorization in Post-LN model (Longformer, News
Dataset). We can clearly observe the impact of early layers LN removal on suppressing memorization
& achieving true label recovery in Longformer, accompanied with higher train-test-accuracy gap,
∆Pre, early

overfit , than for later layers, ∆Pre, later
overfit , while learning being intact.
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Figure 26: Pivotal impact of early LNs on memorization in Post-LN model (RoBERTa, Tweet-
Topic Dataset). We can clearly observe the impact of early layers LN removal on suppressing
memorization & achieving true label recovery in RoBERTa, while learning being minimally impacted.
Note: In the case of RoBERTa, ∆Pre, early

overfit is slightly higher than ∆Pre, early
overfit , because even though

removing early LNs, led to a greater memorization suppression than later LNs, but learning also got
affected slightly, hence, the overfitting gap increased. However, we need to compare this Post-LN
result with its Pre-LN counterpart of GPT2 (Fig. 19), where early LNs removal, affected learning
even more, without suppressing memorization.
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Figure 27: Pivotal impact of early LNs on memorization in Post-LN model (DistilBERT, Emo-
tions Dataset). For the case of DistilBERT, we observe that just like when all LNs removal could
not suppress memorization, the same happens with early LNs removal. However, we want to draw
attention to the delay in achieving memorization, i.e., early LNs removal results in the highest delay
in memorization compared to Middle/Later LNs removal. This shows that Early LNs are still the
most significant.
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G.3 Gradients explain the impact of LN on Memorization & Learning

In this section, we provide additional results to understand the distinctive impact of LN on memoriza-
tion and learning through the lens of gradients. These results provide a deeper understanding of why
(1) LN removal destabilizes learning in Pre-LN models, and suppresses memorization in Post-LN
models, (2) Early Layers LN are more significant than later layers LN in driving these phenomena.

G.3.1 Language Datasets Results

In the language modality, we experimented with additional Pre-LN (GPTNeo, GPT2, Qwen2) and
Post-LN models (BERT, RoBERTa, Longformer, ELECTRA) across Emotions, News, and Tweets
Datasets. The results for the same are depicted in Figs. 28, 29, and 30.
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Figure 28: Learning vs. Memorization Gradients in Pre- and Post-LN Models (News Dataset):
Results clearly exhibit high gradient norms of early layers LNs than later layers for both learning and
memorization in Pre-LN (Qwen2) and Post-LN (ELECTRA, Longformer) models. Importantly, the
learning gradient norms (

∥∥glearn
x

∥∥
2
) are consistently higher than the memorization gradient norms

(∥gmem
x ∥2) across all layers. Furthermore, the ratio

∥∥glearn
x

∥∥
2

/
∥gmem

x ∥2 is significantly higher in
Pre-LN models compared to Post-LN models.
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Figure 29: Learning vs. Memorization Gradients in Pre- and Post-LN Models (TweetTopic
Dataset): Results clearly exhibit high gradient norms of early layers LNs than later layers for both
learning and memorization in Pre-LN (GPT2, RoBERTA-PreLayerNorm) and Post-LN (RoBERTa)
models. Importantly, the learning gradient norms (
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) are consistently higher than the mem-

orization gradient norms (∥gmem
x ∥2) across all layers. Furthermore, the ratio
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/
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x ∥2 is
significantly higher in Pre-LN models compared to Post-LN models.
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Figure 30: Learning vs. Memorization Gradients in Pre- and Post-LN Models (Emotions
Dataset): Results clearly exhibit high gradient norms of early layers LNs than later layers for
both learning and memorization in Pre-LN (GPTNeo) and Post-LN (BERT, DistilBERT) models.
Importantly, the learning gradient norms (

∥∥glearn
x

∥∥
2
) are consistently higher than the memorization

gradient norms (∥gmem
x ∥2) across all layers. Furthermore, the ratio

∥∥glearn
x

∥∥
2

/
∥gmem

x ∥2 is significantly
higher in Pre-LN models compared to Post-LN models.
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G.3.2 Vision Datasets Results

For the vision modality, it needs to be acknowledged that Post-LN architectures are not available in
practice/literature, and only Pre-LN models are available. Hence, we provide additional experiments
for Pre-LN models - ViT-B, ViT-S, and DeiT using multiple datasets - CIFAR10, CIFAR100, UTK-
Face. The results for the same are presented in Figs. 31, 32, and 33.
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Figure 31: Learning vs. Memorization Gradients in Pre-LN Models (CIFAR10 Dataset): Results
clearly exhibit high gradient norms of early layers LNs than later layers for both learning and
memorization in Pre-LN (ViT-B) models. Importantly, the learning gradient norms (

∥∥glearn
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2
) are

consistently higher than the memorization gradient norms (∥gmem
x ∥2) across all layers.
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Figure 32: Learning vs. Memorization Gradients in Pre-LN Models (NICO++ Dataset): Results
clearly exhibit high gradient norms of early layers LNs than later layers for both learning and
memorization in Pre-LN (ViT-S) models. Importantly, the learning gradient norms (

∥∥glearn
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2
) are

consistently higher than the memorization gradient norms (∥gmem
x ∥2) across all layers.
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Figure 33: Learning vs. Memorization Gradients in Pre-LN Models (UTK-Face Dataset):
Results clearly exhibit high gradient norms of early layers LNs than later layers for both learning
and memorization in Pre-LN (DeiT) models. Importantly, the learning gradient norms (

∥∥glearn
x

∥∥
2
) are

consistently higher than the memorization gradient norms (∥gmem
x ∥2) across all layers.
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H Analysis across multiple Noisy Label Ratios and Optimizer

We extend our analysis to evaluate whether the claim—removing LN parameters mitigates memoriza-
tion in Post-LN models while impairing generalization in Pre-LN models—holds consistently across
higher noisy label ratios (2% and 5%) in the training dataset, as shown in Table 4.

Noise Model Setting Learning (↑) Memorization (↓) Recovery (↑) Random
Prediction (↓)

2%

Post-LN (BERT) Before 91.70 100.00 0.00 0.00
After 92.00 20.62 76.25 3.12

Pre-LN (GPT-Neo) Before 91.35 100.00 0.00 0.00
After 84.85 66.87 16.56 16.56

5%

Post-LN (BERT) Before 90.35 100.00 0.00 0.00
After 91.25 27.00 66.88 6.12

Pre-LN (GPT-Neo) Before 90.35 100.00 0.00 0.00
After 82.60 67.50 11.00 21.50

Table 4: Results for higher noisy label ratios (2% and 5%) on the Emotions dataset.

Additionally, we assess the robustness of this finding under a different optimization setting by
experimenting with Muon optimizer other than Adam, which was used in the primary experiments,
as shown in Table 5.

Model Setting Learning (↑) Memorization (↓) Recovery (↑) Random
Prediction (↓)

Post-LN (BERT) Before 91.95 100.00 0.00 0.00
After 92.00 25.00 62.50 12.50

Pre-LN (GPT-Neo) Before 91.70 100.00 0.00 0.00
After 85.55 32.50 29.38 38.12

Table 5: Results with the Muon optimizer with Emotions Dataset.

Overall, the results demonstrate that our observations are agnostic to optimizer and noise-label ratios.

I Loss and Gradient Norms Analysis across Epochs

In Sec. 4, we showed how on LN parameters removal in Post-LN models, memorization is mitigated
over epochs, while in Pre-LN models, the testing accuracy drops as training progresses, without
recovering at any time. To further corroborate this claim, we plot the train-test loss functions for
Post-LN and Pre-LN models, where the overfitting gap decreases in Post-LN models, while for
Pre-LN models it increases, upon LN removal, as shown in Fig. 34.

Apart from the loss curves, we also provide how the gradient norm evolves across epochs for both
Post-LN and Pre-LN models in Fig. 35.
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(a) BERT (Post-LN) before LN removal.
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(b) BERT (Post-LN) after LN removal.
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(c) GPT-Neo (Pre-LN) before LN removal.
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(d) GPT-Neo (Pre-LN) after LN removal.

Figure 34: Train and test loss trends across epochs for Post-LN (BERT) and Pre-LN (GPT-Neo)
models before and after LayerNorm (LN) removal. In Post-LN models, LN removal reduces the
overfitting gap (difference between train and test losses), mitigating memorization. In Pre-LN models,
LN removal widens the overfitting gap, indicating impaired generalization.
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(a) Gradient norms for BERT
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(b) Gradient norms for GPT-Neo

Figure 35: Gradient norms gradually increase across epochs for both Pre-LN and Post-LN models,
with early layers exhibiting the highest gradient norms.

J Validity of Results for Generative Modeling Task

To verify the robustness of our findings in a generative modeling context, we conduct a Next Token
Prediction (NTP) experiment on the Emotions dataset using both BERT (Post-LN) and GPT-Neo
(Pre-LN) models.

Each input sample is reformulated as:

original text + “This emotion is [type]”

where the model predicts the token corresponding to the emotion label [type], one of six possible
emotion types. To introduce noisy labels, we randomly replace the [type] token for 1% of the training
samples with a different emotion label. Two different model configurations are trained and evaluated:
(i) before LN parameters removal, and (ii) after LN parameters removal.

As shown in Table 6, removing LN parameters substantially reduces memorization in Post-LN models
(BERT), while impairing learning and generalization in Pre-LN models (GPT-Neo). This confirms
that the trends reported in the main paper hold consistently for generative modeling tasks as well.
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Table 6: Results on Next Token Prediction task with noisy labels.
Model Setting Learning (↑) Memorization (↓) Recovery (↑) Random

Prediction (↓)
Post-LN (BERT) Before 92.14 100.00 0.00 0.00

After 91.95 28.12 60.62 11.25
Pre-LN (GPT-Neo) Before 91.70 100.00 0.00 0.00

After 85.55 51.25 19.38 29.38

K Broader Impacts and Limitations

Our study reveals that LayerNorm (LN) affects memorization and learning differently across trans-
former variants: disabling LN parameters suppresses memorization and aids label recovery in Post-LN
models, but destabilizes learning in Pre-LN models. These insights can inform architecture design
and robust training in noisy labels settings, where memorization needs to be controlled. While
we focus on LN due to its central role and controllability, other components—like residual paths,
attention, and feedforward layers—also influence memorization and merit further investigation. We
hope this work can provide insights to the community to encourage further follow-up studies.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have systematically demonstrated the distinct impact of LN on memoriza-
tion and learning across Pre- and Post-LN models using various experiments and results in
Sec. 4, 5, and 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper reflects the limitations of prior work, while emphasizing the
novel results of the distinctive impact of LN on memorization and learning.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Yes, complete and correct proofs are provided for the 3 Theorems provided in
the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper fully discloses all the important information in replicating the
experiments done in it.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

48



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, code corresponding to the results is provided in the supplementary file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, proper training details (data splits, hyper-parameters, optimizer, etc.)
are provided in the Appendix. Furthermore, the code corresponding to the results is also
provided in the supplementary file.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, the experiments are done across 3 random seeds for robustness in results,
while providing necessary error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, necessary compute resources specification are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the paper conforms, in every respect, with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we have added a seperate section on discussing broader impacts and
limitations of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all existing datasets are properly cited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

51



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, proper documented code is provided for the new experiments done in the
paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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