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ABSTRACT

Accurately predicting experimentally-realizable 3D molecular crystal struc-
tures from their 2D chemical graphs is a long-standing open challenge in
computational chemistry called crystal structure prediction (CSP). Efficiently
solving this problem has implications ranging from pharmaceuticals to organic
semiconductors, as crystal packing directly governs the physical and chemical
properties of organic solids. In this paper, we introduce OXTAL, a large-scale
100M parameter all-atom diffusion model that directly learns the conditional
joint distribution over intramolecular conformations and periodic packing. To
efficiently scale OXTAL, we abandon explicit equivariant architectures imposing
inductive bias arising from crystal symmetries in favor of data augmentation
strategies.  We further propose a novel crystallization-inspired lattice-free
training scheme, STOICHIOMETRIC STOCHASTIC SHELL SAMPLING (S%), that
efficiently captures long-range interactions while sidestepping explicit lattice
parametrization—thus enabling more scalable architectural choices at all-atom
resolution. By leveraging a massive dataset of 600K experimentally validated
crystal structures (including rigid and flexible molecules, co-crystals, and sol-
vates), OXTAL achieves orders-of-magnitude improvements over prior ab-initio
machine learning CSP methods, while remaining orders of magnitude cheaper
than traditional quantum-chemical approaches. Specifically, OXTAL recovers
experimental structures with conformer RMSD; < 0.5 A and attains over 80%
lattice-match success, demonstrating its ability to model both thermodynamic and
kinetic regularities of molecular crystallization.

1 INTRODUCTION

A landmark open challenge in computational chemistry is identifying a molecule’s 3D crystal
structure given knowledge of its chemical composition (Bardwell et al., 2011; Reilly et al., 2016;
Hunnisett et al., 2024). In particular, given only a molecule’s 2D chemical graph, ab initio
molecular crystal structure prediction (CSP) seeks to estimate the distribution of experimentally
realizable crystal packings in an accurate and scalable manner. This 3D arrangement of molecules
within a periodic lattice dictates the macroscopic behavior of organic solids. For instance, in phar-
maceuticals, crystal packing governs solubility, bioavailability, and the long-term stability of active
ingredients (Schultheiss & Newman, 2009; Chen et al., 2011); in material science, intermolecular
geometry dictates charge transport, porosity, and optical response—enabling applications across
electronics, photonics, sensing, and energy storage (Zhang et al., 2018; Wang et al., 2019).

The complexity of CSP is underscored by the nature of crystal formation, wherein experimentally
realized structures often occupy local minima of a highly non-smooth and well-separated Gibbs
free energy landscape (Figure 3(a)). This thermodynamic energy landscape is determined by the
competition between the intramolecular interactions that set the molecule’s own (flexible) confor-
mation and the long-range and weak intermolecular forces that dictate how molecules pack together
periodically (Chernov, 2012). As a result, classical CSP approaches combine a search procedure
(e.g., enumeration or evolutionary algorithms) with oracle access to energy models, such as force
fields or quantum-enabled density functional theory (DFT) (Engel & Dreizler, 2011; Hunnisett
et al., 2024). However, classical CSP approaches often fail to capture realistic kinetic conditions that
lead to the distribution of experimentally sampled energy minima. Consequently, these methods
require the generation and optimization of ~1,000 to 100,000 structures per molecule—the majority
of which struggle to go beyond unfavourable local energy minima despite extensive computation.
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Figure 1: Molecular crystal structures generated by OXTAL (color) compared to ground truth (grey).

Recently, generative approaches to modelling atomic systems—e.g., AlphaFold3 (Abramson et al.,
2024) for biomolecules and MatterGen (Zeni et al., 2025) for inorganic materials—have demon-
strated their ability to capture intricate 3D atomistic interactions directly from data. Molecular CSP
generalizes both of these, as proteins and inorganic crystals have a smaller set of interactions; pro-
teins pack into lattices under strong intramolecular constraints mostly governed by their backbones
(Branden & Tooze, 2012), and inorganic crystals possess strong covalent or ionic bonds across a
smaller number of atoms (Figure 2a). Protein generative models also heavily rely on biological
priors based on evolutionary information captured by multiple-sequence alignment (Jumper
et al., 2021). In contrast, small-molecule crystals span chemically diverse scaffolds, exhibit rich
conformational flexibility, and often contain many molecular copies within a unit cell (Figure 2b).
Accurately capturing these interactions requires a large and diverse training set, highly expressive
yet efficient to sample models, and training schemes that consider periodic interactions in a crystal
lattice without impeding scalability for large model training.

Main contributions. In this paper, we introduce OXTAL, an all-atom diffusion transformer model
for molecular CSP. Conditioned solely on the 2D molecular graph, OXTAL learns to sample exper-
imentally realistic crystal structures with accurate descriptions of molecular conformers as well as
their periodic packing. To enable large-scale modelling, we train OXTAL on over 600k experimental
molecular crystal structures spanning rigid and flexible molecules, co-crystals, and solvates. OXTAL
builds on recent advances in all-atom generative modelling (Abramson et al., 2024), discarding sym-
metry representations of lattice vectors and associated crystal symmetries in favor of training directly
on Cartesian coordinates and employing SE(3) data augmentation. We further introduce STOICHIO-
METRIC STOCHASTIC SHELL SAMPLING (S%), a novel lattice-free training scheme that retains the
rich information of long-range interactions. We summarize our key contributions as follows:

* We present OXTAL, the first large-scale all-atom diffusion model for molecular CSP, that samples
molecular crystal packing directly from 2D molecular graphs (§3).

» We introduce a crystallization-inspired training scheme for periodic structures, S*, which
removes explicit lattice parametrization and enables more scalable training (§3.1).

* Empirically, OXTAL significantly outperforms existing ML-based ab initio CSP methods, achiev-
ing RMSD, < 0.5A and lattice match rates above 80% within 30 samples (§4.1), while being
several orders of magnitude cheaper than traditional quantum chemical methods in DFT (§4.2).

* We provide additional chemical analysis highlighting OXTAL’s ability to capture diverse intra-
/intermolecular interactions, including crystal polymorphs, and generalize to complex co-crystal
and biomolecular interactions (§4.3).

2 BACKGROUND AND PRELIMINARIES
2.1 CRYSTAL REPRESENTATIONS

Formally, a periodic crystal structure C is defined by a pair (L, B). The first component L € R3*3
defines the lattice vectors forming a parallelepiped known as the unit cell. The second component
B = {(zi,u;)}}, is the basis, which consists of the N atoms within this unit cell. Each atom
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is described by its species {z;}¥, and its fractional coordinate {u; € [0,1)3}; relative to the

lattice vectors, or equivalently, its Cartesian coordinate Lu;. For molecular crystals, 3 naturally
decomposes into Z molecules. The connectivity of each molecule my is given by a graph
{gr = (Vi, Ex)}7_, (vertices/atoms V}, and edges Ey; species labels z; are carried by the vertices).
We next recall the symmetries present in the periodic crystal structure C.

Symmetries. Given C = (L, B) where (u; € T? := R3/Z3), the Cartesian positions of atoms are,
X(L,B)={L(n+w): neZ® i=1,...,N} (1)

Furthermore, two descriptions (L, B) and (L', B’) encode the same structure if and only if there is
a group action g in 3D, g := (R, t) € SE(3) such that, X (L', B") = g o X(L, B).

A periodic crystal admits an asymmetric unit A, the minimal subset that recovers the entire unit cell
by applying symmetry transformations of the crystal’s space group. Conversely, a supercell can be
obtained by an integer matrix U € Z3*3 with m := |det U| > 1, yielding CY) = (LU, BY)),
the same infinite crystal in a differing tiling. For example, U = ml3 yields a cubic m x m x m
supercell. A formal summary of crystal symmetries is outlined below.

Crystal representation invariances

(S1) Global translation. For t € T3, (L, {(zi,u:)}) = (L, {(zi,u; +1)}).
(S2) Global rotation. For R € SO(3), (L, {(#,w:)}) = (RL,{(#i,w:)}).
(83) Permutation (reindexing). For ( € Sn,(L, {(zi,us)}) = (L, {(2¢(iys Teiy) })-

(S4) Unit-cell change. Let U € Z3*3 with m := |det U| > 1.
 Unimodular basis change (m = 1, U € GL(3,7Z)):
(L, {(zi,us)}) = (LU {(2:, U 'w3)}), (LU)(n+ U 'w;) = L(Un + w;).
e Supercell expansion (m > 1): let R(U) C T? be a fixed set of coset representatives
for Z3/UZ? (so [R(U)| = m). Then
(L, {(zi,u)}) = (LU, {(z0, U s+ 7)) = i =1,..., N, 7 € RU)}),

since (LU)(n +U~Y(u; +7)) = L(Un + u; + 7).

Molecular crystallization. Let g = {g; = (Vj, E))}7_, denote the set of molecular graph(s) and
X (g) the set of periodic, all-atom crystal structures compatible with g. Due to the invariances, the
physically distinct configurations form a quotient space M(g) = X (g)/ ~. Ab initio CSP can then

be posed as conditional probabilistic inference over equivalence classes [C] = [ (L, B)] € M(g).
An approximation of the experimentally realized distribution under crystallization conditions R is:
pr([C]9) o mx([C]]g) exp(—BAG(C)), B=rp7 2

where AG represents the Gibbs free energy (thermodynamics), x£x summarizes kinetic accessibility
(nucleation and growth pathways), and kg is the Boltzmann constant, 7" is temperature.

In practice, learning and sampling must respect -

the symmetry of M(g), handle strong cou- o8
pling between intramoge():ular conformation and ‘czr,_j—‘&
intermolecular packing (especially in flexible (&) b -
molecules), navigate rugged kinetic and energy - ®
landscapes arising from large unit cells (often c 5 —e
> 100 atoms) and weak and long-range interac- 'a——‘——-'
tions, and marginalize over unknown Z.

.. . Ti i i Aspri i
These challenges are distinct from most inor- (a) CaTiOs (inorganic) (b) Asprin (organic)

ganic crystals, which are often characterized Figure 2: Molecular crystals consist of distinct
by strong covalent or ionic bonds, contain < molecules held together via long-range, weak in-

30 atoms per unit cell, and lack molecular teractions. They typically contain many atoms per
conformers (Figure 2). unit cell and unknown molecule copies Z.
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Figure 3: (a) Schematic of a rugged crystallization Gibbs free energy landscape with many local
minima. Kinetic conditions often dictate which experimental minimum is formed. (b) Molecular
crystallization, showing nucleation and growth in successive layers, which is the inspiration for S*.
(c) Common packing motifs exemplified in co-crystal polymorphs with 1:1 and 2:1 stoichiometric
ratio. (d) Overview of OXTAL architecture.

2.2 CONTINUOUS-TIME DIFFUSION MODELS

A diffusion model solves the generative modelling problem by being the solution to a (Itd)
stochastic differential equation (SDE) (@ksendal, 2003),

dX; = fi(X¢) dt + 0, dWy,  Xo ~ po. (3)
In Equation (3), we use boldface to denote random variables and normal script to denote functions
or samples. The function f; : R? — R corresponds to the average direction of evolution, while
o : R — R is the diffusion coefficient for the Wiener process W;. By convention, this is termed
the forward noising process that starts from time ¢ = 0 and progressively corrupts datae until the
terminal time ¢ = 1 where we reach a structureless prior p; (z1) := N (0, I).

Under mild regularity assumptions, forward SDEs of the form of Equation (3) admit a time reversal,
which itself is another SDE in the reverse direction ¢ = 1 to ¢ = 0 and transmutes a prior sample
x1 ~ pj to a sample from the target distribution xy ~ pg (Anderson, 1982),

dXt = (ft(Xt) dt — vax logpt(Xt)) dt + O'tth, X1 ~ PDi. (4)

Here W, is another standard Wiener process, and the reverse-time SDE shares the same time
marginal density p; as the forward SDE. Critically, the forward and reverse SDEs are linked via
the Stein score V, log p;(z:), which is the key quantity of interest in the design of diffusion models.
More precisely, diffusion models estimate the score function by forming an ¢5-regression objective
using a denoising network Dy(z¢,t). For example, for the variance exploding (VE) SDE family of
forward processes: p; = po*/N (0, o2), this corresponds to learning the set of optimal denoisers, i.e.,
the set of conditional expectations, across time D(x,t) = E [Xo|X; = ], V¢ € [0,1]. Owing to
the nature of Gaussian convolution, we can convert this to a simple simulation-free training condi-
tional objective for any Bregman divergence with convex F, Bg (Holderrieth et al., 2025, Prop. 2)

['c(a) = EtNu(O,l),I()Np(l‘g),Itht (z¢|zo) [/\(t)BF('TW D0 (xta t))] 5
where A(¢) : [0,1] — R, is any weighting function. For a sufficiently expressive family of denois-
ers H = {Dy : 6 € ©}, the minimizer to Section 2.2 is Dy (z,t) = D(xy,t) = E [Xo| X = x¢].
Given a trained denoising model, diffusion models generate samples at inference by simulating the
reverse-time dynamics of §4 with the learned score sy computed as sy < (Dg(zy,t) — x¢)/07.

3 OXTAL

We now describe OXTAL, our all-atom diffusion model for molecular CSP. As outlined in §2.1,
existing inorganic CSP models (Miller et al., 2024; Gasteiger et al., 2021) that rely on equivariant
architectures and explicit unit-cell parametrizations face scalability challenges for large molecular
crystals with unknown multiplicity Z. We thus introduce S* training, which exposes the model to
long-range periodic cues without ever parametrizing a lattice (§3.1). Second, we implement a high-



Under review as a conference paper at ICLR 2026

capacity, non-equivariant Transformer with data augmentation and strong molecular embeddings to
capture symmetries (§3.2). Together, these choices decouple what to generate (conformations and
packing) from how the crystal is represented during training (unit cell, Z, etc.).

3.1 STOICHIOMETRIC STOCHASTIC SHELL SAMPLING (S%)

Crystallization is a local-to-global process: once molecules approach contact distances, weak
but specific interactions induce recurring motifs that propagate periodically. Learning to denoise
such local consistent neighborhoods should therefore recover larger periodicity at inference time.
Training on such subsampled blocks reduces token size, provides natural augmentation, and mirrors
the partial observability of nucleation and growth (Figure 3(b)).

We formalize this idea in S*. Let C(V) = (LU, BY)) be a supercell with molecules m € M, where
X (m) C R3 denotes m’s non-hydrogen Cartesian coordinates. We next define the minimum-image
intermolecular distance between two molecules, dmin(m,m') = Minge x (m), 27 ex (m) [|Z — 2'[|2.

Given a fixed contact radius 7y, S* builds concentric shells S around a uniformly-sampled central
molecule m,. ~ Uniform(.A) based on the molecular contact graph induced by dmin (+, *) < Tcut:

Sk(me) ={m; e M : (k —1)e < dpmin(me,m;) < (k)e}, k=1,2,... Q)

We sample the number of shells K ~ Uniform(1, k4. ), and define the block of molecules Vi =
UfZOSj. We cap block size by a token budget Tiax (atoms). If |[Vi| < Tmax we accept Vi
otherwise we choose the smallest K* with |Vi+y1| > Tinax and subsample the frontier Sk« to
meet the budget while preserving the crystal’s molecular stoichiometry. For example, if molecule
type i appears NSV times in A and N; times in S+, we sample molecules of type i in S+ with
weight w; o< (N/*SY/N;). The resulting set is our training crop, denoted A ¢ op-

Compared to centroid- or KNN-based heuristics, this “shell cropping” better respects local interac-
tion networks by respecting anisotropic packing motifs and interactions beyond the strongest ones
(Figure 9), while mitigating truncation biases common in large-graph learning (Zeng et al., 2019).
Finally, we bound the error due to cropping. In the next proposition, we show that the error in the
loss due to cropping with S* decreases with the cube root of the number of tokens.

Proposition 1. Let 0A o, = {{u,v} € E : u € Arrop,v & Acpop} represent the bound-
ary of Acrop. Denote the number of atoms in a volume C as T(C). Let Lo(Acrop) =
2w V}EDA .y, LU, V) be the boundary loss. Assuming Ir0 s.t. L(u,v) = 0,Vu,v s.t. |[u—v]| >
0, i.e. Lislocal, and there exist 0 < a < b < co s.t. a|S| < T(S) < b|S| forany S C V. Then,

Lo(Acrop) _ )
T(Awrop) O((1 + )T (Acrop) " ?) o

3.2 MODEL ARCHITECTURE

OXTAL is comprised of: (1) a Molecular Encoder that embeds both physical and structural in-
formation; (2) a Pairformer Trunk that propagates information across all atoms in the crop; (3)
a Diffusion Module that takes in the single and pairwise representations and outputs a generated
crystal structure. The overall architecture of OXTAL is depicted in Figure 3(d).

Molecular encoder. Given an input SMILES sequence s, we generate a 3D conformer with RDKit
ETKDG followed by relaxation by the semi-empirical quantum chemical method GFN2-xTB
(Pracht et al., 2020). The atomic number, positions, formal charges, Mulliken partial charges, and
bond information are used as embeddings for the model. Finally, we resolve ambiguity of identical
molecular copies via relative position encoding on entity identifiers (Abramson et al., 2024).

Pairformer trunk. We adapt existing state-of-the-art architectures for protein folding to generate
single and pair representations for each molecular crystal (Abramson et al., 2024). Instead of
tokenizing protein residues, we simplify the tokenization such that each token directly represents
a single atom a; in the molecule. We then apply the Pairformer Stack from AlphaFold 3, which
leverages triangular self-attention to update the single and pair representations. Unlike AlphaFold
2, which relied on the equivariant Evoformer (Jumper et al., 2021) architecture, this simpler
Pairformer module is not explicitly equivariant, allowing for training on larger sequences.

Diffusion module. The design of our diffusion module follows that of AlphaFold3 (Abramson
et al., 2024), consisting of an atom attention encoder which combines token information given by
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the pairformer with an encoded representation of x;, followed by a large 70M parameter diffusion
transformer (Peebles & Xie, 2023), before a final atom attention decoder which predicts the denoised
atomic positions. We broadly follow Karras et al. (2022) for pre-conditioning of model inputs.

3.3 TRAINING

OXTAL is trained using a procedure similar to those successfully employed for protein structure
prediction (Abramson et al., 2024). The training objective is a composite loss designed to capture
both the global structure and the accuracy of the local chemical environment. This loss is comprised
of two main components: (1) a mean squared error 1oss L, (2) a smooth local difference distance
test Ly ppr as defined in Abramson et al. (2024). Both losses compare the predicted structure
Zo = Dg(zy,t) and an aligned ground truth structure 5" = align(z,o), and the latter
emphasizes on the pairwise interactions within the crop via a surrogate of the interatomic distances.
To round off our training, we also include a distogram loss on a separate head branching from the
trunk cdm(cz, d) to ensure the trunk output contains binned pairwise distance information. The final
loss is then a weighted sum of these components:

align

L(0) = Bygy(0.).o0mp (o fat) | Lose (F0,25%") + Lupor(o, xd™)| + aLaw(d. d). (D

We next curate a training dataset from the Cambridge Structural Database (CSD) that contains
~ 600k crystals. Specific details regarding model training and configuration are outlined in §B.

4 EXPERIMENTS

We evaluate OXTAL on several different datasets for molecular CSP, comparing against a range of
ML-based (§4.1) and DFT energy-based methods (§4.2). These results are complemented with a
broader chemical survey (§4.3). See §C for exact specifications.

Baselines. We compare against ML ab initio methods and energy-based methods. For ML methods,
as most models for inorganic CSP are incompatible, we evaluate the pre-trained AssembleFlow,
a molecular CSP method that infers crystal packing from rigid molecules (Guo et al., 2025) and
A-Transformer, an all-atom transformer flow matching model (§C.3.1). Additional results for
zero-shot inference from AlphaFold3 are presented in §C.3.3. For energy-based methods, we
compare against computational chemistry baselines that submitted to CCDC’s 5th, 6th, and 7th
CSP blind tests (Bardwell et al., 2011; Reilly et al., 2016; Hunnisett et al., 2024).

Metrics. We adopt standard CSP metrics and report both sample- and crystal-level scores:

1. Collision rate (Colg): Fraction of generated samples with any intermolecular distance < 7, —
0.7 A where r,, is the sum of atomic van der Waals radii (Cordero et al., 2008). Lower is better.

2. Lattice match rate (Latg and Latc): Using CSD COMPACK, a sample matches if at least 8 of
15 molecules can be aligned to the experimental cluster (cluster size per CSP5; see Appendix C).
Latc is the fraction of targets with at least one match.

3. Conformer recovery (Recs and Recc): RMSD; < 0.5A (non-hydrogen) to a solid-state con-
former. Recg averages over all samples; Recc is the fraction of targets with at least one match.

4. Approximately solved (§glc): Any collision-free, lattice-matching sample with RMSD;s< 2 A
on a 15-molecule cluster.

4.1 CSP FOR RIGID AND FLEXIBLE MOLECULES

First, we compare OXTAL to ab initio ML models on two different test sets comprised of repre-
sentative rigid and flexible molecules with ground-truth structures in CSD (see §C.2 for details).
For each crystal target, every method generates ng = 30 samples. Training-time exclusions ensure
no target appears in the training sets of OXTAL or A-Transformer; AssembleFlow uses a public
checkpoint that may include overlap. DFT baselines are omitted here due to prohibitive cost.

Results. Table 1 shows OXTAL outperforms existing ML methods across all metrics on both
datasets. Intramolecularly (Recc), OXTAL recovers up to 90% of solid-state molecular conformers;
intermolecularly, Colg is near zero on rigid targets and low on flexible ones. OXTAL’s predicted
packings also attain strong lattice match rate against experimental structures, with approximate
solves for both rigid and flexible molecules. Qualitatively (Figure 4), A-Transformer struggles to
capture meaningful conformers despite being given Z, highlighting the limitations of a unit cell
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Figure 4: Example crystal packing generated by A-Transformer, AssembleFlow, and OXTAL.
Table 1: Performance of ab-initio machine learning models 10 —
on both rigid and flexible molecular CSP. OXTAL achieves an ’ - El'g",’bl
order of magnitude improvement and is the only model able 8 e
to approximately solve any crystals in the flexible dataset. <
2
Model Cols | Latg 1 Latc 1T Recs T Rece 1 Solg 1 %
Rigid Dataset o o
A-Transformer 0.731 0.015 0.060 0.033 0.120 0.060 < 51
AssembleFlow 0.524 0.001 0.040 0.001 0.020 0
OXTAL 0.011 0.873 1.000 0.737 0.960 0.300
Flexible Dataset 1 10 100 500
N samples
A-Transformer 0.874 0.002 0.063 0 0 0
AssembleFlow 0.850 0 0 0 0 0 . . .
OXTAL 0.167 0410 0813 0.056 0500 0125 ©2ure>: OXTAL sample efficiency

for 10 rigid & flexible molecules.

based model. AssembleFlow generates molecular assemblies with large spatial separations that lack
periodicity (also reflected in low Latc and Latg scores), along with frequent interatomic clashes.

Sample efficiency. For downstream screening and design, few-sample success is critical. OXTAL
exhibits a log-linear improvement in RMSD,s among lattice-matched predictions as n increases

(Figure 5), with several rigid targets reaching Latc and Solc with n < 10. This suggests the sampler
(i) often lands near the correct motif and (ii) refines global periodicity with additional draws.

4.2 CCDC CSP BLIND TESTS

Every few years, CCDC holds a CSP blind test competition, which
invites leading computational chemistry groups to solve a handful
of hidden crystal structures (Bardwell et al., 2011; Reilly et al.,
2016; Hunnisett et al., 2024). We therefore evaluate OXTAL on
structures from the three most recent (5th, 6th, and 7th) blind tests.
Metrics and experiment set up follow §4.1. We compare OXTAL
and other ML ab initio baselines against the aggregate of reported
expensive DFT-based submissions (DFT,ys). See Appendix C.4 for
details and per-structure results.

Results. Table 2 shows that OXTAL strongly outperforms ab ini-
tio ML baselines, and achieves the best or second best performance
across all three tests. While DFT methods may sometimes attain
higher conformer recovery or approximate solve rates, OXTAL con-
sistently scores the best in terms of lattice match rate. From a per-
sample basis, only 5 — 30% of DFT samples match the lattice clus-
ter, whereas OXTAL generally recapitulates the packing structure
(48 — 67%). This suggests that while DFT identifies many local
energetic minima, OXTAL can better capture the joint energy and
kinetic features that determine which minima are more likely to be
formed. Of the thousands of submitted predictions (and potentially
more generated but unsubmitted structures), only a small percent-
age of DFT-identified minima are close to ground truth structures
(Figure 6). Predicting the correct experimental structure in few

10
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Figure 6: OXTAL, for targets
shown, achieves  similar

RMSD;5 with less (%) sub-
missions compared to DFT.
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Table 2: Results for the 5th, 6th, and 7th CCDC CSP blind 10°{ moxtal @cCspP-6 ®
tests. Classical chemistry methods are aggregated as DFT,,. 105 ] MCSP-5 ACSP7
The best model is bolded, and the second best is underlined. a A
—_— 3 1041® o f

Model ns Cols | Lats 1 Latc T Recs T Recc 1 Sole = 10°] ® )

CSP Blind Test 5 S 15 ® oat
A-Transformer 180 0 0 0 0 0 0 g 1014 8 6 = [—
AssembleFlow 180 0.717 0 0 0.150 0.500 0 g g
DFTayg 3314 0.003 0307 0556 0772 0.681 0500 ~ 10°
OXTAL 180 0.006 0.667 0.833 0.572 0.833 0.167 10711 ®

] =]

CSP Blind Test 6 o0 o5 10
A-Transformer 150 0 0 0 0 0 0 Lattice match rate (Lats)
AssembleFlow 150 0.800 0 0 0.073  0.200 0 Figure 7: Lattice match rate per
DFTavg 1591 0082 0230 0416 0.490 0440 0.400 Crystal attempted relative to av-
OXTAL 150 0.013 0.660 1.000 0.160 0.600 0200 craoe inference cost (in $USD)

CSP Blind Test 7 for submitted CCDC competition
A-Transformer 240 0 0 0 0 0 o  methods. OXTAL is denoted in
AssembleFlow 240 0808 0 0 0063 0250 o red. Costs are normalized to a
DFT,, 6608 0.067 0.053 0.500 0.319 0456 0.441 Single on-demand AWS instance
OXTAL 240 0.021 0.483 0.875 0.129 0375 0.125 from Sept. 2025 (see §C.4.1).

shots is crucial for downstream discovery applications, and OXTAL reliably approximates lattice
packings sans any ranking methods.

Inference cost. Another major pitfall of DFT-based methods is the extremely high computational
cost required to run the atomistic simulations. Recently, CCDC raised concerns over the 46 million
CPU core hours that were reportedly utilized by submitted methods in CSP-7 to solve only 8 crystals
(Hunnisett et al., 2024). Unlike traditional DFT methods that require new simulations for each new
molecule, OXTAL’s upfront training cost (§B) is amortized at inference, allowing us to efficiently
generate samples for new molecules. Using standardized on-demand cloud pricing (§C.4.1), OXTAL
is over an order of magnitude cheaper at inference time, while still achieving strong lattice match
rates (Figure 7). Given the CCDC’s call for more efficient CSP algorithms, OXTAL’s cost profile
enables broad screening and dense posterior sampling before any optional physics-based refinement.

4.3 SURVEY OF CHEMICAL INTERPRETABILITY

Beyond benchmark metrics, we examine OXTAL’s ability to reproduce chemically meaningful intra-
and intermolecular features in practically relevant crystals. Figure 1 highlights accurate packings
(RMSD;5 < 1.5A) across diverse rigid and flexible chemotypes: drug-like molecules (HURYUQ),
polymer precursors (CAPRYL), organometallics (ACACPD), m-conjugated materials (QQQCIG,),
and QAXMEH, which contains the most known polymorphs (see §E for more).

Molecular interactions. For intramolecular interactions, OXTAL recovers solid-state geometries
for highly flexible molecules (which are highly influenced by packing), including small-molecule
drugs as well as biomolecular fragments in the Protein DataBank (e.g. RMSD; = 1.3A for a 6-mer
peptide with 17 rotatable bonds (20KZ) in Figure 8(a)). For intermolecular interactions, OXTAL
accurately captures both strong and weak interactions, both in registry and lengths. Examples in
Figure 8(b) include the complementary hydrogen bonds in a semiconducting crystal (XIJJOT), the
weak Cl-H halogen bonds in an organometallic catalyst (OJIGOG), -7 stacking in 7-functional
molecule (TEPNIT), and multiple weak contacts in a cluster of the flexible drug aripiprazole
(MELFIT) in Figure 15. Zooming out, OXTAL reproduces diverse packing motifs, including
1D columnar structures (e.g. BALNAD in Figure 8(d)), quasi-2D herringbone structures (e.g.
ANTCEN in Figure 13), and 2D brickwork structures (e.g. UMIMIO in Figure 1).

Polymorphs. For molecules with many known polymorphs (including highly rotatable scaffolds),
independent OXTAL samples predict distinct experimental polymorphs (e.g., the drugs galunisertib
DORDUM in Figure 8(c) and indomethacin INDMET in Figure 15). This suggests the sampler can
explore multiple kinetic and thermodynamic basins rather than collapsing to a single motif.

Multi-component systems. Lastly, OXTAL is not restricted to single-component systems. OXTAL
can correctly predict the interactions between electron donor and acceptors (Figures 8 and 14), which
dictate the crystals’ electronic properties. For the charge-transfer semiconducting co-crystals BAL-
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Figure 8: OXTAL (green) captures experimental (grey) (a) intramolecular and (b) intermolecular
interactions in drug-like molecules, peptides, semiconductors, and catalysts. OXTAL can further
infer (c) distinct experimental polymorphs as well as (d) co-crystals.

NAD and PERTCQ, OXTAL correctly reproduces the 1D 7-stacked columns with alternating donors
and acceptors, the precise inter-columnar brick-wall registry, as well as the 7-7 stacking distances.

5 RELATED WORKS

Physical approaches to crystal structure prediction. Classical crystal structure prediction
(CSP) mostly applied search-based algorithms to sampled a pre-defined search space (Hunnisett
et al,, 2024). While many such methods have shown varied degree of success for different
applications (van Eijck, 2002; Pickard & Needs, 2011; Case et al., 2016; Tom et al., 2020; Banerjee
et al.,, 2021), they fundamentally rely on many calls to an expensive evaluation function (e.g.,
energy computation using DFT) and struggle to leverage prior data effectively. Recent search and
optimization approaches replace DFT with machine learning interatomic potentials (Batatia et al.,
2024; Wood et al., 2025; Gharakhanyan et al., 2025). In contrast, OXTAL does not require explicit
energy function calls and brings orders of magnitude improvements in speed and inference costs.

Generative models for inorganic crystal structure prediction. Generative models have been
applied for unconditional de-novo generation of new inorganic periodic crystals (Xie et al., 2022)
and later used for generation conditioned on crystal composition (Jiao et al., 2023; 2024; Yang
et al., 2024; Miller et al., 2024; Levy et al., 2025). In contrast to molecular crystals, inorganic
crystals are typically smaller and do not possess the same flexibility/packing diversity.

Protein structure prediction. In computational structural biology, the analogous task of protein
structure prediction (PSP) conditioned on a protein sequence has seen transformative progress with
landmark models like AlphaFold (Jumper et al., 2021; Abramson et al., 2024) and ESMFold (Lin
et al., 2023), followed by de novo protein design approaches (Watson et al., 2023; Yim et al.,
2023; Bose et al., 2024). These models work with a few dozen residue types, compared to a larger
chemical space in general molecular CSP, and use MSA and evolutionary structural information not
present in molecular crystals. Detailed discussion of related work can be found in §D.

6 DISCUSSION

In this paper, we introduce OXTAL, a large-scale all-atom diffusion model for 3D molecular CSP
that learns the joint distribution of molecular conformations and periodic packing conditioned on 2D
graphs. Discarding explicit equivariance and unit-cell parametrization in favor of a symmetry-aware
S* augmentation, OXTAL learns periodic motifs from locally consistent neighborhoods at scale,
enabling efficient sampling at all-atom resolution. Empirically, OXTAL achieves state-of-the-art
results among ab initio ML methods, and attains competitive lattice recovery at orders-of-magnitude
lower inference cost compared to DFT-based methods. Our chemical survey supports OXTAL’s abil-
ity to capture diverse intra- and intermolecular interactions, yet several improvements remain. These
include integrating reliable ranking and local relaxation, conditioning on crystallization context (i.e.
solvent, temperature), and further improving sample efficiency and uncertainty quantification.
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ETHICS STATEMENT

This work models experimentally realizable molecular crystal structures using publicly curated crys-
tallographic data (CSD) under an academic license; we redistribute only non-proprietary data and
provide scripts that require users to obtain their own CSD access. No human subjects or personally
identifiable information are involved. Potential impacts are largely beneficial (accelerated solid-
form screening and molecular materials design), but we acknowledge dual-use risks: faster structure
generation might marginally aid the design of hazardous energetic materials or hard-to-detect poly-
morphs that affect drug bioavailability. We mitigate by (i) releasing usage guidelines and filters to
flag energetic motifs and highly strained lattices, and (ii) encouraging downstream human/physics
validation before deployment in safety-critical settings. We report training compute and approxi-
mate carbon footprint in §B; we adopt mixed precision and efficient dataloading to reduce energy
use. The authors declare no competing financial interests.

REPRODUCIBILITY STATEMENT

We will release code, model checkpoints, and evaluation scripts. Because CSD redistribution is
restricted, the training code will not be released, but appropriate pre-processing code, such as S*
cropping (including 7y, 79, Tonaxs Kmax) Will be released. We fix random seeds for training and
sampling, and specify all hyperparameters necessary for reproducing the model. We will specify
third-party tool versions (RDKit, xXTB/GFN2, COMPACK). Evaluation is fully scripted: COM-
PACK settings, RMSD, /5 definitions, collision thresholds (r,, — 0.7 A), and criteria for Lats/Latc,

Recg/Recc, and Solc. We will also provide inference configurations for all reported figures/tables,
ablation toggles, baseline re-runs (A-Transformer, AssembleFlow) with their seeds, and a Docker
container to reproduce numbers on comparable hardware.
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APPENDIX

A THEORY

Proposition 1. Let 0A rop = {{u,v} € E : w € Aprop, v & Acrop) represent the bound-
ary of Acrop. Denote the number of atoms in a volume C as T(C). Let Lo(Acrop) =
> {uw}oA.,., £(u,v) be the boundary loss. Assuming I s.t. L(u,v) = 0,Vu, v s.t. |lu—v| >
0, i.e. Lislocal, and there exist 0 < a < b < oo s.t. a|S| < T(S) < b|S| forany S C V. Then,
La(Acrop) =il
S0P — O((1 4 €)T(Arop) /3 6
L) — O((1+ T (Acrr) ) ©

To prove this proposition, we first label our assumptions.

Al Locality. 3rg s.t. L(u,v) = 0 forall u, v s.t. ||u —v|| > rg

A2 Uniform Density. there exist 0 < a < b < co s.t. alS| < T(S) < b|S|forany S C V.

Next we investigate the S4 algorithm. We first recall the definition of shells and A c,qp

Si(ge) = {g: € CY) - ke < d(ge,gi) < (k+1)e}, k=0,1,2,... (8)
where d is the distance between molecules g. and g; in the infinitely repeating lattice. Molecules
from each full shell are added until the total number of tokens satisfies |V |+ >, cxc [Vs, | < Nmax,
where Npax is the crop budget. If at least one full shell fits, we train on the crop A rop = {gc} U
Ukex Sk- This implies that A..,.,, can be well approximated by a ball centered around g.. or radius
(k+1)e.

Define the ball of radius ek as B, = |, cx Sk First a short lemma to show the number of neighbors
of a node is bounded.

Lemma 1. Define the edge neighborhood of g as N'(g) = {{u,v}s.t. u = g N L(u,v) > 0}.
Assuming [Al] and [A2] we have a uniform bound on the degree

Wgl<C ©)
for some C' independent of g.

Proof. This follows from considering a ball of radius ry around g. That ball has volume V' = %r%.

Using [A2] we have that the token count T'(By(g)) < 413, and therefore |\ (g)| < 427§ which is
independent of g. U

We next note that for a regular lattice structure we have the following inequality for the size of the
boundary relative to the total volume. Specifically for a lattice we have

Lemma 2. For 0 < a < b < oo on a 3D lattice we have the following relationship between a
sphere’s surface area and volume a|By,|?/> < |0By| < b|By|?/3.

we note that the constants are due to discretization error, and locality. As we approach the continuous
limit i.e. £ — oo the bounds become tight.
Next, we have to bound how well A, is approximated by a ball of radius k.

Lemma 3. For some constant 0 < ¢ < 00, Ay < OBy + ce|Bk|2/3.

Proof. We first note that B, C A.ropBr41 by construction of A p. This means that we can consider
A op as all the molecules in By, plus (possibly) some additional molecules in Sy (g.). We can then
bound the total surface area as

‘6Acrop| < |8Bk| + |8Sk(gc)‘ (10)
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however we know that the surface area of molecules in Si(g.) is bounded by the number of nodes

in S, and some constant.
|08k (ge)| < ¢S]
= c((e(k +1))* — (k)*))
= ce’(3k* + 3k + 1)
< ce3k?
< ce| By |¥?
which combined with equation 10 proves the lemma.

We are now ready to prove the main proposition.

Proof. Assuming L5(A crop) is based on a sum of pairwise interaction terms i.e.

EB(Acrop) = Z ‘C(uv U)

{u,v}€0A crop

Lemma 3 allows us to first analyze L£5(5};) then use Lemma 3 for the final bound.

Lo(Br) = Z L(u,v)

{u,v}€dBy

< c|oB L(u,
< c|0By|  max  L(u,v)

using Lemma 2,

<¢|Bp¥? max  L(u,v)
{u,v}€dBy
Assuming [A1], [A2], and Lemma 1,

< o T(By)[**
Combining this with Lemma 3 we have the final result
L(’)(Acrop)

T(Acrop) - O((l + e)T(ACmP)il/B)

(11
12)
13)
(14)

15)
O

(16)

7)

(18)

19)

(20)

O

As a reminder, this proposition implies that the boundary surface becomes less of an issue as the

number of tokens grows.

17



Under review as a conference paper at ICLR 2026

a) b)

Figure 9: (a) KNN as used in AlphaFold3 captures only the closest interactions (e.g. hydrogen bonds
in trimesic acid, highlighted in blue) but does not capture more distant interactions that are equally
crucial for crystallization (e.g. 7-7 stacking in trimesic acid, highlighted in red). (b) centroid-based
approaches will create anisotropic crops in elongated molecules, for example only capturing a 1-
dimensional column (grey) in the ellipsoid p-quinquephenyl, while missing peripheral interactions
(red).

B TECHNICAL DETAILS

Experiments were performed on heterogenous GPU clusters consisting of NVIDIA L40S and H100
GPUs. Models were primarily trained using multinode DDP training on L40S GPUs as cluster
availability permitted. Inference is performed across all available hardware.

B.1 TRAINING DATA PROCESSING

We curate training data from the Cambridge Structural Database (CSD, including releases up to
May 1, 2025) under the following criteria: (i) 3D coordinates are present, (ii) the conventional
R-factor < 9%, (iii) the structure is derived from single crystal diffraction at ambient pressure, (iv)
the structure is not polymeric, (v) the structure can be sanitized by RDKit with no missing heavy
atoms, (vi) there is a known space group, and (vii) at most 250 non-hydrogen atoms are present per
unit cell. To avoid leakage, we exclude any entry belonging to a test crystal family and any entry
containing a molecular component that appears in test sets. To avoid oversampling certain clusters,
within each crystal family, near-duplicate polymorphs are collapsed using RMSD5 < 0.25 A,
retaining the entry with the lowest R. Our final training dataset contains 594,202 crystals in total.

For data preparation, crystallographic disorder is resolved by selecting the disorder group with the
highest occupancy. We remove hydrogens for training and extract kekulized bonds from crystallo-
graphic metadata. Prior to building supercells, molecules of the crystals are centered to lie within
the unit cell, and the unit cells are transformed to their unique Niggli-reduced forms. Supercells are
constructed by tile translation T;;;, = 7a + jb + kc for 4, j,k € —1,0, 1 such that molecules with
centroids inside the supercell boundary are included.

B.2 ADDITIONAL MODEL DETAILS
B.2.1 STOICHIOMETRIC STOCHASTIC SHELL SAMPLING (S%)

We provide the full algorithm for S* cropping in Algorithm 1. Recall that for a crystal C,
M denotes the set of molecules within the crystal, A denotes the tokenized atom array for all
molecules m € M, and X C R3 denotes the Cartesian coordinates of each atom a € A.
Note that for practical purposes, we assume M has a finite size. Additionally, A¢ is the crys-
tal’s minimal asymmetric unit, and d is a pre-computed intermolecular distance matrix, where
d(lmj) = minmiGX(mi),IjGX(mJ‘) ||‘TZ - ‘r]||2

Given an input shell radius 7., we first sample a central molecule m, ~ Uniform(A). Then,
we assign all other molecules m; € M \ m,. to a shell layer, as defined by r.,;. Note that each
molecule m; can only belong to one shell layer. Next, with probability (1 — pmax), we randomly
sample how many shells to keep. We then add complete shells of molecules to our selected set until
the maximum token budget 7,,,x is reached. If no complete shell can fit within the token budget,
we adaptively sample molecules in the first shell according to Algorithm 2 in order to preserve the
stoichiometric ratios of the molecules in A¢.
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Implementation details. In practice, we begin by first considering a 3 x 3 X 3 crystal supercell
CU), where U = 31I. For each input crystal, we sample a molecule m, from the asymmetric unit
of the central unit cell. After analysing the distribution of intermolecular distances for all crystals in
the training set, we decided to set 7.,,; = 4.5 A (see Figure 10). Furthermore, in order to encourage
the selection of larger A .., blocks, we set pax = 0.8 and Tiax = 640.

4 x10°

3 x10°

2 x10°

Frequency

=

o
o
L

6 x10°

4x10°+
2 3 4 5 6 7 8 9 10
Distances/A

Figure 10: Distribution of intermolecular distances in the processed CSD training dataset.

Algorithm 1 STOICHIOMETRIC STOCHASTIC SHELL SAMPLING

: Input: M, A, A, d, 7cut, Tinax> Pmax

m, ~ Uniform(.A) > Sample central molecule
M — M\ {m.}

Initialize S = 0, k < 1

while M # () do > Compute shell layers around m,.

Sk +— {m; € M :d(me,m;) < k-reut}
S+ SUSp, M+ M\ Si, bk« k+1

end while
bimax ~ Bernoulli(ppax) > Sample maximum number of shells Sy, to keep
: if b,ax = False then
Emax ~ Uniform{1,...,k — 1}
S+ {Sl, . 7Skmax
: end if
: Initialize Agrop < A(me), i+ 1,
: while |Acmp| < Tihax do > Add full integer shells within token budget 71,1«
if [Acrop| + [A(S;)| > Thnax then
break
end if
Acrop < Agrop UA(S;), i i+ 1
: end while
: if ¢ = 1 then > If no full shell fits, sample molecules according to stoichiometry

A rop < ADAPTIVE STOICHIOMETRIC SAMPLING(A, m., A, Thax, S1)

: end if
: return A op
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Algorithm 2 ADAPTIVE STOICHIOMETRIC SAMPLING

1: Input: A, m¢, A, Thax, S

2: Calculate proportion of each molecule type p; = |{m"6A”‘y£7("”):t}‘
3: Initialize ideal targets: R; < round(p; - |\S|) for each type ¢
40 Acrop < A(me), Rigpe(m.) < Rigpe(m.) — 1 > m, is already pre-selected
5:

6: while |A | < Tax do
7: Bucket remaining molecules by type: By = {m € S : type(m) = t}
8: Compute adaptive weights for each type:
9: forallt € T with B; # () do
10: W < Rt/lBt|
11: end for

12: Normalize weights to probabilities: P} = w;/ >, we

13: Select type ¢’ randomly according to probabilities P}

14: Sample m’ ~ Uniform(B;)

15: if [Acrop| + [A(m/)| > Thyax then

16: break > Stop if adding this molecule exceeds token budget
17: end if

18: Acrop < Acrop UA(M)

19: S+ S \ {m'}, Bt/ < Bt/ \ {m’}, Rt/ < Rt/ -1

20: end while

21: return A,

B.2.2 ARCHITECTURE

Our model adopts the AlphaFold-3 (AF3) trunk-plus-diffusion design via the public PROTENIX
Team et al. (2025) implementation. Atom-level tokens with relative position and entity encodings
are processed by an AF3-style Pairformer trunk with recycling to produce single (s) and pair (z)
representations; the MSA and LM/RNA pathways are disabled in all reported experiments. These
representations condition a structure-denoising head consisting of an atom-attention encoder, a
transformer-based diffusion module, and an atom-attention decoder that outputs 3D coordinates.
Aside from retokenizing residues as atoms and disabling MSA/LM inputs, we make no material
architectural changes relative to AF3.

B.2.3 LOSSES

We use a combination of losses to encourage accurate structure prediction on both the global and
local scales. Here we enumerate what the different losses are, how they are formulated, what they
are useful for and how they lead to a correct diffusion model.

SmoothLDDTLoss. The Smooth local distance difference test (SmoothLDDT) loss is a smooth
form of an existing LDDT loss (Mariani et al., 2013). The LDDT measures how well two structures
align over all pairs of atoms at a distance closer than some predefined threshold. For us, this is
Ry = 15A. These pairs of atoms form a set of local distances L. The LDDT score is the average of
fractions at four distance thresholds [0.5, 1.0, 2.0, 4.0] Angstroms. The Smooth LDDT test, instead
of using a binary test of whether or not the local distances are on the same side of the threshold,
uses a sigmoid function instead. Let

L=z —a"| 1)

LT = [|z9T — (2T)T| (22)

§ = abs(L — LYT) (23)

1 1
€= sigmoid(i —§) + sigmoid(1 — &) + sigmoid(2 — §) + sigmoid(4 — ¢) 24)
mask = 6§ < 15 (25)
Then the SMOOTHLDDT between two molecules of size d is:

SMOOTHLDDT(z, 2") = (e - mask) /(d(d — 1)) (26)
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Our SmoothLDDT loss is then equal to
Lgppr(z,z¢T) = SMOOTHLDDT (2, ALIGN(2°T, 2)) (27)
where ALIGN(a, b) performs an optimal rigid alignment of a to b in 3D.

B.2.4 MODEL HYPERPARAMETERS

We use the following hyperparameters for training and inference.

Training. We base our training implementation off of the open-source Protenix model (Team et al.,
2025). Because we are not doing protein folding, we have disabled the previously built-in multiple
sequence alignment (MSA) module. We train using an Adam optimizer with 8; = 0.9, 52 = 0.95,
and a learning rate of 0.0018 and weight decay of 1e-8. The learning rate is additionally set to a
scheduler with 1,000 warmup steps, and a decay factor of 0.95 for every 50,000 steps. We report
results for our model trained at 110,000 steps.

The atom encoder has 3 blocks with 4 heads, and the atom embedding size is 128, whereas the pair
embedding is size is 16. In terms of the main pairformer trunk, we use 4 pairformer blocks, each with
16 attention heads and a dropout rate of 0.25. The hidden dimension for the pair representation is
128, and the hidden dimension for the single representations are 384. Furthermore, do we 2 rounds
of recycling. For the diffusion block, we use a diffusion batch size of 32 and a chunk size of 1.
The actual diffusion transformer has a 12 transformer blocks, with 8 attention heads. As mentioned
above, crop size (and therefore token size for the diffusion transformer) is set to 640.

Inference. At inference time, we use the following hyperparameters for our diffusion sampling:
Yo = 0.8, noise scale lambda = 1.003, and we use 200 steps with a step scale eta of 1.5. When
generating samples, we generate 1 sample from 30 different seeds for each target crystal structure.
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C EXPERIMENTAL DETAILS

C.1 SELECTION OF PERFORMANCE METRICS

The four metrics in the main text jointly probe physical plausibility (Cols), packing similarity (Latg,

Latc), intramolecular fidelity (Recs, Recc), and a holistic approximate solve indicator (Sol¢c). Re-
porting both sample-level and crystal-level aggregates is essential: the former characterizes the dis-
tributional quality of all proposals, while the latter answers whether a target was recovered at least
once. Concretely, crystal-level rates are an OR-aggregation over a target’s samples. The pair helps
diagnose failure modes such as mode collapse (high Latc with low Latg) and low recall (the reverse).

Thresholds and interpretability. We adopt community conventions for RMSD;, (Nessler et al.,
2022):

« RMSD;5 < 1.0A typically indicates the predicted packing reproduce the experimental match and
lies in the exact energy basin as the experimental structure. This metric is the one used by the 5th
CSP blind test (Bardwell et al., 2011).

 1.0—2.0A usually indicates the prediction shares the correct topology with mild lattice strain
or small reorientations. If the H-bond graph, Z/Z’, density, and PXRD are consistent, this is
very likely recoverable to < 1 A with a brief local relaxation. Otherwise, the structure is often
structurally related to the ground truth (i.e. in or near the correct packing motif/topology or space
group but with slip, molecular misorientation, or a cell mismatch). It demonstrates that the method
can correctly identify the neighborhood of the global energy minimum, even if it can’t pinpoint
the exact minimum itself.

* 2.0—3.0 A typically indicate a significant mismatch. At this level of deviation, key intermolecular
interactions, like hydrogen bonds, may be incorrect. The overall packing symmetry might also
be different. However, the prediction might still capture a general feature of the packing (e.g.,
identifying a layered structure vs. a herringbone packing).

« above 3.0 A. These values are generally not considered useful. The deviation is so large that the
predicted structure is almost certainly in a completely different and incorrect energy basin. Any
similarity to the experimental structure is likely coincidental.

Our Sol¢ (collision-free, lattice-matching, RMSD 5 < 2A) is a thus a strict, early-stage -utility
indicator: not “solved,” but reliably near-correct for downstream relaxation and re-ranking.

Lattice matching for non-periodic predictions.. Our generators output finite blocks without peri-
odic conditions. For large inference blocks, it is possible to identify translation vectors that map the
finite cluster onto itself (e.g., by correlating molecular centroids/local environments), least-squares
fit three independent vectors to define a primitive lattice, and convert atoms to fractional coordinates.
Nevertheless, CSD COMPACK can be directly used for robust alignment of a block against a crys-
tal structure while preserving standard CSP rigor. First, we employ standard practices of avoiding
hydrogen-atom alignment and allowing mismatches in connectivity annotations (e.g., bond orders).
In the absence of periodic images, greedy pruning can miss valid correspondences; therefore for
all methods (including DFT baselines) we use a search time of 10 seconds with a distance/angle
threshold of 50%. This enables reliable COMPACK outputs on non-PBC inputs without diluting
the criterion: acceptance still hinges on multi-molecule superposition (15-molecule cluster, > 8
matched) and the same RMSDj, thresholds used in periodic CSP benchmarks.

C.2 MOLECULAR CSP ON RIGID AND FLEXIBLE DATASETS

We construct our rigid and flexible datasets using crystals from the Cambridge Crystal Structure
Database (CCDC), following the same processing procedure outlined in §B.1. The rigid dataset is
comprised of 50 molecular crystals, and the flexible dataset is comprised of 16 molecular crystals.
These are generally crystals with practical relevance or newly-released crystals. We generally define
rigid molecules to contain 0-3 rotatable bonds, and flexible molecules to contain more than that. We
note there is a small nuance in flexibility, as we refine it in the molecular context (by ring restric-
tion or number of known polymorphs, etc.), this means rubrene (QQQCIG), tetraphenylporphryin
(TPHPOR), CL-20 (PUBMUU) are defined as rigid; ROY (QAXMEH), galunisertib (DORDUM),
sulfathizaole (SUTHAZ), flufenamic acid (FPAMCA) and YOPYEL are defined as ’flexible’. The
exact CSD identifiers are provided below for reference.
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Table 3: Performance of ab-initio machine learning models on rigid and flexible molecular CSP. For
each model, results are calculated using n = 30 samples for each crystal target.

Model Colg | Latst Latc1T Recst Recc? Solgt
Rigid Dataset

A-Transformer 0.731  0.015  0.060 0.033 0.120 0.060
AssembleFlow  0.524  0.001 0.040 0.001 0.020 0

AlphaFold3 0.114 0.089 0.340 0.133 0.480 0

OXTAL 0.011 0.873 1.000 0.737 0.960 0.300
Flexible Dataset

A-Transformer 0.874 0.002 0.063 0 0 0

AssembleFlow  0.850 0 0 0 0 0

AlphaFold3 0.580 0.144 0.313 0.191 0.4375 0

OXTAL 0.167 0.410 0.813 0.056 0.500 0.125

Molecules in the rigid dataset: XULDUD, GUFJOG, QAMTAZ, BOQQUT, BOQWIN, UJIRIO,
PAHYON, XATMIP, HAMTIZ, XATMOV, AXOSOW, SOXLEX, WIDBAO, HXACAN, AC-
SALA, PUBMUU, GLYCIN, TEPNIT, QQQCIG, ZZZMUC, FOYNEO, ANTCEN, URACIL, BT-
COAC, CORONE, GUJTOX, TPHPOR, ACETAC, IMAZOL, CEBYUD, CILJIQ, CUMJOJ, DEZ-
DUH, DOHFEM, GACGAU, GOLHIB, HURYUQ, IHEPUG, LECZOL, NICOAM, ROHBUL,
UMIMIO, WEXREY, CAPRYL, ACACPD, BPYRUF, JIVNOV, MUBXAM, VUJBUB, NAVZAO.

Molecules in the flexible dataset: QAXMEH, DORDUM, BOTHUR, MOVZUW, YOPYEL, SUT-
HAZ, TPPRHC, FPAMCA, INDMET, MELFIT, YIGPIO, TEHZIP, DMANTL, YIGDUP, UWE-
QUL, COWZIA.

C.3 Ab initio MACHINE LEARNING BASELINES

We compare OXTAL against three ab initio machine learning baselines: (i) a lightweight transformer
trained with flow matching on our dataset (§C.3.1), (ii) the publicly released ASSEMBLEFLOW-
ATOM model (Guo et al., 2025), and (iii) ALPHAFOLD3 (Abramson et al., 2024) used as a generative
baseline. Our complete table of results are reported in Table 3 on both rigid and flexible molecular
CSP benchmarks using n = 30 samples per crystal target.

C.3.1 A-TRANSFORMER (OURS)

Model. A lightweight transformer encoder operating on atom tokens with unit-cell features. The
model is a PyTorch nn.TransformerEncoder with hidden size d, = 512, L = 13 layers,
and H = 4 heads. Each atom embedding includes element/charge, time ¢ € (0, 1], fingerprints,
and, when enabled, unit-cell lengths (a, b, ¢) and angles («, 3,7). Two output heads are used: a
coordinate head (R® per token) and, optionally, a rotation head (unit quaternion, disabled in our
main runs).

Training. The objective is rigid-cluster translation flow matching in R3. We linearly interpolate
between ground-truth translations sy and random in-cell starts s1,

St = (17t) 50+t81, tNUDif[tmin,l},
and predict denoised coordinates Z¢. The loss is an x( regression term:

L= )\trans Z ||I(()’L) - :%E)l)|‘2

Inference and Evaluation. At inference we integrate from ¢=1 to t,,;,, with Euler steps, producing
clusters in a P1 box (no lattice recovery). Metrics are RMSD; and RMSDy, only; lattice metrics are
not applicable.

This baseline is deliberately minimal: it ignores rotation flow matching and lattice prediction, relying
solely on translation flow matching and unit-cell features. It provides a capacity-matched reference
against which to measure the benefits of OXTAL’s architecture and training.
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C.3.2 ASSEMBLEFLOW

We evaluate the released ASSEMBLEFLOW-ATOM model (Guo et al., 2025) using the authors’
checkpoints without re-training or fine-tuning. For each molecule we generate clusters of 17 rigid
copies from an RDKit ETKDG conformer, applying random rotations and translations with uniform
offsets [, S]%, where S € {10,15,20} A. Three seeds {42,7,2024} and seven checkpoints yield
63 runs per molecule. To standardize evaluation, we randomly sample 30 outputs per crystal and
compute metrics on those.

Inference follows the official position_inference routine with default settings. Final coordi-
nates are wrapped into a large P1 box (no lattice recovery). We report best-of-grid RMSDy.

AssembleFlow enforces rigid-molecule assembly and provides a strong baseline for rigid-packing
quality, but it does not predict lattice parameters and therefore cannot be scored on lattice metrics.

C.3.3 ALPHAFOLD3

We additionally evaluate ALPHAFOLD3 as a structural generative baseline. For each target
molecule, we generate conformations using default protein—ligand generative settings, treating each
conformer as a candidate crystal packing. Inference is performed based on 30 counts of the
molecule, per our other methods. Thirty samples per target are evaluated in the same way as for
other baselines. While ALPHAFOLD3 was not designed for crystal structure prediction, including
it highlights the gap between general-purpose biomolecular structure generators and CSP-specific
models.

C.4 CCDC CSP BLIND TEST DETAILS

To contextualize our work, we provide a summary of the 5th, 6th, and 7th CCDC CSP blind tests.
These community-wide challenges have benchmarked the state-of-the-art in predicting the crys-
tal structures of organic molecules from their chemical graphs alone, primarily relying on density
functional theory (DFT). We here provide brief descriptions of these tests, and refer the audience
to (Bardwell et al., 2011; Reilly et al., 2016; Hunnisett et al., 2024) for details. Performance is
assessed using the COMPACK algorithm, which quantifies structural similarity through root mean
square deviation (RMSD) of molecular clusters.

In the first four CSP blind tests, the field evolved from force-field landscapes to the first widespread
use of periodic dispersion-corrected DFT (DFT-D), which proved decisive in 4th blind test and set
the stage for DFT to become the de facto standard for final lattice-energy evaluation. The fifth blind
test (2010) marked a significant increase in the complexity of the target molecules. The six targets
included rigid molecules, semi-flexible molecules, a 1:1 salt, a highly flexible pharmaceutical-like
compound, and two co-crystals. This test highlighted what has become a standard workflow in CSP:
broad structure generation (e.g., grid/quasi-random sampling, parallel tempering), followed by local
minimization and hierarchical re-ranking. While at least one successful prediction was submitted for
each target, the success rate was lower than in previous tests, underscoring the increased difficulty.
DFT-D demonstrated its reliability for discriminating between competing structures for small and
moderately flexible molecules, but handling high flexibility and complex solid forms remained a
major challenge.

The sixth blind test (2015/16) continued with five challenging targets: a small, nearly rigid molecule;
a polymorphic former drug candidate; a chloride salt hydrate; a co-crystal; and a large, flexible
molecule. This test solidifed the “search—optimize—rank™ pipeline. On the search side, more than
half of the methods allowed intramolecular flexibility during exploration, and many adopted hier-
archical filtering starting with generating conformer and packing, followed by progressively tighter
optimization and pruning. In optimization and ranking, dispersion-corrected periodic DFT became
mainstream, with vdW models (e.g., D3/D3(BJ), MBD) and multipole-based electrostatics or SAPT-
derived potentials used to refine close competitors. All experimental structures were predicted by at
least one submission except a potentially disordered Z’ = 2 polymorph. The results demonstrated
that while DFT-D provided reliable baseline energetics, accurate treatment of conformational flexi-
bility remained the primary bottleneck.

The seventh test (2022-2022) introduced a two-phase structure to separate structure generation from
ranking challenges. The seven targets featured a silicon-iodine containing molecule, a copper coor-
dination complex, a near-rigid molecule, a co-crystal, a polymorphic small agrochemical, a highly
flexible polymorphic drug candidate, and a polymorphic morpholine salt. The test also featured
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Figure 11: Beeswarm plot of submitted structures for Molecule XXXI (ZEHFUR) from CSD7. In 30
inference samples, OXTAL obtains performance comparable to some DFT groups with thousands of
submitted samples. Colored points signify a partial lattice match whereas gray points signify lattice
mismatch (e.g. 3 out of 15 molecules match and have low RMSD, but the packing is significantly
different).

one of the most challenging systems in the history of the blind tests: a large, highly polymorphic
pharmaceutical drug candidate. A key finding from the structure generation phase was that while
different search methods often identified overlapping sets of low-energy structures, their success
rates tended to decrease as the complexity of the target molecule increased. For ranking, periodic
dispersion-corrected GGA DFT methods produced results in excellent agreement with experiment
across most targets, whereas higher-level corrections, full free-energy treatments, and ML on DFT
potentials were less decisive for these specific systems than expected. Additionally, dynamic/static
disorder (and high Z’) remained difficult.

These blind tests shows a clear trend that DFT-based ranking has become reliable, but limitations
persist: computational expense, difficulty capturing kinetic effects, challenges with disorder and
flexibility and high Z’ number, and the fundamental limitation that thermodynamic ranking often
fails to predict which polymorphs are experimentally observable. Our approach aims to address
these limitations by directly learning both thermodynamic and kinetic regularities from data, with
the hope of eventually eliminating the need for extensive search, local optimization, and post-hoc
ranking altogether. By generating a small number of high-quality structures directly, we bypass the
traditional generate-optimize-rank pipeline that has dominated CSP. Below tables (Table 4, Table 5,
and Table 6) in §F show comparisons for all submitted structures by each group (sans ranking). The
beeswarm plot (Figure 11) of molecular XXXI of test submission further highlights the extensive
sampling currently required by DFT methods compared to our method. This point is further high-
lighted in Figure 12, which plot the best RMSD; or RMSDs achieved at a given n submission size
for a few blind test crystals.

Because each group can pick and choose which crystals they want to solve for, we report an aggre-
gated metric in §4.2 of all submitted DFT results. For crystal-level metrics, we consider the total
number of crystal targets across all DFT methods to be ngroups * Targets- We then compute aggregate
metrics - counting groups who did not submit any submissions for a crystal as a miss, since they
technically did not solve it. For sample-level metrics, we simlpy compute the average across all
submitted structures.

C.4.1 INFERENCE TIME COST

We computed computational costs by multiplying the reported wall-clock compute time by an AWS
on—demand unit price with hours taken directly from the three blind tests references (Bardwell et al.,
2011; Reilly et al., 2016; Hunnisett et al., 2024). Because the papers report heterogeneous processors
and often normalize times to ~3.0 GHz core-hours, we treat one normalized CPU hour as one AWS
vCPU-hour; we then price CPU time at the c5.large on—demand rate in Sept. 2025, i.e., $0.085
per 2 vCPUs = $0.0425 per vCPU-hour, so CPU cost = hours x $0.0425. For L40S GPU runs,
we map directly to g6e.xlarge (which contains one NVIDIA L40S) and price at $1.861 per
instance-hour, so GPU cost = hours x $1.861. We apply the rates pro—rata without further rounding.

25



Under review as a conference paper at ICLR 2026

1.50 1.50 ’ 10 10
1.25 1.25
8 8
~ 1.00 —~1.00 0JIGOGO1 = = ZEHFUR
<L <L — - -
= = —Gers | 2 ° 2 © i
8 0.75 9) 0.75 8 % —— Others
= = = 4 s 4
© 0.50 < 0.50 e e
XAFPAY 5 XAFPAY 5
0.25 === OXtal 0.25 — OXtal
—— Others —— Others L
0.00 0.00 0 0
10° 10! 102 100 10! 102 10° 10° 10! 102 100 10t 102 103
Submission Submission Submission Submission

Figure 12: Sample efficiency plots XAFPAY (blind test 6, a flexible molecule), OJIGOGO1 (blind
test 7), and ZEHFUR (blind test 7). OXTAL is able to quickly recover both molecular conformers

(RMSD)) and periodicity (RMSDs).

All prices are on—demand EC2 instances as of September 2025. For reference, exact reported times

used are presented in Table 7, Table 8, and Table 9.
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D ADDITIONAL RELATED WORK

Physical approaches to crystal structure prediction. Physical approaches mostly rely on search
and sampling using an energy function. Some classical methods infused domain knowledge, such
as starting with initial guesses, such as a unit cell, and varying parameters random sampling (Case
et al., 2016; Pickard & Needs, 2011; Tom et al., 2020), guidance from force-fields (van Eijck, 2002),
or constructed guesses based on chemical principles (Ganguly & Desiraju, 2010). Recent methods
have also applied more structured search algorithm, such as simulated annealing (Reinaudi et al.,
2000; Earl & Deem, 2005), genetic algorithm (Curtis et al., 2018; Lyakhov et al., 2013), particle
swarm optimization (Wang et al., 2010) and basin-hopping (Banerjee et al., 2021).

ML potentials. Computational complexity of DFT and availability of large datasets (Levine et al.,
2025; Sriram et al., 2024; Barroso-Luque et al., 2024; Smith et al., 2020) enabled the development
of universal machine learning interatomic potentials (MLIP) (Gasteiger et al., 2021; 2022; Batatia
et al., 2022; Liao et al., 2024; Batatia et al., 2024; Wood et al., 2025) to predict energy and forces
of different atomistic systems (from small molecules to inorganic crystals) at a fraction of DFT
costs. The next generation of physical approaches to CSP replaced DFT with MLIPs and showed
benefits in material discovery (Merchant et al., 2023) with recent FastCSP (Gharakhanyan et al.,
2025) applied to organic CSP.

Generative models for inorganic crystal structure prediction. Generative models have emerged
as a promising new paradigm for crystal structure prediction focusing mainly on conformer search
in molecular structures as well as inorganic, periodic crystals. For inorganic crystal structures,
which consist of a periodic unit cell of atoms, generative models were first applied for unconditional
de-novo generation of new crystal (Xie et al., 2022) and later used for structure generation
conditioned on crystal composition (Jiao et al., 2023; 2024; Miller et al., 2024; Levy et al., 2025).
The use of generative models has spanned multiple modeling methods, including diffusion models
with equivariant models (Jiao et al., 2023; 2024), symmetry-aware diffusion models (Levy et al.,
2025), flow-matching models on specialized manifolds (Miller et al., 2024). Recent work have
also applied large-language models to crystal generation and structure prediction with more varied
success compared to other methods (Antunes et al., 2024; Ding et al., 2025).
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E ADDITIONAL CHEMICAL ANALYSIS EXAMPLES
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Figure 13: OXTAL learns small local neigh-
borhoods from S* crops and generalizes to in-
fer large and periodic structures. Example of
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Figure 14: Examples of OXTAL generated co-
crystal structures (green) compared against ex-
perimental structures (gray).
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Figure 15: Examples of OXTAL generated structures (green) compared against experimental struc-
tures (gray). (A) flexible conformers, (b) intermolecular interactions, (c) polymorphs of the same

molecule.

28



Under review as a conference paper at ICLR 2026

F DETAILED DFT BASELINES FROM CSD BLIND TESTS

Table 4: Results per crystal of submitted methods for CSD blind test 5.

Model ns Cols | Latgt Latc? RecstT Recc? Solc?
KONTIQ
Group Boerrigter 5002 0 0.896 Y 0.907 Y Y
Group Day 2350 0 0.985 Y 0.987 Y Y
Group Desiraju 244 0 0.951 Y 0.951 Y Y
Group Hofmann 103 0 0.981 Y 0.981 Y Y
Group Kendrick 1886 0 0.993 Y 0.994 Y Y
Group Maleev 26 0 0.769 Y 0.769 Y Y
Group Orendt 594 0 0.921 Y 0.936 Y Y
Group Price 449 0.002 0978 Y 0.980 Y Y
OBEQET
Group Ammon 5 0 0 N 0.600 Y N
Group Boerrigter 5001 0 0.005 Y 0.448 Y Y
Group Day 438 0 0 N 0.893 Y N
Group Desiraju 156 0 0.038 Y 1.000 Y Y
Group Hofmann 103 0 0 N 0.379 Y N
Group Jose 11 0.364 0 N 0 N N
Group Kendrick 79 0 0.127 Y 0911 Y Y
Group Maleev 10 0 0 N 0.800 Y N
Group Orendt 165 0 0.012 Y 0.897 Y Y
Group Price 259 0 0.008 Y 0.525 Y Y
OBEQIX
Group Ammon 11 0 0 N 0 N N
Group Boerrigter 5005 0 0 N 0.014 Y N
Group Hofmann 103 0.971 0 N 0 N N
Group Kendrick 117 0 0.205 Y 0.248 Y Y
Group Maleev 8 0 0 N 0 N N
Group Orendt 156 0 0.006 Y 0.006 Y Y
Group Price 103 0 0.039 Y 0.243 Y Y
OBEQOD
Group Ammon 6 0 0.167 Y 1.000 Y N
Group Boerrigter 4894 0 0.054 Y 0.999 Y Y
Group Day 164 0 0.220 Y 1.000 Y Y
Group Desiraju 202 0 0.302 Y 1.000 Y Y
Group Hofmann 103 0 0 N 1.000 Y N
Group Jose 15 0.533 0.133 Y 0.267 Y N
Group Kendrick 150 0 0.200 Y 1.000 Y Y
Group Maleev 24 0 0.083 Y 1.000 Y N
Group Orendt 272 0 0.051 Y 0.971 Y Y
Group Price 139 0 0.122 Y 1.000 Y Y
OBEQUJ
Group Ammon 20 0 0.850 Y 1.000 Y Y
Group Boerrigter 8456 0 0.113 Y 0.994 Y Y
Group Day 549 0 0.222 Y 1.000 Y Y
Group Desiraju 202 0 0.272 Y 1.000 Y Y
Group Hofmann 103 0 0 N 1.000 Y N
Group Jose 16 0.188 0.250 Y 0.438 Y N
Group Kendrick 90 0 0.500 Y 1.000 Y Y
Group Maleev 18 0 0 N 0.944 Y N
Group Misquitta 103 0 0.214 Y 1.000 Y Y
Group Nikylov 13 0 0 N 1.000 Y N
Group Orendt 292 0 0.209 Y 1.000 Y Y
Group Price 150 0 0.367 Y 1.000 Y Y
XATJOT
Group Boerrigter 383 0 0.355 Y 1.000 Y Y
Group Desiraju 202 0 0.262 Y 1.000 Y Y
Group Kendrick 350 0 0.326 Y 1.000 Y Y
Group Maleev 23 0 0.217 Y 1.000 Y Y
Group Orendt 279 0 0.140 Y 1.000 Y Y
Group Price 164 0 0.079 Y 1.000 Y Y
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Table 5: Results per crystal of submitted methods for CSD blind test 6.

Model Nsubmitted  Cols | Lats T Latc? Recs T Recc?  Solg?
NACJAF
Group Singh 100 0 0.010 Y 1.000 Y N
Group Cole 100 0 0.050 Y 1.000 Y Y
Group Day 200 0 0.085 Y 1.000 Y Y
Group Dzyabchenko 100 0 0.170 Y 1.000 Y Y
Group vanEijck 100 0 0.070 Y 1.000 Y Y
Group FustiMolnar 198 0.005 0.056 Y 0.939 Y Y
Group Cuppen 200 0 0.080 Y 1.000 Y Y
Group Facelli 177 0 0.006 Y 0.977 Y N
Group Obata 200 0 0.060 Y 1.000 Y Y
Group Hofmann 100 0 0 N 1.000 Y N
Group Ma 200 0 0 N 1.000 Y N
Group Marom 200 0.045 0.030 Y 0.715 Y Y
Group Mohamed 100 0 0.570 Y 1.000 Y Y
Group Leusen 100 0 0.070 Y 1.000 Y Y
Group Pantelides 100 0 0.040 Y 1.000 Y Y
Group al 33 0 0 N 1.000 Y N
Group Podeszwa 99 0 0.091 Y 1.000 Y Y
Group Price 200 0 0.045 Y 1.000 Y Y
Group Price 100 0 0.030 Y 1.000 Y Y
Group Szalewicz 54 0 0.130 Y 1.000 Y Y
Group Zhu 80 0 0.075 Y 0.988 Y Y
Group Hofmann 31 0 0 N 1.000 Y N
Group Grimme 119 0 0.042 Y 0.992 Y Y
Group Tkatchenko 120 0 0.067 Y 0.992 Y Y
XAFPAY
Group Singh 100 0 0 N 0 N N
Group Cole 100 0 0.050 Y 0.090 Y Y
Group Day 200 0 0.040 Y 0.035 Y Y
Group vanEijck 100 0 0.040 Y 0.060 Y Y
Group FustiMolnar 149 0 0.114 Y 0.094 Y Y
Group Cuppen 200 0 0 N 0 N N
Group Facelli 100 0 0 N 0 N N
Group Obata 200 0 0.120 Y 0.135 Y Y
Group Hofmann 100 0 0 N 0 N N
Group Mohamed 100 0 0.090 Y 0.350 Y Y
Group Leusen 200 0 0.170 Y 0.270 Y Y
Group Pantelides 100 0 0.100 Y 0.120 Y Y
Group Price 200 0 0.120 Y 0.165 Y Y
Group Zhu 60 0 0.083 Y 0.133 Y Y
Group Hofmann 18 0 0 N 0 N N
Group Grimme 125 0 0.400 Y 0.304 Y Y
Group Tkatchenko 50 0 0.280 Y 0.220 Y Y
XAFQAZ01
Group Hofmann 100 0 0 N 1.000 Y N
Group Tkatchenko 20 0 0.100 Y 1.000 Y Y
XAFQIH
Group Singh 100 0 0 N 0 N N
Group Cole 100 0 0.010 Y 0.010 Y Y
Group Day 200 0 0.015 Y 0 N Y
Group Dzyabchenko 71 0 0.014 Y 0 N Y
Group vanEijck 100 0 0 N 0 N N
Group FustiMolnar 138 0 0.312 Y 0.246 Y Y
Group Hofmann 100 0 0 N 0 N N
Group Mohamed 100 0 0 N 0 N N
Group Leusen 200 0 0.405 Y 0.490 Y Y
Group Pantelides 100 0 0.020 Y 0 N Y
Group Price 200 0 0.035 Y 0.040 Y Y
Group Zhu 30 0 0 N 0 N N
Group Hofmann 15 0 0 N 0 N N
Group Grimme 11 0 0 N 0.182 Y N
XAFQON
Group Day 200 0.980 1.000 Y 0.020 Y Y
Group vanEijck 100 0 0.980 Y 0.980 Y Y
Group FustiMolnar 198 0 0.859 Y 0.005 Y Y
Group Facelli 100 0.280 0.990 Y 0.720 Y Y
Group Hofmann 100 0 0.990 Y 1.000 Y Y
Group Leusen 100 0.310 1.000 Y 0.690 Y Y
Group Price 200 0.805 0.990 Y 0.195 Y Y
Group Zhu 50 0.140 1.000 Y 0.860 Y Y
Group Hofmann 15 0.200 1.000 Y 0.800 Y Y
Group Grimme 119 0.941 0.966 Y 0.059 Y Y
Group Szalewicz 100 0.800 1.000 Y 0.200 Y Y
Group Tkatchenko 50 0.600  1.000 Y 0.400 Y Y
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Table 6: Results per crystal of submitted methods for CSD blind test 7.

Model ns Cols | LatsT LateT RecsT Recet Sole T
FASMEV
Group XtalPi 1510 0 0.223 Y 0.997 Y Y
Group Roza 319 0 0.245 Y 0.997 Y Y
Group DKhakimov 80 0 0.537 Y 1.000 Y Y
Group Isayev 1510 0 0.476 Y 1.000 Y Y
Group SMohamed 1510 0 0.054 Y 0.984 Y Y
Group Pantelides 1510 0 0.072 Y 0.961 Y Y
Group MNeumann 1504 0 0.418 Y 0.999 Y Y
Group Goto 1510 0 0.079 Y 0.738 Y Y
Group CJPickard 1510 0.001 0.154 Y 0.994 Y Y
Group SLPrice 1265 0 0.043 Y 0.999 Y Y
Group CShang 1500 0 0.159 Y 0.988 Y Y
Group QZhu 209 0 0.096 Y 0.947 Y Y
Group DBoese 1510 0 0.060 Y 0.836 Y Y
Group GDay 1510 0 0.143 Y 0.981 Y Y
Group BEijck 1510 0 0.052 Y 0.668 Y Y
JEKVII
Group XtalPi 1500 0.001 0.030 Y 0.020 Y Y
Group SMohamed 203 0 0 N 0 N N
Group Pantelides 1499  0.006 0.001 Y 0 N N
Group MNeumann 1500 0 0.134 Y 0.066 Y Y
Group SLPrice 1500 0 0 N 0 N N
Group CShang 1500 0 .085 Y 0.014 Y Y
Group QZhu 1495 0 0 N 0 N N
Group DBoese 1500 0 0 N 0 N N
Group GDay 1500 0 0 N 0 N N
Group BEijck 1500 0 0 N 0 N N
MIVZEA
Group XtalPi 1600 0 0.042 Y 0.186 Y Y
Group DKhakimov 281 0 0 N 1.000 Y N
Group SMohamed 1600 0 0.002 Y 1.000 Y Y
Group MNeumann 1600 0 0.042 Y 0.207 Y Y
Group Goto 1600 0 0.002 Y 0.541 Y Y
Group SLPrice 1600 0 0 N 0.269 Y N
Group QZhu 1600 0 0.001 Y 0.070 Y Y
Group GDay 1600 0 0.007 Y 0.379 Y Y
Group BEijck 1600 0 0.007 Y 0.239 Y Y
MIVZIE
Group XtalPi 1600 0 0.024 Y 0.107 Y Y
Group DKhakimov 281 0 0.007 Y 0 N N
Group SMohamed 1600 0 0 N 0 N N
Group MNeumann 1600 0 0.015 Y 0.111 Y Y
Group Goto 1600 0 0.006 Y 0.001 Y Y
Group SLPrice 1600 0 0.001 Y 0 N N
Group QZhu 1600 0 0.003 Y 0.083 Y Y
Group GDay 1600 0 0.016 Y 0.099 Y Y
Group BEijck 1600 0 0.004 Y 0.041 Y Y
0JIGOGO1
Group XtalPi 1500 1.000 0.141 Y 0 N N
Group MNeumann 1500 0.947 0.127 Y 0.008 Y N
Group SLPrice 1500 1.000  0.093 Y 0 N N
Group CShang 1500 0993 0359 Y 0.005 Y Y
Group KSzalewicz 1500 1.000 0 N 0 N N
Group BEijck 1500 0.076  0.002 Y 0 N Y
XIFZOF01
Group XtalPi 1500 0 0.061 Y 0.038 Y Y
Group Isayev 1500 0 0.027 Y 0.005 Y Y
Group Matsui 1500 0 0.005 Y 0.005 Y Y
Group MNeumann 1500 0 0.015 Y 0.007 Y Y
Group Goto 1500 0 0.011 Y 0.003 Y Y
Group SLPrice 1500 0 0.005 Y 0 N Y
Group CShang 1500 0 0.061 Y 0.007 Y Y
Group QZhu 1500 0 0 N 0 N N
Group BEijck 1500 0 0.011 Y 0.006 Y Y
ZEGWAN
Group XtalPi 1500 0 0.029 Y 0.797 Y Y
Group DKhakimov 56 0 0 N 0 N N
Group Pantelides 1500 0 0.011 Y 0.429 Y Y
Group MNeumann 1500 0 0.052 Y 0.729 Y Y
Group Goto 1500 0 0.010 Y 0.553 Y Y
Group SLPrice 1500 0 0.013 Y 0.363 Y Y
Group CShang 1500 0 0.009 Y 0.545 Y Y
Group QZhu 1453 0 0.012 Y 0.551 Y Y
Group GDay 1500 0 0.013 Y 0.623 Y Y
Group BEijck 1500 0 0.015 Y 0.338 Y Y
ZEHFUR
Group XtalPi 1500 0 0.055 Y 0.513 Y Y
Group Isayev 1500 0 0.063 Y 0.405 Y Y
Group SMohamed 1500 0 0.001 Y 0 N N
Group Pantelides 1500 0 0.029 Y 0.330 Y Y
Group MNeumann 1500 0 0.123 Y 0.636 Y Y
Group Goto 1500 0 0.006 Y 0.137 Y Y
Group SLPrice 1500 0 0.017 Y 0.244 Y Y
Group CShang 1500 0 0.069 Y 0.678 Y Y
Group QZhu 1500 0 0.001 Y 0.045 Y N
Group DBoese 1500 0 0.029 Y 0.266 Y Y
Group GDay 1500 0.005 0.055 Y 0.351 Y Y
Group BEijck 1500 0 0.008 Y 0.029 Y Y
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Table 7: Summary of computational resources used by some of the participants as reported in the Sth
CSP Blind Test. CPU hours are approximately normalized to 3.0 GHz. OXTAL times are reported
as elapsed wall time in hours on 1 L40s GPU and 6 CPUs. Inference time for OXTAL is negligible
compared to traditional computation chemistry methods.

Group XVI XVII XVIII XIX XX  XXI Total
Boerrigter 90 100 350 650 2,105 600 3,800
Day, Cruz-Cabeza 110 1,941 21,051 6,097 54,090 22,197 91,400
Desiraju, Thakur, Tiwari, Pal 114 2,303 324 114 1,431 4,600
Hofmann 2 7 12 694 670 187 1,600
Neumann, Leusen, Kendrick, van de Streek 115,000
Price et al. 200 5,000 14,000 3,000 120,000 52,800 195,000
Van Eijck 27 9,500
Della Valle, Venuti 3,200
Maleev, Zhitkov 7,500
Misquitta, Pickard & Needs 162,000
Scheraga, Arnautova 150 150 610 720 1,300
OXtal 0.024 0.011 0.012 0.013 0.029 0.011  0.100

Table 8: Summary of the computational resources used by each submission in terms of raw CPU
hours as reported in the 6th CSP Blind Test. OXTAL times are reported as elapsed wall time in
hours on 1 L40s GPU and 6 CPUs. Inference time for OXTAL is negligible compared to traditional

computation chemistry methods.

Group XX1I XXII XXIV XXV  XXVI Total
Chadha & Singh 350 450 600 1,400
Cole et al. 6 538 46 246 836
Day et al. 12,714 394,948 15,241 121,701 179,897 724,501
Dzyabchenko 144 3,648 3,360 7,152
van Eijck 130 2,810 1,400 8,060 7,630 20,030
Elking & Fusti-Molnar 418,540 242,000 235,400 135,000 190,000 1,220,940
van den Ende, Cuppen et al. 9,741 7,777 6,388 23,906

Facelli et al. 268,012 38,500 11,500 39,000 357,012
Obata & Goto 19,200 346,000 325,000 690,200
Hofmann & Kuleshova 10 630 623 202 255 1,720
Lv, Wang, Ma 325,000 325,000
Marom et al. 30,000,000 30,000,000
Mohamed 26 106 81 61 274
Neumann, Kendrick, Leusen 32,160 146,120 103,700 84,680 356,344 723,504
Pantelides, Adjiman et al. 333 87,000 37,535 272,500 397,368
Pickard et al. 380,000 380,000
Podeszwa et al. 72,220 72,220
Price et al. 26,000 84,000 63,000 169,000 327,000 669,000
Szalewicz et al. 66,000 66,000
Tuckerman, Szalewicz et al. 81,000 81,000
Zhu, Oganov, Masunov 4,000 275,000 279,800 30,000 180,000 768,800
Boese (Hofmann) 80,000 80,000 80,000 80,000 80,000 400,000
Brandenburg & Grimme (Price) 13,665 8,661 3,509 34,824 10,135 70,794
Szalewicz et al. (Price) 15,000 15,000
Tkatchenko et al. (Price) 100,000 2,100,000 500,000 500,000 3,200,000
OXtal 0.012 0.019 0.011 0.030 0.042 0.114
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Table 9: CPU core hours per target molecule for each prediction method as reported in the 7th
CSP Blind Test. OXTAL times are reported as elapsed wall time in hours on 1 GPU and 6 CPUs.
Inference time for OXTAL is negligible compared to traditional computation chemistry methods.

Group XXVII XXVIII XXIX XXX XXXI XXX XXXIII Total

1 652,495 840,000 1,597,000 412,000 3,501,495
3 1,600,000 1,500,000 3,600,000 6,700,000
5 768,766 33,000 2,900,000 510,563 846,698 228,957 5,287,984
6 8,120 1,350 1,310 9,800 1,470 2,900 4,980 29,930
8 3,200 10 4,000 1,840 9,050
10 772,500 1,242,500 1,146,588 644,927 381,672 644,927 612,500 5,445,614
11 643,882 643,882
12 20,000 80,000 20,000 120,000
13 350 1,500 500 2,350
16 1,700,000 2,128,000 630,000 4,458,000
17 95,819 95,819
18 1,050 36,864 632 1,561 40,107
19 30,000 40,000 1,250,000 140,000 400,000 60,000 1,920,000
20 1,022,976 283,538 755,712 1,769,472 1,028,064 3,935,232 728,064 9,523,058
21 333,586 92,890 580,436 1,889,649 477,210 3,373,771
22 20,000 2,000 15,000 180,000 20,000 25,000 25,000 287,000
23 10,000 10,000
24 450,290 89,666 76,541 100,000 49,177 244,520 123,427 1,133,621
25 55,150 29,691 4,784 6,476 76,161 34,648 206,910
26 28,332 28,332
27 1,280,566 60,457 242,424 213,722 1,663,940 150,650 3,611,759
28 1,600 1,500 7,680 1,500 1,500 1,500 15,280

OXtal 0.060 0.026 0.011 0.056 0.015 0.050  0.017 0.235
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