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Abstract

Three-dimensional (3D) medical images, such as Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI),
are essential for clinical applications. However, the need
for diverse and comprehensive representations is particularly
pronounced when considering the variability across different
organs, diagnostic tasks, and imaging modalities. How to ef-
fectively interpret the intricate contextual information and ex-
tract meaningful insights from these images remains an open
challenge to the community. While current self-supervised
learning methods have shown potential, they often consider
an image as a whole thereby overlooking the extensive, com-
plex relationships among local regions from one or multiple
images. In this work, we introduce a pioneering method for
learning 3D medical image representations through an au-
toregressive pre-training framework. Our approach sequences
various 3D medical images based on spatial, contrast, and se-
mantic correlations, treating them as interconnected visual to-
kens within a token sequence. By employing an autoregres-
sive sequence modeling task, we predict the next visual to-
ken in the sequence, which allows our model to deeply un-
derstand and integrate the contextual information inherent in
3D medical images. Additionally, we implement a random
startup strategy to avoid overestimating token relationships
and to enhance the robustness of learning. The effectiveness
of our approach is demonstrated by the superior performance
over others on nine downstream tasks in public datasets.

Introduction
The realm of medical imaging has witnessed significant evo-
lution with the advent of advanced modalities such as Com-
puted Tomography (CT) and Magnetic Resonance Imag-
ing (MRI) (Najjar 2023). These three-dimensional (3D)
medical images serve as a cornerstone for clinical diag-
nosis and treatment planning, providing physicians with
a detailed glimpse into the inner workings of the human
body (Panayides et al. 2020). Despite their widespread im-
pact, the complexity and richness of 3D medical images
present unique challenges in interpretation and analysis. The
heterogeneity across different organs, the variability in diag-
nostic tasks, and the diversity of imaging modalities further
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complicate the comprehensive representation of these im-
ages (Dou et al. 2017; Kronman and Joskowicz 2016).

In the data-driven paradigm of deep learning, leveraging
large-scale well-annotated data can lead to effective repre-
sentation learning (Ye et al. 2023; Tian et al. 2024). How-
ever, for medical image analysis, obtaining labeled data is
particularly challenging, due to the intrusive nature of cer-
tain imaging modalities and the laborious process of anno-
tation (Tajbakhsh et al. 2020; Jin et al. 2023). Therefore, we
consider learning a general and effective representation from
large-scale unlabeled data first. This allows our models to
adapt to various downstream tasks with only a small amount
of labeled data, significantly reducing the dependency on
large-scale annotated data.

Moreover, recent advances in self-supervised learning
(SSL) have shown promising results in visual representation
learning for certain tasks (Goyal et al. 2022; Oquab et al.
2023). These methods capitalize on the idea of reconstruct-
ing masked input data or contrastive learning to learn ro-
bust feature representations without the need for explicit la-
bels. However, 3D medical images offer depth and volume,
and are often sparse, posing new challenges when apply-
ing these methods to 3D medical image representations. As
most existing self-supervised methods consider each image
as a whole (Zhou et al. 2021b; Zhu et al. 2020; Zhou et al.
2023; El-Nouby et al. 2024), often overlooking inner and
inter-correlations of 3D medical images, e.g., complex re-
lationships among patches, modalities, and semantics. This
limitation highlights the need for a more holistic and inter-
connected representation learning framework.

In this work, we address this challenge by introducing
a novel self-supervised method to learn generalizable 3D
medical image representations. We design a set of rules to
transform diverse 3D medical images into coherent patch
sequences. Every patch sequence is composed of several
patches cropped from one or multiple original images ac-
cording to spatial, semantic, or contrast correlation within
3D medical data. Every patch in a patch sequence is fur-
ther divided into several visual tokens. All tokens from the
patches in a patch sequence are concatenated to form a
longer token sequence. We further introduce an autoregres-
sive sequence modeling task to guide the network in learn-
ing the spatial, contrast, and semantic correlations among
tokens. Thereby our model fosters a deep understanding
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and integration of the contextual information encapsulated
within 3D medical images. To avoid overestimating the re-
lationships among tokens and for better downstream adap-
tation, we further employ a random startup strategy. This
extends the concept of prefix causal attention from individ-
ual 2D natural images (El-Nouby et al. 2024) to 3D medical
data. This strategy randomizes the starting point of a token
sequence, preventing the model from relying on consistent
sequence lengths and encouraging more robust learning of
the intrinsic correlations within 3D medical data.

To summarize, our contributions are mainly three-fold:
1) We introduce a unified perspective by serializing di-

verse 3D medical images into token sequences. We propose
an autoregressive sequence modeling task that guides the
network to effectively learn generalizable 3D medical rep-
resentations in a self-supervised manner.

2) We also extend prefix causal attention with random
startup from 2D images to 3D medical representation to
avoid overestimation of correlations among tokens and for
better downstream adaptation.

3) We evaluate our method through nine downstream
tasks in public datasets, such as segmentation of organs
and tumours in CT or MRI and classification of COVID-19
and lung nodules. Our method achieves around 2.1% per-
formance improvements on segmentation and 4%-6% per-
formance improvements on classification, highlighting the
potential of our method to advance the field of 3D medical
image analysis.

Related Work
3D Medical Images Analysis. Compared to 2D images,
3D medical images possess a significantly higher spatial
complexity, hence conventional 2D methods are inadequate
for learning 3D representation. Numerous studies have con-
ducted meaningful explorations into 3D medical image anal-
ysis, primarily divided into methods based on 2D and 3D
models (Bien et al. 2018; Ni et al. 2019; Roth et al. 2014;
Yang et al. 2021). The advantage of 2D models lies in their
ability to leverage vast amounts of natural images to obtain
powerful pre-trained models. They can take 3D image planes
as input channels, blending multiplanar data into 2D mod-
els (Moeskops et al. 2016; Prasoon et al. 2013; Roth et al.
2014), or use three adjacent slices as channels (Bien et al.
2018; Ding et al. 2017; Ni et al. 2019; Yu et al. 2018). How-
ever, these methods are incapable of learning the context of
the 3D space, which is a critical aspect for accurate repre-
sentation and analysis in 3D medical images.

In contrast, 3D models are capable of learning more com-
plex spatial features (Çiçek et al. 2016; Milletari et al. 2016;
Roth et al. 2018). However, it is often challenging to obtain
3D models pre-trained on large-scale data. The approach
proposed in this paper obtains powerful pre-trained 3D mod-
els by capturing inner-correlations and inter-correlations of
3D medical images.
Self-Supervised Learning. Self-supervised learning (SSL)
has emerged as a promising approach in recent years to har-
ness unlabeled data. Initially, SSL has achieved remarkable
results in the domain of natural images. The current methods

are divided into two categories approximately: contrastive-
based and reconstruction-based (He et al. 2020; Chen et al.
2020; He et al. 2022). The core idea of contrastive learn-
ing is to minimize the feature distance between different
views of the same image while maximizing the distance be-
tween different images, thereby forcing the model to learn
discriminative features for instances (Chen et al. 2020; He
et al. 2020; Chen et al. 2021; Caron et al. 2021). Contrastive
methods primarily focus on global representations and lack
local focus, which leads to suboptimal performance in dense
prediction tasks (Zhou et al. 2021a; Zhang et al. 2022).
Reconstruction-based methods primarily focus on masked
image modeling, where a significant portion of the image
content is masked and then reconstructed (He et al. 2022;
Xie et al. 2022). However, they only explore representa-
tion in 2D individual nature images without considering the
unique correlation within 3D medical images.

Due to the scarcity of annotated data, SSL has also gar-
nered significant attention in the field of medical image anal-
ysis. Firstly, the researchers have designed many proxy tasks
that focus on the characteristics of medical images, particu-
larly for 3D images (Zhu et al. 2020; Zhou et al. 2021b; Tang
et al. 2022). Additionally, based on the contrastive approach,
researchers have proposed improvement strategies, as well
as methods that integrate multiple proxy tasks (Zhou et al.
2021a, 2023). Although many designs have been proposed
specifically for 3D medical images, current methods are of-
ten focused on individual images. There is a relative scarcity
of approaches that utilize cross-sequence characteristics in
3D medical images for self-supervised representation learn-
ing. Taking the unique sequential correlation inherent in 3D
medical images into full consideration, we propose to trans-
form 3D images into various types of sequences. We design
the autoregressive sequence modeling approach to learn in-
ner and inter-correlation within 3D medical images.

Methodology
Our goal is to learn generalizable 3D medical image rep-
resentations that can be applied across various downstream
clinical tasks. As shown in Figure 1, we start by transform-
ing diverse 3D medical images into a set of patch sequences,
capturing the inherent spatial, contrast, and semantic cor-
relations during pre-training. We then describe our training
mechanism, which involves tokenizing these sequences and
employing autoregressive sequence modeling to deeply in-
tegrate contextual information. After pre-training, we intro-
duce how the learned representations are adapted to specific
clinical tasks through a fine-tuning process, showcasing the
versatility and applicability of our method.

Transform the 3D Inputs into Patch Sequences
Our approach leverages the transformation of 3D medical
images into patch sequences. This strategy provides a solu-
tion to the challenge of capturing the rich interdependencies
and contextual information inherent in volumetric data. By
strategically transforming these images into different types
of patch sequences, our model can effectively learn from the
complex patterns and relationships within 3D medical data.



Figure 1: Overview of our Autoregressive Sequence Modeling approach for 3D Medical Images. The left purple box shows
the transformation of one or more 3D medical images into a patch sequence with N patches, highlighting spatial, contrast,
and semantic relationships within 3D data. In the orange box on the right, patches within the sequence are divided into visual
tokens, which are then concatenated to form an ordered token sequence. During pre-training, the start of the token sequence ti
is selected randomly to enhance learning robustness. At the bottom of the orange box, the schematic diagrams of the training
mechanism demonstrate how our method leverages autoregressive modeling to predict subsequent tokens and integrate contex-
tual information. The green box shows our method can be generalized to various downstream tasks in the fine-tuning stage.

To achieve this, we use diverse sources of medical image
data, categorizing them into three distinct types of patch se-
quences as below:
Spatial Sequences. Capitalizing on the inherent spatial rela-
tionships encoded in 3D medical images, we employ a slid-
ing window technique (e.g., stride of 8). This allows creating
a set of sequences that implicitly encode spatial contexts by
extracting overlapping patches from 3D medical images.
Contrast Sequences. To leverage multi-modal images with
varying contrasts (e.g. different image modalities within an
MRI scan), we construct sequences that utilize these dif-
ferences. By aligning and concatenating patches from the
same anatomical location across different image modalities,
we create sequences that capture the unique information im-
parted by each contrast.
Semantic Sequences. Given the sparsity and specialized
characteristics of medical images, we use categories from
the public DeepLesion (Yan et al. 2018) dataset to form se-

mantic sequences. By grouping patches of similar semantic
content, such as those from the same lesion or organ cate-
gory, we enable our model to develop a robust understanding
of semantic features.

Learning by Autoregressive Sequence Modeling
The core idea of our methodology lies in autoregressive se-
quence modeling, which leverages the sequential structure
of our preprocessed 3D medical inputs. This section details
how we use this model to learn rich, contextual representa-
tions of 3D medical data.
Token Sequences. As mentioned above, we first transform
3D images into patch sequences. Suppose each patch se-
quence has N patches. The next step involves tokenizing
each patch into k visual tokens. All N ∗ k tokens from a
patch sequence are concatenated into a token sequence S
following the order mentioned above as T = {t1, ..., tNk}.
Autoregressive Prediction. With token sequences, we em-



ploy an autoregressive sequence model to predict the prob-
ability distribution of each token in the sequence condi-
tioned on its predecessors. The sequence is decomposed into
a product of conditional probabilities for each token,

P (t) =

Nk∏
m=1

P (tm | t<m), (1)

where the P (tm|t<m) represents the probability of the
mth token given all previous tokens in the sequence.
Training Mechanism. For training our model, we use a
normalized pixel-level regression loss, inspired by He et
al. (He et al. 2022). The loss function is designed to mini-
mize squared distances between predicted tokens and their
ground-truth values, encouraging the model to accurately
predict the next token in a sequence. To align the autore-
gressive nature of our pre-training with bidirectional self-
attention required for downstream tasks and avoid overes-
timating correlations among tokens, we implement a prefix
self-attention mechanism. This incorporation of a random
starting token ti ensures that all tokens preceding it are pro-
cessed with bidirectional attention, capturing the compre-
hensive context available up to that point. This allows us to
extend attention techniques used for 2D natural images (El-
Nouby et al. 2024) to the more complex domain of 3D medi-
cal image analysis. The tokens that follow ti in the sequence
are then subject to autoregressive attention, where each to-
ken’s prediction is conditioned on the preceding tokens. Im-
portantly, only the tokens subsequent to ti are included in
the autoregressive prediction loss calculation, aligning with
the formula:

Lrecon = min
1

Nk − i+ 1

Nk∑
m=i

∥P (tm)− tm∥2. (2)

By training our model in this manner, our method can
not only learn the intricate patterns within 3D medical im-
ages but also adapt flexibly to the diverse needs of various
downstream clinical applications. Thereby the generalizabil-
ity and effectiveness of our approach can be enhanced.

Fine-tuning on Downstream Tasks
After the pre-training stage, our model, enriched with com-
prehensive representations of 3D medical images, is adept
at adapting to a variety of downstream tasks through a fine-
tuning process. During fine-tuning, the input can be standard
3D medical images. Using the dataset for a given task, we
initialize the model with pre-trained weights. We then opti-
mize the parameters by minimizing the task-specific loss,
such as Dice similarity for segmentation tasks or cross-
entropy for classification. This fine-tuning approach en-
ables rapid adaptation and enhanced performance on clinical
tasks, as the model leverages the robust understanding devel-
oped during pre-training rather than starting from scratch.
This strategy underscores the versatility and effectiveness of
our method in advancing the analysis of 3D medical images
for clinical applications.

Experiments
In this section, we first introduce the datasets used for pre-
training and downstream tasks. Next, we detail the specific
implementation of training and evaluation. Then, we list the
methods compared in our study. Finally, we present a com-
prehensive set of experimental results, including a compar-
ative analysis with existing state-of-the-art (SOTA) methods
across multiple tasks, ablation studies highlighting the key
components of our approach, and visualization results.

Implementation Details
Pre-training Datasets. The pre-training datasets are di-
vided into several sources: individual images for spatial se-
quences, multimodal images for contrast sequences, and im-
ages belonging to the same semantic category for semantic
sequences. For individual images, we collect 23,287 3D CT
and MRI volumes from 12 public medical image datasets
(RibFrac (Jin et al. 2020), TCIA Covid19 (An et al. 2020),
AMOS22 (Ji et al. 2022), ISLES2022 (Hernandez Petzsche
et al. 2022), AbdomenCT-1K (Ma et al. 2021), Totalseg-
mentator (Wasserthal et al. 2023), Verse 2020 (Sekuboy-
ina et al. 2021), RSNA-2022-CSFD (Flanders et al. 2022),
RSNA-2020-PED (Colak et al. 2021), STOTIC (Revel et al.
2021), FLARE22 (Ma et al. 2023, 2022), and FLARE23 (Ma
et al. 2022)). For multimodal images, we collect 2,995 mul-
timodal MRI scans from BraTS 2023 (LaBella et al. 2023),
which is a series of challenges on brain MRI image anal-
ysis. Each scan of this dataset includes four MRI modali-
ties (T1w, T1ce, T2w, and Flair). Images belonging to the
same semantic category are obtained from the DeepLesion
dataset (Yan et al. 2018), which contains 10,594 CT scans of
4,427 patients.

Downstream Datasets. We conducted downstream ex-
periments in nine clinical tasks on public medical image
datasets to evaluate the effectiveness of our method. These
datasets cover a variety of organs, lesions, and modalities,
including Task03 Liver (131 cases), Task06 Lung (64 cases),
Task07 Pancreas (282 cases), Task08 Hepatic Vessel (303
cases), Task09 Spleen (41 cases), and Task10 Colon (126
cases) from Medical Segmentation Decathlon (MSD) (An-
tonelli et al. 2022), Left Atrium (LA) (Xiong et al. 2021)
(100 cases), RICORD (Tsai et al. 2021) (330 cases) and
LIDC-IDRI (Armato III et al. 2011) (1633 cases). These
datasets can be categorized into 3D segmentation and 3D
classification tasks. Specifically, Task03, Task09, and LA
are used for organ segmentation, while Task06 and Task10
focus on tumour segmentation. Task07 and Task08 are de-
signed for segmenting both organs and tumours. RICORD
is used for COVID-19 binary classification (being COVID-
19 or not). LIDC-IDRI is used for lung nodule binary clas-
sification (level 1/2 into negative class and 4/5 into positive
class, ignoring the cases with malignancy level 3) similar to
other researches that have used this dataset (Wu et al. 2018;
Hussein et al. 2017). We randomly split the whole set into
training, validation, and test at a ratio of 7:1:2 for the tasks
on the MSD dataset. For the LA, RICORD, and LIDC-IDRI
datasets, we follow the data split in (Yu et al. 2019), (Ye



Table 1: Segmentation results on Task03 Liver, Task06 Lung, Task07 Pancreas, Task08 Hepatic Vessel, Task09 Spleen, and
Task10 Colon on MSD dataset (Antonelli et al. 2022) and LA dataset (Xiong et al. 2021).

Methodology
CT: MSD dataset MRI: LA dataset

Task03 Task06 Task07 Task08 Task09 Task10 Avg Dice
Liver Lung Pancreas Hepatic Vessel Spleen Colon Dice Score

(Train From Scratch)
UNETR (Hatamizadeh et al. 2022) 0.9285 0.4758 0.5384 0.5665 0.9372 0.2446 0.6152 0.8656

3D UNet (Çiçek et al. 2016) 0.9376 0.5222 0.5547 0.5770 0.9375 0.4057 0.6558 0.8755
(with General SSL)

SimCLR (Chen et al. 2020) 0.9271 0.5631 0.5466 0.5519 0.9472 0.3330 0.6448 0.8988
MoCov3 (Chen et al. 2021) 0.9298 0.5730 0.5563 0.5480 0.9465 0.4200 0.6623 0.9009
DINO (Caron et al. 2021) 0.9392 0.5381 0.5478 0.5772 0.9470 0.4016 0.6585 0.9029

(with Medical SSL)
PCRLv2 (Zhou et al. 2023) 0.9451 0.6138 0.5894 0.5887 0.9417 0.4423 0.6868 0.9053
MAE3D (Chen et al. 2023) 0.9435 0.6277 0.5728 0.5878 0.9431 0.4522 0.6879 0.9054
MedCoSS (Ye et al. 2024) 0.9401 0.6292 0.5685 0.5890 0.9475 0.4381 0.6854 0.9062

Ours 0.9593 0.6529 0.5910 0.6014 0.9585 0.4896 0.7088 0.9157

Table 2: Classification results of COVID-19 diagnosis on
RICORD (Tsai et al. 2021) and of lung nodule malignancy
diagnosis on LIDC-IDRI (Armato III et al. 2011).

Methodology COVID-19 Lung Nodule
ACC AUC ACC AUC

(Train From Scratch)
ResNet (He et al. 2016) 0.7500 0.8133 0.8440 0.8630

ViT-B (Dosovitskiy et al. 2020) 0.7381 0.7940 0.8290 0.8587
(with General SSL)

SimCLR (Chen et al. 2020) 0.7976 0.7904 0.8484 0.8605
MoCov3 (Chen et al. 2021) 0.7738 0.8446 0.8452 0.8683
DINO (Caron et al. 2021) 0.7857 0.8297 0.8323 0.8755

(with Medical SSL)
PCRLv2 (Zhou et al. 2023) 0.8095 0.8632 0.8516 0.8981
MAE3D (Chen et al. 2023) 0.8095 0.8703 0.8419 0.8906
MedCoSS (Ye et al. 2024) 0.8333 0.8803 0.8323 0.8983

Ours 0.8929 0.9259 0.8871 0.9361

et al. 2024), and (Yang et al. 2023), respectively. All the
downstream datasets are unseen in the pre-training stage.

Training and Evaluation Details We use the AdamW op-
timizer and cosine learning rate decay scheduler for both
pre-training and downstream tasks. In the pre-training stage,
the initial learning rate is 1e-4, and we set 100K training
steps with a batch size of 288. During the fine-tuning stage,
the layer-wise learning rate decay strategy with the ratio of
0.75 is adopted for stabilizing the ViT training. The eval-
uation metric in classification tasks is the area under the
receiver operator curve (AUC), and accuracy (ACC). For
segmentation tasks, we use Dice similarity as the evalua-
tion metric. To make a fair comparison, ViT-B (Dosovitskiy
et al. 2020) is adopted as the backbone network, and UN-
ETR (Hatamizadeh et al. 2022) is employed for segmenta-
tion tasks. More details of our implementation are provided
in the supplemental material.

Table 3: Results on segmentation (LA dataset (Xiong et al.
2021)) and classification (RICORD (Tsai et al. 2021))
tasks under our proposed method by training with different
amounts of annotated data in fine-tuning stage.

Labeling Ratio Dice (LA dataset) AUC (RICORD)
100% 0.9157 0.9259
50% 0.9039 0.8696
25% 0.8741 0.8382
10% 0.8365 0.8054

Compared Baselines Our baselines for segmentation in-
clude 1)UNETR (Hatamizadeh et al. 2022) and 2) 3D
UNet (Çiçek et al. 2016), for classification include 1)
ResNet (He et al. 2016) and 2) ViT-B (Dosovitskiy et al.
2020), which are trained from scratch. We further compare
with three general SSL methods: 1) SimCLR (Chen et al.
2020), 2) MoCov3 (Chen et al. 2021), 3) DINO (Caron
et al. 2021). The first two are based on contrastive learning.
And DINO (Caron et al. 2021) introduces a self-distillation
framework where a student model learns to predict the out-
put of a teacher model. Then, we compare with three pow-
erful methods specifically tailored for medical images: 1)
PCRLv2 (Zhou et al. 2023), 2) MAE3D (Chen et al. 2023),
3) MedCoSS (Ye et al. 2024). Specifically, MAE3D (Chen
et al. 2023) is a generative method, which leverages an au-
toencoder and mask-based pretext task to learn visual repre-
sentations from medical images. PCRLv2 (Zhou et al. 2023)
integrates pixel restoration and hybrid feature contrast into a
multi-task optimization problem. MedCoSS (Ye et al. 2024)
adopts a sequential pre-training paradigm using a continual
learning approach.

Results on Downstream Tasks
We evaluate our proposed method in nine downstream tasks
(organ segmentation for liver, spleen and left atrium, tumour
segmentation for lung and colon, both organ and tumour



Table 4: Ablation study of our proposed method on segmentation (MSD Task06 (Antonelli et al. 2022)) and classification
(RICORD (Tsai et al. 2021)) tasks.

Transform 3D Images into Patch Sequences Proposed Training Mechanism Source Inputs for Pre-training Stride MSD Task06 RICORD
Spatial Contrast Semantic Dice AUC

×
√ √ √ √

- 0.5880 0.8617√
×

√ √ √
8 0.5852 0.8389√ √

×
√ √

8 0.6165 0.8610√ √ √
×

√
8 0.6076 0.8710√ √ √ √

× 8 0.6137 0.8632√ √ √ √ √
4 0.6258 0.8931√ √ √ √ √
12 0.6435 0.8988√ √ √ √ √
8 0.6529 0.9259

segmentation for pancreas and hepatic vessel as shown in
Table 1 and COVID-19 and lung nodule malignancy binary
classification as shown in Table 2). In addition to the differ-
ent goals of the tasks themselves, there are also two different
modalities in them, i.e., CT and MRI.

Can the learned representation be used for CT analysis?
We first conduct comparative evaluations of the proposed
approach against the SOTA methods on six CT-based seg-
mentation tasks from the MSD challenge. As illustrated in
Column2-8 of Table 1, our method demonstrates superior
performance across all evaluated tasks on the MSD chal-
lenge, outperforming other advanced methods. The aver-
age Dice score of our method is 0.7088, which is notably
higher than the scores achieved by SimCLR (Chen et al.
2020) and MoCov3 (Chen et al. 2021), which are 0.6448
and 0.6623, respectively. Compared with DINO (Caron et al.
2021), our method also outperforms it by a large margin.
These methods are designed for general SSL, relying heav-
ily on the negative sampling process or data augmentations,
which is not well-suited for the nuanced and complex nature
of medical images. We further conduct experimental com-
parisons with PCRLv2 (Zhou et al. 2023), MAE3D (Chen
et al. 2023), and MedCoSS (Ye et al. 2024), which em-
ploy medical SSL. However, their performance gains are
still limited. Our method gains an average 2.1% improve-
ment in Dice score relative to the medical SSL methods. The
improvements suggest that the proposed method can effec-
tively leverage the contextual relationships inherent in 3D
medical image data.

To evaluate the performance of our method on classifica-
tion tasks, we conduct experiments on the COVID-19 (RI-
CORD) dataset and lung nodule (LIDC-IDRI) dataset. As
detailed in Table 2, the proposed method significantly sur-
passes all other methods. Compared with the SOTA meth-
ods, we achieve around 4%-6% improvement in perfor-
mance. These results suggest that our method is effective
for classification tasks.

Can the learned representation be used for MRI anal-
ysis? To validate the generalizability of our pre-trained
model across different modalities, we further proceed with
evaluations on the LA dataset which contains MRI data. As
shown in the last column of Table 1, our model achieves a
Dice coefficient of 0.9157, surpassing existing SOTA meth-
ods. This demonstrates the effectiveness of our approach in

multimodal generalization.

Can the learned representation be still useful in less an-
notations? We take segmentation for the left atrium in LA
dataset and classification for COVID-19 in RICORD dataset
as examples. As shown in Table 3, our model shows com-
petitive outcomes on both tasks, despite varying amounts of
annotation availability. This indicates that our model effec-
tively harnesses extensive unlabeled datasets to develop a
versatile representation, thereby reducing reliance on fully
labeled datasets. Remarkably, even when utilizing as little
as 10% of the available labeled data, our model maintains
satisfactory performance on both tasks, rivaling the results
of compared baselines trained on complete datasets. This ca-
pability underscores the practical applicability of our model,
particularly in scenarios where annotations are limited.

Visualization Results. We also visualize the segmenta-
tion results in Figure 2, providing the qualitative analysis
of our performance on 3D medical images. The visualiza-
tions demonstrate the effectiveness of our autoregressive se-
quence modeling in capturing fine details and producing
high-quality segmentations.

In summary, our method outperforms other compared
methods in above all tasks. These results demonstrate the
effectiveness of our method in improving the segmenta-
tion and classification of various anatomical structures and
pathologies. Additionally, our method shows great potential
for seamless integration into diverse clinical workflows.

Ablation Study
We evaluate some variant models to verify the effectiveness
of each component, including transforming 3D images into
patch sequences, the proposed training mechanism, and the
source inputs for pre-training. Take segmentation for lung
tumours in MSD dataset and classification for COVID-19 in
RICORD dataset as examples. Some explanations of terms
in the Table 4 are lists as below:
Transform 3D Images into Patch Sequences: × denotes
not forming patch sequences from 3D images (El-Nouby
et al. 2024), i.e., inputs of the pre-training stage are indi-
vidual images.

√
denotes using our proposed method, i.e.,

inputs of the pre-training stage are patch sequences, each of
which is constructed from one or multiple 3D images.
Proposed Training Mechanism: × denotes not using our
proposed training mechanism, i.e., capturing the correlations



Figure 2: Visualizations of the segmentation results for various organs and pathologies from CT scans and MRI based on our
proposed method and compared baselines. Each row denotes a different task. Each column denotes a different method.

among tokens by using the standard autoregressive attention
mechanism without random startup during pre-training.

√

denotes using our proposed method, i.e., capturing the corre-
lations among tokens by using the proposed training mech-
anism with a random startup during pre-training.
Source Inputs for Pre-training: the source data used as in-
puts during pre-training.
Stride: used stride while transforming into spatial se-
quences. - denotes no stride operation is required if using
individual images (without using our proposed transforma-
tion for patch sequences) as inputs of the pre-training stage.

In Column1, comparison between Row1 and Row8 shows
a marked improvement when transforming 3D images into
patch sequences is applied. This suggests that the patch
sequence approach can better capture the inner and inter-
correlation of the 3D medical images, e.g., the complex rela-
tionships between patches, modalities, and semantics. Row2
and Row8 in Column2 reflect the effectiveness of our pro-
posed training mechanism with a random startup. The source
of the inputs used during the pre-training phase is indi-

cated in Column3-5 (Row3-5 and Row8). The results under-
score the benefit of using a diverse set of data sources, as it
enriches the model’s understanding of different anatomical
structures and imaging modalities. We further compare the
model performance across different sliding stride settings in
Column6 (Row6-8). Generally, larger sliding strides yield
better performance (stride = 8 and stride = 12 outperform
stride = 4). However, excessively large strides do not provide
additional improvements. As shown in Table 4, with stride
= 8, the proposed method achieves the best performance on
segmentation and classification tasks. The ablative results in
Table 4 show that removing or changing any of the compo-
nents would lead to a descent in performance.

Conclusions
In this paper, we introduce an autoregressive sequence mod-
eling approach to 3D medical image analysis, effectively
capturing the generalizable representation of 3D medical
images. Our proposed model’s state-of-the-art performance
across various diverse downstream tasks demonstrates its



robustness and generalizability. Through a strategic fine-
tuning process, our method rapidly adapts to specific clin-
ical applications, significantly enhancing the capabilities of
3D medical image analysis and laying a solid foundation for
future innovations in the field.
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