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Abstract

In modern healthcare, radiology plays a piv-001
otal role in diagnosing and managing dis-002
eases. However, the complexity of medical003
imaging data and the variability in interpreta-004
tion can lead to inconsistencies and a lack of005
patient-centered insight in radiology reports.006
To address this challenge, a novel multimodal007
prompt-driven report generation framework008
Rad-Flamingo was developed, that integrates009
diverse data modalities—such as medical im-010
ages, and clinical notes—to produce compre-011
hensive and context-aware radiology reports.012
Our framework leverages innovative prompt en-013
gineering techniques to guide vision-language014
models in generating relevant information, en-015
suring these generated reports are not only ac-016
curate but also understandable to individual017
patients. A key feature of our framework is018
its ability to provide patient-centric explana-019
tions, offering clear and personalized insights020
into diagnostic findings and their implications.021
Additionally, we also demonstrate a synthetic022
data generation pipeline, to append any existing023
benchmark datasets’ findings and impressions024
with patient-centric explanation. Experimental025
results demonstrate that this framework’s effec-026
tiveness in enhancing report quality, improv-027
ing understandability, and could foster better028
patient-doctor communication. This approach029
represents a significant step towards human-030
centered medical AI systems.031

1 Introduction032

Radiology reports form the basis for clinical diag-033

nostics and guide medical experts in treating pa-034

tients. Despite their significance, creating radiol-035

ogy reports is a labor-intensive and expert-intensive036

process frequently plagued with human errors and037

differing details based on the radiologist’s level of038

experience. Given the very low number of radiol-039

ogists, the laborious process of creating full text040

radiology reports ends up being one of the work-041

flow’s largest obstacles (Radiologist to patient ratio:042

US, China, and India is 1:10,000, 1:14,772, and 043

1:100,000, respectively) (Arora, 2014). Towards 044

mitigating this problem, there has been a huge ef- 045

fort from both industry and academia, with the 046

landscape of AI-based report generation witness- 047

ing exponential growth in recent times (Messina 048

et al., 2022). This growth is owed to the evolv- 049

ing capabilities of large language models and vi- 050

sion language models (VLMs) in particular, VLMs 051

have showcased exceptional abilities on a variety 052

of tasks, such as image captioning (Hossain et al., 053

2019), visual question answering (Lu et al., 2023), 054

and visual common sense reasoning (Zellers et al., 055

2018). Similarly, VLMs such as (Thawakar et al., 056

2024; Moor et al., 2023) show promising efficacy 057

in aligning image with text for medical use cases. 058

1.1 Motivation 059

VLMs find an excellent application in generation 060

of radiology reports. However, all generative pre- 061

trained models are opaque by design. Report gen- 062

eration systems which are able to generate reports 063

with explanations are better placed to build trust 064

and acceptability. Such explanations in case of ra- 065

diology reports could be patient-centric or expert- 066

centric. Patient centric explanations are lucid gen- 067

erated texts, that simplify medical terminology in 068

the report while explaining the pathophysiology of 069

the condition in easy to understand language. How- 070

ever, this goes beyond simply paraphrasing and 071

summarizing (Zhao et al., 2024b)the medical termi- 072

nology. Furthermore, recent research has demon- 073

strated that large language models can also ratio- 074

nalize their own prediction (Wiegreffe et al., 2021) 075

giving the model an ability to give natural language 076

explanations for its own generated responses. Com- 077

bining the generation capabilities of VLMs and 078

their self-rationalization abilities, we generate co- 079

herent radiology reports along-with patient centric 080
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explanations 1.081

Generating radiology reports using prompting082

strategies, let alone multimodal prompting is an083

under-explored domain. Driven by this motivation,084

we developed a two step multimodal in-context085

learning strategy to generate radiology reports086

along with patient-centric explanations. In the first087

stage we design few-shot prompts following the088

standard in-context learning template. For this089

stage we take an open source VLM model Mini-090

GPT4 (Zhu et al., 2023) fine-tuned on MIMIC-091

CXR-JPG dataset (Johnson et al., 2019). This stage092

acts as the synthetic data generator, which appends093

each of the image-report instance with a patient-094

centric explanation. For verifying the explanations095

we rely only on medical expert evaluations. Fol-096

lowing this, we design our multimodal in-context097

learning strategy on Med-Flamingo (a fine-tuned098

Flamingo model) (Moor et al., 2023) to generate099

a structured radiology report along with patient-100

centric explanations. We evaluate the outcomes by101

utilizing classical NLG metrics (BLEU, ROUGE,102

METEOR) as well as medical expert evaluation103

score. Further, since for medical texts semantic104

similarity has paramount importance compared to105

lexical similarity we utilized automated semantic106

scoring metrics. Additionally, we perform a medi-107

cal expert and non-expert evaluation of the gener-108

ated reports and explanations; the evaluations show109

the efficiency of our proposed framework.110

Our contributions are:111

1. A multimodal prompt based VLM framework,112

Rad-Flamingo, for automated structured radi-113

ology report generation and patient-centric ex-114

planation. Our method improved quantitative115

and qualitative scores by 2.3% over existing116

methods (Section 4.2 and 6).117

2. A first-of-its-kind multimodal in-context118

learning technique for self-rationalization.119

This is achieved by adding explicit medical120

knowledge to the prompt. To the best of121

our knowledge, this method incorporates mul-122

timodality and patient understandability for123

prompt based radiology report generation re-124

sulting in a 2.4% increment in performance125

over existing few-shot prompting techniques126

(Section 6.2).127

3. A synthetic data generation pipeline to ap-128

pend patient-centric explanations to image-129

1All our datasets and scripts will be publicly released.

report pairs. We release an augmented IUX 130

dataset with each of 3995 image-report in- 131

stances across all 105 disease classes. Simi- 132

larly, we perform this for a subset of CheX- 133

pertplus (Chambon et al., 2024) dataset. Eval- 134

uation by medical experts showcase the utility 135

of our work.(Section 4.1). 136

2 Background and Definitions 137

Patient-Centric Explanations: Pathophysiology 138

(McCance et al., 2019) is the study of the func- 139

tional changes that occur in the body as a result 140

of a disease or injury. It focuses on understanding 141

the mechanisms by which diseases disrupt normal 142

physiological processes. In heart failure, for in- 143

stance, a reduction in cardiac output leads to com- 144

pensatory mechanisms like fluid retention, which 145

can cause symptoms like fluid retention and short- 146

ness of breath. Therefore, such informations serve 147

as a form of medical explanation within the gener- 148

ated report. We extend this idea to patient-centric 149

explanations, where the pathophysiological expla- 150

nations are provided along-with the medical reports 151

for ease of understanding from the patients’ per- 152

spective. 153

Self-Rationalization: Self-rationalization in large 154

language models (LLMs) (Marasovic et al., 2022; 155

Wiegreffe et al., 2021; Camburu et al., 2018) refers 156

to their ability to generate explanations or justifica- 157

tions for their own outputs. This involves creating 158

reasoning pathways that appear coherent, logical, 159

and aligned with the responses they produce, even 160

though these models do not possess true under- 161

standing or awareness. LLMs achieve this by lever- 162

aging their vast training data to mimic human rea- 163

soning patterns, constructing plausible rationales 164

based on context, prior responses, and linguistic 165

structures. However, these explanations do not 166

serve as a pointer to the internal working of the 167

model, they merely act as a justification to the out- 168

put. In sensitive domains such as healthcare, an 169

explanation, at the very least plays an important 170

role towards building trust. 171

In-Context Learning: In-context learning refers 172

to the ability of LLMs to perform tasks by under- 173

standing and extrapolating from examples provided 174

within a prompt, without requiring explicit fine- 175

tuning of the model. This technique leverages the 176

model’s parametric knowledge and allows users to 177

define the task through natural language instruc- 178

tions and a few input-output examples (often called 179

2



few-shot learning). The model infers the pattern180

from the context and applies it to new instances181

during the same interaction. In-context learning182

demonstrates the flexibility of LLMs to adapt to183

diverse tasks, making them highly versatile for ap-184

plications like text generation, question answering,185

and code synthesis (Dong et al., 2024).186

3 Related Work187

Report Generation: Radiology report generation188

has been receiving a lot of attention lately, and189

several models have been developed based on the190

encoder-decoder architecture that was first used for191

image captioning tasks (Vinyals et al., 2014; Xu192

et al., 2015; Pan et al., 2020). However, report gen-193

eration poses additional challenges compared to194

image captioning, as medical reports are typically195

longer and coherent with respect to captions. In196

an encoder decoder setting it becomes very diffi-197

cult to generate long-form reports coherent with198

the medical image. Furthermore, bias in medi-199

cal datasets makes it difficult to generate compre-200

hensive, long-form reports. To address these chal-201

lenges, researchers have proposed various methods.202

Wang et al. (2021), introduced an image-text match-203

ing branch to facilitate report generation, utilizing204

report features to augment image characteristics205

and consequently minimize the impact of data bias.206

They also employed a hierarchical LSTM structure207

for the generation of long-form text. Chen et al.208

(2020a) and Wang et al. (2022b) introduced addi-209

tional memory modules to store past information,210

which can be utilized during the decoding process211

to improve long-text generation performance.212

Another type of work aims to mitigate data bias213

by incorporating external knowledge information,214

with the most representative approach being the215

integration of knowledge graphs Li et al. (2019,216

2023b); Huang et al. (2023); Liu et al. (2021);217

Zhang et al. (2020); Kale et al. (2023). Zhang218

et al. (2020) and Liu et al. (2021) combined pre-219

constructed graphs representing relationships be-220

tween diseases and organs using graph neural net-221

works, enabling more effective feature learning for222

abnormalities. Li et al. (2023b) developed a dy-223

namic approach that updates the graph with new224

knowledge in real-time. Huang et al. (2023) in-225

corporated knowledge from a symptom graph into226

the decoding stage using an injected knowledge227

distiller.228

These methods are able to generate reports as cap-229

tion with very high accuracy. However, they do 230

not have the ability of free-form text generation 231

possesed by pretrained VLMs. Therefore, VLMs 232

become very effective for free-form text genera- 233

tion. 234

Vision Language Models: A significant area of 235

research in natural language processing (NLP) and 236

computer vision is the exploration of vision lan- 237

guage model (VLM) learning techniques. This 238

VLM aims to bridge the gap between visual and tex- 239

tual information, enabling machines to understand 240

and generate content that combines both modali- 241

ties. Recent studies have demonstrated the poten- 242

tial of VLM models in various tasks, such as image 243

captioning (Zhu et al., 2023), visual question an- 244

swering (Liu et al., 2023b; Maaz et al., 2024), and 245

image generation (Zhang et al., 2023). Developing 246

on these medical VLMs like (Li et al., 2023a) and 247

(Abdin et al., 2024) show impressive performance 248

on medical NLP use cases. 249

4 Methodology 250

In the first stage, as per Figure 1, we use a finetuned 251

open-source VLM, MiniGPT4 model to syntheti- 252

cally generate patient-centric explanations (which 253

are subsequently human evaluated) for each image- 254

report pair. The model is finetuned on MIMIC- 255

CXR-JPG (Johnson et al., 2019) dataset, a large- 256

scale repository of chest X-ray images and cor- 257

responding reports in the form of findings and 258

impressions. Finetuning allows the model to re- 259

parameterize its weights to learn to align a chest X- 260

ray to its corresponding report. Given this finetuned 261

model, we design a three-shot prompt template to 262

generate patient-centric explanations for an X-ray 263

image and its corresponding report. Therefore, this 264

stage appends all the existing dataset samples with 265

a patient-centric explanation. The explanations 266

generated are evaluated by medical-experts result- 267

ing in creation of a gold-label dataset consisting of 268

image-report-PCE. This created and human evalu- 269

ated dataset then serves as a standard against which 270

we compare the outcomes of the second stage. 271

In the second stage, we use this newly aug- 272

mented dataset to perform in-context learning with 273

a vision-language model that has been pretrained 274

on a medical dataset. This approach allows the 275

model to incorporate the nuances of patient-centric 276

explanations while maintaining its ability to pro- 277

vide clinically accurate and detailed radiological 278

reports. 279
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tokenized data

<img> <img> <img> <img>

Med-Flamingo
Findings:................
Impressions:...........
PCE:....................

input

output

Five-Shot
Multimodal
Prompt

tokenized data

<img>

MiniGPT4 PCE

input

output

Three-Shot Multimodal
Prompt

Stage-I Stage-II
FInetuned

Frozen

Figure 1: Stage I: Refers to the synthetic data generation stage, which annotate the existing IUX dataset with patient
centric explanations. Stage II: Refers to the report generation stage where we design multimodal in-context prompts
using the annotated data from stage I. Additionally, the fire symbol represents the finetuned model and ice symbol
represent using frozen weights of a model not finetuned by us. PCE refers to the abbreviation of patient-centric
explanation.

4.1 Stage I (Synthetic Data Generation)280

To fine-tune the MiniGPT4 (Zhu et al., 2023) model281

we follow the technique in Thawakar et al. (2024).282

We combine textual information from a medical283

large language model (LLM) and visual character-284

istics from a pre-trained medical vision encoder285

(VLM) given the X-ray. In particular, our large286

language model (LLM) is based on the recently287

developed Vicuna model (Zheng et al., 2024), and288

we use MedClip (Wang et al., 2022c) as a vision289

encoder.290

Given an X-ray x ∈ RH×W×C , the vision en-291

coder Eimg encodes the image as Eimg(x). Then,292

the raw embeddings are transformed to an output293

dimension of 512 using a linear projection head.294

Vp = fv(Eimg(x)) (1)295

where Eimg is the vision encoder, fv is the projec-296

tion head. We use a trainable linear transformation297

layer to close the gap between the embedding space298

of the language decoder and image-level features299

, denoted as t. This layer transforms the image-300

level features, represented by Vp, into correspond-301

ing language-decoder embedding tokens, denoted302

as Lv:303

Lv = t(Vp) (2)304

Following this we employ a few-shot prompting 305

strategy to generate patient-centric explanations for 306

a given image-report pair. 307

We follow a standard few-shot prompting strat- 308

egy with three examples in the prompt. In the 309

prompt we write Explanations as a placeholder for 310

patient-centric explanation. The prompt template 311

goes as mentioned in Appendix A. 312

For the synthetic data generation we consider 313

the IUX (Demner-Fushman et al., 2015) dataset, 314

the generated explanations are appended to each in- 315

stance of the IUX dataset. For designing the prompt 316

we sample three image-report (findings and impres- 317

sions) pairs from each of the disease classes. We 318

take assistance of medical experts to append each 319

of the samples with patient-centric explanations. 320

Subsequently, we pass the prompt as per Stage I in 321

Fig 1 for the fine-tuned model to learn in-context. 322

Fine-tuning the model on a large corpus, such as 323

MIMIC-CXR-JPG (Johnson et al., 2019), helps 324

the model to condition on the context provided in 325

the prompt. We provide the full prompt samples 326

in Appendix A. Therefore, the model is able to 327

generate good quality explanations tailoring to our 328

requirement. (the details are in appendix D). An 329

Augmented Dataset is now created which consists 330

of Image, report (Findings and Impressions) and 331
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patient-centric explanation Fig. (2) that serves as a332

standard against which we compare the outcomes333

of the second stage.334

In Appendix D.4.3, we compare expert-corrected335

PCEs from our fine-tuned MiniGPT-4 with those336

generated by GPT-4 and ChexAgent. The score337

achieved by GPT-4 and ChexAgent PCEs under-338

scores the appropriateness of our method’s outputs.339

4.2 Stage II (Radiology Report Generation)340

In this stage we follow the Med-Flamingo model341

(Moor et al., 2023) which is finetuned on a med-342

ical dataset. Med-Flamingo is developed on the343

Open-Flamingo Awadalla et al. (2023) architecture344

which possesses the ability of few-shot learning345

from multimodal inputs. The language modeling346

in Med-Flamingo is represented in eq 3347

p(yℓ | x1:ℓ−1, y1:ℓ−1) =

L∏
ℓ=1

p(yℓ | y1:ℓ−1, x1:ℓ−1)

(3)348

where yℓ refers to the ℓth language token, y1:ℓ−1 to349

the set of prior language tokens, and x1:ℓ−1 to the350

set of prior visual tokens. Here the language tokens351

contain the information of reports and PCEs and352

the image tokens contain the information of chest353

X-rays. While fine-tuning, the input is annotated354

in the form of interleaved image text data, which355

makes it effective for multimodal few-shot learn-356

ing. We exploit this interleaved template to design357

our proposed prompt as per Stage II in Fig 1. The358

interleaved input prompt-design while fine-tuning359

enables the model to condition on the multi-modal360

context. We choose five examples for each disease361

class from the Augmented Dataset compiled in362

stage I. Pivoting on the idea of interleaved image363

text data prompt, we set up our framework for mul-364

timodal in-context learning for which the prompt365

template is demonstrated below in Appendix A.366

Prompt examples are provided in the Appendix367

B. Med-Flamingo with our proposed multimodal368

prompt template is referred to as Rad-Flamingo.369

5 Experiments370

5.1 Dataset371

In stage I we consider the MIMIC-CXR-JPG (John-372

son et al., 2019) dataset for fine-tuning. MIMIC-373

CXR-JPG dataset comprises 473,057 images and374

206,563 reports from 63,478 patients. The official375

splits, i.e. 368,960 for training, 2,991 for validation,376

and 5,159 for testing are used for fine-tuning our377

model. Subsequent to this we follow our prompting 378

technique (Section 4.1) to generate patient-centric 379

explanations and append it to each instance of the 380

IUX dataset (Demner-Fushman et al., 2015). Addi- 381

tionally, we also report results on part of the CheX- 382

pertplus dataset (Chambon et al., 2024) to show the 383

efficacy of our proposed model. 384

In stage II we use the Augmented dataset from 385

the previous step and design our prompts as per 386

Fig 1. The dataset consists of 7,470 chest X-Ray 387

images and 3,955 radiology reports. The number 388

of patients are equal to the number of reports how- 389

ever, each patient corresponds to two xray images 390

i.e. frontal and lateral. Therefore, number of im- 391

ages are twice the number of reports. We append 392

a patient-centric explanation to each of 3955 radi- 393

ology reports. Similarly, we adopt the same two- 394

stage pipeline for the CheXpert++ dataset (Cham- 395

bon et al., 2024). This dataset contains a total of 396

224,316 chest X-ray images, annotated with mul- 397

tiple disease labels. For our experiments, we con- 398

struct a subset of the CheXpertplus dataset that 399

includes all disease categories reported in our re- 400

sults section. This subset comprises of ten samples 401

per disease class as mentioned in the results. 402

Despite working with a specific subset, our 403

experiments demonstrate that the proposed syn- 404

thetic data-generation framework—designed to 405

augment training data with patient-centric expla- 406

nations is generalizable to other large-scale chest 407

X-ray benchmarks. 408

5.2 Experimental Setup 409

In stage-1 training, the model is fine-tuned to gain 410

alignment between X-ray image features and cor- 411

responding reports by training over a large set of 412

image-report pairs. The result obtained from the 413

injected projection layer is considered as a gentle 414

cue for our medically tuned VLM model, guid- 415

ing it to generate appropriate report based on the 416

finding and impression that match the given X-ray 417

images. For preprocessing we follow Thawakar 418

et al. (2024) where we utilize high quality interac- 419

tive report summaries of MIMIC-CXR-JPG. The 420

train set contains 213,514 image report pairs for 421

training. During training, the model is trained for 422

320k total training steps with a batch size of 16 423

using 3 NVIDIA A100 (80GB) GPUs. 424

In stage-II we utilize predetermined prompts as 425

shown in the previous section (4.2). 426

For each X-ray image instance we take the cor- 427

responding finding, impression and patient centric 428
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Metrics Models

R2GEN R2GenCMN Joint-TraiNet M2KT Open-Flamingo XProNet Rad-Flamingo Rad-Flamingo
(Chen et al., 2020b) (Chen et al., 2021) (Yang et al., 2023) (Yang et al., 2022) (Awadalla et al., 2023) (Wang et al., 2022a) IUX Chexpert++

BLEU-1 0.355 0.372 0.359 0.366 0.293 0.353 0.323 0.341

BLEU-2 0.223 0.233 0.226 0.213 0.195 0.221 0.232 0.282

BLEU-3 0.152 0.153 0.155 0.146 0.155 0.150 0.183 0.211

BLEU-4 0.103 0.105 0.102 0.104 0.071 0.105 0.081 0.092

METEOR 0.141 0.150 0.142 0.152 0.165 0.141 0.170 0.158

ROUGE 0.278 0.282 0.278 0.267 0.223 0.281 0.223 0.253

Table 1: Lexical similarity performance of Rad-Flamingo compared to baselines using classical metrics (BLEU,
METEOR, ROUGE).

explanation and put it in the following format:429

<image> Findings Impression Explana-430

tion|endofchunk|.431

Five of these aforementioned multimodal prompt432

were followed by the query prompt described be-433

low:434

<image> + You are a helpful medical assistant.435

You are provided with images, findings, impressions436

and explanation.Looking at this image generate437

Findings, Impressions and Explanations.438

6 Result and Analysis439

Our evaluation emphasizes on the performance of440

the Flamingo family of models (Moor et al., 2023)441

(Awadalla et al., 2023), as these models provide442

the essential few-shot learning capabilities needed443

for our prompt-based report generating framework.444

One possible comparison of Rad-Flamingo could445

be done with other vision-language models, such446

as Med-Phi (Abdin et al., 2024) and Med-LLaVA447

(Li et al., 2023a). However, these models do not448

have the ability to accept multimodal prompt and449

hence were deliberately excluded as baselines from450

our analysis. We present zero shot experiments451

on open-source VLMs in Appendix D.4.2 thereby,452

strengthening our claim. Our results analyse the ef-453

fectiveness of our multimodal prompt in generating454

reports with patient-centric explanation. Tables 1455

and 2 compare the scores over the generated report456

and patient-centric explanations.457

6.1 Lexical Metrics458

In this section, we evaluate the quality of gener-459

ated reports by Rad-Flamingo and compare them460

against baselines using classical lexical similarity461

metrics such as BLEU (Papineni et al., 2002), ME-462

TEOR (Lavie and Agarwal, 2007), and ROUGE463

(Lin, 2004) as shown in Table 1. These metrics464

provide a convenient means of measuring word465

overlap and syntactic similarity between generated466

and reference texts. Rad-Flamingo performs sim- 467

ilar to the baselines on lexical similarity metrics. 468

However, these metrics find less application in med- 469

ical domain. This arises due to their inability to 470

account for the deeper semantic relevance and con- 471

textual accuracy required in specialized content, 472

such as medical data. For example, the sentences 473

"There is focal consolidation" and "There is no 474

focal consolidation" are lexically very similar yet 475

semantically very dissimilar. Therefore, semantic 476

similarity plays a greater role in evaluating gener- 477

ated medical texts. 478

Our few-shot prompting technique show compa- 479

rable performance in some of the lexical metrics. 480

While these metrics offer a preliminary measure 481

of performance, they do not fully reflect the real 482

utility of generated medical texts. This analysis un- 483

derscores the need for more domain-specific evalu- 484

ation frameworks that can assess not only linguistic 485

fluency and coherence but also the contextual align- 486

ment of generated texts in medical domain. 487

6.2 Semantic Metrics 488

We choose semantic metrics for clinical evalu- 489

ation like BioClinicalBERTScore 2 (Lee et al., 490

2019), BERTScore (Zhang et al., 2019) and Rad- 491

GraphF1 (Jain et al., 2021). In table 2 column 492

Rad-Flamingo represents the setting where we 493

prompt the Med-Flamingo model with proposed 494

multimodal few-shot prompt. The Rad-Flamingo 495

w/oI column reflects a configuration where images 496

are excluded from the few-shot prompt examples, 497

while all other components remain identical to Rad- 498

Flamingo. A similar ablation strategy is applied 499

to Open-Flamingo and Open-Flamingo w/oI for 500

consistency. 501

Both the BERTScore and ClinicalBERTScore for 502

Rad-Flamingo show a 1.4% for IUX and 1.8% 503

2BioClinicalBERT is taken from huggingface. Underlying
model is BioBERT trained on MIMIC III dataset.https://
huggingface.co/emilyalsentzer/Bio_ClinicalBERT
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Dataset Metrics Rad-Flamingo Rad-Flamingo w/oI Open-Flamingo Open-Flamingo w/oI

IUX
BertScore 0.875 0.855 0.863 0.834

BioClinicalBertScore 0.895 0.879 0.885 0.854

RadGraphF1 0.285 0.273 0.279 0.269

CheXpert++
BertScore 0.793 0.769 0.778 0.758

BioClinicalBertScore 0.878 0.855 0.862 0.842

RadGraphF1 0.312 0.303 0.306 0.297

Table 2: Performance comparison of Rad-Flamingo and Open-Flamingo models on clinical evaluation metrics using
proposed multimodal few-shot prompting framework. The table includes ablation studies highlighting the impact of
removing image modalities (w/oI) from the few-shot prompts. We do a metric wise significance testing in Appendix
D.2

for Chexpertplus increase compared to Open-504

Flamingo. This shows our proposed multimodal505

prompt template effectively generates report with506

better performance than existing models. Similar507

increase is found in case of RadGraphF1 scores.508

This result signifies the benefit of our proposed509

multimodal prompt template of Rad-Flamingo,510

over Open-Flamingo. To show the utility of mul-511

timodality in our prompt template, we remove the512

images from the few-shot examples and pass it513

to the Rad-Flamingo and Open-Flamingo models.514

Rad-Flamingo w/oI and Open-Flamingo w/oI rep-515

resents those settings. We see the scores drop sig-516

nificantly by 2.4% for IUX and 2.6% for Chexpert-517

plus indicating the utility of the multimodal prompt518

in integrating different data-modalities and helps519

the model to generate task-specific outputs. This520

approach effectively addresses challenges in both521

unimodal and multimodal data modes. Domain-522

specific metrics are essential for assessing our523

multimodal prompting strategy. Semantic simi-524

larity scores reveal that Rad-Flamingo—finetuned525

on medical data—performs best, yet our multi-526

modal prompt framework still outperforms Open-527

Flamingo. Further experiments on patient-centric528

explanations are detailed in Appendix D.4.529

6.3 Qualitative Evaluation530

Owing to the subjective nature and the semantic531

complexity which medical data possesses, evalu-532

ation by medical expert becomes very important533

to have a rigorous examination of a proposed sys-534

tem. We divide the qualitative evaluation into two535

parts namely, expert and non-expert driven. We536

consulted four expert-medical professionals and537

four students who have no medical background, to538

evaluate our generated reports and corresponding539

patient-centric explanations. We perform an ex- 540

tensive evaluation of the generated outputs. The 541

evaluation criteria is divided into two criterions 542

namely, Understandability and Medical Compre- 543

hensiveness for expert volunteers and understand- 544

ability for non-expert volunteers. Whereas Un- 545

derstandability is Patient Centric, Medical Com- 546

prehensiveness measures the output based on its 547

completeness from a medical experts perspective. 548

Following this we created five levels of grading: 549

1 (very poor), 2 (poor), 3 (good), 4 (very good), 550

5 (excellent) for both criterion. Subsequently, for 551

each disease class we get four scores and the table 552

shows a mean and standard deviation over these 553

four scores for each criterion. Our expert eval- 554

uation shows that our prompting method delivers 555

promising performance (see Appendix B). As Table 556

3 demonstrates, experts rated patient-centric under- 557

standability and expert-centric completeness above 558

the midpoint, indicating clear and correct explana- 559

tions—though there remains room to deepen medi- 560

cal expertise. Non-experts rated understandability 561

well above average, confirming that our system pro- 562

duces patient-friendly yet medically rich explana- 563

tions. In summary we evaluate the understandabil- 564

ity of the generated explanations from both expert 565

and non-expert views. This highlights our mul- 566

timodal prompting strategy’s ability to generate 567

explanations that go beyond simple summaries. 568

6.4 Ablation study on patient-centric 569

explanation 570

We analyze the impact of removing patient-centric 571

explanations (PCEs) from our multimodal few-shot 572

prompting framework by providing only findings 573

and impressions as few-shot examples as shown 574

in Appendix D.4.1. In this setting, the model fails 575
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Models Rad-Flamingo

Expert Non-Expert

Understandability Medical Comprehensiveness Understandability

Cardiomegaly 3.44± 0.67 3.25± 0.43 3.5± 1.11

Pulmonary Atelectasis 3.33± 1.36 3.4± 0.5 2.75± 0.82

Nodules 3.21± 1.05 3.01± .70 3.5± 0.5

Opacity 2.06± 0.54 2.5± 0.54 2.95± 0.54

Calcified Granuloma 3.75± 0.82 3.13± 0.41 3.5± 0.77

Pulmonary Fibrosis 3.0± 0.63 2.8± 0.58 3.0± 0.63

Consolidation 3.2± 0.39 3.1± 0.56 2.8± 0.42

Pneumothorax 3.6± 0.8 3.63± 0.6 3.9± 0.7

Granuloma 3.4± 0.95 3.1± 0.7 3.6± 0.85

Bronchiestasis 3.25± 0.44 3.1± 0.46 3.33± 0.54

Table 3: The table presents the mean and standard deviation of scores provided by four medical professionals for
each of the chosen disease class, highlighting the effectiveness of the proposed prompting method after stage II.

to generate patient-centric explanations, even if576

explicitly prompted to do so, highlighting the ne-577

cessity of incorporating PCEs. As per Stage II (Sec-578

tion 4.2), when PCEs are omitted from the prompt579

template, the prior language tokens do not contain580

any information about them, leading to the next pre-581

dicted tokens also lacking PCEs. This demonstrates582

that without explicit mention of patient-centric ex-583

planations in the few shot prompt, the model is584

unable to produce explanations as shown in Fig-585

ure 4 despite being prompted. We observe that586

the presence of PCEs directly influences the gen-587

eration of explanations. The ablation study fur-588

ther confirms that patient-centricity in explanations589

does not emerge naturally from findings and im-590

pressions alone, necessitating an explicit prompt-591

ing strategy. In summary, this study highlights the592

crucial role of PCEs in shaping the generated expla-593

nations, confirming the choice of our multimodal594

few-shot prompting strategy. Therefore, PCEs are595

essential to our multimodal few-shot prompting596

strategy. Their inclusion not only enhances clini-597

cal relevance but also improves the coherence and598

informativeness of the generated reports. We also599

present a detailed experiment on readability of our600

generated explanations as presented in Appendix601

D.3. This analysis demonstrates that our method602

produces explanations which are understandable to 603

non-expert readers. 604

7 Conclusion 605

Rad-Flamingo introduces a radiology report gener- 606

ation framework that integrates multimodal data 607

with prompt-driven methodologies and patient- 608

centric explanations, enhancing accuracy and un- 609

derstandability. By leveraging vision-language 610

models (VLMs), it automates routine reporting 611

tasks, allowing radiologists to focus on complex 612

cases and save valuable time. By improving re- 613

port clarity, patients can better understand their 614

conditions and engage in more meaningful discus- 615

sions with their physicians. Thus, our proposed 616

work complements, rather than replacing physi- 617

cian. A key feature is the patient-centric approach, 618

ensuring that reports are both medically accurate 619

and understandable to non-expert audiences. Ad- 620

ditionally, Rad-Flamingo makes radiology reports 621

more accessible, bridging the gap between clinical 622

findings and patient understanding. Rad-Flamingo 623

goes beyond simplifying medical terms by provid- 624

ing pathophysiological explanations grounded in 625

findings and impressions. It shows strong potential 626

to enhance radiology workflows, with future work 627

focused on improving vision–language alignment. 628
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Limitations629

In this section we discuss the main limitations of630

our proposed framework. A notable limitation in631

our study is the absence of a number of VLMs632

which possess the same few-shot learning capabil-633

ity as the Flamingo family of models. This restricts634

us from evaluating the generalizability of our ap-635

proach. While our method shows promise, validat-636

ing its performance against a diverse set of few-637

shot models would provide deeper insights into its638

strengths and weaknesses. The inclusion of these639

models would also allow us to better understand640

how our approach fares in broader scenarios and641

under varying conditions, such as domain shifts or642

noisy inputs.643

Class imbalance in machine learning occurs644

when certain classes dominate the training data,645

causing the model to be biased toward these over-646

represented classes and perform poorly on minor-647

ity classes. This is particularly problematic in ap-648

plications like medical diagnosis, where minority649

classes are crucial, and can be addressed using tech-650

niques like re-sampling, loss adjustment, or robust651

algorithms.652

Another constraint in our evaluation is the lack653

of a direct comparison with ChatGPT, a widely654

recognized benchmark in conversational AI. The655

prompt template we use would require high com-656

putational and financial cost to perform a rigorous657

analysis. These constraints underscore the need658

for collaborative efforts and accessible research659

resources to enable comprehensive benchmarking.660

Ethical Considerations661

The Rad-Flamingo framework enables multimodal,662

prompt-driven radiology report generation with663

patient-centric explanations, adhering to strict eth-664

ical standards. All medical data is anonymized,665

and our data augmentation process ensures no risk666

of identity leakage. Designed to support, not re-667

place, clinicians, it enhances diagnostic accuracy668

and promotes transparent patient-provider commu-669

nication. We mitigate bias through diverse training670

data representing various demographics and med-671

ical conditions. Patient explanations are clear, re-672

spectful, and free from misleading content. Human673

oversight ensures outputs align with clinical stan-674

dards and ethical guidelines, maintaining patient675

safety, data security, and fairness in medical AI676

applications.677
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A Appendix 1297

(Refer back Section 4.1) (Refer back Section 4.2) 1298

Example 1: 1299

Findings:......
Impressions:.......
Explanations:......

Example 2: 1300

Findings:......
Impressions:.......
Explanations:......

Example 3: 1301

Findings:......
Impressions:.......
Explanations:......

Your Turn: 1302

Findings:......
Impressions:.......
<img>Looking at the Xray, findings
and impressions generate an explanation

A.1 Prompt sample from Stage I 1303

Example 1: Findings:Borderline cardiomegaly. Midline sternotomy. Enlarged pulmonary arteries.
Clear lungs. Inferior.
Impression: No acute pulmonary findings.
Explanation: The borderline cardiomegaly suggests slight enlargement of the heart, which could
be due to chronic pressure overload (possibly from hypertension) or cardiomyopathy. The midline
sternotomy indicates a previous cardiac surgery, which could relate to coronary artery disease or
valve replacements, considering the context of other findings. Enlarged pulmonary arteries might
suggest pulmonary hypertension, which could be secondary to left heart disease or chronic lung
conditions, though the lungs are reported as clear. The absence of acute pulmonary findings despite
these chronic alterations indicates that there are no new or worsening issues in the pulmonary
system at this time.

1304

Example 2: Findings: The cardiac contours are normal. basilar atelectasis. The lungs are clear.
Thoracic spondylosis. Lower cervical arthritis.
Impression: Basilar atelectasis. No confluent lobar consolidation or pleural effusion.
Explanation: The chest X-ray shows basilar atelectasis, a partial collapse or incomplete expansion
of the lower lung segments, likely due to shallow breathing or reduced lung volume. The lungs are
otherwise clear, without any signs of confluent lobar consolidation or pleural effusion, suggesting
no infection or fluid accumulation. The cardiac contours are normal, ruling out cardiomegaly
or abnormal heart positioning. Degenerative changes, including thoracic spondylosis and lower
cervical arthritis, are noted, indicating age-related or chronic wear-and-tear changes in the spine.
The overall impression is of minor pulmonary findings with no acute cardiopulmonary disease.

1305
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Example3: Findings: The cardiomediastinal silhouette is within normal limits for size and contour.
The lungs are normally inflated without evidence of focal airspace disease, pleural effusion, or
pneumothorax. Stable calcified granuloma within the right upper lung. No acute bone abnormality.
Impression: No acute cardiopulmonary process.
Explanation: The chest X-ray reveals a normal cardiomediastinal silhouette, indicating no en-
largement or abnormality in heart or mediastinal contours. The lungs are well inflated, with no
signs of focal airspace disease such as infection, fluid, or collapse. A stable, calcified granuloma
in the right upper lung suggests a past, healed infection (e.g., tuberculosis or histoplasmosis)
with no current active disease. The absence of pleural effusion, pneumothorax, or acute bone
abnormalities supports the lack of any acute thoracic issues. Overall, there is no evidence of an
acute cardiopulmonary process, and the findings are consistent with a stable, chronic condition.

1306

Your Turn: Findings: Heart size within normal limits. No focal alveolar consolidation, no definite
pleural effusion seen. No typical findings of pulmonary edema. No pneumothorax.
Impression: No acute cardiopulmonary findings.
<img>Looking at the Xray, findings and impressions generate a patient- centric explanation

1307

B Appendix1308

(Refer back Section 4.2) (Refer back Section 6.3)1309

Example 1:1310

<img>Findings:......
Impressions:.......
Explanations:......

Example 2:1311

<img>Findings:......
Impressions:.......
Explanations:......

Example 3:1312

<img>Findings:......
Impressions:.......
Explanations:......

Example 4:1313

<img>Findings:......
Impressions:.......
Explanations:......

Example 5:1314

<img>Findings:......
Impressions:.......
Explanations:......

Your Turn:1315

<img>Looking at the xray generate
findings and impressions and a explana-
tion
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B.1 Prompt sample from Stage II 1316

The images in figure 1 are placeholders to exhibit the multimodal prompt design. While experiments we 1317

took examples per disease class mentioned in the results section. 1318

Example 1: <image> Findings: Heart size mildly enlarged, stable mediastinal and hilar contours.
No focal alveolar consolidation, no definite pleural effusion seen. No typical findings of pulmonary
edema. No pneumothorax.
Impressions: Mild cardiomegaly, no acute pulmonary findings.
Explanation: It is clear the patient is in an enlarged heart condition (mild cardiomegaly) and
has been for some time. The pulmonary system is clear and no evidence of acute lung changes.
The overall pathophysiology suggests that the patient is in a chronic, stable state with ongoing
changes.The findings are normal and do not suggest any acute or severe events.<|endofchunk|>

1319

Example 2: <image> Findings: The heart is top normal in size. The mediastinum is stable. The
lungs are clear.
Impressions: Borderline cardiomegaly without acute disease.
Explanation: It is a case of borderline cardiomegaly, but it is difficult to correlate the finding of
enlarged heart with pathophysiology. Borderline cardiomegaly is a radiological finding. It could
mean that the heart size is in between normal and big (normal is 55 mm) but in this case it comes
to 57 mm.<|endofchunk|>

1320

Example 3: <image> Findings: Stable borderline cardiomegaly, stable mediastinal and hilar
contours. No alveolar consolidation, no findings of pleural effusion or pulmonary edema. No
pneumothorax.
Impressions: No acute cardiopulmonary findings.
Explanation: There are no acute cardiopulmonary findings, no pulmonary edema, no focal alveolar
consolidation, no definite pleural effusion, no large pleural effusions, no pneumothorax, no left
apical or basal consolidation, no pulmonary vascular congestion, and no pulmonary infarction;
however, bilateral patchy pulmonary opacities and multifocal scattered bibasilar patchy opacities
are noted.<|endofchunk|>

1321

Example 4: <image> Findings: Persistent cardiomegaly. No abnormal airspace consolidation.
Resolved interstitial edema. No pneumothorax or pleural effusion.
Impressions: Stable cardiomegaly without acute abnormality.
Explanation: No pneumothorax, no effusion, no infiltrate, no pulmonary congestion, no pleural
erythema all point towards non-infectious etiology. Mild cardiomegaly without acute abnormality is
also non-specific and without clinical significance. The unremarkable spine suggests degenerative
changes and nothing else.<|endofchunk|>

1322

Example 5: <image> Findings: The outside is normal except for slight cardiomegaly. Impressions:
Heart size upper limits normal. Lungs are clear. No evidence of active tuberculosis. No change
from prior exam. Explanation: Slight cardiomegaly. Clear lungs indicate no pulmonary congestion
or active disease.<|endofchunk|>

1323

Your Turn: <image> You are a helpful medical assistant. You are provided with images, find-
ings, impressions and explanation.Looking at this image generate Findings, Impressions and
Explanations

1324
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C Appendix1325

C.1 Augmented IUX dataset instance1326

Findings: Heart size mildly enlarged, stable 
mediastinal and hilar contours. No focal alveolar 
consolidation, no definite pleural effusion seen. 
No typical findings of pulmonary edema. No 
pneumothorax.

Impressions: Mild cardiomegaly, no acute 
pulmonary findings

Explanation: It is clear the patient is in an 
enlarged heart condition (mild cardiomegaly) 
and has been for some time. The pulmonary 
system is clear and no evidence of acute lung 
changes. The overall pathophysiology suggests 
that the patient is in a chronic, stable state with 
ongoing changes.The findings are normal and do 
not suggest any acute or severe events.

Figure 2: Augmented dataset instance showcasing input modalities (e.g., medical images, clinical text) and
corresponding annotated outputs, illustrating the report (findings and impression) and patient-centric explanation

C.2 Radiology Report with patient-centric explanation generated by Rad-Flamingo1327

Findings: Heart size mildly enlarged, stable 
mediastinal and hilar contours. No focal alveolar 
consolidation, no definite pleural effusion seen. 
No typical findings of pulmonary edema. No 
pneumothorax.

Impressions: Mild cardiomegaly, no acute 
pulmonary findings

Explanation: It is clear the patient is in an 
enlarged heart condition (mild cardiomegaly) 
and has been for some time. The pulmonary 
system is clear and no evidence of acute lung 
changes. The overall pathophysiology suggests 
that the patient is in a chronic, stable state with 
ongoing changes.The findings are normal and do 
not suggest any acute or severe events.

Image Generated Ground Truth

Findings: Stable cardiomegaly. No abnormal 
airspace consolidation. Resolved interstitial 
edema. No pneumothorax or pleural effusion.

Impressions: Stable cardiomegaly without acute 
abnormality.

Explanation: No pneumothorax, no effusion, no 
infiltrate, no pulmonary congestion, no pleural 
erythema all point towards non-infectious 
etiology. Mild cardiomegaly without acute 
abnormality is also non-specific and without 
clinical significance. The unremarkable spine 
suggests degenerative

Figure 3: Example of output given by Rad-Flamingo. Image and ground truth are from the proposed augmented
dataset.
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D Appendix 1328

D.1 Medical Expert Evaluation for Stage I outputs 1329

Models Finetuned MiniGPT-4

Understandability Medical Comprehensiveness

Cardiomegaly 3.56± 0.76 3.43± 0.52

Pulmonary Atelectasis 3.31± 1.26 3.41± 0.51

Nodules 3.22± 1.46 3.09± .71

Opacity 2.07± 0.57 2.5± 0.54

Calcified Granuloma 3.78± 0.82 3.23± 0.41

Pulmonary Fibrosis 3.0± 0.68 2.7± 0.78

Consolidation 3.22± 0.69 3.1± 0.66

Pneumothorax 3.61± 0.81 3.63± 0.67

Granuloma 3.44± 0.85 3.12± 0.71

Bronchiestasis 3.25± 0.54 3.11± 0.56

Table 4: The table presents the mean and standard deviation of scores provided by four medical professionals for
each of the chosen disease class. Highlighting the effectiveness of the proposed finetuning+prompting method in
stage I for synthetic annotation with patient-centric explanations. The values are averaged for both the datasets.
Follows the same trend as Table 3

D.2 Significance testing for Semantic Metrics 1330

Metrics F-statistic p-value

BioClinicalBertScore 30.00 0.0001

BertScore 30.01 0.0001

RadGraphF1 30.00 0.0001

Table 5: Statistical significance analysis using one-way ANOVA for BERTScore, BioClinicalBERTScore, and
RadGraphF1 scores across four evaluation settings: Rad-Flamingo, Rad-Flamingo w/oI, Open-Flamingo, and
Open-Flamingo w/oI. The results indicate significant differences in scores, as determined by F -statistics and
p-values (p < 0.05).

Extending from our analysis in the results section, we further provide significance testing for the 1331

BERTScore, BioClinicalBERTScore, and RadGraphF1 scores of Rad-Flamingo, Rad-Flamingo w/oI, 1332

Open-Flamingo, and Open-Flamingo w/oI. 1333

1334

Null Hypothesis (H0): There is no significant difference between the <score-name>. Alternative 1335

Hypothesis (H1): There is significant difference between the <score-name>. As each of the output 1336

from the models are mean of generated reports over the chosen disease classes, we take them as the 1337

group mean for the one-way ANOVA test (Ross and Willson, 2017). Therefore, we consider the four 1338

evaluation setting as four groups of data, We get F -statistic = 30.00 and p-value ≈ 0.0001 respectively. 1339

Consequently, F -statistic > Fcritical and p-value < 0.05, satisfying these conditions we can reject 1340

the Null Hypothesis thereby establishing the values are significantly different. Similarly, we get F - 1341

statistic = 30.01 and p-value ≈ 0.0001 respectively. As the BioClinicalBERTScores are similar to 1342
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the BERTScore we get similar F -statistic and p-value. Consequently, F -statistic > Fcritical and1343

p-value < 0.05, satisfying these conditions we can reject the Null Hypothesis thereby establishing the1344

values are significantly different. Lastly, we get F -statistic = 30.00 and p-value ≈ 0.0001 respectively.1345

Consequently, F -statistic > Fcritical and p-value < 0.05, satisfying these conditions we can reject the1346

Null Hypothesis thereby establishing the values are significantly different.1347

D.3 Readability measure and Radiological measures1348

We perform an additional evaluation to increase experimental validity of our proposed multimodal few-1349

shot prompting strategy. To evaluate the human understandability of the generated explanations we1350

evaluate them with reading measure technique like Lexile Reading Measure (Stenner, 2023). A Lexile1351

measure is a standardized score that assesses both the reading ability of individuals and the complexity of1352

written texts, represented on a scale typically ranging from below 200L to above 1600L. This measure1353

helps educators, parents, and students identify reading materials that align with a reader’s current ability1354

level, ensuring an appropriate level of challenge to support comprehension and skill development. We1355

also evaluate on CharBLEU metric (Denoual and Lepage, 2004) since in medical text spelling plays a1356

crucial role.

Models Rad-Flamingo

Generated Ground Truth

Lexile Measure 69.28 63.6

CharBLEU 0.298 0.283

Flesch-Kincade 52.4 48.4

Table 6: The table highlights the readability and spelling accuracy of the generated explanations, demonstrating
their alignment with patient comprehension needs and medical domain standards.

1357

Table 6 represents two columns where the ground truth corresponds to the synthetically annotated1358

instances in stage-I and generated corresponds to the output explanations generated by our proposed1359

prompting technique in stage-II. The scores show a 8.9% increase in the readability of the generated1360

explanations. The score provided is an average over all the ten selected diseases as per Table 3. Averaging1361

across all values indicates an overall increase in readability; however, for certain disease classes, no1362

improvement is observed. The readability scores confirm that the generated explanations become more1363

comprehensible. Notably, explanations from Stage II exhibit enhanced readability compared to those from1364

Stage I, demonstrating the effectiveness of our proposed prompt design in improving clarity.1365

For evaluation on radiological scores we perform further evaluation as shown in Table 7, on RaTEScore1366

(Zhao et al., 2024a), GREEN Score (Ostmeier et al., 2024), F1CheXbert (Smit et al., 2020) Table 7 shows

Models RaTEScore GREEN Score F1 CheXbert

Rad-Flamingo 0.25 0.6 0.44

Table 7: The table highlights the performance on radiology specific metrics.

1367
that Rad-Flamingo achieves moderate performance across radiology-specific metrics, with a RaTEScore1368

of 0.25 indicating partial faithfulness, a high GREEN Score of 0.6 reflecting strong semantic coherence,1369

and an F1 CheXbert score of 0.44 suggesting reasonable clinical accuracy with room for improvement.1370

(Refer back Section 4.1)1371

D.4 Further Experiments1372

(Refer back Section 4.1) (Refer back Section 6.2) (Refer back Section 6) (Refer back Section 6.4)1373

1374
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D.4.1 Ablation study on patient-centric explanation as part of the prompt template 1375

We ablate our prompt in the following manner: 1376

Example 1: <image> Findings: Heart size mildly enlarged, stable mediastinal and hilar contours.
No focal alveolar consolidation, no definite pleural effusion seen. No typical findings of pulmonary
edema. No pneumothorax.
Impressions: Mild cardiomegaly, no acute pulmonary findings. <|endofchunk|>

1377

Example 2: <image> Findings: The heart is top normal in size. The mediastinum is stable. The
lungs are clear.
Impressions: Borderline cardiomegaly without acute disease.<|endofchunk|>

1378

Example 3: <image> Findings: Stable borderline cardiomegaly, stable mediastinal and hilar
contours. No alveolar consolidation, no findings of pleural effusion or pulmonary edema. No
pneumothorax.
Impressions: No acute cardiopulmonary findings.<|endofchunk|>

1379

Example 4: <image> Findings: Persistent cardiomegaly. No abnormal airspace consolidation.
Resolved interstitial edema. No pneumothorax or pleural effusion.
Impressions: Stable cardiomegaly without acute abnormality.<|endofchunk|>

1380

Example 5: <image> Findings: The outside is normal except for slight cardiomegaly.
Impressions: Heart size upper limits normal. Lungs are clear. No evidence of active tuberculosis.
No change from prior exam.<|endofchunk|>

1381

Your Turn: <image> You are a helpful medical assistant. You are provided with images, find-
ings, impressions and explanation.Looking at this image generate Findings, Impressions and
Explanations

1382

Findings: Heart size mildly enlarged, stable 
mediastinal and hilar contours. No focal alveolar 
consolidation, no definite pleural effusion seen. 
No typical findings of pulmonary edema. No 
pneumothorax.

Impressions: Mild cardiomegaly, no acute 
pulmonary findings

Explanation: It is clear the patient is in an 
enlarged heart condition (mild cardiomegaly) 
and has been for some time. The pulmonary 
system is clear and no evidence of acute lung 
changes. The overall pathophysiology suggests 
that the patient is in a chronic, stable state with 
ongoing changes.The findings are normal and do 
not suggest any acute or severe events.

Image Generated Ground Truth

Findings: Stable cardiomegaly. No abnormal 
airspace consolidation. Resolved interstitial 
edema. No pneumothorax or pleural effusion.

Impressions: Stable cardiomegaly without acute 
abnormality.

Figure 4: Example of output given by Rad-Flamingo after ablating patient-centric explanation
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D.4.2 Zero-Shot experiments on open-source VLMs1383

Table 8 presents the zero-shot evaluation of two open-source vision-language models (VLMs), Llava Liu1384

et al. (2023a) and Llama3.2-vision (Grattafiori et al., 2024). Unlike the Flamingo family, which supports1385

few-shot learning, these models lack such capabilities, necessitating zero-shot experiments where images1386

and instructions are provided to generate findings, impressions, and patient-centric explanations. The1387

results show a significant performance decline, highlighting their limitations in medical report generation1388

without few-shot adaptation. This reinforces the effectiveness of our multimodal few-shot prompting1389

strategy in improving diagnostic accuracy, interpretability, and bias reduction. Additionally, the results1390

validate the importance of our two-stage framework, which first generates findings and impressions before1391

integrating patient-centric explanations, ensuring more structured and reliable outputs. These findings1392

emphasize the necessity of few-shot prompting in AI-driven diagnostic radiology and demonstrate the1393

advantages of a structured generation pipeline for maintaining accuracy and contextual relevance in1394

medical imaging applications.1395

Metrics Llava (Zero-Shot) Llama 3.2-Vision (Zero-Shot)

BertScore 0.70 0.55

BioClinicalBertScore 0.81 0.57

RadGraphF1 0.225 0.172

Table 8: Zero-shot evaluation results for open-source vision-language models (VLMs), Llava Liu et al. (2023a)
and Llama3.2-vision (Grattafiori et al., 2024). The significant performance drop highlights the limitations of these
models in generating high-quality medical reports without few-shot adaptation, reinforcing the effectiveness of our
multimodal few-shot prompting strategy and the necessity of a two-stage framework for structured report generation.

D.4.3 Zero-shot experiments on Chext X-ray Benchmarks1396

The expert-verified augmented dataset obtained at the end of stage I serves as the gold standard for our1397

evaluations. We apply the same prompting strategy as in Stage I, instructing both models to generate1398

patient-centric explanations. Our evaluation assesses how closely these generated explanations align with1399

those produced by our fine-tuned MiniGPT-4, which has also been expert-verified. The results reveal that1400

CheXagent struggles to generate high-quality explanations comparable to those generated by MiniGPT-4.1401

GPT-4 performs much better than CheXagent, altough the evaluation suggests that our model is able1402

to generate explanations quite similar to GPT-4, which shows the efficiency of our model and the its1403

potential to be an open-source alternative for medical use cases. These results suggest that relying solely1404

on CheXagent or GPT-4 would hinder the effectiveness of the proposed Stage I. Therefore, the results1405

justify our choice of model for Stage I1406

Metrics CheXagent (Zero-Shot) GPT-4 (Zero-Shot)

BertScore 0.71 0.86

BioClinicalBertScore 0.76 0.89

Table 9: Zero-shot evaluation results for open-source vision-language models (VLMs), CheXagent Chen et al.
(2024) and GPT-4 (Achiam et al., 2023). The significant performance drop highlights the limitations of these
models in generating high-quality medical reports without few-shot adaptation, reinforcing the effectiveness of our
multimodal few-shot prompting strategy and the necessity of a two-stage framework for structured report generation.
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