

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OXTAL: AN ALL-ATOM DIFFUSION MODEL FOR ORGANIC CRYSTAL STRUCTURE PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Accurately predicting experimentally-realizable 3D molecular crystal structures from their 2D chemical graphs is a long-standing open challenge in computational chemistry called *crystal structure prediction* (CSP). Efficiently solving this problem has implications ranging from pharmaceuticals to organic semiconductors, as crystal packing directly governs the physical and chemical properties of organic solids. In this paper, we introduce OXTAL, a large-scale 100M parameter all-atom diffusion model that directly learns the conditional joint distribution over intramolecular conformations and periodic packing. To efficiently scale OXTAL, we abandon explicit equivariant architectures imposing inductive bias arising from crystal symmetries in favor of data augmentation strategies. We further propose a novel crystallization-inspired lattice-free training scheme, STOICHIOMETRIC STOCHASTIC SHELL SAMPLING (S^4), that efficiently captures long-range interactions while sidestepping explicit lattice parametrization—thus enabling more scalable architectural choices at all-atom resolution. By leveraging a massive dataset of 600K experimentally validated crystal structures (including rigid and flexible molecules, co-crystals, and solvates), OXTAL achieves orders-of-magnitude improvements over prior *ab-initio* machine learning CSP methods, while remaining orders of magnitude cheaper than traditional quantum-chemical approaches. Specifically, OXTAL recovers experimental structures with conformer $\text{RMSD}_1 < 0.5 \text{ \AA}$ and attains over 80% lattice-match success, demonstrating its ability to model both thermodynamic and kinetic regularities of molecular crystallization.

1 INTRODUCTION

A landmark open challenge in computational chemistry is identifying a molecule’s 3D crystal structure given knowledge of its chemical composition (Bardwell et al., 2011; Reilly et al., 2016; Hunnissett et al., 2024). In particular, given only a molecule’s 2D chemical graph, *ab initio* molecular crystal structure prediction (CSP) seeks to estimate the distribution of experimentally realizable crystal packings in an accurate and scalable manner. This 3D arrangement of molecules within a periodic lattice dictates the macroscopic behavior of organic solids. For instance, in pharmaceuticals, crystal packing governs solubility, bioavailability, and the long-term stability of active ingredients (Schultheiss & Newman, 2009; Chen et al., 2011); in material science, intermolecular geometry dictates charge transport, porosity, and optical response—enabling applications across electronics, photonics, sensing, and energy storage (Zhang et al., 2018; Wang et al., 2019).

The complexity of CSP is underscored by the nature of crystal formation, wherein experimentally realized structures often occupy local minima of a highly non-smooth and well-separated Gibbs free energy landscape (Figure 3(a)). This thermodynamic energy landscape is determined by the competition between the *intramolecular* interactions that set the molecule’s own (flexible) conformation and the long-range and weak *intermolecular* forces that dictate how molecules pack together periodically (Chernov, 2012). As a result, classical CSP approaches combine a search procedure (e.g., enumeration or evolutionary algorithms) with oracle access to energy/ranking models, such as force fields or quantum-chemical density functional theory (DFT) (Engel & Dreizler, 2011; Hunnissett et al., 2024). However, classical CSP approaches often fail to capture realistic *kinetic* conditions that lead to the *distribution* of experimentally sampled energy minima. Consequently, these methods require the generation and optimization of $\sim 1,000$ to $100,000$ structures per molecule—the majority of which struggle to go beyond unfavourable local energy minima despite extensive computation.

Figure 1: Molecular crystal structures generated by OXTAL (color) compared to ground truth (grey).

Recently, *generative* approaches to modelling atomic systems—e.g., AlphaFold3 (Abramson et al., 2024) for biomolecules and MatterGen (Zeni et al., 2025) for inorganic materials—have demonstrated their ability to capture intricate 3D atomistic interactions directly from data. Molecular CSP generalizes both of these, as proteins and inorganic crystals have a smaller set of interactions; proteins pack into lattices under strong intramolecular constraints mostly governed by their backbones (Branden & Tooze, 2012), and inorganic crystals possess strong covalent or ionic bonds across a smaller number of atoms (Figure 2a). Protein generative models also heavily rely on biological priors based on evolutionary information captured by multiple-sequence alignment (Jumper et al., 2021). In contrast, small-molecule crystals span chemically diverse scaffolds, exhibit rich conformational flexibility, and often contain many molecular copies within a unit cell (Figure 2b). Accurately capturing these interactions requires a large and diverse training set, highly expressive yet efficient to sample models, and training schemes that consider periodic interactions in a crystal lattice without impeding scalability for large model training.

Main contributions. In this paper, we introduce OXTAL, an all-atom diffusion transformer model for molecular CSP. Conditioned solely on the 2D molecular graph, OXTAL learns to sample experimentally realistic crystal structures with accurate descriptions of molecular conformers as well as their periodic packing. To enable large-scale modelling, we train OXTAL on over 600k experimental molecular crystal structures spanning rigid and flexible molecules, co-crystals, and solvates. OXTAL builds on recent advances in all-atom generative modelling (Abramson et al., 2024), discarding symmetry representations of lattice vectors and associated crystal symmetries in favor of training directly on Cartesian coordinates and employing SE(3) data augmentation. We further introduce STOICHIOMETRIC STOCHASTIC SHELL SAMPLING (S^4), a novel lattice-free training scheme that retains the rich information of long-range interactions. We summarize our key contributions as follows:

- We present OXTAL, the first large-scale all-atom diffusion model for molecular CSP, that samples molecular crystal packing directly from 2D molecular graphs (§3).
- We introduce a crystallization-inspired training scheme for periodic structures, S^4 , which removes explicit lattice parametrization and enables more scalable training (§3.1).
- Empirically, OXTAL significantly outperforms existing ML-based *ab initio* CSP methods, achieving $\text{RMSD}_1 < 0.5\text{\AA}$ and lattice match rates above 80% within 30 samples (§4.1), while being several orders of magnitude cheaper than traditional quantum chemical methods in DFT (§4.2).
- We provide additional chemical analysis highlighting OXTAL’s ability to capture diverse intra-/intermolecular interactions, including crystal polymorphs, and generalize to complex co-crystal and biomolecular interactions (§4.3).

2 BACKGROUND AND PRELIMINARIES

2.1 CRYSTAL REPRESENTATIONS

Formally, a periodic crystal structure \mathcal{C} is defined by a pair (L, \mathcal{B}) . The first component $L \in \mathbb{R}^{3 \times 3}$ defines the lattice vectors forming a parallelepiped known as the unit cell. The second component $\mathcal{B} = \{(z_i, u_i)\}_{i=1}^N$ is the basis, which consists of the N atoms within this unit cell. Each atom

108 is described by its species $\{z_i\}_{i=1}^N$ and its fractional coordinate $\{u_i \in [0, 1]^3\}_{i=1}^N$ relative to the
 109 lattice vectors, or equivalently, its Cartesian coordinate Lu_i . For molecular crystals, \mathcal{B} naturally
 110 decomposes into Z molecules. The connectivity of each molecule m_k is given by a graph
 111 $\{g_k = (V_k, E_k)\}_{k=1}^Z$ (vertices/atoms V_k and edges E_k ; species labels z_i are carried by the vertices).
 112 We next recall the symmetries present in the periodic crystal structure \mathcal{C} .

113 **Symmetries.** Given $\mathcal{C} = (L, \mathcal{B})$ where $(u_i \in \mathbb{T}^3 := \mathbb{R}^3 / \mathbb{Z}^3)$, the Cartesian positions of atoms are,
 114

$$X(L, \mathcal{B}) = \{L(n + u_i) : n \in \mathbb{Z}^3, i = 1, \dots, N\}. \quad (1)$$

115 Furthermore, two descriptions (L, \mathcal{B}) and (L', \mathcal{B}') encode the same structure if and only if there is
 116 a group action g in 3D, $g := (R, t) \in \text{SE}(3)$ such that, $X(L', \mathcal{B}') = g \circ X(L, \mathcal{B})$.
 117

118 A periodic crystal admits an *asymmetric unit* \mathcal{A} , the minimal subset that recovers the entire unit cell
 119 by applying symmetry transformations of the crystal’s space group. Conversely, a supercell can be
 120 obtained by an integer matrix $U \in \mathbb{Z}^{3 \times 3}$ with $m := |\det U| \geq 1$, yielding $\mathcal{C}^{(U)} = (LU, \mathcal{B}^{(U)})$,
 121 the same infinite crystal in a differing tiling. For example, $U = mI_3$ yields a cubic $m \times m \times m$
 122 supercell. A formal summary of crystal symmetries is outlined below.
 123

124 **Crystal representation invariances**

125 **(S1) Global translation.** For $t \in \mathbb{T}^3$, $(L, \{(z_i, u_i)\}) \mapsto (L, \{(z_i, u_i + t)\})$.

126 **(S2) Global rotation.** For $R \in \text{SO}(3)$, $(L, \{(z_i, u_i)\}) \mapsto (RL, \{(z_i, u_i)\})$.

127 **(S3) Permutation (reindexing).** For $\zeta \in S_N$, $(L, \{(z_i, u_i)\}) \mapsto (L, \{(z_{\zeta(i)}, u_i)\})$.

128 **(S4) Unit-cell change.** Let $U \in \mathbb{Z}^{3 \times 3}$ with $m := |\det U| \geq 1$.

- 129 • *Unimodular basis change* ($m = 1$, $U \in \text{GL}(3, \mathbb{Z})$):

$$(L, \{(z_i, u_i)\}) \mapsto (LU, \{(z_i, U^{-1}u_i)\}), \quad (LU)(n + U^{-1}u_i) = L(Un + u_i).$$

- 130 • *Supercell expansion* ($m > 1$): let $\mathcal{R}(U) \subset \mathbb{T}^3$ be a fixed set of coset representatives
 131 for $\mathbb{Z}^3 / U\mathbb{Z}^3$ (so $|\mathcal{R}(U)| = m$). Then

$$(L, \{(z_i, u_i)\}) \mapsto \left(LU, \{(z_i, U^{-1}(u_i + r)) : i = 1, \dots, N, r \in \mathcal{R}(U)\} \right),$$

$$132 \text{ since } (LU)(n + U^{-1}(u_i + r)) = L(Un + u_i + r).$$

133 **Molecular crystallization.** Let $g = \{g_k = (V_k, E_k)\}_{k=1}^Z$ denote the set of molecular graph(s) and
 134 $\mathcal{X}(g)$ the set of periodic, all-atom crystal structures compatible with g . Due to the invariances, the
 135 physically distinct configurations form a quotient space $\mathcal{M}(g) = \mathcal{X}(g) / \sim$. *Ab initio* CSP can then
 136 be posed as conditional probabilistic inference over equivalence classes $[\mathcal{C}] \equiv [(L, \mathcal{B})] \in \mathcal{M}(g)$.
 137 An approximation of the experimentally realized distribution under crystallization conditions \aleph is:

$$138 \kappa_{\aleph}([\mathcal{C}] | g) \propto \kappa_{\aleph}([\mathcal{C}] | g) \exp(-\beta \Delta G([\mathcal{C}])), \quad \beta = \frac{1}{k_B T} \quad (2)$$

139 where ΔG represents the Gibbs free energy (thermodynamics), κ_{\aleph} summarizes kinetic accessibility
 140 (nucleation and growth pathways), and k_B is the Boltzmann constant, T is temperature.

141 In practice, learning and sampling must respect
 142 the symmetry of $\mathcal{M}(g)$, handle strong cou-
 143 pling between intramolecular conformation and
 144 intermolecular packing (especially in flexible
 145 molecules), navigate rugged kinetic and energy
 146 landscapes arising from large unit cells (often
 147 > 100 atoms) and weak and long-range interac-
 148 tions, and marginalize over unknown Z .

149 These challenges are distinct from most in-
 150 organic crystals, which are often characterized
 151 by strong covalent or ionic bonds, contain $<$
 152 30 atoms per unit cell, and lack molecular
 153 conformers (Figure 2).

154 (a) CaTiO_3 (inorganic) (b) Aspirin (organic)
 155 Figure 2: Molecular crystals consist of distinct
 156 molecules held together via long-range, weak
 157 interactions. They typically contain many atoms per
 158 unit cell and unknown molecule copies Z .

Figure 3: (a) Schematic of a rugged crystallization Gibbs free energy landscape with many local minima. Kinetic conditions often dictate which experimental minimum is formed. (b) Molecular crystallization, showing *nucleation* and *growth* in successive layers, which is the inspiration for S^4 . (c) Common packing motifs exemplified in co-crystal polymorphs with 1:1 and 2:1 stoichiometric ratio. (d) Overview of OXTAL architecture.

2.2 CONTINUOUS-TIME DIFFUSION MODELS

A diffusion model solves the generative modelling problem by being the solution to a (Itô) stochastic differential equation (SDE) (Øksendal, 2003),

$$d\mathbf{X}_t = f_t(\mathbf{X}_t) dt + \sigma_t d\mathbf{W}_t, \quad \mathbf{X}_0 \sim p_0. \quad (3)$$

In Equation (3), we use boldface to denote random variables and normal script to denote functions or samples. The function $f_t : \mathbb{R}^d \rightarrow \mathbb{R}^d$ corresponds to the average direction of evolution, while $\sigma_t : \mathbb{R} \rightarrow \mathbb{R}$ is the diffusion coefficient for the Wiener process \mathbf{W}_t . By convention, this is termed the forward noising process that starts from time $t = 0$ and progressively corrupts data until the terminal time $t = 1$ where we reach a structureless prior $p_1(x_1) := \mathcal{N}(0, I)$.

Under mild regularity assumptions, forward SDEs of the form of Equation (3) admit a time reversal, which itself is another SDE in the reverse direction $t = 1$ to $t = 0$ and transmutes a prior sample $x_1 \sim p_1$ to a sample from the target distribution $x_0 \sim p_0$ (Anderson, 1982),

$$d\mathbf{X}_t = (f_t(\mathbf{X}_t) dt - \sigma_t^2 \nabla_x \log p_t(\mathbf{X}_t)) dt + \sigma_t d\overline{\mathbf{W}}_t, \quad \mathbf{X}_1 \sim p_1. \quad (4)$$

Here $\overline{\mathbf{W}}_t$ is another standard Wiener process, and the *reverse-time* SDE shares the same time marginal density p_t as the forward SDE. Critically, the forward and reverse SDEs are linked via the Stein score $\nabla_x \log p_t(x_t)$, which is the key quantity of interest in the design of diffusion models. More precisely, diffusion models estimate the score function by forming an ℓ_2 -regression objective using a denoising network $D_\theta(x_t, t)$. For example, for the variance exploding (VE) SDE family of forward processes: $p_t = p_0 * \mathcal{N}(0, \sigma_t^2)$, this corresponds to learning the set of optimal denoisers, i.e., the set of conditional expectations, across time $D(x_t, t) = \mathbb{E}[\mathbf{X}_0 | \mathbf{X}_t = x_t], \forall t \in [0, 1]$. Owing to the nature of Gaussian convolution, we can convert this to a simple *simulation-free* training *conditional* objective for any Bregman divergence with convex F , \mathbb{B}_F (Holderrieth et al., 2025, Prop. 2)

$$\mathcal{L}_c(\theta) = \mathbb{E}_{t \sim \mathcal{U}(0,1), x_0 \sim p(x_0), x_t \sim p_t(x_t | x_0)} [\lambda(t) \mathbb{B}_F(x_0, D_\theta(x_t, t))],$$

where $\lambda(t) : [0, 1] \rightarrow \mathbb{R}_+$ is any weighting function. For a sufficiently expressive family of denoisers $\mathcal{H} = \{D_\theta : \theta \in \Theta\}$, the minimizer to Section 2.2 is $D_\theta^*(x_t, t) = D(x_t, t) = \mathbb{E}[\mathbf{X}_0 | \mathbf{X}_t = x_t]$. Given a trained denoising model, diffusion models generate samples at inference by simulating the reverse-time dynamics of §4 with the learned score s_θ computed as $s_\theta \leq (D_\theta(x_t, t) - x_t) / \sigma_t^2$.

3 OXTAL

We now describe OXTAL, our all-atom diffusion model for molecular CSP. As outlined in §2.1, existing inorganic CSP models (Miller et al., 2024; Gasteiger et al., 2021) that rely on equivariant architectures and explicit unit-cell parametrizations face scalability challenges for large molecular crystals with unknown multiplicity Z . We thus introduce S^4 training, which exposes the model to long-range periodic cues without ever parametrizing a lattice (§3.1). Second, we implement a high-

capacity, non-equivariant Transformer with data augmentation and strong molecular embeddings to capture symmetries (§3.2). Together, these choices decouple what to generate (conformations and packing) from how the crystal is represented during training (unit cell, Z , etc.).

3.1 STOICHIOMETRIC STOCHASTIC SHELL SAMPLING (S^4)

Crystallization is a local-to-global process: once molecules approach contact distances, weak but specific interactions induce recurring motifs that propagate periodically. Learning to denoise such local consistent neighborhoods should therefore recover larger periodicity at inference time. Training on such subsampled blocks reduces token size, provides natural augmentation, and mirrors the partial observability of nucleation and growth (Figure 3(b)).

We formalize this idea in S^4 . Let $\mathcal{C}^{(U)} = (LU, \mathcal{B}^{(U)})$ be a supercell with molecules $m \in \mathcal{M}$, where $X(m) \subset \mathbb{R}^3$ denotes m 's non-hydrogen Cartesian coordinates. We next define the *minimum-image* intermolecular distance between two molecules, $d_{\min}(m, m') = \min_{x \in X(m), x' \in X(m')} \|x - x'\|_2$.

Given a fixed contact radius r_{cut} , S^4 builds concentric shells \mathcal{S} around a uniformly-sampled central molecule $m_c \sim \text{Uniform}(\mathcal{A})$ based on the molecular contact graph induced by $d_{\min}(\cdot, \cdot) \leq r_{\text{cut}}$:

$$\mathcal{S}_k(m_c) = \{m_i \in \mathcal{M} : (k-1)\epsilon \leq d_{\min}(m_c, m_i) < (k)\epsilon\}, \quad k = 1, 2, \dots \quad (5)$$

We sample the number of shells $K \sim \text{Uniform}(1, k_{\max})$, and define the block of molecules $V_K = \bigcup_{j=0}^K S_j$. We cap block size by a token budget T_{\max} (atoms). If $|V_K| \leq T_{\max}$ we accept V_K ; otherwise we choose the smallest K^* with $|V_{K^*+1}| > T_{\max}$ and subsample the frontier S_{K^*} to meet the budget while preserving the crystal's molecular stoichiometry. For example, if molecule type i appears N_i^{ASU} times in \mathcal{A} and N_i times in S_{K^*} , we sample molecules of type i in S_{K^*} with weight $\omega_i \propto (N_i^{\text{ASU}}/N_i)$. The resulting set is our training crop, denoted \mathbf{A}_{crop} .

Compared to centroid- or k NN-based heuristics, this “shell cropping” better respects local interaction networks by respecting anisotropic packing motifs and interactions beyond the strongest ones (Figure 9), while mitigating truncation biases common in large-graph learning (Zeng et al., 2019). Appendix D.1 shows that training with S^4 outperforms k NN and centroid cropping methods. Appendix F.1 show that training with S^4 can generalize to long-range periodicity beyond token sizes in training. Hyperparameter ablations of r_{cut} can be found in Appendix D.2. Finally, we bound the error due to cropping. In the next proposition, we show that the error in the loss due to cropping with S^4 decreases with the cube root of the number of tokens.

Proposition 1. Let $\partial \mathbf{A}_{\text{crop}} = \{\{u, v\} \in E : u \in \mathbf{A}_{\text{crop}}, v \notin \mathbf{A}_{\text{crop}}\}$ represent the boundary of \mathbf{A}_{crop} . Denote the number of atoms in a volume C as $T(C)$. Let $L_{\partial}(\mathbf{A}_{\text{crop}}) = \sum_{\{u, v\} \in \partial \mathbf{A}_{\text{crop}}} \mathcal{L}(u, v)$ be the boundary loss. Assuming $\exists r^0$ s.t. $L(u, v) = 0, \forall u, v$ s.t. $\|u - v\| > r^0$, i.e. \mathcal{L} is local, and there exist $0 < a \leq b < \infty$ s.t. $a|S| \leq T(S) \leq b|S|$ for any $S \subseteq V$. Then,

$$\frac{L_{\partial}(\mathbf{A}_{\text{crop}})}{T(\mathbf{A}_{\text{crop}})} = O((1 + \epsilon)T(\mathbf{A}_{\text{crop}})^{-1/3}) \quad (6)$$

3.2 MODEL ARCHITECTURE

OXTAL is comprised of: (1) a **Molecular Encoder** that embeds both physical and structural information; (2) a **Pairformer Trunk** that propagates information across all atoms in the crop; (3) a **Diffusion Module** that takes in the single and pairwise representations and outputs a generated crystal structure. The overall architecture of OXTAL is depicted in Figure 3(d).

Molecular encoder. Given an input SMILES sequence s , we generate a 3D conformer with RDKit ETKDG followed by relaxation by the semi-empirical quantum chemical method GFN2-xTB (Pracht et al., 2020). The atomic number, positions, formal charges, Mulliken partial charges, and bond information are used as *feature embeddings* for the model. OXTAL is not particularly sensitive to the feature conditioning conformer coordinates (Appendix E). Finally, we resolve ambiguity of identical molecular copies via relative position encoding on entity identifiers (Abramson et al., 2024).

Pairformer trunk. We adapt existing state-of-the-art architectures for protein folding to generate single and pair representations for each molecular crystal (Abramson et al., 2024). Instead of tokenizing protein residues, we simplify the tokenization such that each token directly represents a single atom a_i in the molecule. We then apply the Pairformer Stack from AlphaFold 3, which leverages triangular self-attention to update the single and pair representations. Unlike AlphaFold

270 2, which relied on the equivariant Evoformer (Jumper et al., 2021) architecture, this simpler
 271 Pairformer module is not explicitly equivariant, allowing for training on larger sequences.
 272

273 **Diffusion module.** The design of our diffusion module follows that of AlphaFold3 (Abramson
 274 et al., 2024), consisting of an atom attention encoder which combines token information given by
 275 the pairformer with an encoded representation of x_t , followed by a large 70M parameter diffusion
 276 transformer (Peebles & Xie, 2023), before a final atom attention decoder which predicts the
 277 denoised atomic positions. We broadly follow Karras et al. (2022) for pre-conditioning of model
 278 inputs. In Appendix D.3, we compare the non-equivariant transformer to the $SE(3)$ -equivariant
 279 EquiformerV2 (Liao et al., 2024). Under a matched memory budget, the substantially higher
 280 memory consumption of EquiformerV2 restricts the model size, leading to markedly degraded
 281 performance. Diffusion module size ablation is further provided in Appendix D.4.

282 3.3 TRAINING

283 OXTAL is trained using a procedure similar to those successfully employed for protein structure
 284 prediction (Abramson et al., 2024). The training objective is a composite loss designed to capture
 285 both the global structure and the accuracy of the local chemical environment. This loss is comprised
 286 of two main components: (1) a mean squared error loss \mathcal{L}_{mse} , (2) a smooth local difference distance
 287 test \mathcal{L}_{sLDDT} as defined in Abramson et al. (2024). Both losses compare the predicted structure
 288 $\hat{x}_0 := D_\theta(x_t, t)$ and an aligned ground truth structure $x_0^{\text{align}} = \text{align}(x_0, \hat{x}_0)$, and the latter
 289 emphasizes on the pairwise interactions within the crop via a surrogate of the interatomic distances.
 290 To round off our training, we also include a histogram loss on a separate head branching from
 291 the trunk $\mathcal{L}_{\text{dist}}(\hat{d}, d)$ to ensure the trunk output contains binned pairwise distance information.
 292 Additional details for computing component losses are provided in Appendix B.2.3. The final loss
 293 is then a weighted sum of these components:

$$294 \mathcal{L}(\theta) = \mathbb{E}_{t \sim \mathcal{U}(0,1), x_t \sim p_t(x_t | x_0^{\text{align}})} \left[\mathcal{L}_{mse}(\hat{x}_0, x_0^{\text{align}}) + \mathcal{L}_{sLDDT}(\hat{x}_0, x_0^{\text{align}}) \right] + \lambda_{\text{dist}} \mathcal{L}_{\text{dist}}(\hat{d}, d). \quad (7)$$

295 We next curate a training dataset from the Cambridge Structural Database (CSD) that contains
 296 $\sim 600k$ crystals. Specific details regarding model training and configuration are outlined in §B.
 297

298 4 EXPERIMENTS

300 We evaluate OXTAL on several different datasets for molecular CSP, comparing against a range of
 301 ML-based (§4.1) and DFT energy-based methods (§4.2). These results are complemented with a
 302 broader chemical survey (§4.3). See §C for exact specifications.

303 **Baselines.** We compare against ML *ab initio* methods and energy-based methods. For ML methods,
 304 as most models for inorganic CSP are incompatible, we evaluate the pre-trained AssembleFlow, a
 305 molecular CSP method that infers crystal packing from rigid-body molecules (Guo et al., 2025)
 306 and A-Transformer, an all-atom transformer flow matching model (§C.3.1). Additional results
 307 for zero-shot inference from AlphaFold3 are presented in §C.3.3. For energy-based methods, we
 308 compare against computational chemistry baselines that submitted to CCDC’s 5th, 6th, and 7th
 309 CSP blind tests (Bardwell et al., 2011; Reilly et al., 2016; Hunnissett et al., 2024).

310 **Metrics.** We adopt standard CSP metrics and report both *sample*- and *crystal-level* scores:

- 311 1. *Collision rate* (Col_S): Fraction of generated samples with any intermolecular distance $< r_w -$
 312 0.7 \AA where r_w is the sum of atomic van der Waals radii (Cordero et al., 2008). Lower is better.
- 313 2. *Lattice match rate* (Lat_S and Lat_C): Using CSD COMPACK, a sample *matches* if at least 8 of
 314 15 molecules can be aligned to the experimental cluster (cluster size per CSP5; see Appendix C).
 315 Lat_C is the fraction of targets with at least one match.
- 316 3. *Conformer recovery* (Rec_S and Rec_C): $\text{RMSD}_1 < 0.5 \text{ \AA}$ (non-hydrogen) to a solid-state con-
 317 former. Rec_S averages over all samples; Rec_C is the fraction of targets with at least one match.
- 318 4. *Approximately solved* (Sol_C): Any collision-free, lattice-matching sample with $\text{RMSD}_{15} < 2 \text{ \AA}$
 319 on a 15-molecule cluster.

320 4.1 CSP FOR RIGID AND FLEXIBLE MOLECULES

322 First, we compare OXTAL to *ab initio* ML models on two different test sets comprised of repre-
 323 sentative rigid and flexible molecules with ground-truth structures in CSD (see §C.2 for details).
 For each crystal target, every method generates $n_S = 30$ samples. Training-time exclusions ensure

Figure 4: Example crystal packing generated by A-Transformer, AssembleFlow, and OXTAL.

Table 1: Performance of *ab-initio* machine learning models on both rigid and flexible molecular CSP. OXTAL achieves an order of magnitude improvement and is the only model able to approximately solve any crystals in the flexible dataset.

Model	Col _S ↓	Lats ↑	Lat _C ↑	Rec _S ↑	Rec _C ↑	$\widetilde{\text{Sol}}_C$ ↑
Rigid Dataset						
A-Transformer	0.731	0.015	0.060	0.033	0.120	0.060
AssembleFlow	0.524	0.001	0.040	0.001	0.020	0
OXTAL	0.011	0.873	1.000	0.737	0.960	0.300
Flexible Dataset						
A-Transformer	0.874	0.002	0.063	0	0	0
AssembleFlow	0.850	0	0	0	0	0
OXTAL	0.167	0.410	0.813	0.056	0.500	0.125

347 no target appears in the training sets of OXTAL or A-Transformer; AssembleFlow uses a public
348 checkpoint that may include overlap. DFT baselines are omitted here due to prohibitive cost.

349 **Results.** Table 1 shows OXTAL outperforms existing ML methods across all metrics on both
350 datasets. Intramolecularly (Rec_C), OXTAL recovers up to 90% of solid-state molecular conformers;
351 intermolecularly, Col_S is near zero on rigid targets and low on flexible ones. OXTAL’s predicted
352 packings also attain strong lattice match rate against experimental structures, with approximate
353 solves for both rigid and flexible molecules. Qualitatively (Figure 4), A-Transformer struggles to
354 capture meaningful conformers despite being given Z , highlighting the limitations of a unit cell
355 based model. AssembleFlow generates molecular assemblies with large spatial separations that lack
356 periodicity (also reflected in low Lat_C and Lats scores), along with frequent interatomic clashes.

357 **Sample efficiency.** For downstream screening and design, few-sample
358 success is critical. OXTAL exhibits a log-linear improvement in
359 RMSD₁₅ among lattice-matched predictions as n increases (Figure 5),
360 with several rigid targets reaching Lat_C and $\widetilde{\text{Sol}}_C$ with $n < 10$. This
361 suggests the sampler (i) often lands near the correct motif and (ii)
362 refines global periodicity with additional draws.

363 4.2 CCDC CSP BLIND TESTS

364 Every few years, CCDC holds a CSP blind test competition, which in-
365 vites leading computational chemistry groups to solve a handful of hid-
366 den crystal structures (Bardwell et al., 2011; Reilly et al., 2016; Hun-
367 nisett et al., 2024). We therefore evaluate OXTAL on structures from
368 the three most recent (5th, 6th, and 7th) blind tests. Metrics and ex-
369 periment set up follow §4.1. We compare OXTAL and other ML *ab*
370 *initio* baselines against the aggregate of reported expensive DFT-based
371 submissions (DFT_{avg}). See Appendix C.4 for details and per-structure
372 results.

373 **Results.** Table 2 shows that OXTAL strongly outperforms *ab initio* ML
374 baselines, and achieves the best or second best performance across all
375 three tests **using only 30 samples per target**. While DFT methods may
376 sometimes attain higher conformer recovery or approximate solve rates,
377 **when OXTAL is allowed to generate the same number of samples as the**
378 **DFT methods for CSD Blind Test 5, it matches the approximate-solve**

Figure 5: OXTAL sample efficiency for 10 rigid & flexible molecules.

Figure 6: OXTAL, for targets shown, achieves similar RMSD₁₅ with less (%) submissions compared to DFT.

Table 2: Results for the 5th, 6th, and 7th CCDC CSP blind tests. Classical chemistry methods are aggregated as DFT_{avg}. The best model is **bolded**, and the second best is underlined.

Model	n_S	$\text{Col}_S \downarrow$	$\text{Lats} \uparrow$	$\text{Lat}_C \uparrow$	$\text{Rec}_S \uparrow$	$\text{Rec}_C \uparrow$	$\widetilde{\text{Sol}}_C \uparrow$
CSP Blind Test 5							
A-Transformer	180	0	0	0	0	0	0
AssembleFlow	180	0.717	0	0	0.150	0.500	0
DFT _{avg}	3314	0.003	<u>0.307</u>	<u>0.556</u>	0.772	<u>0.681</u>	0.500
OXTAL	180	<u>0.006</u>	0.667	0.833	<u>0.572</u>	0.833	<u>0.167</u>
CSP Blind Test 6							
A-Transformer	150	0	0	0	0	0	0
AssembleFlow	150	0.800	0	0	0.073	0.200	0
DFT _{avg}	1591	<u>0.082</u>	<u>0.230</u>	<u>0.416</u>	0.490	<u>0.440</u>	0.400
OXTAL	150	0.013	0.660	1.000	<u>0.160</u>	0.600	<u>0.200</u>
CSP Blind Test 7							
A-Transformer	240	0	0	0	0	0	0
AssembleFlow	240	0.808	0	0	0.063	0.250	0
DFT _{avg}	6608	<u>0.067</u>	<u>0.053</u>	<u>0.500</u>	0.319	0.456	0.441
OXTAL	240	0.021	0.483	0.875	<u>0.129</u>	<u>0.375</u>	<u>0.125</u>

rate of DFT_{avg} (see Appendix F.2). OXTAL consistently scores the best in terms of lattice match rate: from a per-sample basis, only 5 – 30% of DFT samples match the lattice cluster, whereas OXTAL generally recapitulates the packing structure (48 – 67%). This suggests that while DFT identifies many local energetic minima, OXTAL can better capture the joint energy and kinetic features that determine which minima are more likely to be formed. Of the thousands of submitted predictions (and potentially more generated but unsubmitted structures), only a small percentage of DFT-identified minima are close to ground truth structures (Figure 6). Predicting the correct experimental structure in few shots is crucial for downstream discovery applications, and OXTAL reliably approximates lattice packings *sans* any ranking methods.

Inference cost. Another major pitfall of DFT-based methods is the extremely high computational cost required to run the atomistic simulations. Recently, CCDC raised concerns over the 46 million CPU core hours that were reportedly utilized by submitted methods in CSP-7 to solve only 8 crystals (Hunnissett et al., 2024). Unlike traditional DFT methods that require new simulations for each new molecule, OXTAL’s upfront training cost (§B) is amortized at inference, allowing us to efficiently generate samples for new molecules. Using standardized on-demand cloud pricing (§C.4.1), OXTAL is over an order of magnitude cheaper at inference time, while still achieving strong lattice match rates (Figure 7). Given the CCDC’s call for more efficient CSP algorithms, OXTAL’s cost profile enables broad screening and dense posterior sampling before any optional physics-based refinement.

4.3 SURVEY OF CHEMICAL INTERPRETABILITY

Beyond benchmark metrics, we examine OXTAL’s ability to reproduce chemically meaningful intra- and intermolecular features in practically relevant crystals. Figure 1 highlights accurate packings ($\text{RMSD}_{15} < 1.5\text{\AA}$) across diverse rigid and flexible chemotypes: drug-like molecules (HURYUQ), polymer precursors (CAPRYL), organometallics (ACACPD), π -conjugated materials (QQQCIG, $_1$), and QAXMEH, which contains the most known polymorphs (see §H for more).

Molecular interactions. For intramolecular interactions, OXTAL recovers *solid-state* geometries for highly flexible molecules (which are highly influenced by packing), including small-molecule drugs as well as biomolecular fragments in the Protein DataBank (e.g. $\text{RMSD}_1 = 1.3\text{\AA}$ for a 6-mer peptide with 17 rotatable bonds (2OKZ) in Figure 8(a)). For intermolecular interactions, OXTAL accurately captures both strong and weak interactions, both in registry and lengths. Examples in Figure 8(b) include the complementary hydrogen bonds in a semiconducting crystal (XIJJOT), the weak Cl-H halogen bonds in an organometallic catalyst (OJIGOG), π - π stacking in π -functional molecule (TEPNIT), and multiple weak contacts in a cluster of the flexible drug aripiprazole (MELFIT) in Figure 18. Zooming out, while OXTAL may somewhat prefer co-planar motifs, it can still reproduce diverse packing motifs, including 1D columnar structures (e.g. BALNAD in

Figure 7: Lattice match rate per crystal attempted relative to average inference cost (in \$USD) for submitted CCDC competition methods. OXTAL is denoted in red. Costs are normalized to a single on-demand AWS instance from Sept. 2025 (see §C.4.1).

Figure 8: OXTAL (green) captures experimental (grey) (a) intramolecular and (b) intermolecular interactions in drug-like molecules, peptides, semiconductors, and catalysts. OXTAL can further infer (c) distinct experimental polymorphs as well as (d) co-crystals.

Figure 8(d)), quasi-2D herringbone structures (e.g. ANTCEN in Figure 16), and 2D brickwork structures (e.g. UMIMIO in Figure 1).

Polymorphs. For molecules with many known polymorphs (including highly rotatable scaffolds), independent OXTAL samples predict distinct experimental polymorphs (e.g., the drugs galunisertib DORDUM in Figure 8(c) and indomethacin INDMET in Figure 18). This suggests the sampler can *explore multiple kinetic and thermodynamic basins* rather than collapsing to a single motif. **The diversity of sampled polymorphs are shown in Figure 19.**

Multi-component systems. Lastly, OXTAL is not restricted to single-component systems. OXTAL can correctly predict the interactions between electron donor and acceptors (Figures 8 and 17), which dictate the crystals’ electronic properties. For the charge-transfer semiconducting co-crystals BALNAD and PERTCQ, OXTAL correctly reproduces the 1D π -stacked columns with alternating donors and acceptors, the precise inter-columnar brick-wall registry, as well as the π - π stacking distances.

5 RELATED WORKS

Physical approaches to crystal structure prediction. Classical crystal structure prediction (CSP) mostly applied search-based algorithms to sampled a pre-defined search space (Hunnisett et al., 2024). While many such methods have shown varied degree of success for different applications (van Eijck, 2002; Pickard & Needs, 2011; Case et al., 2016; Tom et al., 2020; Banerjee et al., 2021), they fundamentally rely on many calls to an expensive evaluation function (e.g., energy computation using DFT) and struggle to leverage prior data effectively. Recent search and optimization approaches replace DFT with machine learning interatomic potentials (Batatia et al., 2024; Wood et al., 2025; Gharakhanyan et al., 2025). In contrast, OXTAL does not require explicit energy function calls and brings orders of magnitude improvements in speed and inference costs.

Generative models for inorganic crystal structure prediction. Generative models have been applied for unconditional de-novo generation of new inorganic periodic crystals (Xie et al., 2022) and later used for generation conditioned on crystal composition (Jiao et al., 2023; 2024; Yang et al., 2024; Miller et al., 2024; Levy et al., 2025). In contrast to molecular crystals, inorganic crystals are typically smaller and do not possess the same flexibility/packing diversity.

Protein structure prediction. In computational structural biology, the analogous task of protein structure prediction (PSP) conditioned on a protein sequence has seen transformative progress with landmark models like AlphaFold (Jumper et al., 2021; Abramson et al., 2024) and ESMFold (Lin et al., 2023), followed by de novo protein design approaches (Watson et al., 2023; Yim et al., 2023; Bose et al., 2024). These models work with a few dozen residue types, compared to a larger chemical space in general molecular CSP, and use MSA and evolutionary structural information not present in molecular crystals. Detailed discussion of related work can be found in §G.

486

6 DISCUSSION

488 In this paper, we introduce OXTAL, a large-scale all-atom diffusion model for 3D molecular CSP
 489 that learns the joint distribution of molecular conformations and periodic packing conditioned on 2D
 490 graphs. Discarding explicit equivariance and unit-cell parametrization in favor of a symmetry-aware
 491 S^4 augmentation, OXTAL learns periodic motifs from locally consistent neighborhoods at scale, en-
 492 abling efficient sampling at all-atom resolution. Empirically, OXTAL achieves state-of-the-art results
 493 among *ab initio* ML methods, and attains competitive lattice recovery at **several orders of magnitude**
 494 **lower** cost compared to DFT-based methods. Our chemical survey supports OXTAL’s ability to
 495 capture diverse intra- and intermolecular interactions, yet several improvements remain. These
 496 include integrating reliable ranking and local relaxation, conditioning on crystallization context (i.e.
 497 solvent, temperature), and further improving sample efficiency and uncertainty quantification.
 498

499

ETHICS STATEMENT

500 This work models experimentally realizable molecular crystal structures using publicly curated crys-
 501 tallographic data (CSD) under an academic license; we redistribute only non-proprietary data and
 502 provide scripts that require users to obtain their own CSD access. No human subjects or personally
 503 identifiable information are involved. Potential impacts are largely beneficial (accelerated solid-
 504 form screening and molecular materials design), but we acknowledge dual-use risks: faster structure
 505 generation might marginally aid the design of hazardous energetic materials or hard-to-detect poly-
 506 morphs that affect drug bioavailability. We mitigate by (i) releasing usage guidelines and filters to
 507 flag energetic motifs and highly strained lattices, and (ii) encouraging downstream human/physics
 508 validation before deployment in safety-critical settings. We report training compute and approxi-
 509 mate carbon footprint in §B; we adopt mixed precision and efficient dataloading to reduce energy
 510 use. The authors declare no competing financial interests.

511

REPRODUCIBILITY STATEMENT

512 We will release code, model checkpoints, and evaluation scripts. Because CSD redistribution is
 513 restricted, the training code will not be released, but appropriate pre-processing code, such as S^4
 514 cropping (including r_{cut} , r^0 , T_{max} , K_{max}) will be released. We fix random seeds for training and
 515 sampling, and specify all hyperparameters necessary for reproducing the model. We will specify
 516 third-party tool versions (RDKit, xTB/GFN2, COMPACK). Evaluation is fully scripted: COM-
 517 PACK settings, RMSD_{1/15} definitions, collision thresholds ($r_w = 0.7 \text{ \AA}$), and criteria for Lat_S/Lat_C,
 518 Rec_S/Rec_C, and $\widetilde{\text{Sol}}_C$. We will also provide inference configurations for all reported figures/tables,
 519 ablation toggles, baseline re-runs (A-Transformer, AssembleFlow) with their seeds, and a Docker
 520 container to reproduce numbers on comparable hardware.

521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES

541
 542 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ron-
 543 neberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure pre-
 544 diction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024. (Cited
 545 on pages 2, 5, 6, 9, 23, and 27)

546 Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Ap-
 547 plications*, 12(3):313–326, 1982. (Cited on page 4)

548 Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. Crystal structure generation with au-
 549 toregressive large language modeling. *Nature Communications*, 15(1):10570, 2024. (Cited on
 550 page 34)

551 Atreyee Banerjee, Dipti Jasrasaria, Samuel P Niblett, and David J Wales. Crystal structure prediction
 552 for benzene using basin-hopping global optimization. *The Journal of Physical Chemistry A*, 125
 553 (17):3776–3784, 2021. (Cited on pages 9 and 34)

554 David A Bardwell, Claire S Adjiman, Yelena A Arnautova, Ekaterina Bartashevich, Stephan XM
 555 Boerrigter, Doris E Braun, Aurora J Cruz-Cabeza, Graeme M Day, Raffaele G Della Valle, Gau-
 556 tam R Desiraju, et al. Towards crystal structure prediction of complex organic compounds—a
 557 report on the fifth blind test. *Structural Science*, 67(6):535–551, 2011. (Cited on pages 1, 6, 7, 22,
 558 24, and 25)

559 Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, Brandon M Wood, Misko Dzamba, Meng
 560 Gao, Ammar Rizvi, C Lawrence Zitnick, and Zachary W Ulissi. Open materials 2024 (omat24)
 561 inorganic materials dataset and models. *arXiv preprint arXiv:2410.12771*, 2024. (Cited on page 34)

562 Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. Mace: Higher
 563 order equivariant message passing neural networks for fast and accurate force fields. In *NeurIPS*,
 564 2022. (Cited on page 34)

565 Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M. Elena, Dávid P. Kovács, Janosh Riebesell,
 566 Xavier R. Advincula, Mark Asta, Matthew Avaylon, William J. Baldwin, Fabian Berger, Noam
 567 Bernstein, Arghya Bhowmik, Filippo Bigi, Samuel M. Blau, Vlad Cărare, Michele Ceriotti, Sang-
 568 gyu Chong, James P. Darby, Sandip De, Flaviano Della Pia, Volker L. Deringer, Rokas Elijošius,
 569 Zakariya El-Machachi, Fabio Falcioni, Edvin Fako, Andrea C. Ferrari, John L. A. Gardner,
 570 Mikolaj J. Gawkowski, Annalena Genreith-Schriever, Janine George, Rhys E. A. Goodall, Jonas
 571 Grandel, Clare P. Grey, Petr Grigorev, Shuang Han, Will Handley, Hendrik H. Heenen, Kersti
 572 Hermansson, Christian Holm, Cheuk Hin Ho, Stephan Hofmann, Jad Jaafar, Konstantin S. Jakob,
 573 Hyunwook Jung, Venkat Kapil, Aaron D. Kaplan, Nima Karimitari, James R. Kermode, Panagio-
 574 tis Kourtis, Namu Kroupa, Jolla Kullgren, Matthew C. Kuner, Domantas Kuryla, Guoda Liepuo-
 575 niute, Chen Lin, Johannes T. Margraf, Ioan-Bogdan Magdău, Angelos Michaelides, J. Harry
 576 Moore, Aakash A. Naik, Samuel P. Niblett, Sam Walton Norwood, Niamh O’Neill, Christoph
 577 Ortner, Kristin A. Persson, Karsten Reuter, Andrew S. Rosen, Louise A. M. Rosset, Lars L.
 578 Schaaf, Christoph Schran, Benjamin X. Shi, Eric Sivonxay, Tamás K. Stenczel, Viktor Svahn,
 579 Christopher Sutton, Thomas D. Swinburne, Jules Tilly, Cas van der Oord, Santiago Vargas, Es-
 580 zter Varga-Umbrich, Tejs Vegge, Martin Vondrák, Yangshuai Wang, William C. Witt, Thomas
 581 Wolf, Fabian Zills, and Gábor Csányi. A foundation model for atomistic materials chemistry.
 582 *arXiv preprint arXiv:2401.00096*, 2024. (Cited on pages 9 and 34)

583 Avishek Joey Bose, Tara Akhoud-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-Brooks,
 584 Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexander
 585 Tong. Se(3)-stochastic flow matching for protein backbone generation, 2024. URL <https://arxiv.org/abs/2310.02391>. (Cited on page 9)

586 Carl Ivar Branden and John Tooze. *Introduction to protein structure*. Garland Science, 2012. (Cited
 587 on page 2)

588 David H Case, Josh E Campbell, Peter J Bygrave, and Graeme M Day. Convergence properties of
 589 crystal structure prediction by quasi-random sampling. *Journal of chemical theory and computa-
 590 tion*, 12(2):910–924, 2016. (Cited on pages 9 and 34)

594 Jie Chen, Bipul Sarma, James MB Evans, and Allan S Myerson. Pharmaceutical crystallization.
 595 *Crystal growth & design*, 11(4):887–895, 2011. (Cited on page 1)
 596

597 Aleksandr Aleksandrovich Chernov. *Modern crystallography III: crystal growth*, volume 36.
 598 Springer Science & Business Media, 2012. (Cited on page 1)

599 Beatriz Cordero, Verónica Gómez, Ana E Platero-Prats, Marc Revés, Jorge Echeverría, Eduard
 600 Cremades, Flavia Barragán, and Santiago Alvarez. Covalent radii revisited. *Dalton Transactions*,
 601 (21):2832–2838, 2008. (Cited on page 6)

602 Farren Curtis, Xiayue Li, Timothy Rose, Alvaro Vazquez-Mayagoitia, Saswata Bhattacharya,
 603 Luca M Ghiringhelli, and Noa Marom. Gator: a first-principles genetic algorithm for molecu-
 604 lar crystal structure prediction. *Journal of chemical theory and computation*, 14(4):2246–2264,
 605 2018. (Cited on page 34)

606 Qianggang Ding, Santiago Miret, and Bang Liu. Matexpert: Decomposing materials discovery
 607 by mimicking human experts. In *The Thirteenth International Conference on Learning Repre-
 608 sentations*, 2025. URL <https://openreview.net/forum?id=AUBvo4sxVL>. (Cited on
 609 page 34)

610 David J Earl and Michael W Deem. Parallel tempering: Theory, applications, and new perspectives.
 611 *Physical Chemistry Chemical Physics*, 7(23):3910–3916, 2005. (Cited on page 34)

612 Eberhard Engel and Reiner M Dreizler. *Density functional theory*. Springer, 2011. (Cited on page 1)

613 P Ganguly and Gautam R Desiraju. Long-range synthon aufbau modules (Isam) in crystal structures:
 614 systematic changes in c 6 h 6- n f n ($0 \leq n \leq 6$) fluorobenzenes. *CrystEngComm*, 12(3):817–833,
 615 2010. (Cited on page 34)

616 Johannes Gasteiger, Florian Becker, and Stephan Günemann. Gemnet: Universal directional graph
 617 neural networks for molecules. *Advances in Neural Information Processing Systems*, 34:6790–
 618 6802, 2021. (Cited on pages 4 and 34)

619 Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Günemann, Zachary Ulissi,
 620 C Lawrence Zitnick, and Abhishek Das. Gemnet-oc: developing graph neural networks for large
 621 and diverse molecular simulation datasets. *arXiv preprint arXiv:2204.02782*, 2022. (Cited on
 622 page 34)

623 Vahe Gharakhanyan, Yi Yang, Luis Barroso-Luque, Muhammed Shuaibi, Daniel S Levine, Kyle
 624 Michel, Viachaslau Bernat, Misko Dzamba, Xiang Fu, Meng Gao, et al. Fastcsp: Accel-
 625 erated molecular crystal structure prediction with universal model for atoms. *arXiv preprint
 626 arXiv:2508.02641*, 2025. (Cited on pages 9 and 34)

627 Hongyu Guo, Yoshua Bengio, and Shengchao Liu. Assembleflow: Rigid flow matching with inertial
 628 frames for molecular assembly. In *ICLR*, 2025. (Cited on pages 6, 23, and 24)

629 Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer,
 630 Ricky T. Q. Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary
 631 markov processes. In *International Conference on Machine Learning*, 2025. (Cited on page 4)

632 Lily M Hunnisett, Jonas Nyman, Nicholas Francia, Nathan S Abraham, Claire S Adjiman, Sriniva-
 633 sulu Aitipamula, Tamador Alkhidir, Mubarak Almehairbi, Andrea Anelli, Dylan M Anstine, et al.
 634 The seventh blind test of crystal structure prediction: structure generation methods. *Structural
 635 Science*, 80(6), 2024. (Cited on pages 1, 6, 7, 8, 9, 24, and 25)

636 Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal struc-
 637 ture prediction by joint equivariant diffusion. In *Thirty-seventh Conference on Neural Information
 638 Processing Systems*, 2023. URL <https://openreview.net/forum?id=DNdN26m2Jk>.
 639 (Cited on pages 9 and 34)

640 Rui Jiao, Wenbing Huang, Yu Liu, Deli Zhao, and Yang Liu. Space group constrained crystal
 641 generation. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 642 <https://openreview.net/forum?id=jkvZ7v4OmP>. (Cited on pages 9 and 34)

648 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 649 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 650 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021. (Cited on pages 2,
 651 6, and 9)

652

653 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 654 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 655 2022. (Cited on page 6)

656

657 Daniel S Levine, Muhammed Shuaibi, Evan Walter Clark Spotte-Smith, Michael G Taylor, Muham-
 658 mad R Hasyim, Kyle Michel, Ilyes Batatia, Gábor Csányi, Misko Dzamba, Peter Eastman,
 659 et al. The open molecules 2025 (omol25) dataset, evaluations, and models. *arXiv preprint*
 660 *arXiv:2505.08762*, 2025. (Cited on page 34)

661

662 Daniel Levy, Siba Smarak Panigrahi, Sékou-Oumar Kaba, Qiang Zhu, Kin Long Kelvin Lee,
 663 Mikhail Galkin, Santiago Miret, and Siamak Ravanbakhsh. SymmCD: Symmetry-preserving
 664 crystal generation with diffusion models. In *The Thirteenth International Conference on Learn-
 665 ing Representations*, 2025. URL <https://openreview.net/forum?id=xnssGv9rpW>.
 666 (Cited on pages 9 and 34)

667

668 Yi-Lun Liao, Brandon Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved equivariant
 669 transformer for scaling to higher-degree representations. In *ICLR*, 2024. (Cited on pages 6, 28,
 670 and 34)

671

672 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 673 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
 674 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023. (Cited on page 9)

675

676 Andriy O Lyakhov, Artem R Oganov, Harold T Stokes, and Qiang Zhu. New developments in
 677 evolutionary structure prediction algorithm uspex. *Computer Physics Communications*, 184(4):
 678 1172–1182, 2013. (Cited on page 34)

679

680 Valerio Mariani, Marco Biasini, Alessandro Barbato, and Torsten Schwede. lddt: a local
 681 superposition-free score for comparing protein structures and models using distance difference
 682 tests. *Bioinformatics*, 29(21):2722–2728, 2013. (Cited on page 21)

683

684 Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
 685 Ekin Dogus Cubuk. Scaling deep learning for materials discovery. *Nature*, 624(7990):80–85,
 686 2023. (Cited on page 34)

687

688 Benjamin Kurt Miller, Ricky TQ Chen, Anuroop Sriram, and Brandon M Wood. Flowmm: Gener-
 689 ating materials with riemannian flow matching. In *ICML*, 2024. (Cited on pages 4, 9, and 34)

690

691 Aaron J Nessler, Okimasa Okada, Mitchell J Hermon, Hiroomi Nagata, and Michael J Schnieders.
 692 Progressive alignment of crystals: reproducible and efficient assessment of crystal structure simi-
 693 larity. *Applied Crystallography*, 55(6):1528–1537, 2022. (Cited on page 22)

694

695 Bernt Øksendal. Stochastic differential equations. In *Stochastic differential equations*, pp. 65–84.
 696 Springer, 2003. (Cited on page 4)

697

698 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings*
 699 of the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023. (Cited on
 700 page 6)

701

702 Chris J Pickard and RJ Needs. Ab initio random structure searching. *Journal of Physics: Condensed
 703 Matter*, 23(5):053201, 2011. (Cited on pages 9 and 34)

704

705 Philipp Pracht, Fabian Bohle, and Stefan Grimme. Automated exploration of the low-energy chem-
 706 ical space with fast quantum chemical methods. *Physical Chemistry Chemical Physics*, 22(14):
 707 7169–7192, 2020. (Cited on page 5)

702 Anthony M Reilly, Richard I Cooper, Claire S Adjiman, Saswata Bhattacharya, A Daniel Boese,
 703 Jan Gerit Brandenburg, Peter J Bygrave, Rita Bylsma, Josh E Campbell, Roberto Car, et al. Report
 704 on the sixth blind test of organic crystal structure prediction methods. *Structural Science*, 72(4):
 705 439–459, 2016. (Cited on pages 1, 6, 7, 24, and 25)

706 Luis Reinaudi, Ezequiel PM Leiva, and Raúl E Carbonio. Simulated annealing prediction of the
 707 crystal structure of ternary inorganic compounds using symmetry restrictions. *Journal of the
 708 Chemical Society, Dalton Transactions*, (23):4258–4262, 2000. (Cited on page 34)

709

710 Nate Schultheiss and Ann Newman. Pharmaceutical cocrystals and their physicochemical proper-
 711 ties. *Crystal growth and design*, 9(6):2950–2967, 2009. (Cited on page 1)

712 Justin S Smith, Roman Zubatyuk, Benjamin Nebgen, Nicholas Lubbers, Kipton Barros, Adrian E
 713 Roitberg, Olexandr Isayev, and Sergei Tretiak. The ani-1ccx and ani-1x data sets, coupled-cluster
 714 and density functional theory properties for molecules. *Scientific data*, 7(1):134, 2020. (Cited on
 715 page 34)

716

717 Anuroop Sriram, Sihoon Choi, Xiaohan Yu, Logan M Brabson, Abhishek Das, Zachary Ulissi, Matt
 718 Uyttendaele, Andrew J Medford, and David S Sholl. The open dac 2023 dataset and challenges
 719 for sorbent discovery in direct air capture, 2024. (Cited on page 34)

720 ByteDance AML AI4Science Team, Xinshe Chen, Yuxuan Zhang, Chan Lu, Wenzhi Ma, Jiaqi Guan,
 721 Chengyue Gong, Jincai Yang, Hanyu Zhang, Ke Zhang, et al. Protenix-advancing structure pre-
 722 diction through a comprehensive alphafold3 reproduction. *BioRxiv*, pp. 2025–01, 2025. (Cited on
 723 pages 20 and 21)

724 Rithwik Tom, Timothy Rose, Imanuel Bier, Harriet O’Brien, Álvaro Vázquez-Mayagoitia, and Noa
 725 Marom. Genarris 2.0: A random structure generator for molecular crystals. *Computer Physics
 726 Communications*, 250:107170, 2020. (Cited on pages 9 and 34)

727

728 Bouke P van Eijck. Crystal structure predictions for disordered halobenzenes. *Physical Chemistry
 729 Chemical Physics*, 4(19):4789–4794, 2002. (Cited on pages 9 and 34)

730

731 Yanchao Wang, Jian Lv, Li Zhu, and Yanming Ma. Crystal structure prediction via particle-swarm
 732 optimization. *Physical Review B—Condensed Matter and Materials Physics*, 82(9):094116, 2010.
 (Cited on page 34)

733

734 Yu Wang, Lingjie Sun, Cong Wang, Fangxu Yang, Xiaochen Ren, Xiaotao Zhang, Huanli Dong, and
 735 Wenping Hu. Organic crystalline materials in flexible electronics. *Chemical Society Reviews*, 48
 736 (6):1492–1530, 2019. (Cited on page 1)

737

738 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
 739 nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design
 740 of protein structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023. (Cited on
 page 9)

741

742 Brandon M Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque,
 743 Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R Kitchin, Daniel S Levine, et al. Uma: A
 744 family of universal models for atoms. *arXiv preprint arXiv:2506.23971*, 2025. (Cited on pages 9
 and 34)

745

746 Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi S. Jaakkola. Crys-
 747 tal diffusion variational autoencoder for periodic material generation. In *International Confer-
 748 ence on Learning Representations*, 2022. URL https://openreview.net/forum?id=03RLpj-tc_. (Cited on pages 9 and 34)

749

750 Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mordatch,
 751 and Ekin Dogus Cubuk. Scalable diffusion for materials generation. In *The Twelfth International
 752 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=wm4W1HoXpC>. (Cited on page 9)

753

754 Jason Yim, Brian L. Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
 755 and Tommi Jaakkola. Se(3) diffusion model with application to protein backbone generation.
International Conference on Machine Learning (ICML), 2023. (Cited on page 9)

756 Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
757 saint: Graph sampling based inductive learning method. *arXiv preprint arXiv:1907.04931*, 2019.
758 (Cited on page 5)

759 Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Zilong
760 Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, et al. A generative model for inor-
761 ganic materials design. *Nature*, 639(8055):624–632, 2025. (Cited on page 2)

763 Xiaotao Zhang, Huanli Dong, and Wenping Hu. Organic semiconductor single crystals for electron-
764 ics and photonics. *Advanced Materials*, 30(44):1801048, 2018. (Cited on page 1)

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

APPENDIX

A THEORY

Proposition 1. Let $\partial \mathbf{A}_{crop} = \{\{u, v\} \in E : u \in \mathbf{A}_{crop}, v \notin \mathbf{A}_{crop}\}$ represent the boundary of \mathbf{A}_{crop} . Denote the number of atoms in a volume C as $T(C)$. Let $L_\partial(\mathbf{A}_{crop}) = \sum_{\{u, v\} \in \partial \mathbf{A}_{crop}} \mathcal{L}(u, v)$ be the boundary loss. Assuming $\exists r^0$ s.t. $L(u, v) = 0, \forall u, v$ s.t. $\|u - v\| > r^0$, i.e. \mathcal{L} is local, and there exist $0 < a \leq b < \infty$ s.t. $a|S| \leq T(S) \leq b|S|$ for any $S \subseteq V$. Then,

$$\frac{L_\partial(\mathbf{A}_{crop})}{T(\mathbf{A}_{crop})} = O((1 + \epsilon)T(\mathbf{A}_{crop})^{-1/3}) \quad (6)$$

To prove this proposition, we first label our assumptions.

A1 Locality. $\exists r_0$ s.t. $L(u, v) = 0$ for all u, v s.t. $\|u - v\| > r_0$

A2 Uniform Density. there exist $0 < a \leq b < \infty$ s.t. $a|S| \leq T(S) \leq b|S|$ for any $S \subseteq V$.

Next we investigate the S4 algorithm. We first recall the definition of shells and \mathbf{A}_{crop}

$$\mathcal{S}_k(g_c) = \{g_i \in \mathcal{C}^{(U)} : k\epsilon \leq d(g_c, g_i) < (k+1)\epsilon\}, \quad k = 0, 1, 2, \dots \quad (8)$$

where d is the distance between molecules g_c and g_i in the infinitely repeating lattice. Molecules from each full shell are added until the total number of tokens satisfies $|V_{g_c}| + \sum_{k \in \mathcal{K}} |\mathcal{V}_{\mathcal{S}_k}| \leq N_{\max}$, where N_{\max} is the crop budget. If at least one full shell fits, we train on the crop $\mathbf{A}_{crop} = \{g_c\} \cup \bigcup_{k \in \mathcal{K}} \mathcal{S}_k$. This implies that \mathbf{A}_{crop} can be well approximated by a ball centered around g_c or radius $(k+1)\epsilon$.

Define the ball of radius ϵk as $\mathcal{B}_k = \bigcup_{k \in \mathcal{K}} \mathcal{S}_k$. First a short lemma to show the number of neighbors of a node is bounded.

Lemma 1. Define the **edge neighborhood** of g as $\mathcal{N}(g) = \{\{u, v\} \text{ s.t. } u = g \cap \mathcal{L}(u, v) \geq 0\}$. Assuming [A1] and [A2] we have a uniform bound on the degree

$$|\mathcal{N}(g)| \leq C \quad (9)$$

for some C independent of g .

Proof. This follows from considering a ball of radius r_0 around g . That ball has volume $V = \frac{4}{3}\pi r_0^3$. Using [A2] we have that the token count $T(\mathcal{B}_k(g)) \leq \frac{4b}{3}r_0^3$, and therefore $|\mathcal{N}(g)| < \frac{4b}{3}r_0^3$ which is independent of g . \square

We next note that for a regular lattice structure we have the following inequality for the size of the boundary relative to the total volume. Specifically for a lattice we have

Lemma 2. For $0 < a \leq b < \infty$ on a 3D lattice we have the following relationship between a sphere's surface area and volume $a|\mathcal{B}_k|^{2/3} \leq |\partial \mathcal{B}_k| \leq b|\mathcal{B}_k|^{2/3}$.

we note that the constants are due to discretization error, and locality. As we approach the continuous limit i.e. $k \rightarrow \infty$ the bounds become tight.

Next, we have to bound how well \mathbf{A}_{crop} is approximated by a ball of radius k .

Lemma 3. For some constant $0 < c < \infty$, $|\partial \mathbf{A}_{crop}| \leq |\partial \mathcal{B}_k| + c\epsilon|\mathcal{B}_k|^{2/3}$.

Proof. We first note that $\mathcal{B}_k \subseteq \mathbf{A}_{crop} \mathcal{B}_{k+1}$ by construction of \mathbf{A}_{crop} . This means that we can consider \mathbf{A}_{crop} as all the molecules in \mathcal{B}_k plus (possibly) some additional molecules in $\mathcal{S}_k(g_c)$. We can then bound the total surface area as

$$|\partial \mathbf{A}_{crop}| \leq |\partial \mathcal{B}_k| + |\partial \mathcal{S}_k(g_c)| \quad (10)$$

however we know that the surface area of molecules in $\mathcal{S}_k(g_c)$ is bounded by the number of nodes in \mathcal{S}_k and some constant.

$$|\partial\mathcal{S}_k(g_c)| \leq c|\mathcal{S}_k| \quad (11)$$

$$= c((\epsilon(k+1))^3 - (\epsilon k)^3) \quad (12)$$

$$= c\epsilon^3(3k^2 + 3k + 1) \quad (13)$$

$$\leq c\epsilon^3 k^2 \quad (14)$$

$$\leq c\epsilon|\mathcal{B}_k|^{2/3} \quad (15)$$

which combined with equation 10 proves the lemma. \square

We are now ready to prove the main proposition.

Proof. Assuming $\mathcal{L}_\partial(\mathbf{A}_{crop})$ is based on a sum of pairwise interaction terms i.e.

$$\mathcal{L}_\partial(\mathbf{A}_{crop}) = \sum_{\{u,v\} \in \partial\mathbf{A}_{crop}} \mathcal{L}(u, v) \quad (16)$$

Lemma 3 allows us to first analyze $\mathcal{L}_\partial(\mathcal{B}_k)$ then use Lemma 3 for the final bound.

$$\mathcal{L}_\partial(\mathcal{B}_k) = \sum_{\{u,v\} \in \partial\mathcal{B}_k} \mathcal{L}(u, v) \quad (17)$$

$$\leq c|\partial\mathcal{B}_k| \max_{\{u,v\} \in \partial\mathcal{B}_k} \mathcal{L}(u, v) \quad (18)$$

using Lemma 2,

$$\leq c|\mathcal{B}_k|^{2/3} \max_{\{u,v\} \in \partial\mathcal{B}_k} \mathcal{L}(u, v) \quad (19)$$

Assuming [A1], [A2], and Lemma 1,

$$\leq c|T(\mathcal{B}_k)|^{2/3} \quad (20)$$

Combining this with Lemma 3 we have the final result

$$\frac{\mathcal{L}_\partial(\mathbf{A}_{crop})}{T(\mathbf{A}_{crop})} = O((1+\epsilon)T(\mathbf{A}_{crop})^{-1/3})$$

\square

As a reminder, this proposition implies that the boundary surface becomes less of an issue as the number of tokens grows.

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

928
 929
 930
 931
 932
 933

Figure 9: (a) KNN as used in AlphaFold3 captures only the closest interactions (e.g. hydrogen bonds in trimesic acid, highlighted in blue) but does not capture more distant interactions that are equally crucial for crystallization (e.g. π - π stacking in trimesic acid, highlighted in red). (b) centroid-based approaches will create anisotropic crops in elongated molecules, for example only capturing a 1-dimensional column (grey) in the ellipsoid *p*-quinquephenyl, while missing peripheral interactions (red).

935 B TECHNICAL DETAILS

936
 937 Experiments were performed on heterogenous GPU clusters consisting of NVIDIA L40S and H100
 938 GPUs. Models were primarily trained using multinode DDP training on L40S GPUs as cluster
 939 availability permitted. Inference is performed across all available hardware.

940 B.1 TRAINING DATA PROCESSING

941 We curate training data from the Cambridge Structural Database (CSD, including releases up to
 942 May 1, 2025) under the following criteria: (i) 3D coordinates are present, (ii) the conventional
 943 R -factor $< 9\%$, (iii) the structure is derived from single crystal diffraction at ambient pressure, (iv)
 944 the structure is not polymeric, (v) the structure can be sanitized by RDKit with no missing heavy
 945 atoms, (vi) there is a known space group, and (vii) at most 250 non-hydrogen atoms are present per
 946 unit cell. To avoid leakage, we exclude any entry belonging to a test crystal family and any entry
 947 containing a molecular component that appears in test sets. To avoid oversampling certain clusters,
 948 within each crystal family, near-duplicate polymorphs are collapsed using $\text{RMSD}_{15} \leq 0.25 \text{ \AA}$,
 949 retaining the entry with the lowest R . Our final training dataset contains 594,202 crystals in total.

950 For data preparation, crystallographic disorder is resolved by selecting the disorder group with the
 951 highest occupancy. We remove hydrogens for training and extract kekulized bonds from crystallo-
 952 graphic metadata. Prior to building supercells, molecules of the crystals are centered to lie within
 953 the unit cell, and the unit cells are transformed to their unique Niggli-reduced forms. Supercells are
 954 constructed by tile translation $\mathbf{T}_{ijk} = i\mathbf{a} + j\mathbf{b} + k\mathbf{c}$ for $i, j, k \in -1, 0, 1$ such that molecules with
 955 centroids inside the supercell boundary are included.

956 B.2 ADDITIONAL MODEL DETAILS

958 B.2.1 STOICHIOMETRIC STOCHASTIC SHELL SAMPLING (S^4)

959 We provide the full algorithm for S^4 cropping in Algorithm 1. Recall that for a crystal \mathcal{C} ,
 960 \mathcal{M} denotes the set of molecules within the crystal, \mathbf{A} denotes the tokenized atom array for all
 961 molecules $m \in \mathcal{M}$, and $X \subset \mathbb{R}^3$ denotes the Cartesian coordinates of each atom $a \in \mathbf{A}$.
 962 Note that for practical purposes, we assume \mathcal{M} has a finite size. Additionally, $\mathcal{A}_{\mathcal{C}}$ is the crys-
 963 tal's minimal *asymmetric unit*, and d is a pre-computed intermolecular distance matrix, where
 964 $d(i, j) = \min_{x_i \in X(m_i), x_j \in X(m_j)} \|x_i - x_j\|_2$.

965 Given an input shell radius r_{cut} , we first sample a central molecule $m_c \sim \text{Uniform}(\mathcal{A})$. Then, we
 966 assign all other molecules $m_i \in \mathcal{M} \setminus m_c$ to a shell layer, as defined by r_{cut} . Note that each molecule
 967 m_i can only belong to one shell layer. Next, with probability $(1 - p_{\max})$, we randomly sample how
 968 many shells to keep. We then add complete shells of molecules to our selected set until the maximum
 969 token budget T_{\max} is reached. If no complete shell can fit within the token budget, we adaptively
 970 sample molecules in the first shell according to Algorithm 2 in order to preserve the stoichiometric
 971 ratios of the molecules in $\mathcal{A}_{\mathcal{C}}$. **Lastly, we note that it is possible to deduce the underlying Bravais lat-
 972 tice of a large periodic point cloud by analyzing the set of interatomic difference vectors (a Patterson**

972 analysis): in the resulting Patterson function, lattice translation vectors appear as a high-multiplicity,
 973 regularly spaced subset of the interatomic vectors, from which the lattice parameters (and hence a
 974 primitive cell) can be recovered.

975 **Implementation details.** In practice, we begin by first considering a $3 \times 3 \times 3$ crystal supercell
 976 $\mathcal{C}^{(U)}$, where $U = 3I_3$. For each input crystal, we sample a molecule m_c from the asymmetric unit
 977 of the central unit cell. After analysing the distribution of intermolecular distances for all crystals in
 978 the training set, we decided to set $r_{cut} = 4.5 \text{ \AA}$ (see Figure 10). Furthermore, in order to encourage
 979 the selection of larger \mathbf{A}_{crop} blocks, we set $p_{\max} = 0.8$ and $T_{\max} = 640$.
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

Figure 10: Distribution of intermolecular distances in the processed CSD training dataset.

1026

Algorithm 1 STOICHIOMETRIC STOCHASTIC SHELL SAMPLING

```

1: Input:  $\mathcal{M}, \mathbf{A}, \mathcal{A}, d, r_{cut}, T_{\max}, p_{\max}$ 
2:  $m_c \sim \text{Uniform}(\mathcal{A})$  ▷ Sample central molecule
3:  $\mathcal{M} \leftarrow \mathcal{M} \setminus \{m_c\}$ 
4: Initialize  $\mathcal{S} = \emptyset, k \leftarrow 1$ 
5: while  $\mathcal{M} \neq \emptyset$  do ▷ Compute shell layers around  $m_c$ 
6:    $S_k \leftarrow \{m_i \in \mathcal{M} : d(m_c, m_i) \leq k \cdot r_{cut}\}$ 
7:    $\mathcal{S} \leftarrow \mathcal{S} \cup S_k, \mathcal{M} \leftarrow \mathcal{M} \setminus S_k, k \leftarrow k + 1$ 
8: end while
9:
10:  $b_{\max} \sim \text{Bernoulli}(p_{\max})$  ▷ Sample maximum number of shells  $S_{k_{\max}}$  to keep
11: if  $b_{\max} = \text{False}$  then
12:    $k_{\max} \sim \text{Uniform}\{1, \dots, k - 1\}$ 
13:    $\mathcal{S} \leftarrow \{S_1, \dots, S_{k_{\max}}\}$ 
14: end if
15:
16: Initialize  $\mathbf{A}_{\text{crop}} \leftarrow \mathbf{A}(m_c), i \leftarrow 1$ , ▷ Add full integer shells within token budget  $T_{\max}$ 
17: while  $|\mathbf{A}_{\text{crop}}| \leq T_{\max}$  do
18:   if  $|\mathbf{A}_{\text{crop}}| + |\mathbf{A}(S_i)| > T_{\max}$  then
19:     break
20:   end if
21:    $\mathbf{A}_{\text{crop}} \leftarrow \mathbf{A}_{\text{crop}} \cup \mathbf{A}(S_i), i \leftarrow i + 1$ 
22: end while
23:
24: if  $i = 1$  then ▷ If no full shell fits, sample molecules according to stoichiometry
25:    $\mathbf{A}_{\text{crop}} \leftarrow \text{ADAPTIVE STOICHIOMETRIC SAMPLING}(\mathbf{A}, m_c, \mathcal{A}, T_{\max}, S_1)$ 
26: end if
27: return  $\mathbf{A}_{\text{crop}}$ 

```

1053

1054

Algorithm 2 ADAPTIVE STOICHIOMETRIC SAMPLING

```

1: Input:  $\mathbf{A}, m_c, \mathcal{A}, T_{\max}, S$ 
2: Calculate proportion of each molecule type  $p_t = \frac{|\{m_i \in \mathcal{A} : \text{type}(m_i) = t\}|}{|\mathcal{A}|}$ 
3: Initialize ideal targets:  $R_t \leftarrow \text{round}(p_t \cdot |S|)$  for each type  $t$ 
4:  $\mathbf{A}_{\text{crop}} \leftarrow \mathbf{A}(m_c), R_{\text{type}(m_c)} \leftarrow R_{\text{type}(m_c)} - 1$  ▷  $m_c$  is already pre-selected
5:
6: while  $|\mathbf{A}_{\text{crop}}| < T_{\max}$  do
7:   Bucket remaining molecules by type:  $B_t = \{m \in S : \text{type}(m) = t\}$ 
8:   Compute adaptive weights for each type:
9:   for all  $t \in T$  with  $B_t \neq \emptyset$  do
10:     $w_t \leftarrow R_t / |B_t|$ 
11:   end for
12:   Normalize weights to probabilities:  $P'_t = w_t / \sum_t w_t$ 
13:   Select type  $t'$  randomly according to probabilities  $P'_t$ 
14:   Sample  $m' \sim \text{Uniform}(B_{t'})$ 
15:   if  $|\mathbf{A}_{\text{crop}}| + |\mathbf{A}(m')| > T_{\max}$  then
16:     break ▷ Stop if adding this molecule exceeds token budget
17:   end if
18:    $\mathbf{A}_{\text{crop}} \leftarrow \mathbf{A}_{\text{crop}} \cup \mathbf{A}(m')$ 
19:    $S \leftarrow S \setminus \{m'\}, B_{t'} \leftarrow B_{t'} \setminus \{m'\}, R_{t'} \leftarrow R_{t'} - 1$ 
20: end while
21: return  $\mathbf{A}_{\text{crop}}$ 

```

1076

1077

B.2.2 ARCHITECTURE

1078

1079

Our model adopts the AlphaFold-3 (AF3) trunk-plus-diffusion design via the public PROTENIX Team et al. (2025) implementation. Atom-level tokens with relative position and entity encodings

1080
 1081 are processed by an AF3-style *Pairformer* trunk with recycling to produce single (s) and pair (z)
 1082 representations; the MSA and LM/RNA pathways are disabled in all reported experiments. These
 1083 representations condition a structure-denoising head consisting of an atom-attention encoder, a
 1084 transformer-based diffusion module, and an atom-attention decoder that outputs 3D coordinates.
 1085 Aside from retokenizing residues as atoms and disabling MSA/LM inputs, we make no material
 1086 architectural changes relative to AF3.

1086 B.2.3 LOSSES

1088 We use a combination of losses to encourage accurate structure prediction on both the global and
 1089 local scales. Here we enumerate what the different losses are, how they are formulated, what they
 1090 are useful for and how they lead to a correct diffusion model.

1091 **SmoothLDDTLoss.** The Smooth local distance difference test (SmoothLDDT) loss is a smooth
 1092 form of an existing LDDT loss (Mariani et al., 2013). The LDDT measures how well two structures
 1093 align over all pairs of atoms at a distance closer than some predefined threshold. For us, this is
 1094 $R_0 = 15\text{\AA}$. These pairs of atoms form a set of local distances L . The LDDT score is the average of
 1095 fractions at four distance thresholds [0.5, 1.0, 2.0, 4.0] Angstroms. The Smooth LDDT test, instead
 1096 of using a binary test of whether or not the local distances are on the same side of the threshold,
 1097 uses a sigmoid function instead. Let

$$1098 L = \|x - x^T\| \quad (21)$$

$$1099 L^{GT} = \|x^{GT} - (x^{GT})^T\| \quad (22)$$

$$1100 \delta = \text{abs}(L - L^{GT}) \quad (23)$$

$$1102 \epsilon = \frac{1}{4} \left[\text{sigmoid}\left(\frac{1}{2} - \delta\right) + \text{sigmoid}(1 - \delta) + \text{sigmoid}(2 - \delta) + \text{sigmoid}(4 - \delta) \right] \quad (24)$$

$$1104 \text{mask} = \delta < 15 \quad (25)$$

1105 Then the SMOOTHLDDT between two molecules of size d is:

$$1106 \text{SMOOTHLDDT}(x, x^{GT}) = \sum (\epsilon \cdot \text{mask}) / (d(d - 1)) \quad (26)$$

1108 Our SmoothLDDT loss is then equal to

$$1109 \mathcal{L}_{\text{sLDDT}}(x, x^{GT}) = \text{SMOOTHLDDT}(x, \text{ALIGN}(x^{GT}, x)) \quad (27)$$

1110 where $\text{ALIGN}(a, b)$ performs an optimal rigid alignment of a to b in 3D.

1112 B.2.4 MODEL HYPERPARAMETERS

1113 We use the following hyperparameters for training and inference.

1114 **Training.** We base our training implementation off of the open-source Protenix model (Team et al.,
 1115 2025). Because we are not doing protein folding, we have disabled the previously built-in multiple
 1116 sequence alignment (MSA) module. We train using an Adam optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.95$,
 1117 and a learning rate of 0.0018 and weight decay of 1e-8. The learning rate is additionally set to a
 1118 scheduler with 1,000 warmup steps, and a decay factor of 0.95 for every 50,000 steps. We report
 1119 results for our model trained at 110,000 steps.

1120 The atom encoder has 3 blocks with 4 heads, and the atom embedding size is 128, whereas the pair
 1121 embedding is size is 16. In terms of the main pairformer trunk, we use 4 pairformer blocks, each with
 1122 16 attention heads and a dropout rate of 0.25. The hidden dimension for the pair representation is
 1123 128, and the hidden dimension for the single representations are 384. Furthermore, we do 2 rounds
 1124 of recycling. For the diffusion block, we use a diffusion batch size of 32 and a chunk size of 1.
 1125 The actual diffusion transformer has a 12 transformer blocks, with 8 attention heads. As mentioned
 1126 above, crop size (and therefore token size for the diffusion transformer) is set to 640.

1127 **Inference.** At inference time, we use the following hyperparameters for our diffusion sampling:
 1128 $\gamma_0 = 0.8$, noise scale lambda = 1.003, and we use 200 steps with a step scale eta of 1.5. When
 1129 generating samples, we generate 1 sample from 30 different seeds for each target crystal structure.

1130
 1131
 1132
 1133

1134

C EXPERIMENTAL DETAILS

1135

C.1 SELECTION OF PERFORMANCE METRICS

1136 The four metrics in the main text jointly probe physical plausibility (Cols), packing similarity (Lat_S , Lat_C), intramolecular fidelity (Rec_S , Rec_C), and a holistic approximate solve indicator ($\widetilde{\text{Sol}}_C$). Reporting both sample-level and crystal-level aggregates is essential: the former characterizes the distributional quality of all proposals, while the latter answers whether a target was recovered at least once. Concretely, crystal-level rates are an OR-aggregation over a target’s samples. The pair helps diagnose failure modes such as mode collapse (high Lat_C with low Lat_S) and low recall (the reverse).

1137 **Thresholds and interpretability.** We adopt community conventions for RMSD_k (Nessler et al., 2022):

- 1138 • $\text{RMSD}_{15} < 1.0 \text{ \AA}$ typically indicates the predicted packing reproduce the experimental match and lies in the exact energy basin as the experimental structure. This metric is the one used by the 5th CSP blind test (Bardwell et al., 2011).
- 1139 • $1.0\text{--}2.0 \text{ \AA}$ usually indicates the prediction shares the correct topology with mild lattice strain or small reorientations. If the H-bond graph, Z/Z', density, and PXRD are consistent, this is very likely recoverable to $< 1 \text{ \AA}$ with a brief local relaxation. Otherwise, the structure is often structurally related to the ground truth (i.e. in or near the correct packing motif/topology or space group but with slip, molecular misorientation, or a cell mismatch). It demonstrates that the method can correctly identify the neighborhood of the global energy minimum, even if it can’t pinpoint the exact minimum itself.
- 1140 • $2.0\text{--}3.0 \text{ \AA}$ typically indicate a significant mismatch. At this level of deviation, key intermolecular interactions, like hydrogen bonds, may be incorrect. The overall packing symmetry might also be different. However, the prediction might still capture a general feature of the packing (e.g., identifying a layered structure vs. a herringbone packing).
- 1141 • **above 3.0 \AA .** These values are generally not considered useful. The deviation is so large that the predicted structure is almost certainly in a completely different and incorrect energy basin. Any similarity to the experimental structure is likely coincidental.

1142 Our $\widetilde{\text{Sol}}_C$ (collision-free, lattice-matching, $\text{RMSD}_{15} < 2 \text{ \AA}$) is a thus a strict, early-stage -utility indicator: not “solved,” but reliably near-correct for downstream relaxation and re-ranking.

1143 **Lattice matching for non-periodic predictions.** Our generators output finite blocks without periodic conditions. For large inference blocks, it is possible to identify translation vectors that map the finite cluster onto itself (e.g., by correlating molecular centroids/local environments), least-squares fit three independent vectors to define a primitive lattice, and convert atoms to fractional coordinates. Nevertheless, CSD COMPACK can be directly used for robust alignment of a block against a crystal structure while preserving standard CSP rigor. First, we employ standard practices of avoiding hydrogen-atom alignment and allowing mismatches in connectivity annotations (e.g., bond orders). In the absence of periodic images, greedy pruning can miss valid correspondences; therefore for all methods (including DFT baselines) we use a search time of 10 seconds with a distance/angle threshold of 50%. This enables reliable COMPACK outputs on non-PBC inputs *without diluting the criterion*: acceptance still hinges on multi-molecule superposition (15-molecule cluster, ≥ 8 matched) and the same RMSD_k thresholds used in periodic CSP benchmarks.

1144

C.2 MOLECULAR CSP ON RIGID AND FLEXIBLE DATASETS

1145 We construct our rigid and flexible datasets using crystals from the Cambridge Crystal Structure Database (CCDC), following the same processing procedure outlined in §B.1. The rigid dataset is comprised of 50 molecular crystals, and the flexible dataset is comprised of 16 molecular crystals. These are generally crystals with practical relevance or newly-released crystals. We generally define rigid molecules to contain 0-3 rotatable bonds, and flexible molecules to contain more than that. We note there is a small nuance in flexibility, as we refine it in the molecular context (by ring restriction or number of known polymorphs, etc.), this means rubrene (QQQCIG), tetraphenylporphyrin (TPHPOR), CL-20 (PUBMUU) are defined as rigid; ROY (QAXMEH), galunisertib (DORDUM), sulfathiazole (SUTHAZ), flufenamic acid (FPAMCA) and YOPYEL are defined as ‘flexible’. The exact CSD identifiers are provided below for reference.

1188 Table 3: Performance of *ab-initio* machine learning models on rigid and flexible molecular CSP. For
 1189 each model, results are calculated using $n = 30$ samples for each crystal target.

Model	Col _S ↓	Lat _S ↑	Lat _C ↑	Rec _S ↑	Rec _C ↑	$\widetilde{\text{Sol}}_C$ ↑
Rigid Dataset						
A-Transformer	0.731	0.015	0.060	0.033	0.120	0.060
AssembleFlow	0.524	0.001	0.040	0.001	0.020	0
AlphaFold3	0.114	0.089	0.340	0.133	0.480	0
OXTAL	0.011	0.873	1.000	0.737	0.960	0.300
Flexible Dataset						
A-Transformer	0.874	0.002	0.063	0	0	0
AssembleFlow	0.850	0	0	0	0	0
AlphaFold3	0.580	0.144	0.313	0.191	0.4375	0
OXTAL	0.167	0.410	0.813	0.056	0.500	0.125

1204 Molecules in the rigid dataset: XULDUD, GUFJOG, QAMTAZ, BOQQUT, BOQWIN, UJIRIO,
 1205 PAHYON, XATMIP, HAMTIZ, XATMOV, AXOSOW, SOXLEX, WIDBAO, HXACAN, AC-
 1206 SALA, PUBMUU, GLYCIN, TEPNIT, QQQCIG, ZZZMUC, FOYNEO, ANTCE, URACIL, BT-
 1207 COAC, CORONE, GUJTOX, TPHPOR, ACETAC, IMAZOL, CEBYUD, CILJIC, CUMJOJ, DEZ-
 1208 DUH, DOHFEM, GACGAU, GOLHIB, HURYUQ, IHEPUG, LECZOL, NICOAM, ROHBUL,
 1209 UMMIO, WEXREY, CAPRYL, ACACPD, BPYRUF, JIVNOV, MUBXAM, VUJBUB, NAVZAO.

1210 Molecules in the flexible dataset: QAXMEH, DORDUM, BOTHUR, MOVZUW, YOPYEL, SUT-
 1211 HAZ, TPPRHC, FPAMCA, INDMET, MELFIT, YIGPIO, TEHZIP, DMANTL, YIGDUP, UWE-
 1212 QUL, COWZIA.

1214 C.3 *Ab initio* MACHINE LEARNING BASELINES

1216 We compare OXTAL against three *ab initio* machine learning baselines: (i) a lightweight transformer
 1217 trained with flow matching on our dataset (§C.3.1), (ii) the publicly released ASSEMBLEFLOW-
 1218 ATOM model (Guo et al., 2025), and (iii) ALPHAFOLD3 (Abramson et al., 2024) used as a generative
 1219 baseline. Our complete table of results are reported in Table 3 on both rigid and flexible molecular
 1220 CSP benchmarks using $n = 30$ samples per crystal target.

1222 C.3.1 A-TRANSFORMER (OURS)

1224 **Model.** A lightweight transformer encoder operating on atom tokens with unit-cell features. The
 1225 model is a PyTorch `nn.TransformerEncoder` with hidden size $d_h = 512$, $L = 13$ layers,
 1226 and $H = 4$ heads. Each atom embedding includes element/charge, time $t \in (0, 1]$, fingerprints,
 1227 and, when enabled, unit-cell lengths (a, b, c) and angles (α, β, γ). Two output heads are used: a
 1228 coordinate head (\mathbb{R}^3 per token) and, optionally, a rotation head (unit quaternion, disabled in our
 1229 main runs).

1230 **Training.** The objective is rigid-cluster translation flow matching in \mathbb{R}^3 . We linearly interpolate
 1231 between ground-truth translations s_0 and random in-cell starts s_1 ,

$$s_t = (1 - t) s_0 + t s_1, \quad t \sim \text{Unif}[t_{\min}, 1],$$

1233 and predict denoised coordinates \hat{x}_0 . The loss is an x_0 regression term:

$$\mathcal{L} = \lambda_{\text{trans}} \sum_i \|x_0^{(i)} - \hat{x}_0^{(i)}\|^2.$$

1237 **Inference and Evaluation.** At inference we integrate from $t=1$ to t_{\min} with Euler steps, producing
 1238 clusters in a P1 box (no lattice recovery). Metrics are RMSD_1 and RMSD_k only; lattice metrics are
 1239 not applicable.

1240 This baseline is deliberately minimal: it ignores rotation flow matching and lattice prediction, relying
 1241 solely on translation flow matching and unit-cell features. It provides a capacity-matched reference
 against which to measure the benefits of OXTAL’s architecture and training.

1242 C.3.2 ASSEMBLEFLOW
1243

1244 We evaluate the released ASSEMBLEFLOW-ATOM model (Guo et al., 2025) using the authors'
1245 checkpoints without re-training or fine-tuning. For each molecule we generate clusters of 17 rigid
1246 copies from an RDKit ETKDG conformer, applying random rotations and translations with uniform
1247 offsets $[-S, S]^3$, where $S \in \{10, 15, 20\}$ Å. Three seeds $\{42, 7, 2024\}$ and seven checkpoints yield
1248 63 runs per molecule. To standardize evaluation, we randomly sample 30 outputs per crystal and
1249 compute metrics on those.

1250 Inference follows the official `position_inference` routine with default settings. Final coordi-
1251 nates are wrapped into a large P1 box (no lattice recovery). We report best-of-grid RMSD_k .

1252 AssembleFlow enforces rigid-molecule assembly and provides a strong baseline for rigid-packing
1253 quality, but it does not predict lattice parameters and therefore cannot be scored on lattice metrics.

1254 C.3.3 ALPHAFOLD3
1255

1256 We additionally evaluate ALPHAFOLD3 as a structural generative baseline. For each target
1257 molecule, we generate conformations using default protein–ligand generative settings, treating each
1258 conformer as a candidate crystal packing. Inference is performed based on 30 counts of the
1259 molecule, per our other methods. Thirty samples per target are evaluated in the same way as for
1260 other baselines. While ALPHAFOLD3 was not designed for crystal structure prediction, including
1261 it highlights the gap between general-purpose biomolecular structure generators and CSP-specific
1262 models.

1263 C.4 CCDC CSP BLIND TEST DETAILS

1264 To contextualize our work, we provide a summary of the 5th, 6th, and 7th CCDC CSP blind tests.
1265 These community-wide challenges have benchmarked the state-of-the-art in predicting the crys-
1266 tal structures of organic molecules from their chemical graphs alone, primarily relying on density
1267 functional theory (DFT). We here provide brief descriptions of these tests, and refer the audience
1268 to (Bardwell et al., 2011; Reilly et al., 2016; Hunnissett et al., 2024) for details. Performance is
1269 assessed using the COMPACK algorithm, which quantifies structural similarity through root mean
1270 square deviation (RMSD) of molecular clusters.

1271 In the first four CSP blind tests, the field evolved from force-field landscapes to the first widespread
1272 use of periodic dispersion-corrected DFT (DFT-D), which proved decisive in 4th blind test and set
1273 the stage for DFT to become the de facto standard for final lattice-energy evaluation. The fifth blind
1274 test (2010) marked a significant increase in the complexity of the target molecules. The six targets
1275 included rigid molecules, semi-flexible molecules, a 1:1 salt, a highly flexible pharmaceutical-like
1276 compound, and two co-crystals. This test highlighted what has become a standard workflow in CSP:
1277 broad structure generation (e.g., grid/quasi-random sampling, parallel tempering), followed by local
1278 minimization and hierarchical re-ranking. While at least one successful prediction was submitted for
1279 each target, the success rate was lower than in previous tests, underscoring the increased difficulty.
1280 DFT-D demonstrated its reliability for discriminating between competing structures for small and
1281 moderately flexible molecules, but handling high flexibility and complex solid forms remained a
1282 major challenge.

1283 The sixth blind test (2015/16) continued with five challenging targets: a small, nearly rigid molecule;
1284 a polymorphic former drug candidate; a chloride salt hydrate; a co-crystal; and a large, flexible
1285 molecule. This test solidified the “search–optimize–rank” pipeline. On the search side, more than
1286 half of the methods allowed intramolecular flexibility during exploration, and many adopted hier-
1287 archical filtering starting with generating conformer and packing, followed by progressively tighter
1288 optimization and pruning. In optimization and ranking, dispersion-corrected periodic DFT became
1289 mainstream, with vdW models (e.g., D3/D3(BJ), MBD) and multipole-based electrostatics or SAFT-
1290 derived potentials used to refine close competitors. All experimental structures were predicted by at
1291 least one submission except a potentially disordered $Z' = 2$ polymorph. The results demonstrated
1292 that while DFT-D provided reliable baseline energetics, accurate treatment of conformational flexi-
1293 bility remained the primary bottleneck.

1294 The seventh test (2022–2022) introduced a two-phase structure to separate structure generation from
1295 ranking challenges. The seven targets featured a silicon-iodine containing molecule, a copper coordi-
1296 nation complex, a near-rigid molecule, a co-crystal, a polymorphic small agrochemical, a highly
1297 flexible polymorphic drug candidate, and a polymorphic morpholine salt. The test also featured

Figure 11: Beeswarm plot of submitted structures for Molecule XXXI (ZEHFUR) from CSD7. In 30 inference samples, OXTAL obtains performance comparable to some DFT groups with thousands of submitted samples. Colored points signify a partial lattice match whereas gray points signify lattice mismatch (e.g. 3 out of 15 molecules match and have low RMSD, but the packing is significantly different).

one of the most challenging systems in the history of the blind tests: a large, highly polymorphic pharmaceutical drug candidate. A key finding from the structure generation phase was that while different search methods often identified overlapping sets of low-energy structures, their success rates tended to decrease as the complexity of the target molecule increased. For ranking, periodic dispersion-corrected GGA DFT methods produced results in excellent agreement with experiment across most targets, whereas higher-level corrections, full free-energy treatments, and ML on DFT potentials were less decisive for these specific systems than expected. Additionally, dynamic/static disorder (and high Z') remained difficult.

These blind tests shows a clear trend that DFT-based ranking has become reliable, but limitations persist: computational expense, difficulty capturing kinetic effects, challenges with disorder and flexibility and high Z' number, and the fundamental limitation that thermodynamic ranking often fails to predict which polymorphs are experimentally observable. Our approach aims to address these limitations by directly learning both thermodynamic and kinetic regularities from data, with the hope of eventually eliminating the need for extensive search, local optimization, and post-hoc ranking altogether. By generating a small number of high-quality structures directly, we bypass the traditional generate-optimize-rank pipeline that has dominated CSP. Below tables (Table 9, Table 10, and Table 11) in §I show comparisons for all submitted structures by each group (sans ranking). The beeswarm plot (Figure 11) of molecular XXXI of test submission further highlights the extensive sampling currently required by DFT methods compared to our method. This point is further highlighted in Figure 12, which plot the best RMSD_1 or RMSD_{15} achieved at a given n submission size for a few blind test crystals.

Because each group can pick and choose which crystals they want to solve for, we report an aggregated metric in §4.2 of all submitted DFT results. For crystal-level metrics, we consider the total number of crystal targets across all DFT methods to be $n_{\text{groups}} * n_{\text{targets}}$. We then compute aggregate metrics - counting groups who did not submit any submissions for a crystal as a miss, since they technically did not solve it. For sample-level metrics, we simply compute the average across all submitted structures.

C.4.1 INFERENCE TIME COST

We computed computational costs by multiplying the reported wall-clock compute time by an AWS on-demand unit price with hours taken directly from the three blind tests references (Bardwell et al., 2011; Reilly et al., 2016; Hunnisett et al., 2024). Because the papers report heterogeneous processors and often normalize times to ~ 3.0 GHz core-hours, we treat one normalized CPU hour as one AWS vCPU-hour; we then price CPU time at the c5.large on-demand rate in Sept. 2025, i.e., \$0.085 per 2 vCPUs \Rightarrow \$0.0425 per vCPU-hour, so CPU cost = hours \times \$0.0425. For L40S GPU runs, we map directly to g6e.xlarge (which contains one NVIDIA L40S) and price at \$1.861 per instance-hour, so GPU cost = hours \times \$1.861. We apply the rates pro-rata without further rounding.

Figure 12: Sample efficiency plots XAFPAY (blind test 6, a flexible molecule), OJIGOG01 (blind test 7), and ZEHFUR (blind test 7). OXTAL is able to quickly recover both molecular conformers (RMSD₁) and periodicity (RMSD₁₅).

All prices are on-demand EC2 instances as of September 2025. For reference, exact reported times used are presented in Table 12, Table 13, and Table 14.

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429 D MODEL ABLATION STUDIES

1406 Here, we provide a series of different model ablation studies. Due to the high computational demand
 1407 of training OXTAL, all in this section are reported at 50k training steps instead of the 110k reported
 1408 in the main body of the paper. Following our predefined evaluation protocol, we evaluate $n_S = 30$
 1409 generated samples with 30 molecular copies for each crystal target.

1411
1412 D.1 CROPPING METHOD ABLATION

1413 In order to isolate the performance gain from S^4 , we directly compare it against other standard
 1414 cropping methods. Overall, S^4 performs the best across all metrics and datasets with centroid radius
 1415 performing the second best, indicating that there may not be many oblong molecules in the evalua-
 1416 tion datasets. However, these results support the benefits of using S^4 , since it is not subject to the
 1417 same pitfalls of KNN and centroid radius cropping as illustrated in Figure 9.

1418 Also, note that our implementation of centroid radius cropping is more generous than the standard
 1419 one used in the literature (Abramson et al., 2024). Specifically, naive radius cropping selects any
 1420 atom that lies within a pre-defined spatial radius. However, this often results in partial molecules
 1421 being cropped, which naturally leads to lower performance. Instead, we consider all atoms in a given
 1422 molecule if its *centroid* lies within 15 Å of a randomly sampled central molecule, and only consider
 1423 complete molecules up to our token budget, which mitigates the issue of fragmented molecules
 1424 during training. KNN is also implemented such that it only considers complete molecules up to the
 1425 token budget, ordered by neighbor distance from a randomly sampled central molecule.

1426
1427 Table 4: Results for different cropping methods with best results **bolded** and second best underlined.

Crop Method	Dataset	Col _S ↓	Lat _S ↑	Lat _C ↑	Rec _S ↑	Rec _C ↑	$\widetilde{\text{Sol}}_C$ ↑
KNN	Rigid	0.086	0.631	0.920	0.520	0.780	0.220
	Flexible	0.580	0.164	0.688	0.005	0.062	0
	CSP5	0.085	0.470	0.667	<u>0.433</u>	0.833	0
	CSP6	<u>0.132</u>	<u>0.353</u>	0.800	0.007	0.200	0.200
	CSP7	0.312	0.165	0.750	0.005	0.125	0
Centroid Radius	Rigid	0.040	0.669	0.980	<u>0.591</u>	0.940	<u>0.340</u>
	Flexible	<u>0.425</u>	<u>0.301</u>	0.688	<u>0.048</u>	<u>0.375</u>	<u>0.125</u>
	CSP5	<u>0.054</u>	0.470	0.833	0.429	0.833	0
	CSP6	0.151	0.324	1.000	0.173	<u>0.400</u>	0
	CSP7	<u>0.104</u>	0.225	0.750	0.104	<u>0.250</u>	0
Ours (S^4)	Rigid	0.026	0.688	<u>0.940</u>	0.629	0.940	0.280
	Flexible	0.302	0.346	0.750	0.050	0.438	0.188
	CSP5	0.000	0.500	0.833	0.478	1.000	0
	CSP6	0.047	0.440	1.000	<u>0.107</u>	0.800	0.200
	CSP7	0.033	<u>0.221</u>	0.625	0.104	0.500	0

1447
1448 D.2 S^4 RADIUS SIZE ABLATION

1449 Next, we investigate the sensitivity of OXTAL to the choice of S^4 shell radius size. From our results
 1450 in Table 5, we see that there are generally minimal changes in performance across three different
 1451 choices of radius size. Recall that our main OXTAL model uses a shell radius size of 4.5, which was
 1452 selected from analyzing the distribution of intermolecular distances presented in Figure 10. From
 1453 this figure, both 4.5 and 5 Å are natural choices for the first shell, however due to the “layered”
 1454 nature of crystallization, we consider a second shell at 9 rather than 10 Å to be more fitting.

1455 Overall, our current implementation of S^4 may slightly favor smaller shell radius sizes due to the
 1456 overall token budget constraint, which limits the number of full shells we are able to accommodate.
 1457 Regardless, we see that all three radius settings for S^4 outperform existing cropping methods from
 1458 Table 4, suggesting that OXTAL is somewhat robust to reasonable choices in S^4 radius size.

1458
1459Table 5: Effect of S^4 shell radius size, with best results **bolded** and second best underlined.1460
1461
1462
1463
1464
1465
1466

Radius Size	Dataset	Col _S ↓	Lat _S ↑	Lat _C ↑	Rec _S ↑	Rec _C ↑	$\widetilde{\text{Sol}}_C$ ↑
3.5 Å	Rigid	0.015	0.694	0.980	0.596	0.920	0.320
	Flexible	0.275	0.394	0.688	<u>0.041</u>	<u>0.375</u>	0.250
	CSP5	<u>0.006</u>	0.439	<u>0.833</u>	0.433	<u>0.833</u>	0
	CSP6	<u>0.068</u>	<u>0.409</u>	1.000	0.174	0.600	0.400
	CSP7	<u>0.095</u>	0.238	0.750	0.110	0.500	0
4.5 Å	Rigid	0.026	0.688	0.940	0.629	0.940	0.280
	Flexible	<u>0.302</u>	0.346	0.750	0.050	0.438	0.188
	CSP5	0.000	0.500	<u>0.833</u>	0.478	1.000	0
	CSP6	0.047	0.440	1.000	0.107	0.800	0.200
	CSP7	0.033	0.221	0.625	0.104	0.500	0
5.5 Å	Rigid	0.047	0.690	0.940	0.625	0.960	0.220
	Flexible	0.414	0.346	0.750	0.028	0.312	0.188
	CSP5	0.012	0.470	0.667	<u>0.439</u>	0.667	0
	CSP6	0.147	0.375	1.000	<u>0.147</u>	0.600	0.200
	CSP7	0.101	<u>0.234</u>	0.750	0.142	0.375	0

1477

D.3 EQUIVARIANCE ABLATION

1478
1479
1480
1481
1482
1483
1484
1485
1486

To highlight the importance of model scaling that a non-equivariant architecture provides, we perform an ablation study with EquiformerV2 (Liao et al., 2024). In order to accommodate the larger molecular crystals in our training dataset, we are forced to significantly reduce the parameter budget for EquiformerV2 to fit it into memory. Specifically, we reduce the batch size to 4, and use a hidden dimension size of 32, 2 layers, and 4 attention heads. The rest of the training pipeline, including the use of S^4 cropping, remain the same as for OXTAL. Overall, the EquiformerV2 version of the model has a total parameter size of 15M, as opposed to the 100M total parameter size of OXTAL.

1487
1488

Table 6: Performance of the explicitly equivariant EquiformerV2 model compared to OXTAL.

1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500

Model	Dataset	Col _S ↓	Lat _S ↑	Lat _C ↑	Rec _S ↑	Rec _C ↑	$\widetilde{\text{Sol}}_C$ ↑
EquiformerV2	Rigid	0.044	0.009	0.272	0.009	0.060	0
	Flexible	0.084	0	0	0	0	0
	CSP5	0.006	0	0	0	0	0
	CSP6	0.181	0	0	0	0	0
	CSP7	0.267	0	0	0	0	0
OXTAL	Rigid	0.026	0.688	0.940	0.629	0.940	0.280
	Flexible	0.302	0.346	0.750	0.050	0.438	0.188
	CSP5	0.000	0.500	0.833	0.478	1.000	0
	CSP6	0.047	0.440	1.000	0.107	0.800	0.200
	CSP7	0.033	0.221	0.625	0.104	0.500	0

1501
1502
1503
1504
1505
1506
1507

From Table 6, we see that EquiformerV2 performs quite well on the collision metric, indicating that the model is generally able to produce physically feasible structures. Furthermore, it is also able to recover a few lattice packings and molecular conformers from the Rigid molecule dataset. However, EquiformerV2 completely fails to recover any lattices or conformers from the more challenging Flexible and CSP Blind Test datasets, which is unsurprising due to its drastically smaller parameter budget.

1508
1509
1510
1511

These results show the necessity of using a scalable, non-equivariant model: enforcing equivariance imposes a critical bottleneck on model size, which renders it insufficient for capturing larger molecular crystals in the complex crystallization landscape. This validates our design choice of scaling via a non-equivariant model and breaking free from lattice constraints while softly enforcing symmetry constraints.

1512 D.4 MODEL SIZE ABLATION
15131514 To further investigate the effect of model size, we train a smaller version of OXTAL that contains
1515 roughly 50M total parameters, which is half the size of the one we report in the main paper.1516 1517 Table 7: Effect of OXTAL model size, with best results in **bold** and second best underlined.
1518

Model	Dataset	Col _S ↓	Lat _S ↑	Lat _C ↑	Rec _S ↑	Rec _C ↑	$\widetilde{\text{Sol}}_C$ ↑
A-Transformer	Rigid	0.731	0.015	0.060	0.033	0.120	0.060
	Flexible	0.874	0.002	0.063	0	0	0
	CSP5	0.833	0	0	0	0	0
	CSP6	0.967	0	0	0	0	0
	CSP7	0.950	0	0	0	0	0
AssembleFlow	Rigid	0.524	0.001	0.040	0.001	0.020	0
	Flexible	0.850	0	0	0	0	0
	CSP5	0.717	0	0	0.150	0.500	0
	CSP6	0.800	0	0	<u>0.073</u>	0.200	0
	CSP7	0.808	0	0	0.063	0.250	0
OXTAL (50M)	Rigid	<u>0.040</u>	<u>0.247</u>	<u>0.680</u>	<u>0.213</u>	<u>0.680</u>	<u>0.160</u>
	Flexible	<u>0.423</u>	<u>0.253</u>	<u>0.562</u>	<u>0.018</u>	<u>0.188</u>	<u>0.062</u>
	CSP5	<u>0.018</u>	<u>0.164</u>	<u>0.500</u>	<u>0.200</u>	<u>0.833</u>	<u>0</u>
	CSP6	<u>0.077</u>	<u>0.253</u>	<u>0.800</u>	<u>0.066</u>	<u>0.400</u>	0.200
	CSP7	<u>0.076</u>	<u>0.193</u>	0.750	<u>0.097</u>	0.250	0.125
OXTAL (100M)	Rigid	0.026	0.688	0.940	0.629	0.940	0.280
	Flexible	0.302	0.346	0.750	0.050	0.438	0.188
	CSP5	0.000	0.500	0.833	0.478	1.000	0
	CSP6	0.047	0.440	1.000	0.107	0.800	0.200
	CSP7	0.033	0.221	<u>0.625</u>	0.104	0.500	0

1541 As shown in Table 7, halving the parameter budget of OXTAL significantly reduces performance.
1542 However the smaller 50M parameter OXTAL model still outperforms existing *ab-initio* ML methods,
1543 which we have provided again here for reference. This result reinforces the importance of scalability
1544 while also highlighting the benefits of OXTAL’s lattice-free and non-equivariant architecture at a
1545 smaller scale.1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 13: Analysis of input and final conformer in ten crystals for which OXTAL obtains $\text{RMSD}_1 < 0.5\text{\AA}$. (a) Different input conditioning conformers and their differences with the ground truth. Generally, flexible molecules’ conformers have significant deviations to the crystal geometry. (b) Different input conditioning conformers and their differences with the final, model-predicted conformation. Generally, the model final conformers that are significantly from the conditioning.

E CONFORMER ANALYSIS

We now investigate the influence of the feature molecular conformer used by OXTAL. For each molecule, the model is conditioned on (i) its bond information and (ii) a 3D structure obtained using RDKit ETKDG followed by relaxation with the semi-empirical quantum-chemical method GFN2-xTB. This conformer serves solely as a feature conditioning signal for the computational prior, rather than as an experimental oracle: the generative process always starts denoising from random atomic coordinates, with the conformer providing only a reference for physically plausible initialization derived from quantum-chemical approximations as a feature input. To quantify how this initialization influences generation quality, we perform the following targeted analyses:

1. Distance of the feature conformer relative to ground truth. In Figure 13(a), we show that the feature conditioning conformers for flexible molecules can be significantly different than the ground truth crystal conformation. This shows how often the model must depart from or refine the initial geometry.
2. Distance of the feature conformer relative to the prediction. In Figure 13(b), we show that there are significant differences between the feature conformer with the final, model-predicted conformer. Structures predicted by the diffusion process is different than the one conditioned in the input embedding, i.e. it is not merely reproducing the structure used in input embedding.
3. Robustness to feature conformer quality. We assess robustness by replacing the GFN2-xTB initialization with alternative or deliberately perturbed conformers,
 - RDKit-ETKDG conformers
 - Universal forcefield conformers
 - MMFF94 conformers
 - GFN2-xTB conformers
 - Ground truth crystal conformers.

In Figure 14(b), we plot generation performance (e.g., RMSD_{15}) as a function of input distortion level. We also plot the best RMSD_{15} for each case in Figure 14(a). These plots show that the model’s predicted crystal packing is not significantly affected by the different conformers or their differences with the ground truth crystal conformation.

4. The issue of Z' . When $Z' > 1$, the asymmetric unit contains several symmetry-independent molecules. These molecules can have similar conformation (but in different orientation) or genuinely different conformers. $\sim 10\%$ of the training set contains such examples, and in this subset, mean Z' is 2.14. OXTAL conditions every molecular copy with the same feature conformer, and can occasionally approximately solve crystals with $Z' > 1$ (e.g. target XXIII in CSD 6, XAFPAY02, $\text{RMSD}_{15} = 1.91\text{\AA}$.)

Figure 14: Analysis of input conformer with the final predicted crystal packing. (a) Best RMSD₁₅ from 30 samples per target when using different initial conformers. Generally, the model is robust against different sources of the input conditioning conformer. (b) All RMSD₁₅ across ten targets relative to the difference in input conditioning and crystal conformer differences. This shows the model can still produce good packings even if the input conditioning conformer there is very different from the crystal conformation

Together, these analyses provide a clear and quantitative view of how the initial conformer affects OXTAL: how different it is from the target, how effectively the model corrects it, how robust generation is to poor or perturbed inputs, and whether supplying multiple conformers per S^4 unit impacts performance.

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure 15: Performance of OXTAL on increasingly larger inference crystal blocks (denoted by the number of molecule copies generated). RMSD_1 (left) remains roughly constant, whereas RMSD_{15} increases slightly for larger predicted packings. Note that QQQCIG05, which contains 42 heavy atoms (i.e. tokens) per molecules, goes out of memory past 100 molecules.

F INFERENCE ANALYSIS

In this section, we provide a deeper analysis into the inference and generation capabilities of OXTAL. Specifically, we investigate the performance of OXTAL on generating significantly larger crystal blocks, evaluate how the model performs when allowing for additional sampling, and provide a small qualitative analysis on the diversity of generated samples.

F.1 INFERENCE ON LARGER CRYSTAL BLOCKS

To evaluate the long-range periodicity of OXTAL, we perform inference on increasingly larger crystal blocks for a handful of different crystals (Figure 15). The respective number of atoms, and therefore tokens, for each molecule are provided in parentheses as follows: CAPRYL (10), CUYVUR (18), HURYUQ (14), QQQCIG05 (42), UMIMIO (12). Recall that OXTAL is trained with a maximum token budget of 640 (Appendix B.2.4), hence generating 200 copies of CAPRYL requires 2,000 tokens and 100 copies of QQQCIG05 requires 4,200 tokens, which are far beyond anything the training dataset would have seen.

In general, conformer recovery (denoted by RMSD_1) remains somewhat constant as more molecule copies are generated. This makes sense because if the model is already able to capture the correct crystal conformer, generating more copies of that should not change the conformer itself significantly. In terms of lattice periodicity (denoted by RMSD_{15}), OXTAL does struggle slightly with generating more molecules, since the packing arrangements cover distances that are further away. However, we note that although the RMSD_{15} does increase for these larger blocks, they still mostly remain under the 2.0 Å threshold to be considered “approximately solved.”

This analysis supports the long-range generalizability of OXTAL to generate larger periodic packings, and we provide a visualization of the approximately solved larger packing for ANTCENE in Figure 16, which contains over 2,400 tokens.

F.2 ADDITIONAL SAMPLE EVALUATION FOR CSP BLIND TEST 5

For all previously reported results, we evaluate OXTAL using 30 generated samples per crystal target. This is done in order to highlight the sample efficiency of OXTAL (cf. Figures 5 and 6), since few-sample success is critical for downstream screening and design. However, we note that this puts OXTAL at somewhat of a disadvantage when comparing against traditional DFT methods, which often generate hundreds or thousands of candidate packings. Here, we provide a more direct comparison of OXTAL to DFT methods by evaluating OXTAL using the same number of generated samples on the CSP Blind Test 5 dataset.

As expected, allowing OXTAL to generate more candidate packings increases its performance on our per-crystal evaluation metrics, while remaining roughly the same on per-sample metrics. Notably, we also see that increasing the number of generated samples bring the approximate solve rate of

1728 Table 8: Evaluation of OXTAL on CSP Blind Test 5 with the same number of generated samples per
 1729 crystal target (\bar{n}_S) as DFT_{avg}.

1730

Model	\bar{n}_S	Col _S ↓	Lat _S ↑	Lat _C ↑	Rec _S ↑	Rec _C ↑	$\widetilde{\text{Sol}}_C$ ↑
DFT _{avg}	500	0.003	0.307	0.556	0.772	0.681	0.500
OXTAL	30	<u>0.006</u>	0.667	<u>0.833</u>	<u>0.572</u>	<u>0.833</u>	0.167
OXTAL	500	0.009	<u>0.536</u>	1.000	0.548	1.000	0.500

1735

1736 OXTAL equal to that of DFT_{avg}. This suggests that the model sampler is indeed able to generate
 1737 accurate crystal packings and compete with traditional DFT methods.

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782 **G ADDITIONAL RELATED WORK**
1783

1784 **Physical approaches to crystal structure prediction.** Physical approaches mostly rely on search
1785 and sampling using an energy function. Some classical methods infused domain knowledge, such
1786 as starting with initial guesses, such as a unit cell, and varying parameters random sampling (Case
1787 et al., 2016; Pickard & Needs, 2011; Tom et al., 2020), guidance from force-fields (van Eijck, 2002),
1788 or constructed guesses based on chemical principles (Ganguly & Desiraju, 2010). Recent methods
1789 have also applied more structured search algorithm, such as simulated annealing (Reinaudi et al.,
1790 2000; Earl & Deem, 2005), genetic algorithm (Curtis et al., 2018; Lyakhov et al., 2013), particle
1791 swarm optimization (Wang et al., 2010) and basin-hopping (Banerjee et al., 2021).

1792 **ML potentials.** Computational complexity of DFT and availability of large datasets (Levine et al.,
1793 2025; Sriram et al., 2024; Barroso-Luque et al., 2024; Smith et al., 2020) enabled the development
1794 of universal machine learning interatomic potentials (MLIP) (Gasteiger et al., 2021; 2022; Batatia
1795 et al., 2022; Liao et al., 2024; Batatia et al., 2024; Wood et al., 2025) to predict energy and forces
1796 of different atomistic systems (from small molecules to inorganic crystals) at a fraction of DFT
1797 costs. The next generation of physical approaches to CSP replaced DFT with MLIPs and showed
1798 benefits in material discovery (Merchant et al., 2023) with recent FastCSP (Gharakhanyan et al.,
1799 2025) applied to organic CSP.

1800 **Generative models for inorganic crystal structure prediction.** Generative models have emerged
1801 as a promising new paradigm for crystal structure prediction focusing mainly on conformer search
1802 in molecular structures as well as inorganic, periodic crystals. For inorganic crystal structures,
1803 which consist of a periodic unit cell of atoms, generative models were first applied for unconditional
1804 de-novo generation of new crystal (Xie et al., 2022) and later used for structure generation
1805 conditioned on crystal composition (Jiao et al., 2023; 2024; Miller et al., 2024; Levy et al., 2025).
1806 The use of generative models has spanned multiple modeling methods, including diffusion models
1807 with equivariant models (Jiao et al., 2023; 2024), symmetry-aware diffusion models (Levy et al.,
1808 2025), flow-matching models on specialized manifolds (Miller et al., 2024). Recent work have
1809 also applied large-language models to crystal generation and structure prediction with more varied
1810 success compared to other methods (Antunes et al., 2024; Ding et al., 2025).

1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836 **H ADDITIONAL CHEMICAL ANALYSIS EXAMPLES**
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856

1857 Figure 16: OXTAL learns small local neighborhoods from S^4 crops and generalizes to
1858 infer large and periodic structures. Example of
1859 ANT CEN with over 2400 tokens (RMSD₁₅ =
1860 1.9 Å)

1876 Figure 18: Examples of OXTAL generated structures (green) compared against experimental struc-
1877 tures (gray). (A) flexible conformers, (b) intermolecular interactions, (c) polymorphs of the same
1878 molecule.

1883 **H.1 DIVERSITY OF GENERATED SAMPLES**
1884

1885 In Figure 19, we provide a qualitative visualization of some example packings generated by OX-
1886 TAL. We see that although several samples lie in the same orientation, some generated samples also
1887 present a more complex herringbone packing. This is evident in the XATJOT co-crystal, which does
1888 not collapse the two different molecular components into the same orientation. These results suggest
1889 that OXTAL may prefer planar packings, which are more prevalent in the training dataset. However,
this may be mitigated with additional tuning on noise scheduler parameters.

1876 Figure 17: Examples of OXTAL generated co-
1877 crystal structures (green) compared against ex-
1878 perimental structures (gray).

Figure 19: Example set of structures generated by OXTAL for various crystals (labeled by CSD ID).

1944 I DETAILED DFT BASELINES FROM CSD BLIND TESTS

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

Table 9: Results per crystal of submitted methods for CSD blind test 5.

Model	n_S	$Col_S \downarrow$	$Lat_S \uparrow$	$Lat_C ?$	$Rec_S \uparrow$	$Rec_C ?$	$\widehat{Sol}_C ?$
KONTIQ							
Group Boerriger	5002	0	0.896	Y	0.907	Y	Y
Group Day	2350	0	0.985	Y	0.987	Y	Y
Group Desiraju	244	0	0.951	Y	0.951	Y	Y
Group Hofmann	103	0	0.981	Y	0.981	Y	Y
Group Kendrick	1886	0	0.993	Y	0.994	Y	Y
Group Maleev	26	0	0.769	Y	0.769	Y	Y
Group Orendt	594	0	0.921	Y	0.936	Y	Y
Group Price	449	0.002	0.978	Y	0.980	Y	Y
OBEQET							
Group Ammon	5	0	0	N	0.600	Y	N
Group Boerriger	5001	0	0.005	Y	0.448	Y	Y
Group Day	438	0	0	N	0.893	Y	N
Group Desiraju	156	0	0.038	Y	1.000	Y	Y
Group Hofmann	103	0	0	N	0.379	Y	N
Group Jose	11	0.364	0	N	0	N	N
Group Kendrick	79	0	0.127	Y	0.911	Y	Y
Group Maleev	10	0	0	N	0.800	Y	N
Group Orendt	165	0	0.012	Y	0.897	Y	Y
Group Price	259	0	0.008	Y	0.525	Y	Y
OBEQIX							
Group Ammon	11	0	0	N	0	N	N
Group Boerriger	5005	0	0	N	0.014	Y	N
Group Hofmann	103	0.971	0	N	0	N	N
Group Kendrick	117	0	0.205	Y	0.248	Y	Y
Group Maleev	8	0	0	N	0	N	N
Group Orendt	156	0	0.006	Y	0.006	Y	Y
Group Price	103	0	0.039	Y	0.243	Y	Y
OBEQOD							
Group Ammon	6	0	0.167	Y	1.000	Y	N
Group Boerriger	4894	0	0.054	Y	0.999	Y	Y
Group Day	164	0	0.220	Y	1.000	Y	Y
Group Desiraju	202	0	0.302	Y	1.000	Y	Y
Group Hofmann	103	0	0	N	1.000	Y	N
Group Jose	15	0.533	0.133	Y	0.267	Y	N
Group Kendrick	150	0	0.200	Y	1.000	Y	Y
Group Maleev	24	0	0.083	Y	1.000	Y	N
Group Orendt	272	0	0.051	Y	0.971	Y	Y
Group Price	139	0	0.122	Y	1.000	Y	Y
OBEQUJ							
Group Ammon	20	0	0.850	Y	1.000	Y	Y
Group Boerriger	8456	0	0.113	Y	0.994	Y	Y
Group Day	549	0	0.222	Y	1.000	Y	Y
Group Desiraju	202	0	0.272	Y	1.000	Y	Y
Group Hofmann	103	0	0	N	1.000	Y	N
Group Jose	16	0.188	0.250	Y	0.438	Y	N
Group Kendrick	90	0	0.500	Y	1.000	Y	Y
Group Maleev	18	0	0	N	0.944	Y	N
Group Misquitta	103	0	0.214	Y	1.000	Y	Y
Group Nikylov	13	0	0	N	1.000	Y	N
Group Orendt	292	0	0.209	Y	1.000	Y	Y
Group Price	150	0	0.367	Y	1.000	Y	Y
XATJOT							
Group Boerriger	383	0	0.355	Y	1.000	Y	Y
Group Desiraju	202	0	0.262	Y	1.000	Y	Y
Group Kendrick	350	0	0.326	Y	1.000	Y	Y
Group Maleev	23	0	0.217	Y	1.000	Y	Y
Group Orendt	279	0	0.140	Y	1.000	Y	Y
Group Price	164	0	0.079	Y	1.000	Y	Y

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Table 10: Results per crystal of submitted methods for CSD blind test 6.

Model	$n_{\text{submitted}}$	$\text{Col}_S \downarrow$	$\text{Lat}_S \uparrow$	$\text{Lat}_C ?$	$\text{Rec}_S \uparrow$	$\text{Rec}_C ?$	$\tilde{\text{Sol}}_C ?$
NACJAF							
Group Singh	100	0	0.010	Y	1.000	Y	N
Group Cole	100	0	0.050	Y	1.000	Y	Y
Group Day	200	0	0.085	Y	1.000	Y	Y
Group Dzyabchenko	100	0	0.170	Y	1.000	Y	Y
Group vanEijck	100	0	0.070	Y	1.000	Y	Y
Group FustiMolnar	198	0.005	0.056	Y	0.939	Y	Y
Group Cuppen	200	0	0.080	Y	1.000	Y	Y
Group Facelli	177	0	0.006	Y	0.977	Y	N
Group Obata	200	0	0.060	Y	1.000	Y	Y
Group Hofmann	100	0	0	N	1.000	Y	N
Group Ma	200	0	0	N	1.000	Y	N
Group Marom	200	0.045	0.030	Y	0.715	Y	Y
Group Mohamed	100	0	0.570	Y	1.000	Y	Y
Group Leusen	100	0	0.070	Y	1.000	Y	Y
Group Pantelides	100	0	0.040	Y	1.000	Y	Y
Group al	33	0	0	N	1.000	Y	N
Group Podeszwa	99	0	0.091	Y	1.000	Y	Y
Group Price	200	0	0.045	Y	1.000	Y	Y
Group Szalewicz	54	0	0.130	Y	1.000	Y	Y
Group Zhu	80	0	0.075	Y	0.988	Y	Y
Group Hofmann	31	0	0	N	1.000	Y	N
Group Grimme	119	0	0.042	Y	0.992	Y	Y
Group Tkatchenko	120	0	0.067	Y	0.992	Y	Y
XAFPAY							
Group Singh	100	0	0	N	0	N	N
Group Cole	100	0	0.050	Y	0.090	Y	Y
Group Day	200	0	0.040	Y	0.035	Y	Y
Group vanEijck	100	0	0.040	Y	0.060	Y	Y
Group FustiMolnar	149	0	0.114	Y	0.094	Y	Y
Group Cuppen	200	0	0	N	0	N	N
Group Facelli	100	0	0	N	0	N	N
Group Obata	200	0	0.120	Y	0.135	Y	Y
Group Hofmann	100	0	0	N	0	N	N
Group Mohamed	100	0	0.090	Y	0.350	Y	Y
Group Leusen	200	0	0.170	Y	0.270	Y	Y
Group Pantelides	100	0	0.100	Y	0.120	Y	Y
Group Price	200	0	0.120	Y	0.165	Y	Y
Group Zhu	60	0	0.083	Y	0.133	Y	Y
Group Hofmann	18	0	0	N	0	N	N
Group Grimme	125	0	0.400	Y	0.304	Y	Y
Group Tkatchenko	50	0	0.280	Y	0.220	Y	Y
XAFQAZ01							
Group Hofmann	100	0	0	N	1.000	Y	N
Group Tkatchenko	20	0	0.100	Y	1.000	Y	Y
XAFQIH							
Group Singh	100	0	0	N	0	N	N
Group Cole	100	0	0.010	Y	0.010	Y	Y
Group Day	200	0	0.015	Y	0	N	Y
Group Dzyabchenko	71	0	0.014	Y	0	N	Y
Group vanEijck	100	0	0	N	0	N	N
Group FustiMolnar	138	0	0.312	Y	0.246	Y	Y
Group Hofmann	100	0	0	N	0	N	N
Group Mohamed	100	0	0	N	0	N	N
Group Leusen	200	0	0.405	Y	0.490	Y	Y
Group Pantelides	100	0	0.020	Y	0	N	Y
Group Price	200	0	0.035	Y	0.040	Y	Y
Group Zhu	30	0	0	N	0	N	N
Group Hofmann	15	0	0	N	0	N	N
Group Grimme	11	0	0	N	0.182	Y	N
XAFQON							
Group Day	200	0.980	1.000	Y	0.020	Y	Y
Group vanEijck	100	0	0.980	Y	0.980	Y	Y
Group FustiMolnar	198	0	0.859	Y	0.005	Y	Y
Group Cuppen	100	0.280	0.990	Y	0.720	Y	Y
Group Facelli	100	0	0.990	Y	1.000	Y	Y
Group Hofmann	100	0	0.990	Y	0.690	Y	Y
Group Leusen	100	0.310	1.000	Y	0.195	Y	Y
Group Price	200	0.805	0.990	Y	0.860	Y	Y
Group Zhu	50	0.140	1.000	Y	0.800	Y	Y
Group Hofmann	15	0.200	1.000	Y	0.400	Y	Y
Group Grimme	119	0.941	0.966	Y	0.059	Y	Y
Group Szalewicz	100	0.800	1.000	Y	0.200	Y	Y
Group Tkatchenko	50	0.600	1.000	Y	0.400	Y	Y

2052

2053

2054

2055

2056

2057

Table 11: Results per crystal of submitted methods for CSD blind test 7.

Model	ns	Cols ↓	Lats ↑	Lat _C ↑	Rec _S ↑	Rec _C ↑	Rec _C ↑
FASMEV							
Group XtalPi	1510	0	0.223	Y	0.997	Y	Y
Group Roza	319	0	0.245	Y	0.997	Y	Y
Group DKhakimov	80	0	0.537	Y	1.000	Y	Y
Group Isayev	1510	0	0.476	Y	1.000	Y	Y
Group SMohamed	1510	0	0.054	Y	0.984	Y	Y
Group Pantelides	1510	0	0.072	Y	0.961	Y	Y
Group MNeumann	1504	0	0.418	Y	0.999	Y	Y
Group Goto	1510	0	0.079	Y	0.738	Y	Y
Group CJPickard	1510	0.001	0.154	Y	0.994	Y	Y
Group SLPrice	1265	0	0.043	Y	0.999	Y	Y
Group CShang	1500	0	0.159	Y	0.988	Y	Y
Group QZhu	209	0	0.096	Y	0.947	Y	Y
Group DBoese	1510	0	0.060	Y	0.836	Y	Y
Group GDay	1510	0	0.143	Y	0.981	Y	Y
Group BEijck	1510	0	0.052	Y	0.668	Y	Y
JEKVII							
Group XtalPi	1500	0.001	0.030	Y	0.020	Y	Y
Group SMohamed	203	0	0	N	0	N	N
Group Pantelides	1499	0.006	0.001	Y	0	N	N
Group MNeumann	1500	0	0.134	Y	0.066	Y	Y
Group SLPrice	1500	0	0	N	0	N	N
Group CShang	1500	0	0.085	Y	0.014	Y	Y
Group QZhu	1495	0	0	N	0	N	N
Group DBoese	1500	0	0	N	0	N	N
Group GDay	1500	0	0	N	0	N	N
Group BEijck	1500	0	0	N	0	N	N
MIVZEA							
Group XtalPi	1600	0	0.042	Y	0.186	Y	Y
Group DKhakimov	281	0	0	N	1.000	Y	N
Group SMohamed	1600	0	0.002	Y	1.000	Y	Y
Group MNeumann	1600	0	0.042	Y	0.207	Y	Y
Group Goto	1600	0	0.002	Y	0.541	Y	Y
Group SLPrice	1600	0	0	N	0.269	Y	N
Group QZhu	1600	0	0.001	Y	0.070	Y	Y
Group GDay	1600	0	0.007	Y	0.379	Y	Y
Group BEijck	1600	0	0.007	Y	0.239	Y	Y
MIVZIE							
Group XtalPi	1600	0	0.024	Y	0.107	Y	Y
Group DKhakimov	281	0	0.007	Y	0	N	N
Group SMohamed	1600	0	0	N	0	N	N
Group MNeumann	1600	0	0.015	Y	0.111	Y	Y
Group Goto	1600	0	0.006	Y	0.001	Y	Y
Group SLPrice	1600	0	0.001	Y	0	N	N
Group QZhu	1600	0	0.003	Y	0.083	Y	Y
Group GDay	1600	0	0.016	Y	0.099	Y	Y
Group BEijck	1600	0	0.004	Y	0.041	Y	Y
OJIGOG01							
Group XtalPi	1500	1.000	0.141	Y	0	N	N
Group MNeumann	1500	0.947	0.127	Y	0.008	Y	N
Group SLPrice	1500	1.000	0.093	Y	0	N	N
Group CShang	1500	0.993	0.359	Y	0.005	Y	Y
Group KSzalewicz	1500	1.000	0	N	0	N	N
Group BEijck	1500	0.076	0.002	Y	0	N	Y
XIFZOF01							
Group XtalPi	1500	0	0.061	Y	0.038	Y	Y
Group Isayev	1500	0	0.027	Y	0.005	Y	Y
Group Matsui	1500	0	0.005	Y	0.005	Y	Y
Group MNeumann	1500	0	0.015	Y	0.007	Y	Y
Group Goto	1500	0	0.011	Y	0.003	Y	Y
Group SLPrice	1500	0	0.005	Y	0	N	Y
Group CShang	1500	0	0.061	Y	0.007	Y	Y
Group QZhu	1500	0	0	N	0	N	N
Group BEijck	1500	0	0.011	Y	0.006	Y	Y
ZEGWAN							
Group XtalPi	1500	0	0.029	Y	0.797	Y	Y
Group DKhakimov	56	0	0	N	0	N	N
Group Pantelides	1500	0	0.011	Y	0.429	Y	Y
Group MNeumann	1500	0	0.052	Y	0.729	Y	Y
Group Goto	1500	0	0.010	Y	0.553	Y	Y
Group SLPrice	1500	0	0.013	Y	0.363	Y	Y
Group CShang	1500	0	0.009	Y	0.545	Y	Y
Group QZhu	1453	0	0.012	Y	0.551	Y	Y
Group GDay	1500	0	0.013	Y	0.623	Y	Y
Group BEijck	1500	0	0.015	Y	0.338	Y	Y
ZEHFUR							
Group XtalPi	1500	0	0.055	Y	0.513	Y	Y
Group Isayev	1500	0	0.063	Y	0.405	Y	Y
Group SMohamed	1500	0	0.001	Y	0	N	N
Group Pantelides	1500	0	0.029	Y	0.330	Y	Y
Group MNeumann	1500	0	0.123	Y	0.636	Y	Y
Group Goto	1500	0	0.006	Y	0.137	Y	Y
Group SLPrice	1500	0	0.017	Y	0.244	Y	Y
Group CShang	1500	0	0.069	Y	0.678	Y	Y
Group QZhu	1500	0	0.001	Y	0.045	Y	N
Group DBoese	1500	0	0.029	Y	0.266	Y	Y
Group GDay	1500	0.005	0.055	Y	0.351	Y	Y
Group BEijck	1500	0	0.008	Y	0.029	Y	Y

2104

2105

2106
 2107 Table 12: Summary of computational resources used by some of the participants as reported in
 2108 the 5th CSP Blind Test. CPU hours are approximately normalized to 3.0 GHz. OXTAL times are
 2109 reported as elapsed wall time in hours on 1 L40s GPU and 6 CPUs. Inference time for OXTAL is
 2110 negligible compared to traditional computation chemistry methods.
 2111

Group	XVI	XVII	XVIII	XIX	XX	XXI	Total
Boerrigter	90	100	350	650	2,105	600	3,800
Day, Cruz-Cabeza	110	1,941	21,051	6,097	54,090	22,197	91,400
Desiraju, Thakur, Tiwari, Pal	114	2,303	324	114		1,431	4,600
Hofmann	2	7	12	694	670	187	1,600
Neumann, Leusen, Kendrick, van de Streek							115,000
Price et al.	200	5,000	14,000	3,000	120,000	52,800	195,000
Van Eijck		27					9,500
Della Valle, Venuti							3,200
Maleev, Zhitkov							7,500
Misquitta, Pickard & Needs							162,000
Scheraga, Arnaudova	150	150	610	720			1,300
OXTal	0.024	0.011	0.012	0.013	0.029	0.011	0.100

2128
 2129 Table 13: Summary of the computational resources used by each submission in terms of raw CPU
 2130 hours as reported in the 6th CSP Blind Test. OXTAL times are reported as elapsed wall time in
 2131 hours on 1 L40s GPU and 6 CPUs. Inference time for OXTAL is negligible compared to traditional
 2132 computation chemistry methods.
 2133

Group	XXII	XXIII	XXIV	XXV	XXVI	Total
Chadha & Singh	350	450			600	1,400
Cole et al.	6	538		46	246	836
Day et al.	12,714	394,948	15,241	121,701	179,897	724,501
Dzyabchenko	144	3,648	3,360			7,152
van Eijck	130	2,810	1,400	8,060	7,630	20,030
Elking & Fusti-Molnar	418,540	242,000	235,400	135,000	190,000	1,220,940
van den Ende, Cuppen et al.	9,741	7,777		6,388	23,906	
Facelli et al.	268,012	38,500	11,500	39,000		357,012
Obata & Goto	19,200	346,000		325,000		690,200
Hofmann & Kuleshova	10	630	623	202	255	1,720
Lv, Wang, Ma	325,000					325,000
Marom et al.	30,000,000					30,000,000
Mohamed	26	106		81	61	274
Neumann, Kendrick, Leusen	32,160	146,120	103,700	84,680	356,844	723,504
Pantelides, Adjiman et al.	333	87,000		37,535	272,500	397,368
Pickard et al.	380,000					380,000
Podeszwa et al.	72,220					72,220
Price et al.	26,000	84,000	63,000	169,000	327,000	669,000
Szalewicz et al.	66,000					66,000
Tuckerman, Szalewicz et al.	81,000					81,000
Zhu, Oganov, Masunov	4,000	275,000	279,800	30,000	180,000	768,800
Boese (Hofmann)	80,000	80,000	80,000	80,000	80,000	400,000
Brandenburg & Grimme (Price)	13,665	8,661	3,509	34,824	10,135	70,794
Szalewicz et al. (Price)			15,000			15,000
Tkatchenko et al. (Price)	100,000	2,100,000	500,000	500,000		3,200,000
OXTal	0.012	0.019	0.011	0.030	0.042	0.114

2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173

2174 Table 14: CPU core hours per target molecule for each prediction method as reported in the 7th
 2175 CSP Blind Test. OXTAL times are reported as elapsed wall time in hours on 1 GPU and 6 CPUs.
 2176 Inference time for OXTAL is negligible compared to traditional computation chemistry methods.

Group	XXVII	XXVIII	XXIX	XXX	XXXI	XXXII	XXXIII	Total
1			652,495		840,000	1,597,000	412,000	3,501,495
3			1,600,000		1,500,000	3,600,000		6,700,000
5	768,766		33,000	2,900,000	510,563	846,698	228,957	5,287,984
6	8,120	1,350	1,310	9,800	1,470	2,900	4,980	29,930
8	3,200	10			4,000		1,840	9,050
10	772,500	1,242,500	1,146,588	644,927	381,672	644,927	612,500	5,445,614
11			643,882					643,882
12			20,000	80,000	20,000			120,000
13			350	1,500			500	2,350
16	1,700,000		2,128,000		630,000			4,458,000
17	95,819							95,819
18			1,050	36,864	632	1,561		40,107
19	30,000		40,000	1,250,000	140,000	400,000	60,000	1,920,000
20	1,022,976	283,538	755,712	1,769,472	1,028,064	3,935,232	728,064	9,523,058
21	333,586		92,890	580,436	1,889,649		477,210	3,373,771
22	20,000	2,000	15,000	180,000	20,000	25,000	25,000	287,000
23			10,000					10,000
24	450,290	89,666	76,541	100,000	49,177	244,520	123,427	1,133,621
25	55,150	29,691	4,784		6,476	76,161	34,648	206,910
26					28,332			28,332
27	1,280,566	60,457	242,424	213,722		1,663,940	150,650	3,611,759
28	1,600		1,500	7,680	1,500	1,500	1,500	15,280
Oxtal	0.060	0.026	0.011	0.056	0.015	0.050	0.017	0.235

2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213