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Abstract: Specialized machine learning models, regardless of architecture and training, are
susceptible to failures in deployment. With their increasing use in high risk situations, the
ability to audit these models by determining their operational design domain (ODD) is cru-
cial in ensuring safety and compliance. However, given the high-dimensional input spaces,
this process often requires significant human resources and domain expertise. To alleviate
this, we introduce AutoODD , an LLM-Agent centric framework for automated genera-
tion of semantically relevant test cases to search for failure modes in specialized black-box
models. By leveraging LLM-Agents as tool orchestrators, we aim to fit a uncertainty-aware
failure distribution model on a learned text-embedding manifold by projecting the high-
dimension input space to low-dimension text-embedding latent space. The LLM-Agent
is tasked with iteratively building the failure landscape by leveraging tools for generating
test-cases to probe the model-under-test (MUT) and recording the response. The agent also
guides the search using tools to probe uncertainty estimate on the low dimensional mani-
fold. We demonstrate this process in a simple case using models trained with missing digits
on the MNIST dataset and in the real world setting of vision-based intruder detection for
aerial vehicles.

1 Introduction

Figure 1: The AutoODD framework combines LLM-Agent orchestration with Bayesian uncertainty estimation
to efficiently explore the failure landscape of black-box models in semantically meaningful embedding spaces.

Machine learning models are increasingly integrated into safety-critical robotic systems such as
autonomous driving, surgical assistance, and industrial automation, where failures can have severe
consequences. In these domains, it is essential to establish a model’s operational design domain
(ODD)—the set of environmental and task conditions under which it can be expected to perform
reliably [1]. For black-box models, where training data, architecture, and optimization details are
unavailable, ODD estimation must be inferred empirically through systematic testing. This process
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is challenging: the input space is often high-dimensional, combinatorial in nature, and difficult to
exhaustively explore, making naive random testing inefficient and prone to missing rare but critical
failure modes.

A promising strategy is to project raw inputs (e.g., sensory data or scene descriptions) into a semanti-
cally meaningful embedding space, where related conditions are close together and the search space
is dramatically reduced. Prior work shows that manifold-based active learning can improve sample
efficiency by targeting diverse, informative regions of this space [2]. However, efficient exploration
also requires an assessment of where the model’s behavior is uncertain. Bayesian optimization offers
a principled mechanism for such exploration, using surrogate models such as Gaussian Processes
(GPs) to estimate both performance and uncertainty, and to guide sampling toward high-value test
cases [3]. This combination of semantic search spaces and uncertainty-guided sampling offers the
potential to rapidly identify boundaries between safe and unsafe operation.

We introduce AutoODD, a framework for uncertainty-aware, agentic audits of black-box mod-
els. AutoODD employs an LLM-based agent as a high-level orchestrator that interacts with the
system-under-test via a set of tools: scenario generation, model querying, and uncertainty esti-
mation. Given a task description and a semantically structured descriptor set, the agent proposes
candidate scenarios in the embedding space. These are evaluated on the black-box model, with
results used to update a GP surrogate that models performance over an embedding-manifold. The
GP’s uncertainty estimates interact with the agent’s next generation step, creating a closed-loop
generate→test→feedback cycle [4, 5]. By focusing on high-uncertainty or borderline cases, the
framework systematically probes the edges of the model’s competence with far fewer evaluations
than unguided exhaustive search.

AutoODD’s key contributions are twofold: (1) an agentic integration of semantic embedding spaces
and Bayesian uncertainty estimation for black-box safety audits; and (2) a demonstration that this
approach efficiently discovers operational boundaries and failure modes in both controlled and real-
world safety-critical settings. We show that AutoODD can recover meaningful, human-interpretable
failure landscape with significantly reduced sample complexity, providing a scalable and practical
methodology for verifying the reliability of black-box models in safety-critical robotics.

2 Related Work

Gaussian Surrogates for Failure Discovery Recent work applies Gaussian Processes (GPs) and
Bayesian Optimization (BO) to systematically uncover critical scenarios in autonomous systems.
One line of work models Signal Temporal Logic (STL) robustness with GPs and directs sampling
toward low-robustness regions to efficiently falsify controllers [6]. Another applies BO directly in
the semantic space of a promptable traffic simulator, inducing adversarial interactive driving be-
haviors that expose planner weaknesses [7]. Multi-objective extensions use multi-output GPs with
negative-transfer mitigation to improve boundary test generation in multi-UAV coordination [8].
In automotive settings, GP modeling combined with Sobol sensitivity analysis enables ranking of
scenario parameters by their safety impact, allowing targeted exploration [9]. Manifold-informed
BO explicitly constrains the search to low-dimensional subspaces for improved efficiency [10],
while active learning of GP embeddings improves sample allocation in high-dimensional search
[11]. Bayesian Red Teaming applies GP-BO to text embedding spaces with a diversity-penalized
acquisition function to uncover varied adversarial prompts under strict budgets, a design transferable
to physical testing [12]. Collectively, these studies confirm that GP-BO is sample-efficient and pre-
cise for boundary exploration, yet in high-dimensional spaces the posterior often highlights multiple
“equally promising” directions, leaving the search vulnerable to local myopia without an external
semantic driver.

LLM-Driven Critical Generation In parallel, large language models (LLMs) have been applied
as flexible generators of diverse, realistic, and semantically grounded test scenarios. Pipelines have
been introduced that translate natural language into validated Scenic/CARLA code, automatically
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producing executable safety-critical scenarios [13]. Traffic-rule–guided approaches ground LLM
outputs in domain-specific languages, reducing hallucination and generating verifiable rule-based
scenarios [14]. Feedback-driven generation–test–refine loops use multi-scale edits that combine
coarse scene changes with fine perturbations to efficiently expose decision-making failures [15].
Retrieval and multimodal integration extend these ideas further: frameworks combine LLMs with
traffic simulation and retrieval-augmented generation for high-fidelity multimodal scenarios [16],
while multimodal synthesis pipelines create realistic corner cases [17]. Adversarial methods edit
risky agent trajectories to provoke collision-inducing events [18], and retrieval-augmented pipelines
remix real-world traffic data to build controllable synthetic tests [19]. Modular architectures en-
sure spatial consistency by grounding generation in retrieved road networks [20]. These approaches
excel at semantic novelty and diversity but lack the quantitative coverage tracking and uncertainty
estimates provided by GP surrogates. A hybrid approach closes this gap by combining an LLM ex-
ploration branch for novelty and realism with a GP-guided exploitation branch for coverage tracking
and targeted failure discovery, yielding both creativity and reliability.

3 Approach

3.1 Background

Consider a general setup where an LLM-agent L interacts with a system-under-test (SUT)M. The
SUTM(x)→ y takes as an input x ∈ X and outputs y ∈ B boolean which is true if SUT failed for
x and false if passed. Agent L at step t can take an action at ∈ A and receive an observation ot ∈ O.
In addition to this, the agent also can introspect it ∈ I. Given a templated text prompt w, let us also
define a LLM encoder E(w) → e, where e ∈ Rn is the embedding for that prompt. Assume access
to a generic prompt-to-input converter C(w)→ x that maps the prompt w to an input x suitable for
M (e.g., image, simulator configuration, or API call). In line with previous formulations on failure
probability estimations [21], let us also define p(x) as the operational model and f(x) define the
failure model with respect toM. To capture structure in the descriptor space, we fit one GP per axis
(category) over the embedding coordinates: let categories be indexed by k = 1, . . . ,K with per-axis
embedding components ek, and maintain GP set {Gk}Kk=1 modeling axis-wise failure propensity and
uncertainty. The action space A contains GenerateTest(), which takes a templated prompt w, uses
the converter C to construct an input x forM, queriesM, and returns both the generated input and
outcome (x, y).

3.2 Method

Algorithm 1 AutoODD algorithm

while at ̸= STOP do
at, w ← L
if at == GenerateTest() then

r ← U(0, 1)
if r < ϵ then ▷ exploit per GP posterior

w ← argmaxw′ f(E(w′)) p(E(w′))
end if
x← C(w)
y ←M(x)
e← E(w)
for k = 1 to K do
Gk.fit(ek, y)

end for
end if

end while

Figure 1 and algorithm 1 provide an overview of the AutoODD approach. The LLM agent is pro-
vided with its task of finding failures, as well as a description of the problem that the SUT has
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been trained to solve and the function that it can use to interface with the black box model, namely
generate_test(). The prompt template is formed using a set of categories that form the axes for
the search space, as well as all the keyword options for each category. The LLM agent then selects
one keyword from each category to form one complete input description. We fit one GP per axis
and use axis-wise uncertainty and mean estimates to guide both exploration and exploitation. When
the black box model is queried, the text input is converted into a SUT-compatible input (e.g., image,
simulator configuration), which is fed into the model, which in turn returns its performance for that
input; generate_test() returns both (x, y) and the Gaussian processes are updated with this new
information. For some ϵ fraction of steps, the agent exploits by overriding its exploratory choice
with the region of highest predicted failure likelihood under the posterior; otherwise, it explores
based on semantic reasoning. After completion of the analysis, the LLM summarizes its findings in
terms of the text keywords in a human understandable way.

4 Experiments & Results

We begin by testing the AutoODD framework on MNIST with varying degrees of difficulty. We then
demonstrate its efficacy in real world scenarios, using the Detect and Avoid problem for autonomous
aircraft.

4.1 Experiment # 1: Colored MNIST

The task is joint classification of digit (10-way) and color (10-way). We train a simple CNN with
fixed hyperparameters across runs, varying only the training data curation.

We extend the standard MNIST dataset by coloring digits to introduce a second descriptor axis. The
two axes are: (i) digit ∈ 0..9 and (ii) color ∈ blue, orange, green, red, purple, brown, pink, gray,
yellow, cyan. Both axes are labeled outputs. Each digit–color pair is treated as a unique input,
yielding 100 combinations.

We evaluate three training ablations:

• Missing digit: remove all instances of the digit 7 (all colors) from training.

• Missing color: remove all instances of the color cyan (all digits) from training.

• Random sparse: remove 10 random digit–color pairs from training.

We then run AutoODD to audit the trained CNN and discover the induced failure structure. The
LLM interfaces with the detector via the generate_test() function. Given the dataset’s small size,
generate_test() converts a (digit, color) query to an image by sampling a matching digit instance
and applying the requested color at runtime; it returns both the constructed image and the model’s
output.

4.2 Experiment # 2: Detect and Avoid

Detect and Avoid (DAA) is a crucial capability that aircraft require to avoid collisions with other
airborne objects. The problem involves detecting, tracking, and maintaining safe separation from
potential collision threats in three-dimensional airspace. DAA is particularly challenging due to its
open-world, safety-critical nature. Aircraft operate across diverse environmental conditions includ-
ing varying weather (rain, snow, fog), seasonal changes (lighting, visibility), cloud cover (clear to
overcast), and different backgrounds (urban, mountainous, open terrain)[22]. While machine learn-
ing approaches can improve performance across these conditions, they may harbor hidden failure
modes that only emerge under specific environmental combinations, making comprehensive safety
validation essential. [23]

In our experiments, we use AirTrack [24] as our black-box model. AirTrack consists of four sequen-
tial modules: Frame Alignment, Detection and Tracking, Secondary Classification, and Intruder
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Figure 2: Fig 2a shows the failure discovery rate of the AutoODD algorithm in the missing digit experiment
with ablations for the epsilon heuristic and the Gaussian Process sampling. The black dotted line represents the
expected performance of a random search as baseline. The red line shows the probability of achieving input
space coverage with the LLM sampling the GP. Fig 2b shows the failure discovery rate with ablations for the
failure case. Fig 2c and 2d are visualizations of the GP in the missing digit and color ablations respectively.

State Update. The system takes two consecutive grayscale image frames as input and outputs a list
of tracked objects with various attributes.

Unlike Experiment 1, this is a real-world system with no induced failures. The LLM interfaces
with AirTrack through the generate_test() function. For generate_test(), we leverage GPT-
4o to create images from templates based on the TartanAviation dataset [22]. These templates are
then animated using aircraft tracks extracted from TartanAviation’s static camera videos, enabling
realistic scenario generation.

The LLM is provided with five categories: time of day (twilight, afternoon, sunset), cloud cover
(clear, scattered, broken, overcast), background (city with low rises, city with high rises, small
mountains, tall mountains, open fields, industrial area), season (summer, fall, winter with snow,
rainy), and weather condition (none, heavy rain, snow, fog, thunderstorm). This yields 1440 possible
input combinations.

4.3 Results & Discussion

The failure cases of the MNIST model were created by removing all instances of an input from the
training data. Out of the 100 possible inputs (all 10 digits in ten possible colors), we ran ablations
with one digit missing, one color missing, and ten random inputs missing. All of the results can be
seen in Figure 2.

Hypothesis 1 (H1) The AutoODD algorithm performs best when there are patterns in the failures
to be exploited.
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Figure 3: The plot shows the results of the AutoODD framework on the real world Detect and Avoid use case,
based on how quickly it balances exploiting failure modes with exploring the input space. On the right are
examples of failure inputs that the framework has discovered, using the failure patterns to guide its search.

In this first ablation study, Figure 2 shows that the LLM agent performs much better in the missing
color and missing digit ablations, compared to the random failure case ablation. In these scenarios
where there is a pattern in the failures, the LLM is able to discover, reason about, and exploit
these patterns. Comparing between the two, the missing color case performs the best as the input
embeddings for the digits were closer to each other in latent space than the embeddings of the colors,
which can be mitigated by normalizing the Gaussian Process.

Hypothesis 2 (H2) The AutoODD algorithm guarantees coverage of the defined input space with
ϵ ̸= 0, but will prioritize exploitation when ϵ = 0

The second set of ablations focuses on the epsilon heuristic. The epsilon heuristic samples the
Gaussian process and overrides the LLM query every epsilon percent of the time. We tested out
epsilon values of 0 and 0.1, to test the efficacy of this heuristic. While the overall analysis finishes
much faster with an epsilon of 0.0, this system does not provide any guarantees of input coverage.
Having a higher epsilon value allows the algorithm to better exploit any patterns in the failures, but
its lack of exploration leaves it susceptible to missing any disjoint failures. This can be accounted
for by changing the epsilon heuristic from choosing the maximum uncertainty input to a random
input, but this will decrease the exploitation benefit, as shown in the figure.

Hypothesis 3 (H3) The benefit of the Gaussian Process increases with the size of the input space.

As the size of the input space increases, the Gaussian Process becomes more important in keeping
track of which inputs have been queried and what their results are. For smaller input spaces, the
informed and random heuristic perform similarly, due to the Gaussian Process being fit on a small
number of points. However, the benefit of the informed heuristic shows through for more complex
problems with larger input spaces, as seen in Figure 3.

Overall, the results in the Detect and Avoid setting are consistent with the findings from the MNIST
ablations studies. The overall performance summary as given by the LLM is shown in Figure 3.

We also performed one ablation in the real world case, testing the different heuristics. Consistent
with the earlier ablations, we see that the informed epsilon case is able to discover failures faster
than a random sampling heuristic. It also finds many more failures when compared to removing
the epsilon case, because it places more focus on the exploration component, in the case of disjoint
failure modes.

Hypothesis 4 (H4) Adding the Gaussian Process explicitly to the LLM reasoning performs worse
than AutoODD , which overrides with epsilon

In the ϵ = 0 case, we let the LLM sample the Gaussian Process directly using a get_uncertainty()
function, which takes a prompt w and uses the embedding model E with the GP surrogates to pro-
vide a failure-uncertainty estimate u for that prompt. However, this underperforms both heuristics
significantly, even though the frequency of sampling is not fixed and therefore ends up being much
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oftener than the heuristic sampling. Two contributing factors to this are the variability in choosing
which inputs to sample and the possibility of choosing a repeat input.

5 Conclusion

In summary, this papers introduces AutoODD, a framework for uncertainty-aware, agentic audits
of black-box models. AutoODD employs an LLM-based agent as a high-level orchestrator that
interacts with the system-under-test via a set of tools: scenario generation, model querying, and un-
certainty estimation. AutoODD’s key contributions are a novel agentic integration of semantic em-
bedding spaces and Bayesian uncertainty estimation for black-box safety audits and a demonstration
that this approach efficiently discovers operational boundaries and failure modes in both controlled
and real-world robotics settings. AutoODD is able to recover a meaningful, human-interpretable
failure landscape with significantly reduced sample complexity, providing a scalable and practical
methodology for verifying the reliability of black-box models in safety-critical robotics. In the fu-
ture, we will consider an open vocabulary problem formulation, allowing for a more generalizable
framework and removing the need for a human expert to define the input space.
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6 Appendix

A LLM Agentic Conversation Example

This appendix demonstrates the interactive conversation between the LLM agent and the AutoODD
framework during the Detect and Avoid (DAA) experiment. The conversation showcases the agent’s
introspection, tool usage, and iterative failure discovery process.
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A.1 Example Conversation

Pr
om

pt
You are given access to a model that reads digits in images, and your goal is to find which
color and digit combinations the model performs poorly on. Each digit (0-9) can appear
in one of ten colors: blue, orange, green, red, purple, brown, pink, gray, yellow, and cyan.
Solve this task by alternating between: Introspect: Reason about what you’ve learned so
far and decide your next step. Action: Call exactly one function in each Action step.
—
Available Actions: You may use the following two functions:

1. generate(color, digit)
• Tests the model on the specified digit in the given color
• Returns 1 for success (correct prediction) and 0 for failure
• The results of this function are deterministic and WILL NOT CHANGE if

queried multiple times
• Example: generate(’purple’, ’6’)
• After each generate call, you will be given the result and asked if you want

to query more or if you are ready to give a summary
• DO NOT REPEAT generate calls for the same (color, digit) pair

2. STOP(summary)
• Use this function when you are finished querying the model and output a

summary of your findings
• You can only call STOP() directly after a generate call

—
Rules

• Every response must contain one Introspect step and one Action step and NOTH-
ING ELSE

• DO NOT REPEAT generate calls for the same (color, digit) pair, the result WILL
NOT change

• Only one function call is allowed per Action step
• After every generate call, you will be given the result and asked if you want to

query more or if you are ready to give a summary
—
Task Completion Rules:

• You must call generate() on all (color, digit) pairs you believe may fail
• Do not stop until all failure-prone inputs have been directly tested with gener-

ate()
• Do not assume a pattern (e.g., “all purples fail”) without confirming each sus-

pected input
• Never repeat function calls for the same (color, digit) pair

—
Notes for Introspection
When summarizing patterns, remember:

• If a pattern suggests a full row or column of failures (e.g., all 6s or all purples),
you still need to test each of those combinations with generate() to support your
claim

• If uncertainty is high for a combination, you must confirm the failure with a
generate() call before using it in your final summary
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In
tr

os
pe

ct
io

n

To assess the performance of the airplane detection model across different environmental
conditions, I need to evaluate which specific combination of conditions leads to poor
model performance (resulting in a 0).
From the previous function calls and results, it appears that the model performs poorly in
very specific conditions, especially under heavy rain and fog. However, some combina-
tions with clearer weather did yield better results.
Considering this information, I will extract the categories with the most failed perfor-
mance and continue testing:

1. **Time of Day**: Twilight
2. **Sky Cover**: Overcast
3. **Background**: Industrial area
4. **Season**: Summer
5. **Weather Condition**: Heavy rain

I will query this combination to further establish the model’s limits in this specific case.

A
ct

io
n

Let’s run the first query to examine how it performs under the identified condition:

To
ol

C
al

l

generate(’twilight’, ’overcast’, ’industrial area’, ’summer’, ’heavy rain’)

R
et

ur
n

Result: 0→ The model failed.
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