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Abstract

Policy gradient (PG) is widely used in reinforce-
ment learning due to its scalability and good perfor-
mance. In recent years, several variance-reduced
PG methods have been proposed with a theoret-
ical guarantee of converging to an approximate
first-order stationary point (FOSP) with the sam-
ple complexity of O(ϵ−3). However, FOSPs could
be bad local optima or saddle points. Moreover,
these algorithms often use importance sampling
(IS) weights which could impair the statistical ef-
fectiveness of variance reduction. In this paper, we
propose a variance-reduced second-order method
that uses second-order information in the form
of Hessian vector products (HVP) and converges
to an approximate second-order stationary point
(SOSP) with sample complexity of Õ(ϵ−3). This
rate improves the best-known sample complexity
for achieving approximate SOSPs by a factor of
O(ϵ−0.5). Moreover, the proposed variance reduc-
tion technique bypasses IS weights by using HVP
terms. Our experimental results show that the pro-
posed algorithm outperforms the state of the art
and is more robust to changes in random seeds.

1 INTRODUCTION

Reinforcement Learning (RL) is an interactive learning ap-
proach where an agent learns how to choose the best action
in an interactive environment based on received signals. In
the past few years, RL has been applied with great success
to many applications of interest such as autonomous driving
[Shalev-Shwartz et al., 2016], games [Silver et al., 2017],
and robot manipulation [Deisenroth et al., 2013]. RL can
be formulated mathematically as a Markov Decision Pro-
cess (MDP) where after taking an action, the state changes
based on transition probabilities and the agent receives a

reward according to the current state and the action taken.
The agent takes actions according to a policy that maps the
state space to action space, and the goal is to find a policy
that maximizes the agent’s average cumulative reward.

Policy gradient (PG) methods directly search for a policy
that is parameterized by a parameter vector θ. PG methods
can provide good policies in high-dimensional control tasks
by first harnessing the power of deep neural networks for
policy parameterization and subsequently optimizing the
parameter vector θ. REINFORCE [Williams, 1992], PGT
[Sutton et al., 2000], and GPOMDP [Baxter and Bartlett,
2001] are examples of classical PG methods that update
the parameters using stochastic gradient ascent, as it is of-
ten infeasible to compute the gradient exactly in complex
environments.

To manage the stochasticity in gradient update, in the RL
literature, several approaches have been proposed. Sutton
et al. [2000] presented the baseline technique to reduce the
variance of gradient estimates. Konda and Tsitsiklis [2000]
proposed an actor-critic algorithm that estimates the value
function and utilizes it for the purpose of variance reduc-
tion. Schulman et al. [2015b] presented GAE to control both
bias and variance by exploiting a temporal difference rela-
tion for the advantage function approximation. Schulman
et al. [2015a] proposed TRPO, which considers a Kullback-
Leibler (KL) divergence penalty term in order to ensure
that the updated policy remains close to the current policy.
Subsequently, Schulman et al. [2017] used a clipped surro-
gate objective function. It has been observed experimentally
that the aforementioned algorithms have better performance
compared to the vanilla PG method. However, no theoret-
ical guarantees for the convergence rate of most of these
algorithms are available.

In recent years, several methods have been proposed
with theoretical guarantees for the convergence to an ϵ-
approximate First-Order Stationary Point (ϵ-FOSP) of the
objective function J(θ), i.e., ∥∇J(θ)∥ ≤ ϵ. Most of these
methods adopt recent variance reduction techniques pre-
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sented originally in the context of stochastic optimization,
and converge to ϵ-FOSP with the sample complexity of
O(ϵ−3) (See Related Work section for more details). The
two main drawbacks of these methods are as follows. First,
most of these methods require importance sampling (IS)
weights in the variance reduction part because the objec-
tive function in RL is non-oblivious in the sense that its
trajectories depend on the policy that generates them. This
degrades the effectiveness of variance reduction techniques,
because the IS weights grow exponentially with the hori-
zon length [Zhang et al., 2021]. Moreover, their analyses
required strong assumptions such as the boundedness of
variance of IS weights. The second drawback is the fail-
ure to provide guarantees beyond convergence to ϵ-FOSP.
In many applications, the objective function J(θ) is non-
convex and FOSPs may include bad local optima and sad-
dle points. This is one of the reasons why the aforemen-
tioned methods are too sensitive to parameter initializa-
tion and random seeds in practice. We argue that it is
more desirable to obtain (ϵ,

√
ρϵ)-approximate second-order

stationary point ((ϵ,
√
ρϵ)-SOSP), i.e., ∥∇J(θ)∥ ≤ ϵ and

λmax(∇2J(θ)) ≤ √ρϵ, where λmax(.) is the maximum
eigenvalue and ρ is the Hessian Lipschitz constant1.

In the context of optimization, Nesterov and Polyak [2006]
showed that cubic regularized Newton (CRN) method es-
capes saddle points and converges to SOSP by incorporating
second-order information, namely, the Hessian matrix. How-
ever, obtaining the Hessian is computationally intensive in
high dimensions, which is the case in most RL applications
where the policy is modeled by a (deep) neural network.
Moreover, in the stochastic setting, only estimates of the gra-
dient and Hessian are available. To address these challenges,
Tripuraneni et al. [2018] proposed stochastic CRN (SCRN),
which uses sub-sampled gradient and Hessian to converge to
(ϵ,
√
ρϵ)-SOSP with sample complexity of Õ(ϵ−3.5)2. Fur-

thermore, they showed that using the result in [Carmon and
Duchi, 2016], the update in each iteration can be obtained
from Hessian vector products (HVP) instead of comput-
ing the full Hessian matrix. Later, Zhou and Gu [2020]
proposed a variance-reduced version of SCRN based on
SARAH [Nguyen et al., 2017] achieving sample complexity
of Õ(ϵ−3).

In the context of RL, recently, Wang et al. [2022] pro-
posed a second-order PG method that converges to (ϵ,

√
ρϵ)-

SOSP with a sample complexity of Õ(ϵ−3.5). The pro-
posed method uses a variance reduction technique based
on SARAH to estimate the gradients. This technique still
requires IS weights and the customary strong assumptions
on these weights (such as the boundedness of their vari-

1The function J is said to have a Hessian Lipschitz constant ρ
if for all θ1, θ2 ∈ Rd: ∥∇2J(θ1)−∇2J(θ2)∥ ≤ ρ∥θ1 − θ2∥.

2Õ(.) is a variant of big-O notation, ignoring the logarithmic
factors. In other words, f(n) ∈ Õ(g(n)) if there exists some
positive constant k, such that f(n) ∈ O(g(n) logk(g(n))) .

ance). Concurrent to Wang et al. [2022], Maniyar et al.
[2024], proposed a second-order PG method that converges
to (ϵ,

√
ρϵ)-SOSP with the best-known sample complexity

rate of O(ϵ−3.5). A natural question to ask is whether there
exists a second-order PG method that converges to(ϵ,

√
ρϵ)-

SOSP with sample complexity of Õ(ϵ−3) but without using
IS weights?

In this paper, we answer the above question in the affir-
mative by proposing Variance-Reduced Stochastic Cubic-
regularized Policy gradient (VR-SCP) algorithm. The pro-
posed algorithm updates the parameters in each iteration
based on optimizing a stochastic second-order Taylor ex-
pansion of the objective function with a cubic penalty term
where gradient estimates are obtained based on a novel
variance reduction technique. In particular, our main contri-
butions are as follows:

• VR-SCP converges to (ϵ,
√
ρϵ)-SOSP with sample

complexity of Õ(ϵ−3), improving the best-known sam-
ple complexity [Wang et al., 2022, Maniyar et al.,
2024] by a factor of O(ϵ−0.5).

• We propose a Hessian-aided variance reduction tech-
nique that incorporates HVP in estimating gradients,
entirely bypassing IS weights. Our convergence analy-
sis does not require strong assumptions on IS weights.

• To showcase the advantages of converging to (ϵ,
√
ρϵ)-

SOSP, we define a new metric that incorporates both
performance (the average return) and robustness (sensi-
tivity to random seeds) of an RL algorithm, where the
latter is crucial in terms of reproducibility of the results.
Our experimental results show that not only VR-SCP
outperforms state-of-the-art algorithms in terms of its
theoretical guarantees, but also in terms of the afore-
mentioned metric.

We should emphasize that our technique differs from HAPG
[Shen et al., 2019] which also bypasses IS weights using
HVP in three main aspects. First, in their analysis, it is
required to update the parameters with a fixed step size of ϵ
in order to bound the variance of gradient estimates which
slows the training process in practice. Second, in HAPG,
the number of computed HVPs per iteration is in the order
of O(1/ϵ) while in our case, it depends on the norm of the
update. Last but not least, HAPG only uses the second-order
information in the form of HVP for variance reduction and
hence achieves ϵ-FOSP, therefore, as we shall see in our
experiments, it misses the main performance advantages of
converging to (ϵ,

√
ρϵ)-SOSP.

The paper is organized as follows: In Section 2, we provide
some definitions and background on variance-reduced meth-
ods in stochastic optimization and also the second-order
method, SCRN. In Section 3, we describe the proposed
algorithm and analyze its convergence rate for achieving
(ϵ,
√
ρϵ)-SOSP. In Section 4, we review related work in the

RL literature. In Section 5, we define a new metric to evalu-



ate RL algorithms in control tasks and compare the proposed
algorithm with previous work based on this metric. Finally,
we conclude the paper in Section 6.

2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM DEFINITION

An MDP can be represented as a tuple M =
⟨S,A, P,R, γ, p0⟩, where S and A are state space and
action space, respectively. The conditional probability of
transition from state s to s′ with action a is denoted by
P (s′|s, a). The probability distribution over the initial state
s0 is denoted by p0(s0). The parameter γ ∈ (0, 1) denotes
the discount factor. At each time step t, r(st, at) returns
the reward of taking action at in the state st. Actions are
chosen according to the policy π where π(a|s) is the proba-
bility of taking action a for a given state s. Here, we assume
that the policy is parameterized with a vector θ ∈ Rd and
use shorthand notation πθ for πθ(a|s). For a given time
horizon H , we define τ = (s0, a0, · · · , sH−1, aH−1) as a
sequence of state-action pairs called a trajectory. R(τ) is
a function that returns the discounted accumulated reward
of each trajectory as follows: R(τ) :=

∑H−1
h=0 γhr(sh, ah)

where γ ∈ (0, 1) is the discount factor. For an arbitrary
vector v ∈ Rd, we denote Euclidean norm by ||v||2. For a
matrix A ∈ Ra×b, A[.] : Rb → Ra takes a vector v ∈ Rb

and returns the matrix-vector product Av. We show the max-
imum eigenvalue of a symmetric matrix H ∈ Rd×d with
λmax(H). For two vectors v1, v2 ∈ Rd, we use ⟨v1, v2⟩
to denote their vector product. The spectral norm (∥A∥2)
of a matrix A is defined as the square root of the largest
eigenvalue of the symmetric matrix ATA, where AT is the
transpose of matrix A. Throughout the rest of the paper, we
may omit the subscript in the norm notation for the sake of
brevity.

Variance-reduced methods for estimating the gradient vector
were originally proposed for the stochastic optimization
setting, i.e.,

min
θ∈Rd

F (θ) = Ez∼p(z)[f(θ, z)], (1)

where a sample z is drawn from the distribution p(z) and
f(., z)s are commonly assumed to be smooth and non-
convex functions of θ. This setting is mainly considered
in the supervised learning context where θ corresponds to
the parameters of the training model and z = (x, y) is the
training sample, where x denotes the feature vector of the
sample and y is the corresponding label. In this setting, the
distribution p(z) is invariant with respect to parameter θ.

In the RL setting, the goal is to maximize the expected
cumulative reward:

max
θ∈Rd

J(θ) = Eτ∼πθ
[R(τ)], (2)

where θ corresponds to the parameters of the policy and
trajectory τ is drawn from distribution πθ. The probability
of observing a trajectory τ for a given policy πθ is:

p(τ |πθ) = p0(s0)

H−1∏
h=0

P (sh+1|sh, ah)πθ(ah|sh). (3)

Unlike supervised learning, the distribution of these trajecto-
ries depends on the parameters of policy πθ. It can be shown
that:

∇J(θ) = Eτ∼πθ

[
H−1∑
h=0

Ψh(τ)∇ log πθ(ah|sh)

]
, (4)

where Ψh(τ) =
∑H−1

t=h γtr(st, at). Therefore, for any tra-
jectory τ , ∇̂J(θ, τ) :=

∑H−1
h=0 Ψh(τ)∇ log πθ(ah|sh) is an

unbiased estimator of ∇J(θ). The vanilla policy gradient
updates θ as follows:

θ ← θ + η∇̂J(θ, τ), (5)

where η is the learning rate.

The Hessian matrix of J(θ) can be written as follows [Shen
et al., 2019]:

∇2J(θ) = Eτ∼πθ
[∇Φ(θ, τ)∇ log p(τ |πθ)

T +∇2Φ(θ, τ)],
(6)

where Φ(θ, τ) =
∑H−1

h=0

∑H−1
t=h γtr(st, at) log πθ(ah|sh)

for a given trajectory τ . Hence, ∇̂2J(θ, τ) :=
∇Φ(θ, τ)∇ log p(τ |πθ)

T + ∇2Φ(θ, τ) is an unbiased es-
timator of the Hessian matrix. Note that the computational
complexity of the term∇Φ(θ, τ)∇ log p(τ |πθ)

T is O(Hd)
where d is the dimension of the gradient vector. The second
term is HVP which can also be computed in O(Hd) using
Pearlmutter’s algorithm [Pearlmutter, 1994].

We can compute HVP using the above definition for the
sample-based version of Hessian matrix ∇̂2J(θ, τ) and an
arbitrary vector v ∈ Rd as follows:

∇̂2J(θ, τ)[v] = (∇ log p(τ |πθ)
T v)∇Φ(θ, τ)+∇2Φ(θ, τ)[v].

(7)

2.2 VARIANCE REDUCED METHODS FOR
GRADIENT ESTIMATION

For any time t ≥ 1 and a sequence of parameters
{θ0, θ1, · · · }, we can write the gradient at θt as follows:

∇J(θt) = ∇J(θt−1) +∇J(θt)−∇J(θt−1). (8)

Suppose that we have an unbiased estimate of∇J(θt−1) at
time t−1, denoted by vt−1. If we have an unbiased estimate
of∇J(θt)−∇J(θt−1) denoted by ∆t, then we can add it
to vt−1 in order to get an unbiased estimate of ∇J(θt) at
time t as follows:

vt = vt−1 +∆t. (9)



Let ϵt = vt − ∇J(θt) and ϵ∆t = ∆t − (∇J(θt) −
∇J(θt−1)). Based on these definitions, we can rewrite the
above equation as follows:

ϵt = ϵt−1 + ϵ∆t . (10)

Thus, we have:

E[∥ϵt∥2] = E[∥ϵt−1∥2] + E[∥ϵ∆t
∥2] + 2E[⟨ϵt−1, ϵ∆t

⟩].
(11)

The above equation shows that if E[⟨ϵt−1, ϵ∆t⟩] is suffi-
ciently negative, then E[∥ϵt∥2] is decreasing in time. The up-
dates in several previous variance reduction methods (such
as in HAPG [Shen et al., 2019], MBPG [Huang et al., 2020],
SRVR-PG [Xu et al., 2019], SVRG [Johnson and Zhang,
2013] and SARAH [Nguyen et al., 2017]) are consistent
with (9) with different suggestions for ∆t. Using the update
in (9) may accumulate errors in the gradient estimates and
some of the methods in the literature require checkpoints
after some iterations and use a batch of stochastic gradients
at these points to control the error.

2.3 STOCHASTIC CUBIC REGULARIZED
NEWTON

In the context of optimization, Cubic Regularized Newton
(CRN) [Nesterov and Polyak, 2006] obtains SOSP in gen-
eral non-convex functions by updating the parameters using
the cubic-regularized second-order expansion of the Taylor
series at each iteration t as follows:

mt(h) = ⟨∇F (θt), h⟩+
1

2
⟨∇2F (θt)h, h⟩+

M

6
∥h∥3,

(12)

h∗
t = argminh∈Rdmt(h), (13)

θt+1 = θt + h∗
t .

In CRN, the sub-problem for obtaining the minimizer of
mt(h), should be solved in each iteration. Although there is
no closed-form solution for the sub-problem, Carmon and
Duchi [2016] proposed a gradient descent-based algorithm
to find an approximate solution.

As we often only have access to gradient and Hessian esti-
mates of the objective function (herein, denoted by vt and
Ut, respectively), the aforementioned update rule in the con-
text of RL becomes:

mt(h) = ⟨vt, h⟩+
1

2
⟨Uth, h⟩ −

M

6
∥h∥3, (14)

h∗
t = argmaxh∈Rdmt(h), (15)

θt+1 = θt + h∗
t . (16)

3 VR-SCP ALGORITHM

In this section, we first describe our proposed algorithm,
VR-SCP, which uses the second-order information in order

to have a better estimate of the gradient vector and converges
to (ϵ,

√
ρϵ)-SOSP. Next, we provide a convergence analysis

of the proposed algorithm under some customary regularity
assumptions in RL literature.

3.1 DESCRIPTION

The algorithm iterates in a loop starting from line 1. In line
2, the estimate of gradient, vt, is computed. After every
Q iterations, we have a checkpoint (when the condition
mod (t, Q) = 0 is satisfied) where vt is set to the average
of a batch of stochastic gradients. Otherwise, based on what
we explained in (9), the following term will be added to
the last gradient estimate vt−1, as an estimate of ∇J(θt)−
∇J(θt−1):

1

St

St∑
s=1

∇̂2J(θs,t, τs)(θt − θt−1), (17)

where parameter θs,t is a point on the line between θt−1 and

θt and it is equal to
(
1− s

St

)
θt +

s

St
θt−1. Furthermore,

St is the number of points taken on the line, and τs is a trajec-
tory drawn based on policy πθs,t . In line 3, VR-SCP defines
a stochastic HVP function Ut[.] which for every vector v,
it computes Ut[v]← 1

|Bh|
∑

τ∈Bh
∇̂2J(θt, τ)[v]. In line 4,

Cubic-Subsolver runs a gradient descent-based algorithm
to find an approximate solution of the sub-problem. In line
5, if there is a sufficient increase in mt(h), (i.e., mt(ht) ≥
ρ−1/2ϵ3/2/6), the parameter θt is updated based on the
approximate solution ht. Otherwise, Cubic-Finalsolver is
called once and the algorithm terminates after updating the
parameter θt. Cubic-Subsolver and Cubic-Finalsolver are
based on [Tripuraneni et al., 2018] and the pseudo-codes of
these two algorithms are given in Appendix C.

3.2 CONVERGENCE ANALYSIS

In this part, we analyze the convergence rate of the proposed
algorithm under the bounded reward function and some
common regularity assumptions on the policy.

Assumption 3.1 (Bounded reward). For ∀s ∈ S,∀a ∈ A,
|R(s, a)| < R0 where R0 > 0 is some constant.

Assumption 3.2 (Parameterization regularity). There exist
constants G,L1, L2 > 0 such that for any θ1, θ2, w ∈ Rd

and for any s ∈ S, a ∈ A:
(a) ∥∇ log πθ1(a|s)∥ ≤ G,
(b) ∥∇2 log πθ1(a|s)∥ ≤ L1,
(c) ∥(∇2 log πθ1(a|s) − ∇2 log πθ2(a|s))w∥ ≤ L2∥θ1 −
θ2∥∥w∥.

Assumptions 3.1 and 3.2 (a,b), commonly used in the RL
literature to analyze the convergence of policy gradient meth-



Algorithm 1 Variance-reduced stochastic cubic regularized
Newton-based policy gradient (VR-SCP)
Input: Batch Bcheck and Bh, initial point θ0, accuracy ϵ, cu-
bic penalty parameter M , maximum number of iterations T ,
duration Q, and parameters L, ρ.

1: for t = 0, · · · , T − 1 do
2:

vt =


1

|Bcheck|
∑

τ∈Bcheck

∇̂J(θt, τ), if mod(t, Q) = 0,

1

St

St∑
s=1

∇̂2J(θs,t, τs)(θt − θt−1) + vt−1, o.w.

3: Ut[.]← 1
|Bh|

∑
τ∈Bh

∇̂2J(θt, τ)[.]

4: ht ← Cubic-Subsolver(Ut[.], vt,M,L, ϵ)
5: if mt(ht) > ρ−1/2ϵ3/2/6 then
6: θt+1 ← θt + ht

7: else
8: ht ← Cubic-Finalsolver(Ut[.], vt,M,L, ϵ)
9: return θt+1 ← θt + ht

10: end if
11: t← t+ 1

12: end for
13: return θT

ods, imply boundedness of the norm of the stochastic gra-
dient as well as the individual smoothness of the stochastic
gradient and Hessian.

Lemma 3.3. [Shen et al., 2019, Wang et al., 2022] Under
Assumptions 3.1 and 3.2, for any θ1, θ2, w ∈ Rd and for any
trajectory τ , there exist constants W , L and ρ such that:

∥∇̂J(θ1, τ)∥2 ≤W,

∥∇̂J(θ1, τ)− ∇̂J(θ2, τ)∥2 ≤ L∥θ1 − θ2∥2,
∥∇̂2J(θ1, τ)− ∇̂2J(θ2, τ)∥ ≤ ρ∥θ1 − θ2∥2,

where ρ = L2R0+2R0GHL1

(1−γ)2 , L = L1GR0

(1−γ)2 ,W = GR0

(1−γ)2 .

Remark 3.4. Assumption 3.2 (c) is also a common in analyz-
ing second-order methods in RL. Examples of policies that
satisfy this assumption are Gaussian [Pirotta et al., 2013]
and soft-max policies [Masiha et al., 2022]. For instance,
consider a Gaussian policy with standard deviation σ as
follows:

πθ(a|s) = N (θTµ(s), σ2),

where µ(s) : S → Rd is a feature map. It can be easily seen
that∇2 log πθ(a|s) = µ(s)Tµ(s)/σ2. Therefore, Gaussian
policy satisfies Assumption 3.2 if µ(s), θ, and actions take
values in a bounded domain.

Assumptions 3.1 and 3.2 also imply that the variance of
gradient estimate ∇̂J(θ, τ) and Hessian estimate ∇̂2J(θ, τ)
are bounded.

Lemma 3.5. [Shen et al., 2019] Under Assumptions 3.1
and 3.2, for any point θ ∈ Rd and trajectory τ , ∇̂J(θ, τ)
and ∇̂2J(θ, τ), have bounded variances σ2

1 and σ2
2 , respec-

tively:

E[∥∇̂J(θ, τ)−∇J(θ)∥]2 ≤ σ2
1

E[∥∇̂2J(θ, τ)−∇2J(θ)∥2] ≤ σ2
2 ,

(18)

where σ2
1 =

G2R2
0

(1−γ)4 and σ2
2 =

H2G4R2
0+L2

1R
2
0

(1−γ)4 .

Following the work [Nesterov and Polyak, 2006] on cu-
bic regularized Newton method, we define the following
quantity for showing convergence to (ϵ,

√
ρϵ)-SOSP.

Definition 3.6. For any θ ∈ Rd, we define µ(θ) as follows:

µ(θ) = max(∥∇J(θ)∥3/2, λ3
max(∇2J(θ))/ρ3/2). (19)

Based on the above definition, it can be easily shown that
the point θ is (ϵ,

√
ρϵ)-SOSP if and only if µ(θ) ≤ ϵ3/2.

To show the convergence of the proposed algorithm, we use
the following lemma which provides a bound on the norm
of estimation error at each iteration t with high probability
given history up to time ⌊t/Q⌋.Q.

Lemma 3.7. Let Ft be the history up to time t. Under
Assumptions 3.1, 3.2 and for the values of St in Appendix B.1
and |Bcheck| in the statement of Theorem 3.9, conditioned
on F⌊t/Q⌋.Q, with probability 1− 2δ(t− ⌊t/Q⌋.Q), for all
i between ⌊t/Q⌋.Q and t, we have:

∥vi −∇J(θi)∥22 ≤
ϵ2

30
. (20)

All the proofs of lemmas and theorem appear in the Ap-
pendix.

Lemma 3.8. For the value of |Bh| in the statement of The-
orem 3.9, under Assumptions 3.1, 3.2, conditioned on Ft,
with probability 1− δ, we have:

∥Ut −∇2J(θt)∥2 ≤
ϵρ

30
. (21)

Theorem 3.9. Under Assumptions 3.1, 3.2, for |Bcheck| ≥
19440W 2 log2(4T/ξ)

ϵ2
, |Bh| ≥

1080L2 log(4dT/ξ)

ρϵ
, and

St defined in Appendix B.1, cubic penalty parameter M =
4ρ, ϵ ≤ 4L2ρ/M and maximum number of iterations T ≥
25∆Jρ

1/2ϵ−3/2, Algorithm 1 guarantees that:

µ(θout) ≤ 1300ϵ3/2, (22)

with the probability 1− ξ where ∆J = J∗ − J(θ0) and J∗

is the optimal value of objective function.



Proof sketch. To prove Theorem 3.9, we establish bounds
on ∥vt − ∇J(θt)∥2 and ∥Ut − ∇2J(θt)∥2. A key step in-
volves bounding the term

1

St

∥∥∥∥∥
St∑
s=1

∇̂2J(θs,t)(θt − θt−1)−∇J(θt) +∇J(θt−1)

∥∥∥∥∥ ,
which we show is a quadratic function of ∥θt − θt−1∥ with
high probability (see (53) in the appendix). Using this result,
we adjust the batch sizes to derive high-probability bounds
on ∥vt − ∇J(θt)∥2 (Lemma 3.7) and ∥Ut − ∇2J(θt)∥2
(Lemma 3.8). Substituting these bounds into the recursive
inequality in (77), we show that the proposed algorithm
achieves the convergence rate stated in Theorem 3.9.

Corollary 3.10. Under the Assumptions in the statement
of Theorem 3.9, and Q =

√
ρM√
ϵL

, Algorithm 1 will return

(ϵ,
√
ρϵ)-SOSP after observing Õ( 1

ϵ3 ) trajectories. Thus, it
improves the best-known sample complexity in [Wang et al.,
2022, Maniyar et al., 2024] by a factor of O(ϵ−0.5).

4 RELATED WORK

Variance-reduced PG methods have been proposed in the RL
literature to reduce the variance of the stochastic gradient
and improve the training process [Papini et al., 2018, Xu
et al., 2019, Zhang et al., 2021]. Variance-reduced meth-
ods such as SARAH [Nguyen et al., 2017], SAGA [De-
fazio et al., 2014], and SVRG [Johnson and Zhang, 2013]
proposed in the context of stochastic optimization, are the
basis of some more recent variance-reduced policy gradi-
ent methods in RL. These approaches use the difference
∇f(θ′, z) −∇f(θ, z) for two consecutive points θ and θ′

along iterations for the same randomness z to reduce the
variance of gradient estimates. This difference can be easily
computed in tasks such as supervised learning as the random-
ness z does not depend on the parameters to be optimized
(e.g., parameters of the decision rule in supervised learning).
However, in the RL setting, the distribution over trajectories
depends on the parameters of the current policy. Thus, most
variance-reduced methods in RL require IS weights in order
to provide unbiased estimates of ∇J(θ) for a given point
θ based on a trajectory that is generated by a policy with
another parameter θ′. As a result, the convergence analysis
for these methods requires strong assumptions such as the
boundedness of variance of IS weights. Examples of meth-
ods requiring such strong assumptions are SRVR-PG [Xu
et al., 2020], ProxHSPGA [Pham et al., 2020], IS-MBPG
[Huang et al., 2020], and PAGE-PG [Gargiani et al., 2022]
which all of them converge to an ϵ-FOSP with the sample
complexity of O(ϵ−3). HAPG is the first work achieving the
same rate by using second-order information (in the form of
HVP) to bypass IS weights. However, in their analysis, it is
required to use a fixed step size of ϵ which slows the train-
ing process in practice. Moreover, the number of computed

HVPs per iteration is in the order of O(1/ϵ). Very recently,
two methods using mirror-descent algorithm based on Breg-
man divergence, called VR-MPO [Yang et al., 2022] and
VR-BGPO [Huang et al., 2021] have been proposed. These
methods achieve ϵ-FOSP if the mirror map in Bregman
divergence is the l2-norm.

In order to converge to SOSP, in the context of optimization,
Nesterov and Polyak [2006] analyzed the cubic-regularized
Newton (CRN) method in the deterministic case. In this case,
a sub-problem formulated based on a second-order Taylor
expansion of the objective function with a cubic penalty
term is solved at each iteration. CRN uses the full Hessian
matrix in the minimization of sub-problem which is not prac-
tical in large-scale applications. More recently, Carmon and
Duchi [2016] proposed a gradient descent method to find
ϵ-global optimum point of the sub-problem. The proposed
method only requires computing HVPs (without requiring
the full Hessian matrix) which can be computed with the
same computational complexity of obtaining stochastic gra-
dients [Pearlmutter, 1994]. In the stochastic setting, Tripu-
raneni et al. [2018] proposed stochastic CRN (SCRN) that
uses sub-sampled gradients and Hessian vector products to
solve the sub-problem at each iteration and converges to
(ϵ,
√
ρϵ)-SOSP with sample complexity of Õ(ϵ−3.5). Later,

Zhou and Gu [2020] introduced a variance-reduced version
of SCRN with sample complexity of Õ(ϵ−3). In the con-
text of RL, Yang et al. [2021] analyzed REINFORCE under
some restrictive assumptions on the objective function and
showed that it convergences to (ϵ,

√
ρϵ)-SOSP with sample

complexity of Õ(ϵ−4.5). Recently, Wang et al. [2022] intro-
duced a stochastic cubic-regularized policy gradient method
that achieves (ϵ,

√
ρϵ)-SOSP with the sample complexity

of Õ(ϵ−3.5). This method still requires IS weights and con-
sequently strong assumptions about them. Concurrent to
Wang et al. [2022], Maniyar et al. [2024] proposed ACR-
PN, a second-order method which achieves (ϵ,

√
ρϵ)-SOSP

with a sample complexity of O(ϵ−3.5). Our proposal, VR-
SCP algorithm, does not require IS and achieves (ϵ,

√
ρϵ)-

SOSP with sample complexity of Õ(ϵ−3). To the best of our
knowledge, VR-SCP is the first algorithm in the literature
to provide such a guarantee.

5 EXPERIMENTS

In this section, we evaluate the proposed algorithm and com-
pare it with the related work in four control tasks in MuJoCo
[Todorov et al., 2012] which is a physics simulator, with
fast and accurate simulations in areas such as robotics, bio-
mechanics, graphics, etc. We used Garage library [garage
contributors, 2019] for our implementations as it allows for
maintaining and integrating several RL algorithms3.

3The code for all experiments is available at https://
github.com/sadegh16/VR-SCP.

https://github.com/sadegh16/VR-SCP
https://github.com/sadegh16/VR-SCP


In the following, we briefly explain the control tasks in the
four environments we consider. In Walker environment, a hu-
manoid walker tries to move forward in a two-dimensional
space. It can only fall forward or backward and the goal
is to walk as long as possible without falling. In Reacher
environment, there is an arm that tries to reach a specific
point in a plane and the goal is to navigate the arm such that
the tip of the arm gets as close as possible to that point. In
Hopper environment, there is a two-dimensional one-legged
robot and the goal is to make it hop in the forward (right)
direction as long as possible. In Humanoid environment,
there is a 3D bipedal robot like a human and the goal is
to make it walk forward as fast as possible without falling
over.

We compared our proposed algorithm with PG methods that
provide theoretical guarantees: PAGE-PG [Gargiani et al.,
2022], IS-MBPG [Huang et al., 2020] which is based on
STROM, HAPG [Shen et al., 2019] which does not require
IS weights, VR-BGPO [Huang et al., 2021] which is a mir-
ror descent based algorithm, and ACR-PN [Maniyar et al.,
2024] which is the state-of-the-art of second-order meth-
ods in the RL setting. These algorithms have guarantees on
convergence to an approximate FOSP. We also considered
REINFORCE [Sutton et al., 2000] as a baseline algorithm.
There are some other approaches in the literature with theo-
retical guarantees: (SCR-PG [Wang et al., 2022], VRMPO
[Yang et al., 2022], and STORM-PG [Ding et al., 2021]) but
the official implementations are not publicly available and
our request to access the code from the authors remained
unanswered.

For each algorithm, we use the same set of Gaussian policies
parameterized with neural networks consisting of two lay-
ers of 64 neurons each. Baselines and environment settings
(such as maximum trajectory horizon, and reward scale) are
considered the same for all algorithms. We chose a maxi-
mum horizon of 500 for Walker, Hopper, and Humanoid and
50 for Reacher. More details about experiments are given in
Appendix D. It is worth mentioning that we used the official
implementation of each algorithm. For REINFORCE, we
used the implementation provided by Garage library [garage
contributors, 2019]. For PAGE-PG, we found some issues
in the official code and we decided to carefully implement
it following the description of the original paper. The im-
plementation of VR-SCP (our algorithm) is available as
supplementary material.

There are two main challenges in evaluating PG methods
experimentally. First, it has been observed that PG methods
are often sensitive to parameter initialization and random
seeds [Henderson et al., 2018]. Thus, it is quite difficult
in some cases to reproduce previous results. Second, it is
unclear how to compare algorithms in terms of performance
(e.g., the average return over instances of an algorithm)
and robustness (e.g., the standard deviation of return (STD
return) over instances of an algorithm) simultaneously. For

Table 1: Comparison of VR-SCP with other variance-
reduced methods in terms of PR. In each environment, the
highest PR is in bold.

Reacher Walker Humanoid Hopper

VR-SCP (our algorithm) -10.88 486.08 484.19 891.48

HAPG -19.51 104.296 161.12 74.60

IS-MBPG -21.76 204.32 201.01 312.21

PAGE-PG -17.39 247.58 356.58 338.72

REINFORCE -20.10 79.98 156.21 263.92

VR-BGPO -15.15 320.51 409.67 861.92

ACR-PN -17.19 200.84 260.09 74.05

instance, between an algorithm, with both a high average
return and STD return and another algorithm with a lower
average return but with also a lower STD return, which one
is preferable?

Figure 1: Each configuration is evaluated with five different
random seeds.

In this section, we aim to find a metric to simultaneously
capture the average return as well as STD return of an algo-
rithm. Additionally, we would like to assess an algorithm’s
sensitivity to random seeds, which is central for reproducibil-
ity. To address the first question, we define the following
metric. For any algorithm A, after observing t number of
state-actions pairs (called system probes), we compute the
lower bound of the confidence interval of average return
over n runs of the algorithm and denote it by LCIA(n, t).
We define the performance-robustness (PR) metric by aver-
aging LCIA(n, t) over all system probes t = 1, · · · , T as
follows:

PRA(n) =
1

T

T∑
t=1

LCIA(n, t), (23)

where T is the maximum number of system probes. Figure
1 illustrates why we take the average of LCIA(n, t) over
all system probes t = 1, · · · , T in the definition of our
PR metric. In this figure, four different configurations of



Figure 2: Comparison of VR-SCP with other variance reduction methods on four control tasks.

hyper-parameters for IS-MBPG algorithm [Huang et al.,
2020] are considered in Walker environment. PR values
for these configurations are 234.8, 246.9, 193.5, and 199.1,
respectively. Taking the average of LCIA(n, t) over the
probes prevents us from choosing the hyper-parameters that
aggressively improve the returns in the beginning but can
degrade drastically by the end of the horizon.

We used grid search to tune the hyper-parameters of all
the algorithms. For the algorithms except ours, the search
space for each hyper-parameter was chosen based on the
one from the original papers. For each configuration of
the hyper-parameters, we ran each algorithm A, five times
and computed PRA(5). We selected the configuration that
maximized PRA(5) and then reported PRA(10) of each al-
gorithm for the selected configuration based on 10 different
runs in Table 1. Our proposed method achieved the highest
PR in all environments compared to the other algorithms.

To address the second question, we consider the confidence
interval of the performance to gauge the sensitivity of an
algorithm to random seeds. In Figure 2, VR-SCP exhibits
better performance and robustness compared to the other
algorithms. It has relatively less variance as well as a higher
average return. This could be explained by the fact that as
VR-SCP converges to an (ϵ,

√
ρϵ)-SOPS, it is less sensitive

to random seeds which results in smaller confidence inter-
vals. Additionally, as it avoids saddle points and possibly
bad local optima it achieves a higher average return. This

is most evident in Walker environment, where the other al-
gorithms get stuck in a saddle point or local maxima but
VR-SCP escapes them. It is worth mentioning that, in our
experiments, REINFORCE has comparable performance
to some variance-reduced PG methods, while in previous
work, the performance of REINFORCE was often reported
much worse, which might have been due to poor tuning of
its hyper-parameters.

6 CONCLUSION

We proposed a variance-reduced cubic regularized New-
ton PG method that uses second-order information in the
form of HVP and converges to (ϵ,

√
ρϵ)-SOSP with the

sample complexity of Õ(ϵ−3). Such a guarantee ensures
escaping saddle points and bad local optima. Our rate im-
proves the best-known sample complexity by a factor of
O(ϵ−0.5). Moreover, unlike most methods in the literature,
we do not require IS weights in the variance reduction part.
In the experiments, due to the sensitivity of the algorithms to
random seeds, we defined a new measure to account simulta-
neously for the performance (average return) and robustness
(standard deviation of return) of an algorithm and used it in
our evaluations. Experimental results clearly showcase the
advantage of VR-SCP both in terms of its performance and
robustness in a variety of control tasks compared with other
methods in the literature.
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A AUXILIARY LEMMAS

Lemma A.1. (Vector Azuma-Hoeffding inequality) Let ak be a vector martingale difference, that is,
E[ak|σ(a1, · · · , ak−1)] = 0 where σ(a1, · · · , ak−1) is σ-algebra of a1, · · · , ak−1 and ∥ak∥ ≤ Ak. With probability
at least 1− δ, ∥∥∥∥∥∑

k

ak

∥∥∥∥∥ ≤ 3

√
log(1/δ)

∑
k

A2
k. (24)

Lemma A.2. (Tropp [2012])(Matrix Azuma inequality) Consider a finite adapted sequence Xk of self-adjoint matrices in di-
mension d, and a fixed sequence {Ak} of self-adjoint matrices that E[Xk|σ(X1, · · · , Xk−1)] = 0 where σ(X1, · · · , Xk−1)
is σ-algebra of X1, · · · , Xk−1 and X2

k ⪯ A2
k almost surly. Then with probability at least 1− δ,∥∥∥∥∥∑
k

Xk

∥∥∥∥∥
2

≤ 3

√
log(d/δ)

∑
k

∥Ak∥22. (25)

Lemma A.3. [Carmon and Duchi, 2016] Consider the following function:

m(h) = ⟨v, h⟩+ 1

2
⟨Uh, h⟩ − M

6
∥h∥3, (26)

and its maximizer
h∗ = argmaxh∈Rdm(h), (27)

where v ∈ Rd, U ∈ Rd×d such that ∥U∥2 ≤ L, and M is a positive constant.

If either of the following conditions holds:
1-

√
ϵ/ρ ≤ ∥h∗∥

2- ∥v∥ ≥ max

(
Mϵ
2ρ ,

√
LM
2

(
ϵ
ρ

)3/4
)

,

then, for ϵ ≤ 16L2ρ
M2 and T (ϵ) ≥ Cs

L

M
√

ϵ/ρ
(where Cs is a constant), with at least probability 1− δ, the Cubic Sub-solver

(see Algorithm 2) returns an ĥ such that:

m(ĥ) ≥ Mρ−3/2ϵ3/2

24
.

Lemma A.4. [Carmon and Duchi, 2016] For any v ∈ Rd, and positive scalars M and L, we define:

R =
L

2M
+

√
(
L

2M
) + ∥v∥/M. (28)
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For m(h) and h∗ defined in (26) and (27), respectively, 1) if ∥U∥2 ≤ L, then m(h) is (L + 2MR)-smooth, 2) at each
iteration of Cubic-Finalsolver (Algorithm 3), ∥∆∥ ≤ ∥h∗∥ where ∆ is the update vector defined in the Cubic-Finalsolver
(see Algorithm 3).

Lemma A.5. For any vt ∈ Rd, Ut ∈ Rd×d, h ∈ Rd,M ∈ R such that M/ρ ≥ 2, we have:

µ(θt + h) ≤ 9

[
M3ρ−3/2∥h∥3 +M3/2ρ−3/2

∥∥∥∇J(θt)− vt

∥∥∥3/2 (29)

+ ρ−3/2
∥∥∥∇2J(θt)− Ut

∥∥∥3 +M3/2ρ−3/2∥∇mt(h)∥3/2 +M3/2ρ−3/2
∣∣∣∥h∥ − ∥h∗

t ∥
∣∣∣3],

where mt(h) and h∗
t are defined in (14) and (15), respectively.

Proof: Lemma 3.3(c) shows the individual Lipschitz continuity of the Hessian estimator ∇̂2J(θ, τ), i.e., for any θ1, θ2 ∈ Rd,

∥∇̂2J(θ1, τ)− ∇̂2J(θ2, τ)∥ ≤ ρ∥θ1 − θ2∥2. (30)

Based on above inequality, we can imply the Lipschitz continuity of the Hessian∇2J(θ) as follows:

∥∇2J(θ1)−∇2J(θ2)∥ = ∥Eτ [∇̂2J(θ1, τ)]− Eτ [∇̂2J(θ2, τ)]∥
≤ Eτ [∥∇̂2J(θ1, τ)− ∇̂2J(θ2, τ)∥]
≤ ρ∥θ1 − θ2∥2,

(31)

where the first inequality is due to Jensen’s inequality (as the operator norm is convex) and the second inequality is according
to (30).

Let {λ1, · · · , λd} be the eigenvalues of ∇2J(θ1) − ∇2J(θ2). By the definition of the operator norm: ∥∇2J(θ1) −
∇2J(θ2)∥ = maxi |λi|. According to (31), we have: ρ∥θ1 − θ2∥2 ≥ |λi| for all eigenvalues λi’s. Therefore, we can
imply that ρ∥θ1 − θ2∥I−∇2J(θ1) +∇2J(θ2) is positive semi-definite, i.e.,

∇2J(θ1)−∇2J(θ2) ⪯ ρ∥θ1 − θ2∥I, (32)

where the notation ⪯ denotes the Loewner order, that is, for two real symmetric matrices A and B, A ⪯ B if B − A is
positive semi-definite.

Now, we have:

∇2J(θt + h) ⪯ ∇2J(θt) + ρ∥h∥I (33)

⪯
∥∥∥∇2J(θt)− Ut

∥∥∥I + Ut + ρ∥h∥I (34)

⪯
∥∥∥∇2J(θt)− Ut

∥∥∥I +M/2∥h∗
t ∥I + ρ∥h∥I, (35)

where the first inequality is due to the Lipschitz continuity of the Hessian ∇2J(θ) and the second inequality holds as
∇2J(θt)−Ut ⪯ ∥∇2J(θt)−Ut∥I . Moreover, the last inequality is due to the fact that the second-order derivative of mt(h),
is negative semi-definite at the optimal point h∗

t , i.e., Ut −M/2∥h∗
t ∥ ⪯ 0. Having ρ ≤M/2, from the above inequality, we

can imply that

λmax(∇2J(θt + h)) ≤
∥∥∥∇2J(θt)− Ut

∥∥∥+M/2∥h∗
t ∥+ ρ∥h∥ (36)

≤
∥∥∥∇2J(θt)− Ut

∥∥∥+M∥h∥+M
∣∣∣∥h∗

t ∥ − ∥h∥
∣∣∣, (37)

where we applied triangle inequality in the last step, i.e., M/2∥h∗
t ∥ ≤ M/2∥h∥ + M/2

∣∣∥h∗
t ∥ − ∥h∥

∣∣ ≤ M/2∥h∥ +
M

∣∣∥h∗
t ∥ − ∥h∥

∣∣. Accordingly, we have:

ρ−3/2λ3
max(∇2J(θt + h)) ≤ 9ρ−3/2

[∥∥∥∇2J(θt)− Ut

∥∥∥3 +M3∥h∥3 +M3
∣∣∣∥h∗

t ∥ − ∥h∥
∣∣∣3], (38)



where we used the inequality (a+ b+ c)3 ≤ 9(a3 + b3 + c3) for any a, b, c ≥ 0.

Now, we obtain a bound on the norm of the gradient:∥∥∥∇J(θt + h)
∥∥∥ ≤ ∥∥∥∇J(θt + h)−∇J(θt)−∇2J(θt)h

∥∥∥+
∥∥∥∇J(θt)− vt

∥∥∥
+
∥∥∥∇2J(θt)h− Uth

∥∥∥+
∥∥∥vt + Uth−M/2∥h∥h

∥∥∥+M/2∥h∥2

(a)
=

∥∥∥∇J(θt + h)−∇J(θt)−∇2J(θt)h
∥∥∥+

∥∥∥∇J(θt)− vt

∥∥∥
+
∥∥∥∇2J(θt)h− Uth

∥∥∥+
∥∥∥∇mt(h)

∥∥∥+M/2∥h∥2

(b)

≤ M

4
∥h∥2 +

∥∥∥∇J(θt)− vt

∥∥∥+
∥∥∥∇2J(θt)h− Uth

∥∥∥
+
∥∥∥∇mt(h)

∥∥∥+M/2∥h∥2

(c)

≤
∥∥∥∇J(θt)− vt

∥∥∥+ 1/M
∥∥∥∇2J(θt)− Ut

∥∥∥2 + ∥∇mt(h)∥+M∥h∥2,

(39)

(a) Due to the definition of mt(h), we have:
∥∥∥vt + Uth−M/2∥h∥h

∥∥∥ = ∥∇mt(h)∥.

(b) According to Hessian Lipschitzness, we have:
∥∥∥∇J(θt + h)−∇J(θt)−∇2J(θt)h

∥∥∥ ≤ ρ/2∥h∥2 ≤M/4∥h∥2 where
we assumed that M/ρ ≥ 2.
(c) We can bound the term ∥∇2J(θt)h− Uth∥ using Cauchy-Schwarz and Young’s inequalities as follows:∥∥∥(∇2J(θt)− Ut)h

∥∥∥ ≤ ∥∥∥∇2J(θt)− Ut

∥∥∥∥h∥ ≤ 1/M
∥∥∥∇2J(θt)− Ut

∥∥∥2 +M/4∥h∥2. (40)

Accordingly, we have:

∥∇J(θt + h)∥3/2 ≤ 2

[∥∥∥∇J(θt)− vt

∥∥∥3/2 +M−3/2
∥∥∥∇2J(θt)− Ut

∥∥∥3 + ∥∇mt(h)∥3/2 +M3/2∥h∥3
]
, (41)

where we used the inequality (a+ b+ c+ d)3/2 ≤ 2(a3/2 + b3/2 + c3/2 + d3/2) for any a, b, c, d ≥ 0.

Using (38) and (41) and according to Definition 3.6, we obtain an upper bound on µ(θt + h):

µ(θt + h) ≤ 9

[
M3ρ−3/2∥h∥3 +M3/2ρ−3/2

∥∥∥∇J(θt)− vt

∥∥∥3/2 (42)

+ ρ−3/2
∥∥∥∇2J(θt)− Ut

∥∥∥3 +M3/2ρ−3/2∥∇mt(h)∥3/2 +M3ρ−3/2
∣∣∣∥h∥ − ∥h∗

t ∥
∣∣∣3],

which is derived by multiplying the right-hand side of (41) with 1/8M3/2ρ−3/2 (note that 1/8M3/2ρ−3/2 ≥ 1 as 4ρ ≤M )
and then sum it with (38).

Lemma A.6. For any h ∈ Rd, we have:

− ρ

8
∥h∥3 − 10

ρ2

∥∥∥∇2J(θt)− Ut

∥∥∥3 ≤ 〈
(∇2J(θt)− Ut)h, h

〉
, (43)

− ρ

8
∥h∥3 − 6

5
√
ρ

∥∥∥∇J(θt)− vt

∥∥∥3/2 ≤ 〈
∇J(θt)− vt, h

〉
. (44)

Proof: Using Cauchy-Schwarz inequality, we have:

− ∥h∥2
∥∥∥∇2J(θt)− Ut

∥∥∥ ≤ 〈
(∇2J(θt)− Ut)h, h

〉
(45)



On the other hand, using Young’s inequality ab ≤ ap

p + bq

q , where a = ( 3ρ24 )
2/3∥h∥2, b = ( 2

4

3ρ )
2/3

∥∥∥∇2J(θt)−Ut

∥∥∥, p = 3/2

and q = 3, we have:

∥h∥2
∥∥∥∇2J(θt)− Ut

∥∥∥ ≤ ρ

8
∥h∥3 + 10

ρ2

∥∥∥∇2J(θt)− Ut

∥∥∥3. (46)

Putting (45) and (46) together, we derive (43). Similarly, we can use the following inequalities to derive (44),

− ∥h∥
∥∥∥∇J(θt)− vt

∥∥∥ ≤ 〈
∇J(θt)− vt, h

〉
(47)

∥h∥
∥∥∥∇J(θt)− vt

∥∥∥ ≤ ρ

8
∥h∥3 + 6

5
√
ρ

∥∥∥∇J(θt)− vt

∥∥∥3/2, (48)

where in the second inequality, we used Young’s inequality ab ≤ ap

p + bq

q where a = ( 3ρ23 )
1/3∥h∥, b = ( 2

3

3ρ )
1/3

∥∥∥∇2J(θt)−

Ut

∥∥∥, p = 3 and q = 3/2.

Lemma A.7. [Zhang et al., 2021] For ϵ ≤ 4L2ρ/M , Cubic-Finalsolver (Algorithm 3) will terminate within CFL/
√
ρϵ

iterations, where CF is a constant.

B CONVERGENCE ANALYSIS

Consider ξ = 4Tδ. Let us define Ft as the history up to the point θt (i.e., σ-algebra of θ0 to θt, Ft = σ(θ0, θ1, · · · , θt)). We
show the gradient estimate and sub-sampled Hessian of the objective function with vt and Ut, respectively.

B.1 PROOF OF LEMMA 3.7

Lemma B.1. Under Assumptions 3.1, 3.2, conditioned on F⌊t/Q⌋.Q, with probability at least 1− 2δ(t− ⌊t/Q⌋.Q) for all i
where ⌊t/Q⌋.Q ≤ i ≤ t, we have: ∥∥∥vi −∇J(θi)∥∥∥2

2
≤ ϵ2

30
, (49)

where for any two consecutive points θk−1 and θk in Algorithm 1, we set Sk = C2Q
∥θk−θk−1∥2

2

ϵ2 , where C2 =

38880L2 log2(1/δ) + 45/4
√
1080 log(1/δ)ρ2L3

1M
−7/4.

Proof: We have vt −∇J(θt) =
∑t

k=⌊t/Q⌋.Q uk where:

uk =


1

Sk

∑Sk

s=1 ∇̂2J(θs,k, τs)(θk − θk−1)−∇J(θk) +∇J(θk−1) t ≥ k > ⌊t/Q⌋.Q

∇̂J(θk,Bcheck)−∇J(θk) k = ⌊t/Q⌋.Q,
(50)

where θs,k = (1− s

Sk
)θk +

s

Sk
θk−1. We now find a bound on the norm of uk in both cases above. For k > ⌊t/Q⌋.Q, we

rewrite uk as follows:

uk =
1

Sk

Sk∑
s=1

∇̂2J(θs,k, τs)(θk − θk−1)−∇2J(θs,k)(θk − θk−1)︸ ︷︷ ︸
ua
k

+
1

Sk

Sk∑
s=1

∇2J(θs,k)(θk − θk−1)−∇J(θk) +∇J(θk−1)︸ ︷︷ ︸
ub
k

.



To get the upper bound on ∥uk∥, we find an upper bound on the ∥ua
k∥ and ∥ub

k∥. For ∥ua
k∥, we define as as follows:

as = ∇̂2J(θs,k, τs)(θk − θk−1)−∇2J(θs,k)(θk − θk−1).

Due to individual gradient Lipschitzness (see Lemma 3.3), we have: ∥∇̂2J(θs,k, τs)∥ ≤ L. Moreover, using Jensen’s
inequality, ∥∇2J(θs,k)∥ = ∥E[∇̂2J(θs,k, τs)]∥ ≤ E[∥∇̂2J(θs,k, τs)∥] ≤ L. Therefore,

∥as∥2 =
∥∥∥∇̂2J(θs,k, τs)(θk − θk−1)−∇2J(θs,k)(θk − θk−1)

∥∥∥
2
≤ 2L∥θk − θk−1∥2.

Now, using vector Azuma-Hoeffding inequality from Lemma A.1, with at least probability 1− δ, we have:

∥ua
k∥2 =

∥∥∥∥∥ 1

Sk

Sk∑
s=0

as

∥∥∥∥∥
2

≤ 3

Sk

√
log(1/δ)Sk(2L)2

∥∥∥θk − θk−1

∥∥∥2
2

≤ 6L

√
log(1/δ)

Sk

∥∥∥θk − θk−1

∥∥∥
2
. (51)

To bound ∥ub
k∥, we consider the following two term o1 and o2 in ub

k:

∥ub
k∥2 =

∥∥∥∥∥ 1

Sk

Sk∑
s=1

∇2J(θs,k)(θk − θk−1)︸ ︷︷ ︸
o1

−∇J(θk) +∇J(θk−1)︸ ︷︷ ︸
o2

∥∥∥∥∥. (52)

We know that θs,k − θs−1,k =

[
(1 − s

Sk
)θk +

s

Sk
θk−1

]
−

[
(1 − s− 1

Sk
)θk +

s− 1

Sk
θk−1

]
=

1

Sk
(θk−1 − θk). Thus,

we can rewrite o1 as
∑Sk

s=1∇2J(θs,k)(θs,k − θs−1,k) and o2 as
∑Sk

s=0−∇J(θs,k) +∇J(θs−1,k) using telescoping sum.
Therefore:

∥ub
k∥2 ≤

Sk∑
s=1

∥∥∥∥−∇2J(θs,k)(θs,k − θs−1,k) +∇J(θs,k)−∇J(θs−1,k)

∥∥∥∥
2

≤ Skρ
∥θk − θk−1∥22

S2
k

= ρ
∥θk − θk−1∥22

Sk
, (53)

where the second inequality is due to Hessian Lipschitzness of J(θ)1.

Summing (51) and (53), we have:

∥uk∥2 ≤ 6L

√
log(1/δ)

Sk

∥∥∥θk − θk−1

∥∥∥
2
+ ρ

∥∥∥θk − θk−1

∥∥∥2
2

Sk
. (54)

Using inequality ∥A+B∥22 ≤ 2∥A∥22 + 2∥B∥22,

∥uk∥22 ≤ 72L2 log(1/δ)

Sk

∥∥∥θk − θk−1

∥∥∥2
2
+ 2ρ2

∥∥∥θk − θk−1

∥∥∥4
2

S2
k

. (55)

From the above inequality, we can imply that the condition ∥uk∥22 ≤
ϵ2

540Q log(1/δ)
holds if Sk is greater than or equal to

Sk ≥ Cs1Q

∥∥∥θk − θk−1

∥∥∥2
2

ϵ2
+ Cs2

√
Q

∥∥∥θk − θk−1

∥∥∥2
2

ϵ
, (56)

1Hessian Lipschitz continuity of J implies that for a constant ρ and for all θ1, θ2 ∈ Rd: ∥∇J(θ1)−∇J(θ2)−∇2J(θ2)(θ1−θ2)∥ ≤
ρ∥θ1 − θ2∥2.



where Cs1 = 38880L2 log2(1/δ) and Cs2 =
√
1080 log(1/δ)ρ2. The above conditions has already been satisfied as we set

Sk to C2Q
∥θk−θk−1∥2

2

ϵ2 in the statement of lemma where we assume that ϵ ≤ 4L2ρ/M , and Q =
√
ρM√
ϵL

.

For k = ⌊t/Q⌋.Q, using Azuma-Hoeffding inequality from Lemma A.1, with probability at least 1− δ, we have

∥uk∥2 =

∥∥∥∥∥ 1

|Bcheck|
∑

τ∈Bcheck

∇̂J(θk, τ)−∇J(θk)

∥∥∥∥∥
2

(57)

=
1

|Bcheck|

∥∥∥∥∥ ∑
τ∈Bcheck

∇̂J(θk, τ)−∇J(θk)

∥∥∥∥∥
2

(58)

≤ 3

|Bcheck|
√
4 log(1/δ)|Bcheck|W 2 (59)

≤ 3

√
4
log(1/δ)

|Bcheck|
W 2, (60)

where in the first inequality, we used the inequality ∥∇̂J(θk, τ)∥ ≤W according to Lemma 3.3.

Now, ∥uk∥2 can be bounded as follows:

∥uk∥22 ≤ 36W 2 log(1/δ)

|Bcheck|
(61)

≤ ϵ2

540 log(1/δ)
, (62)

where we set |Bcheck| =
19440W 2 log2(1/δ)

ϵ2
in the second inequality.

Based on what we proved above, with at least probability 1− δ(t− ⌊t/Q⌋.Q), we have: ∥uk∥22 ≤ ϵ2/(540 log(1/δ)) for all
t ≥ k > ⌊t/Q⌋.Q. Given that ∥uk∥22’s are bounded by ϵ2/(540 log(1/δ)) for all t ≥ k > ⌊t/Q⌋.Q, using Azuma-Hoeffding
inequality, with probability at least 1− δ, we have:

∥vi −∇J(θi)∥22 =
∥∥∥ i∑

k=⌊t/Q⌋.Q

uk

∥∥∥2
2

(63)

≤ 9 log(1/δ)
[
(i− ⌊t/Q⌋.Q).

ϵ2

540Q log(1/δ)
+

ϵ2

540 log(1/δ)

]
(64)

≤ 9 log(1/δ)
[
(t− ⌊t/Q⌋.Q).

ϵ2

540Q log(1/δ)
+

ϵ2

540 log(1/δ)

]
(65)

≤ 9 log(1/δ).
ϵ2

270 log(1/δ)
(66)

≤ ϵ2

30
, (67)

for any ⌊t/Q⌋.Q ≤ i ≤ t. Hence, with probability at least 1−2δ(t−⌊t/Q⌋.Q), (67) holds for all i, where ⌊t/Q⌋.Q ≤ i ≤ t
.

B.2 PROOF OF LEMMA 3.8

Lemma B.2. For |Bh| defined in the statement of Theorem 3.9, under Assumptions 3.1, 3.2, conditioned on Ft, with
probability at least 1− δ, we have:

∥Ut −∇2J(θt)∥2 ≤
ϵρ

30
. (68)



Proof: Using Azuma inequality from Lemma A.2, with probability at least 1− δ, we have:

∥Ut −∇2J(θt)∥ =

∥∥∥∥∥ 1

|Bh|
∑
τ∈Bh

∇̂2J(θt, τ)−∇2J(θt)

∥∥∥∥∥
2

(69)

=
1

|Bh|

∥∥∥∥∥ ∑
τ∈Bh

∇̂2J(θt, τ)−∇2J(θt)

∥∥∥∥∥
2

(70)

≤ 3

|Bh|
√
4 log(d/δ)|Bh|L2 (71)

≤ 3

√
4
log(d/δ)

|Bh|
L2, (72)

where we used the the fact ∥∇̂2J(θt, τ)∥ ≤ L and ∥∇2J(θt)∥ ≤ L (as shown in the proof of Lemma B.1). Thus,∥∥∥Ut −∇2J(θt)
∥∥∥2 can be bounded as follows:

∥Ut −∇2J(θt)∥22 ≤ 36L2 log(d/δ)

|Bh|
(73)

≤ ϵρ

30
, (74)

where we set |Bh| =
1080L2 log(d/δ)

ρϵ
in the second inequality.

B.3 PROOF OF THEOREM 3.9

Suppose that VR-SCP terminates at iteration T ∗ − 1. We claim that T ∗ < T , and accordingly Cubic-Finalsolver routine is
executed. By contradiction, suppose that T ∗ = T . Then for all iteration 0 ≤ t ≤ T ∗ − 1:

J(θt+1) ≥ J(θt) + ⟨∇J(θt), ht⟩+
1

2
⟨∇2J(θt)ht, ht⟩ −

ρ

6
∥ht∥3 (75)

= J(θt) +mt(ht) + ⟨∇J(θt)− vt, ht⟩+
1

2
⟨(∇2J(θt)− Ut)ht, ht⟩+

M − ρ

6
∥ht∥3 (76)

≥ J(θt) +mt(ht)−
6

5
√
ρ

∥∥∥∇J(θt)− vt

∥∥∥3/2 − 10

ρ2

∥∥∥∇2J(θt)− Ut

∥∥∥3 + ρ

4
∥ht∥3, (77)

where the equality is due to the definition of mt(ht). Moreover, we use Lemma A.6 in the last inequality and consider
M = 4ρ.

Since we assumed that T ∗ = T , for all 0 ≤ t ≤ T ∗ − 1, we have:

mt(ht) ≥ ρ−1/2ϵ3/2/6. (78)

By using Lemmas 3.7 and 3.8, for all 0 ≤ t ≤ T ∗ − 1, with probability at least 1− 3Tδ:∥∥∥∇J(θt)− vt

∥∥∥3/2 ≤ ϵ3/2/20, (79)∥∥∥∇2J(θt)− Ut

∥∥∥3 ≤ (ρϵ)3/2/160. (80)

Using (78), (79) and (80) in (77),

J(θt+1)− J(θt) ≥ ρ−1/2ϵ3/2/6 +
ρ

4
∥ht∥3 − ρ−1/2ϵ3/2/8. (81)



Telescoping the last inequality from t = 0 to t = T ∗ − 1, we have:

∆J ≥ J(θT )− J(θ0) ≥
T∗−1∑
t=0

ρ−1/2ϵ3/2/24 +
ρ

4
∥ht∥3 (82)

≥ Tρ−1/2ϵ3/2/24 +

T∗−1∑
t=0

ρ

4
∥ht∥3. (83)

The last inequality contradicts with the assumption T ≥ 25∆Jρ
1/2ϵ−3/2. Thus, with probability at least 1− 3Tδ, Cubic-

Finalsolver will be executed before ending the “for loop” of the Algorithm 1.

When Cubic-Finalsolver is executed, according to the Lemma A.3, with probability at least 1− δ, none of the conditions in
the statement of lemma hold. Thus we have

√
ϵ/ρ > ∥h∗

t ∥ and ∥vt∥ < max(Mϵ/(2ρ),
√
LM/2( ϵρ )

3/4) with probability
at least 1− Tδ. We use this observation to bound µ(θT̃ + hT̃ ) where T̃ = T ∗ − 1 is the last iteration. µ(θT̃ + hT̃ ) can be
bounded as follows:

µ(θT̃ + hT̃ ) ≤ 9

[
M3ρ−3/2∥hT̃ ∥

3 +M3/2ρ−3/2
∥∥∥∇J(θT̃ )− vT̃

∥∥∥3/2
+ ρ−3/2

∥∥∥∇2J(θT̃ )− UT̃

∥∥∥3 +M3/2ρ−3/2∥∇mt(hT̃ )∥
3/2 +M3ρ−3/2

∣∣∣∥hT̃ ∥ − ∥h
∗
T̃
∥
∣∣∣3]

≤ 1300ϵ3/2, (84)

where we know ∥hT̃ ∥ ≤ ∥h∗
T̃
∥ using Lemma A.4. Moreover, the output of Cubic-Finalsolver satisfies ∥∇mt(hT̃ )∥ ≤

ϵ. Furthermore, we used Lemma 3.7 and 3.8 to bound M3/2ρ−3/2∥∇J(θT̃ ) − vT̃ ∥3/2 and ρ−3/2∥∇2J(θT̃ ) − UT̃ ∥3,
respectively.

B.4 PROOF OF COROLLARY 3.10

We compute the number of the stochastic gradient and Hessian evaluations. First, we find a bound on the following term:

T̃∑
t=0

∥ht∥2 ≤ (T̃ + 1)1/3(

T̃∑
t=0

∥ht∥3)2/3 ≤ (25∆Jρ
1/2ϵ−3/2)1/3 + (4∆J/ρ)

2/3 ≤ ∆J

8ρ1/2ϵ1/2
, (85)

where the first inequality is due to Hölder’s inequality and the second one is due to the T̃ = T ∗ − 1 ≤ 25∆Jρ
1/2ϵ−3/2 and

∆J ≥
∑T∗−1

t=0
ρ
4∥ht∥3 according to (82). Now we compute the whole stochastic gradient evaluations over T̃ = T ∗ − 1:

T̃∑
mod(t,Q)=0

|Bcheck|+
T̃∑

mod(t,Q) ̸=0

St

(i)

≤ C1T̃

Qϵ2
+

T̃∑
mod(t,Q)̸=0

C2Q∥ht∥2

ϵ2
(86)

≤ C1T̃

Qϵ2
+

C2Q

ϵ2

T̃∑
t=0

∥ht∥2 (87)

≤ C1T̃

Qϵ2
+

C2Q

ϵ2

T̃∑
t=0

∥ht∥2 (88)

(ii)

≤
√
ϵL

√
ρM

C1(25∆Jρ
1/2ϵ−3/2)

ϵ2
+

C2
√
ρM

ϵ2
√
ϵL

∆J

8ρ1/2ϵ1/2
(89)

= Õ(ϵ−3). (90)

(i) For the first term (|Bcheck|), we consider C1 = 19440W 2 log2(1/δ). For the second term, we use Sk defined in Lemma
B.1.
(ii) We set Q =

√
ρM√
ϵL

and we know that T̃ = T ∗ − 1 ≤ 25∆Jρ
1/2ϵ−3/2. Therefore we use (85) to bound

∑T̃
t=0 ∥ht∥2.



Algorithm 2 Cubic-Subsolver
Input: U [.], v,M,L, ϵ

1: if ||v|| ≥ L2/M then
2: Rc ← − vTU [v]

M ||v||2 +
√

( vTU [v]
M ||v||2 )

2 + 2||v||/M
3: ∆← v

||v||Rc

4: else
5: ∆← 0, σ ← c′

√
Mϵ
L , η ← 1

20L
6: ṽ ← v + σU for U ∼ Uniform(Sd−1)
7: for t = 0, · · · , T (ϵ) do
8: ∆← ∆+ η(ṽ + U [∆]− M

2 ||∆||∆)
9: end for

10: end if
11: ∆m ← vT∆+ 1

2∆
TU [∆]− M

6 ||∆||
3

12: return ∆,∆m

Algorithm 3 Cubic-Finalsolver
Input: U [.], v,M,L, ϵ

1: ∆← 0, gm ← v, η ← 1
20L

2: while ||vm|| ≥ ϵ/2 do
3: ∆← ∆+ ηvm
4: vm ← v + U [∆]− M

2 ||∆||∆
5: end while
6: return ∆

Now we compute the Hessian vector evaluations in Cubic-Subslover and Cubic-Finalsolver. For each call of Cubic-Subslover,

using Lemma A.3, we need T (ϵ) ≥ Cs
L

M
√

ϵ/ρ
iterations and at each iteration we have |Bh| =

1080L2 log(d/δ)

ρϵ
samples.

Hence in total, we have T × T (ϵ)× |Bh| = 25∆Jρ
1/2

ϵ3/2
× Cs

L

M
√

ϵ/ρ
× 1080L2 log(d/δ)

ρϵ
= C3ϵ

−3 HVP evaluations where

C3 = 25∆JCs
1
M 1080L3 log(d/δ).

Using Lemma A.7, for Cubic-Finalsolver, the number of HVP evaluations is as follows:

CFL/
√
ρϵ × 1080L2 log(d/δ)

ρϵ
= C4ϵ

−3/2 HVP evaluations where C4 = CF
1080L3 log(d/δ)

ρ3/2
. Thus in total, we have

Õ(ϵ−3) stochastic gradient and HVP evaluations.

C DESCRIPTIONS OF CUBIC-SUBSOLVER AND CUBIC-FINALSOLVER

The pseudo-code of Cubic-Subsolver is given in Algorithm 2 which uses gradient ascent to ensure that there is a sufficient
increase in the objective of the sub-problem [Carmon and Duchi, 2016]. One difference compared with a simple gradient
ascent is that at each call of Cubic-Subsolver, if the gradient norm is large enough, it uses the Cauchy point (line 3) which
guarantees sufficient increase. In the gradient ascent part, the algorithm adds a small perturbation (line 6) (according to
uniform distribution) to the gradient estimate v to escape the “hard" cases in the sub-problem and iterates for T (ϵ) ≥
Cs

L

M
√

ϵ/ρ
iterations according to Lemma A.3.

Cubic-Subsolver and Cubic-Finalsolver have only access to v and HVP function U [.]. In Cubic-Finalsolver, in the WHILE
loop, the gradient ascent update is applied till the WHILE condition fails (line 2).

D DETAILS OF EXPERIMENTS

We used the default implementation of linear feature baseline and Gaussian MLP baseline from Garage library. The employed
linear feature baseline is a linear regression model that takes observations for each trajectory and extracts new features such



as different powers of their lengths from the observations. These extracted features are concatenated to the observations and
used to fit the parameters of the regression with the least square loss function.

We utilized a Linux server with Intel Xeon CPU E5-2680 v3 (24 cores) operating at 2.50GHz with 377 GB DDR4 of memory
and Nvidia Titan X Pascal GPU. The computation was distributed over 48 threads to ensure a relatively efficient run time.

In the following table, we provide the fine-tuned parameters for each algorithm. Batch sizes are considered the same for all
algorithms. The discount factor is also set to 0.99 for all the runs.

Table 2: Selected hyper-parameters for different algorithms.

Reacher Walker Humanoid Hopper

Max horizon 50 500 500 500

Neural network sizes 64× 64 64× 64 64× 64 64× 64

Activation functions Tanh Tanh Tanh Tanh

IS-MBPG lr 0.9 0.3 0.75 0.1

IS-MBPG c 100 12 5 50

IS-MBPG w 200 20 2 100

REINFORCE step-size 0.01 0.01 0.001 0.001

VR-SCP L 200 50 400 100

VR-SCP ρ 200 50 50 50

VR-SCP Q 10 2 5 2

PAGE-PG pt 0.4 0.4 0.6 0.6

PAGE-PG step-size 0.01 0.001 0.0005 0.001

HAPG step-size 0.01 0.01 0.01 0.001

HAPG Q 5 10 10 10

VR-BGPO lr 0.8 0.75 0.8 0.75

VR-BGPO c 25 25 25 25

VR-BGPO w 1 1 1 1

VR-BGPO lam 0.0005 0.0005 0.0025 0.0005

ACR-PN alpha 100 10000 10000 10000
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