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Abstract

We introduce a causal modeling framework that captures the
input-output behavior of predictive models (e.g., machine
learning models) by representing it using causal graphs. The
framework enables us to define and identify features that di-
rectly cause the predictions, which has broad implications for
data collection and model evaluation. We show two assump-
tions under which the direct causes can be discovered from
data, one of which further simplifies the discovery process.
In addition to providing sound and complete algorithms, we
propose an optimization technique based on an independence
rule that can be integrated with the algorithms to speed up the
discovery process both theoretically and empirically.

1 Introduction
Predictive models have become increasingly prevalent in
decision-making over the past few decades. In essence,
a predictive model is a function that maps a set of fea-
tures (often available from data) to a set of outcomes; see,
e.g., (MacKenzie 2013; Neilson et al. 2019; Ellis 2012). For
instance, a predictive model can be used to forecast the fu-
ture weather based on data from the past ten days. Machine
learning models are a common class of predictive models
whose parameters are learned from data, e.g., support vector
machines (Cortes and Vapnik 1995), decision trees (Breiman
et al. 1984), and more recently, neural networks (Bishop
1995; Goodfellow, Bengio, and Courville 2016). Other types
of predictive models that do not involve machine learning in-
clude statistical models such as linear regression (Freedman
2005), rule-based expert systems (Buchanan and Shortliffe
1984), and probabilistic models constructed from domain
knowledge (Pearl 1988; Darwiche 2009).

In this work, we consider a setup (in Figure 1a) where
the predictive models are treated as “black boxes”, meaning
that their behaviors are not interpretable by humans. This
happens, for instance, when the model parameters are not
publicly available or when the models (e.g., deep neural net-
works) are too complex to be transparent; see, e.g., (Lipton
2018; Caruana et al. 2015; Lada Kohoutová et al. 2020). To
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Figure 1: The setup and causal graph for a predictive model.

model the input-output behavior of predictive models under
this setup, we introduce a class of causal graphs that rep-
resent the predictive models as causal mechanisms.1 This
type of modeling appears to be different from the conven-
tional approach yet effectively captures the data-generating
process of the predictions. To illustrate the subtlety, con-
sider an example where a predictive model is used to pre-
dict a patient’s Disease (D) based on their Age (A), Symp-
tom (S), and Medication (M ). Without bearing in mind that
D is a prediction from {A,S,M}, one may model the in-
teractions among variables using the graph G shown in Fig-
ure 1b. However, G does not capture the data generating pro-
cess of D, and it becomes erroneous if we use G to answer
causal queries. For example, we would falsely conclude that
an intervention on Symptom (S) does not affect the pre-
dictions on Disease (D). Instead, Figure 1c depicts the true
causal graph in which the predictive model is converted into
a causal mechanism for D. As we will see later, this conver-
sion technique can be applied to model all predictive models.

Once we represented the predictive models as graphs, the
direct causes for predictions on the outcome Y become ex-
actly the parents of Y in the causal graph. Understanding
the direct causes for model predictions has a wide range
of applications. First, it provides insights into which fea-
tures contribute to the predictions, which has vast implica-

1The idea of treating machine learning models as causal mech-
anisms was mentioned briefly in (Darwiche 2020). This work for-
malizes the idea and studies the problem of discovering direct
causes based on the formulation. We allow causal mechanisms to
exhibit uncertainties in this work.



tions for model explainability and fairness; see, e.g., (Ali
et al. 2023; Ribeiro, Singh, and Guestrin 2016; Darwiche
and Hirth 2020; Barocas, Hardt, and Narayanan 2023; Za-
far et al. 2017). Second, identifying features that do not
directly cause the predictions allows us avoid unnecessary
data collections, which reduces the cost on data acquisition;
see, e.g., (Coffey and Elliott 2023; Trask et al. 2012). Our
main question becomes: how can we discover these direct
causes from data (on the features and outcome)? To answer
this question, we first propose two assumptions on the data
distribution that ensure the direct causes are discoverable
(uniquely determined). Under both assumptions, the direct
causes form a Markov boundary of the outcome — a notion
introduced in (Pearl 1988) that has been studied extensively
since then. This immediately offers us sound and complete
methods for discovering direct causes based on leverag-
ing the existing algorithms for discovering Markov bound-
aries. One of these assumptions also simplifies the procedure
of discovering direct causes, which improves the computa-
tional efficiency of the discovery process. Moreover, we in-
troduce an independence rule that can be integrated with the
existing algorithms to further speed up the discovery process
as we demonstrate both theoretically and empirically.

The paper is structured as follows. We start with some
technical preliminaries in Section 2. In Section 3 we intro-
duce the causal modeling for predictive models and formally
define the notion of direct causes in this context. Section 4
provides two assumptions under which direct causes can be
discovered from data, along with algorithms for discover-
ing these direct causes. We then show an independence rule
that can be integrated into the discovery algorithm to fur-
ther improve the efficiency in Section 5. Section 6 presents
empirical results to demonstrate the effectiveness of the in-
dependence rule. We close with some concluding remarks in
Section 7. All proofs are included in the Appendix.

2 Technical Preliminaries
We assume all variables are discrete, though all the results
can be extended to continuous domains. Single variables are
denoted by uppercase letters (e.g., X) and their states are
denoted by lowercase letters (e.g., x). Sets of variables are
denoted by bold, uppercase letters (e.g., X) and their instan-
tiations are denoted by bold, lowercase letters (e.g., x).

2.1 Causal Models and Interventions
In this work, we consider causal graphs in the form of
acyclic directed mixed graphs (ADMGs) (Richardson 2003).
Definition 1. An acyclic directed mixed graph (ADMG) is a
graph that contains directed edges (→) and bidirected edges
(↔) and in which directed edges do not form any cycles.

Figure 2a depicts an ADMG over four variables. Let X ,
Y be two variables in an ADMG, we say that X is a parent
of Y , and Y a child of X if X → Y. Moreover, we say that
X is an ancestor of Y , and Y a descendant of X if there is a
directed path from X to Y . We say that X is a sibling of Y if
X ↔ Y , and a spouse of Y if X and Y share a same child.
We say that X is a neighbor of Y if it is a parent, child, or
sibling of Y. A variable V is called a collider on a path if
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Figure 2: A causal graph and empirical data.

→ V ←,↔ V ↔,→ V ↔, or↔ V ← appears on the path
and is called a non-collider otherwise.2

Intervention is a standard technique for studying the
causal relations among events. By definition, an interven-
tion fixes a variable to a specific state, which is different
from naturally observing the state of a variable. For exam-
ple, instructing (intervening) a patient to take a drug yields
a different effect than seeing (observing) a patient taking a
drug. We write do(X = x), or simply do(x), if an interven-
tion fixes a variable X to the state x. A variable X has a
causal effect on variable Y if an intervention on X changes
the distribution of Y. The causal effect can only happen if X
is an ancestor of Y in the causal graph (Pearl 2009).

2.2 Independences in Graphs and Distributions
(Conditional) independence is a central notion in the domain
of causal inference and discovery. In fact, the goal of discov-
ery is to identify causal graphs consistent with the indepen-
dencies present in a given data distribution. We next review
the definitions of independence for both causal graphs and
distributions and discuss the interplay between the two.

The independence relations in a causal graph (ADMG)
are characterized by the notion of m-separation (Richardson
2003). By definition, let X,Y,Z be three disjoint variables
sets in an ADMG G,X and Y are said to be m-separated by
Z, denoted msepG(X,Z,Y), iff every path between X and
Y satisfy the following property: (1) all the non-colliders on
the path are in Z; and (2) none of the colliders on the path is
an ancestor of Z. In Figure 2a, A and Y are m-separated by
{B,C} but are not m-separated by {B}.

Let Pr be a distribution and X,Y,Z be three disjoint
variable sets, we say that X and Y are independent con-
ditioned on Z if Pr(x|y, z) = Pr(x|z) for all instantia-
tions x,y, z. We adopt the notations in (Darwiche 2009)
and write IPr(X,Z,Y) if the independence relation holds
and IPr(X,Z,Y) otherwise. In practice, the distribution
Pr is often provided in the form of data as shown in Fig-
ure 2b. Popular methods for testing independences from
data include χ2-test (Pearson 1900) and G-test (Sokal and
Rohlf 2013). These independence tests, however, suffer
from two bottlenecks as pointed out in (Spirtes, Glymour,
and Scheines 2000, Ch. 5). The first is computational ineffi-
ciency, which occurs when independence tests are overused

2A directed path from X to Y is a path in the form of X →
· · · → Y . Each X ↔ Y represents a hidden confounder U, i.e.,
X ← U → Y.



since the time required by each independence test is at least
linear in the sample size. The second is sample inefficiency,
which occurs when we test independence with a large condi-
tioned set Z, since the number of samples required for test-
ing independence stably is exponential in |Z|.3

The notions of m-separations and independencies are con-
nected with the following concepts of independence map
(I-MAP), dependency map (D-MAP), and perfect map (P-
MAP) as defined in (Pearl 1988; Darwiche 2009).

Definition 2. Let G be a causal graph and Pr be a distri-
bution over a same set of variables. We say that G is an
I-MAP of Pr iff msepG(X,Z,Y) implies IPr(X,Z,Y) (for
all X,Y,Z); G is a D-MAP of Pr iff IPr(X,Z,Y) implies
msepG(X,Z,Y); and G is a P-MAP of Pr iff G is both an
I-MAP and a D-MAP of Pr .

We may sometimes say “Pr is an I-MAP of G” to mean
that “G is an I-MAP of Pr”, similarly for D-MAP and P-
MAP. D-MAP is also known as faithfulness in the causal
discovery literature. The notion of P-MAP is usually re-
quired by the existing causal discovery algorithms (such as
PC (Spirtes, Glymour, and Scheines 2000), FCI (Spirtes,
Glymour, and Scheines 2000), etc.) to ensure that the true
causal graph can be discovered from data.

2.3 Markov Boundary
As we will see later, the discovery of direct causes for model
predictions can be reduced to the discovery of Markov
boundary in some scenarios. Therefore, we also review the
notion of Markov boundary along with some discovery algo-
rithms in this section. We start with the definition of Markov
boundary in (Pearl 1988) with a slight rephrasing.

Definition 3. Let Pr be a distribution over variables X, Y.
The Markov boundary for Y , denoted MB(Y ), is the mini-
mal subset of X such that IPr(Y,MB(Y ),X \MB(Y )).4

That is, Y is independent of other features when condi-
tioned on its Markov boundary. Suppose a causal graph G is
a P-MAP of the distribution Pr, then the Markov boundary
of Y is unique and is equivalent to the Markov blanket of Y
in G (Pearl 1988); see Appendix A for a review of the formal
definitions and discovery algorithms for Markov blankets.

One key subroutine (procedure) used extensively by
most Markov blanket discovery algorithms is the adjacency
search, which identifies the neighbors of Y in the causal
graph G. The procedure is based on the following observa-
tion: variables X,Y are adjacent to each other in G iff they
are always dependent in Pr regardless of the conditioned
variables. To check whether two variables are adjacent, the
adjacency search algorithm enumerates all possible condi-
tioned sets Z ⊆ X with an increasing size and removes a
variable X from the neighbors of Y if IPr(X,Z, Y ). Con-
sider the causal graph G in Figure 2a that is a P-MAP of

3To illustrate, suppose |Z| = 100, then there are 2100 distinct
instantiations over Z so we need at least 2100 samples to ensure
that each instantiation appears at least once.

4Minimal subset here means that no proper subset of MB(Y )
satisfies the property.

some distribution Pr . The adjacency search algorithm ini-
tializes all features {A,B,C} to be the neighbors of Y. It
then starts enumerating the conditioned sets Z with an in-
creasing size. When Z = {B,C}, we find that IPr(A,Z, Y )
and therefore remove A from the neighbors of Y. The algo-
rithm finally concludes that the neighbors of Y are {B,C}
after it enumerates all feasible conditioned sets.

In the worst case, the number of independence tests re-
quired by adjacency search is exponential in the number of
variables. As we will see later, one main focus of this paper
is to optimize the efficiency of the adjacency search, which
is key to speeding up the discovery of direct causes.

3 Causal Modeling for Predictive Models
We present a class of causal graphs called predictive graphs
to represent the input-output behavior of predictive models.
Given a predictive model that takes a set of input features X
and predicts an outcome Y, we construct a predictive graph
that satisfies the following constraints: (1) Y cannot be a
cause of any X ∈ X; and (2) there is no hidden confounder
between a feature X and Y. These constraints follow natu-
rally from the data generating process of Y : intervening on
predictions can never modify the input features, and the only
possible causal factors for the predictions are the input fea-
tures. We formally define the notion of predictive graphs.

Definition 4. Let X be a set of features and Y be an out-
come. A predictive graph is an ADMG over X, Y where the
only possible edge between X ∈ X and Y is X → Y.

We will use G(X, Y ) to denote a predictive graph wrt fea-
tures X and outcome Y. Figure 1 depicts a predictive graph
G({A,S,M}, D). One key observation is that the predic-
tive model is translated into the causal mechanism for Y in
the predictive graph; that is, the causal mechanism (which
involves Y and its parents) captures the input-output behav-
ior of the predictive model. From now on, we shall assume
that the data distribution Pr(X, Y ) from a predictive model
is always induced by some true predictive graph G(X, Y ).5

In a predictive graph, the parents of outcome Y are ex-
actly the direct causes of the mode predictions. In practice,
however, the predictive graph is often not available and we
do not know the direct causes. Hence, our goal is to dis-
cover the direct causes from data. This leads to two key ques-
tions: (1) when are the direct causes discoverable (uniquely
determined)? (2) how can we find these direct causes effi-
cently if they are indeed discoverable? Before addressing
these questions, we consider the formal definition of direct
causes from (Woodward 2004) with a rephrasing.

Definition 5. A variable X is a direct cause of Y if
Pr(Y |do(x), do(x′)) ̸= Pr(Y |do(x′)) for some state x of
X and instantiation x′ of X \ {X}.

That is, variable X is a direct cause of Y iff an interven-
tion on X affects the distribution of Y while fixing the states
of other variables. The definition suggests that discovering

5A distribution Pr is induced by some causal graph G iff it is
generated by some parameterizations of G. Moreover, G is guar-
anteed to be an I-MAP of Pr but may not be a D-MAP of Pr .



direct causes requires conducting interventions, which can-
not be inferred from observational studies in general.6 How-
ever, when the distribution is induced by a predictive graph,
the direct causes can actually be defined without interven-
tions as we show next.
Proposition 6. Let G(X, Y ) be a predictive graph that in-
duces a distribution Pr where Pr(X) > 0.7 Then X ∈ X is
a direct cause of Y by Definition 5 iff IPr(X,X \ {X}, Y ).

We shall assume that the true predictive graph is consis-
tent with Definition 5 so the parents of Y in the true predic-
tive graph satisfy the condition in Proposition 6. From the
proposition, we immediately attain a method for discover-
ing direct causes by simply checking whether IPr(X,X \
{X}, Y ) for each feature X. This method, however, is not
sample-efficient since the conditioned set may become ex-
tremely large when we have more features; see our earlier
discussion about sample efficiency in Section 2.2. We next
propose some assumptions under which the direct causes
can be discovered with sample-efficient algorithms.

4 Assumptions for Discovering Direct Causes
We propose two assumptions under which the direct causes
of the predictions are discoverable. In both cases, we show
that the direct causes become equivalent to the Markov
boundary (Definition 3) so we can leverage methods for dis-
covering Markov boundaries for discovering direct causes.

4.1 Canonicalness
We start with the first assumption called canonicalness,
which is commonly assumed by existing algorithms for dis-
covering Markov blankets.
Definition 7. A distribution Pr is said to be canonical if it
is a P-MAP of some causal graph G.

Note that the causal graph G in Definition 7 may not be
the true predictive graph; in fact, G can be any ADMG,
which makes the assumption quite general. The following
result shows that the direct causes are discoverable when the
data distribution is canonical.
Theorem 8. Let G(X, Y ) be a predictive graph that induces
a canonical distribution Pr . Then the direct causes of Y in
G form a unique Markov boundary of Y in Pr .

Let G be the causal graph that is a P-MAP of the distribu-
tion Pr, then the Markov boundary for Y in Pr is exactly the
Markov blanket of Y in G. That is, the problem of discov-
ering direct causes in a predictive graph can be reduced to
to the problem of discovering the Markov blanket when the
given distribution is canonical. To illustrate, suppose a distri-
bution Pr induced by a predictive graph G is a P-MAP of the
causal graph G′ in Figure 3a, then the set of direct causes of
Y in G is {A,B,C,D,E, F}, which is exactly the Markov
blanket of Y in G′. This result provides a method for dis-
covering direct causes that is based on adopting the existing

6See (Pearl and Mackenzie 2018) for a discussion on different
layers of causal hierarchy.

7This positivity assumption ensures that Pr(Y |X) is well-
defined.
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Figure 3: Causal graphs for different assumptions.

algorithms for discovering Markov blankets under ADMGs
such as the M3B algorithm (Yu et al. 2018).

4.2 Weak Faithfulness
Our second assumption is a weaker type of faithfulness that
imposes constraints on the distributions induced by the true
predictive graph. As we will show later, the assumption not
only makes the direct causes discoverable but also leads to
an improvement on the computational efficiency.
Definition 9. Consider a predictive graph G(X, Y ). A dis-
tribution Pr is weakly faithful wrt G if X ∈ X is a parent of
Y in G only if IPr(X,Z, Y ) for all Z ⊆ X \ {X}.8

In practice, the weak faithfulness requires that the model
predictions always depend on the direct causes regardless
of the conditioned set on other features. This assumption is
likely to hold, for instance, when the predictive model is a
linear or polynomial regressor. To see an example where the
assumption is violated, consider a canonical distribution Pr
that is a P-MAP of the causal graph in Figure 3b. Pr is not
weakly faithful since IPr(Y,A,B) even though B is a direct
cause of Y by Theorem 8. The following result states that the
direct causes are discoverable under weak faithfulness.
Theorem 10. Let G(X, Y ) be a predictive graph and Pr be
a distribution that is weakly faithful wrt G. The direct causes
of Y in G form a unique Markov boundary of Y in Pr .

Another advantage brought by the weak faithfulness as-
sumption is that it enables a faster discovery of direct causes
when compared to the existing Markov blanket discovery
algorithms. First, the direct causes of Y coincide with the
definition of neighbors of Y under the weak faithfulness.
Hence, all the direct causes can be found through a single
adjacency search for Y, which avoids the additional inde-
pendence tests for discovering non-neighbor variables (e.g.,
spouses) as required by Markov blanket discovery. Second,
since Pr is induced by a predictive graph, Y is independent
of all other features conditioned on its parents by Markov
assumption. This allows us skip the “symmetry correction”
step (Tsamardinos, Brown, and Aliferis 2006) in adjacency
search, which further simplifies the discovery process.9

8Weak faithfulness is a type of adjacency faithfulness in (Ram-
sey, Zhang, and Spirtes 2006) which is weaker than faithfulness.

9Symmetry correction is required by Markov blanket discovery
algorithms for the sake of correctness. To conclude that a feature
X is a neighbor of the outcome Y , the symmetry correction further
checks whether Y is adjacent to X in addition to checking that X
is adjacent to Y.
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Algorithm 1 depicts the details of adjacency search. Un-
der the weak faithfulness assumption, the direct causes
of model predictions can be discovered by calling
ADJ-SEARCH in Algorithm 1 while skipping lines 14-18.10

Before showing another technique for optimizing the dis-
covery process, we note that a distribution Pr can be both
canonical and weakly faithful. This happens, for example,
when Pr is a P-MAP of the true predictive graph.

5 Optimization with an Independence Rule
We next introduce a novel independence rule that can be in-
tegrated with the adjacency search to accelerate the discov-
ery process when Pr is canonical. This result can be com-
bined with the optimization technique mentioned in the pre-
vious section if Pr is also weakly faithful.

We start with the following main theorem which intro-
duces an important independence rule.
Theorem 11. Let Pr be a distribution over disjoint vari-
able sets X,Y,Z,W. If IPr(X,Z ∪W,Y) and IPr(X ∪
Z, ∅,W), then IPr(X,Z,Y).

This result allows us to skip the independence test on
IPr(X,Z∪W,Y), which involves a larger conditioned set,
if we know that IPr(X,Z,Y) and IPr(X∪Z, ∅,W), which
involve smaller conditioned sets. This method can be ap-
plied widely to skip independence tests in adjacency search,
where the independence tests are conducted with increas-
ingly larger conditioned sets. Again, skipping independence
tests speeds up the adjacency search, therefore the discov-
ery of direct causes, since the time complexity of discovery
algorithms is dominated by the number independence tests;
see Section 2.2 for our earlier discussion on this.

We next define a notion that can be used to characterize
scenarios in which an independence test can be skipped.
Definition 12. A variable set V is said to be
I-decomposable wrt distribution Pr if V can be partitioned
into non-empty sets V1 and V2 where IPr(V1, ∅,V2).

The notion of I-decomposability can be used as follows.
Suppose we want to test IPr(X,Z, Y ), the classical way is
to apply χ2-test (or G-test), which can be quite time con-
suming if the sample size is large. However, if we further
know that Z′ = (Z ∪ {X}) is I-decomposable, we can im-
mediately conclude that the independence does not hold and
skip the independence test for the following reason. Given
that Z′ is I-decomposable, we can partition Z′ into indepen-
dent sets Z1,Z2 where X ∈ Z1. Since we test indepen-
dence with an increasing size of conditioned set, we must

10The independence test IPr will be replaced by χ2-test (or G-
test) in practice.

Algorithm 1: Adjacency Search with Symmetry Correction
1: procedure NONSYM-SEARCH(Features X, Target Y , Pr)
2: Initialize adjacent nodes C← X
3: depth d← 0
4: while d < |C| do
5: for every W ∈ C do
6: for every Z ⊆ (C \ {W}) where |Z| = d do
7: if Z ∪ {W} is I-decomposable then continue
8: if IPr(Y,Z,W ) then remove W from C

9: d← d+ 1
10: return C
11: procedure ADJ-SEARCH(Features X, Outcome Y , Pr)
12: neighbors(Y )← NONSYM-SEARCH(X, Y,Pr)
13: /* The following code is for symmetry correction */
14: for every Z ∈ neighbors(Y ) do
15: W← X ∪ {Y } \ {Z}
16: neighbors(Z)← NONSYM-SEARCH(W, Z,Pr)
17: if Y /∈ neighbors(Z) then
18: neighbors(Y )← neighbors(Y ) \ {Z}
19: return neighbors(Y )

have already tested and concluded IPr(X,Z1 \ {X}, Y ),
which implies that IPr(X,Z, Y ) by Theorem 11. To illus-
trate, consider a distribution Pr that is a P-MAP of the pre-
dictive graph in Figure 4a. During the adjacency search ,
we can skip the independence test IPr(Y, {A,D}, B) given
the fact that IPr(B, ∅, {A,D}) and IPr(Y, ∅, B). We insert
this type of optimization as a precondition in line 7 of Algo-
rithm 1 and will call it the I-decomposability rule.

One practical question related to I-decomposability is:
How can we check efficiently whether a set V is I-
decomposable? Our method for checking I-decomposability
hinges on the convenience brought by the canonicalness as-
sumption. In particular, when Pr is canonical, the marginal
independence IPr(V1, ∅,V2) holds iff the pairwise inde-
pendence IPr(V1, ∅, V2) holds for all V1 ∈ V1 and V2 ∈
V2.

11 We can now efficiently check I-decomposability for a
variable set V as follows. Initialize a set S = {V } with any
V ∈ V. Add variables to S recursively: for each V ∈ V that
is not already in S, add V to S if IPr(V, ∅,S). The set V is
I-decomposable iff S ̸= X when no more variable can be
added to S. In practice, we can avoid repeated independence
tests by caching pairwise independences.

Algorithm 1 with the I-decomposability rule preserves ad-
jacency searches as shown in the following theorem.
Theorem 13. Let Pr be a canonical distribution over X, Y.
Then ADJ-SEARCH(X, Y,Pr) in Algorithm 1 yields the
same result with or without line 7.

That is, we can integrate the I-decomposability rule into
the Markov blanket discovery algorithms (such as M3B)
while preserving their soundness and completeness for find-
ing direct causes. When the distribution Pr is both canonical
and weakly faithful, we can combine the I-decomposability
rule with the results in Section 4.2 to further speed up the
discovery of direct causes.

11This result does not hold for general distributions; see (Pearl
1988; Darwiche 2009) for details.



Corollary 14. Let G(X, Y ) be a predictive graph and Pr be
a distribution induced by G. Suppose Pr is both canonical
and weakly faithful wrt G, then ADJ-SEARCH(X, Y,Pr) in
Algorithm 1 (with line 7 and without lines 14-18) returns the
direct causes of Y in G.

We next analyze the time complexity of the adjacency
search. In particular, we focus on the number of indepen-
dence tests required by the NONSYM-SEARCH procedure
since it is dominating component of adjacency search (as
shown in Algorithm 1). Similar to the result in (Spirtes,
Glymour, and Scheines 2000), the number of indepen-
dence tests required by NONSYM-SEARCH without the I-
decomposability rule is bounded by O(n·

∑c
k=0

(
n
k

)
), where

n is the number of features and c = |C| is the number of
variables returned by the procedure. It is evident that the
procedure requires no more independence tests when we add
the I-decomposability rule as a precondition in line 7, since
it only skips independence tests.12 But how much speedup
can the I-decomposability rule provide? The next proposi-
tion shows that the I-decomposability rule can exponentially
reduce the number of independence tests in some cases.

Proposition 15. There exists a class of distributions Pr with
n features where NONSYM-SEARCH with line 7 requires
O(n3) independence tests while NONSYM-SEARCH without
line 7 requires O(n · exp(n)) independence tests.

The proof of the result is based on constructing distribu-
tions that are P-MAP of the predictive graphs in Figure 4b.
To summarize, we introduced two types of optimizations
that speed up the discovery of direct causes. Both optimiza-
tions are based on improving the efficiency of the discovery
of Markov boundaries. The first one simplifies the discovery
procedure when the distribution is weak faithful, whereas
the second one allows us to skip independence tests in adja-
cency search when the distribution is canonical.

Before presenting empirical results to further demonstrate
the effectiveness of the I-decomposability rule, we note here
that the NONSYM-SEARCH in Algorithm 1 (with line 7) is
anytime. That is, we can interrupt the search algorithm at
any time without losing the true direct causes. This can be
achieved by bounding the depth d in Line 4 of Algorithm 1.
This result is crucial in practice under limited resources.

6 Experiments
We conduct experiments to further demonstrate the effec-
tiveness of the I-decomposability rule. We compare the
computational efficiency and sample efficiency of discov-
ery algorithms with and without I-decomposability rule
under the cases of (i) canonicalness and weak faithful-
ness; and (ii) canonicalness only. For case (i), we com-
pare the performance of six different algorithms: Algo-
rithm 1 without line 7 (ADJ), Algorithm 1 with line 7
(ALG1), Interleaved HITON-PC (Aliferis, Tsamardinos,
and Statnikov 2003; Aliferis et al. 2010) (I-HITON), in-
terleaved HITON-PC with the I-decomposability rule (I-

12The I-decomposability rule adds at most O(n2) tests for pair-
wise independences. This overhead, however, is negligible when
the causal graph is dense.

HITON-DEC), Semi-Interleaved HITON-PC (Aliferis et al.
2010) (SI-HITON) and Semi-Interleaved HITON-PC with
the I-decomposability rule (SI-HITON-DEC). For case (ii),
we compare the performance of two algorithms: the M3B
algorithm (Yu et al. 2018) (M3B), and M3B algorithm with
the I-decomposability rule (M3B-DEC).13

For all algorithms, we employ χ2-tests to test indepen-
dences from data. In particular, we set a threshold of 0.2
on the p-value for all pairwise independence tests required
by I-decomposability (line 7 in Algorithm 1), a threshold of
0.1 for ADJ, ALG1, I-HITON, I-HITON-DEC, SI-HITON, SI-
HITON-DEC, and a threshold of 0.05 for M3B, M3B-DEC.
When a discovery algorithm returns more direct causes than
there actually are, we keep the direct causes that attain the
lowest p-value among all independence tests conducted by
the algorithm. In Algorithm 1, this can be implemented by
recording the p-values for all independence tests in line 8.

For all experiments, we consider random causal mod-
els (causal Bayesian networks) that contains 100 variables.
The causal graphs for these models are generated using the
Erdős–Rényi method (Erdős, Paul and Rényi, Alfréd 1959)
as follows. In case (i), we first generate a random ADMG
over 99 features where each directed edge is added with
probability 0.5 and each bidirected edge is added with prob-
ability 0.1.14 We then randomly pick c features to be the
parents the outcome Y. In case (ii), we generate a random
ADMG over 100 variables where each directed edges is
added with probability 0.5 and each bidirected edge is added
with probability 0.01. We bound the maximal degree of vari-
ables by d. In both cases, every variable has 2 or 3 states.

Our first set of experiments compares the computational
efficiency of the algorithms. We consider causal graphs with
different complexity by varying the number of direct causes
c ∈ {7, 8, 9, 10} in case (i) and vary the maximal degree
with d ∈ {7, 8, 9, 10} in case (ii). In both cases, the al-
gorithms need to discover the direct causes from 100,000
random samples generated from the true causal model. Ta-
bles 1 and 2 (in Appendix) record the average accuracy,
time (in seconds), and number of independence tests of al-
gorithms over 20 runs. It is evident that algorithms with the
I-decomposability rule require fewer independence tests and
hence are faster than the algorithms without the rule, with
extreme cases when the integration of I-decomposability
rule halves the time required by discovery, e.g., c = 10 in Ta-
ble 1. This demonstrates that the I-decomposability rule can
significantly speed up the computational efficiency of the
discovery algoirthms. In general, the improvement is more
significant in Table 1 than Table 2, indicating that the rule is
more effective in case (i) than case (ii).

Our second set of experiments compares the sample effi-
ciency of the algorithms. We vary the sample size from N ∈
{1000, 5000, 10000, 20000, 50000, 100000, 150000, 200000}

13The I-decomposability rule can be incorporated into the
HITON-PC algorithms and M3B algorithm, similar to Algorithm 1,
as a precondition for each independence test. We also implemented
symmetry correction for the M3B algorithm.

14We bound the maximal degree of features by 6, where the de-
gree of a node is defined as the number of its parents and children.



while keeping c = 8 fixed in case (i) and d = 7 fixed in
case (ii). Figure 5 (in Appendix) plots the average accuracy
of the algorithms over 20 runs. The results show that the
algorithms with and without the I-decomposability rule
achieved similar accuracy under all sample sizes. This
suggests that the integration of I-decomposability rule does
not worsen the sample efficiency of existing algorithms.

7 Conclusion
We studied the problem of discovering features that directly
cause the predictions made by predictive models, empow-
ered by a causal modeling framework that represents the pre-
diction process using causal graphs. We presented two con-
ditions under which the direct causes are guaranteed to be
discoverable and become equivalent to the notion of Markov
boundary. In these cases, existing methods for discovering
Markov boundaries can be leveraged to discover the di-
rect causes. We further proposed a novel independence rule
that can be integrated with existing algorithms to improve
the computational efficiency. This work opens the door to
modeling predictive models with causal tools, even when
these models are non-transparent like neural networks. Po-
tential future works include identifying more conditions un-
der which the direct causes can be (efficiently) discovered,
studying the discovery of indirect causes for model predic-
tions, and exploring the applications of the independence
rule in broader contexts of causal discovery.
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A More Details on Markov Blankets
A.1 Markov Blankets
When the distribution Pr is a P-MAP of some directed
directed acyclic graph (DAG) G over variables X, Y, the
Markov boundary of Y in Pr is exactly the Markov blanket
of Y in G, which contains the parents, children, and spouses
of Y in G (Pearl 1988).

More generally, when Pr is a P-MAP of some ADMG G,
the Markov boundary of Y is also unique determined but
its conversion to the Markov blanket is more subtle. First
observe that Pr must also a P-MAP of some maximal an-
cestral graph (MAG)15 since classes of ADMGs and MAGs
are Markov equivalent as shown in (Richardson 2003). That
is, every ADMG can be converted to a MAG with equiva-
lent m-separations. Instead of studying the Markov blanket
in ADMGs, we shall consider the notion of Markov blan-
kets in the equivalent MAGs, which has been defined in (Yu
et al. 2018). In particular, let the district set of Y to be all the
variables that are connected to Y with a bidirected path,16the
Markov blanket of Y in a MAG contains the following vari-
ables (Yu et al. 2018):

• pa(Y ): the parents of Y
• ch(Y ): the children of Y
• sp(Y ): the spouses of Y
• dis(Y ): the district set of Y
• pa(dis(Y )): all the parents of variables in dis(Y )

• dis(ch(Y )): all the district sets of ch(Y )

• pa(dis(ch(Y ))): all the parents of variables dis(ch(Y ))

A.2 Discovery of Markov Blankets
We summarize some popular methods for discovering
Markov blankets (MB) from data, which has been studied
extensively in the past. We start with algorithms that dis-
cover MBs in DAGs. IAMB (Tsamardinos, Aliferis, and
Statnikov 2003) was one of the earliest methods that uses
greedy search for discovering MBs. Later, the divide-and-
conquer approach was employed to improve the efficiency
by finding parents and children (PC) and spouses sepa-
rately; see, e.g., HITON (Aliferis, Tsamardinos, and Stat-
nikov 2003), PCMB (Peña et al. 2007), IPCMB (Fu and Des-
marais 2008), GLL (Aliferis et al. 2010), CFS (Ling et al.
2023). More recently, it was shown that the performance can
be further improved by finding PC and spouses simultane-
ously; see, e.g., BAMB (Ling et al. 2019), EEMB (Wang
et al. 2020), FSMB (Liu et al. 2024).

These algorithms can be classified into two approaches
based on how the PC set is discovered. First is the
adjacency-based approach, which initializes the PC set with
all features and then removes variables from the PC set
if they become independent of the target Y under some
conditioned set. Algorithms that fit into this category in-
clude IPCMB and FSMB. Second is the grow-and-shrink

15MAG is a subtype of ADMG that satisfies the maximal and
ancestral properties; see (Richardson and Spirtes 2002) for more
details.

16A bidirected path is a path that contains only bidirected edges.

approach, which initializes the PC set to be empty and itera-
tively adds variables to it. Each time a new variable is added
to the PC set, the grow-and-shrink approach also removes
variables that become non-neighbors of the target Y from
the PC set. Algorithms that fit into this approach include HI-
TON, PCMB, GLL, BAMB, EEMB. While the grow-and-
shrink approach can potentially reduce the number of inde-
pendence tests by maintaining a small PC set, the perfor-
mance depends heavily on the order of variables being added
to the PC set. It is worth noting that both approaches use the
procedure of adjacency search extensively to decide whether
a variables can be removed from the PC set.

Recently, the discovery of Markov blankets under causal
insufficiency have been studied and the M3B algorithm is
developed to discover Markov blankets in MAGs in (Yu
et al. 2018). The algorithm first discovers the neighbors of Y
via an adjacency search and then discover the rest of Markov
blanket through a recursive search. Both steps call the proce-
dure of adjacency search (Algorithm 1) extensively. We will
also use the M3B algorithm for discovering Markov bound-
aries in the context of ADMGs since the classes of ADMGs
and MAGs are Markov equivalent as we mentioned earlier.

B Proofs
Proof of Proposition 6
Proof. We first show the only-if direction. By contradic-
tion, suppose IPr(Y,X

′, X), then Pr(y|x,x′) = C for all
x where C is a constant. We can then compute Pr(y|do(x′))
as follows.

Pr(y|do(x′)) =
∑
x

Pr(y|x, do(x′)) Pr(x|do(x′))

=
∑
x

Pr(y|x,x′) Pr(x|do(x′)) (Rule 2 of do-calculus)

= C
∑
x

Pr(x|do(x′)) = C

Since Pr(y|x,x′) = Pr(y|do(x), do(x′)) by Rule 2 of
do-calculus (Pearl 2009), we conclude Pr(y|do(x′)) =
Pr(y|do(x), do(x′)) = C for all x, contradiction.

Now consider the if direction. Suppose IPr(Y,X
′, X),

we can always find an instantiation y,x′ such that
Pr(y|x1,x

′) ̸= Pr(y|x2,x
′). Moreover, there must exists

some state x∗ that attains the largest Pr(y|x∗,x′). Again,
we can write out the Pr(y|do(x′)) as follows

Pr(y|do(x′)) =
∑
x

Pr(y|x, do(x′)) Pr(x|do(x′))

=
∑
x

Pr(y|x,x′) Pr(x|do(x′)) (Rule 2 of do-calculus)

<
∑
x

Pr(y|x∗,x′) Pr(x|do(x′))

= Pr(y|x∗,x′)

= Pr(y|do(x∗), do(x′)) (Rule 2 of do-calculus)

We conclude Pr(y|do(x′)) ̸= Pr(y|do(x∗), do(x′)).



Proof of Theorem 8
Proof. It suffices to check whether the result holds for the
class of MAGs since every ADMG can be convert to some
MAG that is Markov equivalent as discussed in Appendix A.
As shown in (Yu et al. 2018), the minimal set that separates
a target Y and other variables in a MAG is the Markov blan-
ket (MB) of Y. We next show that MB(Y ) are the only vari-
ables that satisfy the condition in Proposition 6. First, by
weak union, IPr(Y,X \ {X}, X) for all X /∈ MB(Y ) since
IPr(Y,X \ MB(Y ),MB(Y )) by the definition of Markov
boundary. We next show that all X ∈ MB(Y ) satisfies
the condition. Note that IPr(Y,MB(Y ) \ X,X) for each
X ∈ MB(Y ). Otherwise, by contraction rule, MB′(Y ) =
MB(Y ) \ {X} is also a valid Markov boundary, contra-
dicting the uniqueness of MB. Moreover, for each X ∈
MB(Y ), the active path from Y to X is still not m-separated
even when we condition on more variables besides MB(Y ).
Hence, IPr(Y,X \ {X}, X).

Proof of Theorem 10
Proof. Let C be the causes of Y in G that satisfies the condi-
tion in Proposition 6. By m-separation, it is guaranteed that
IPr(Y,C,X \ C), so C is a valid Markov blanket. We are
left to show that C is unique and minimal. Suppose there ex-
ists another Markov boundary W that omits some variable
T ∈ C, then IPr(T,W, Y ) by the definition of weak faith-
fulness, contradicting W being a Markov boundary.

Proof of Theorem 11
Proof. First, by the rule of weak union, IPr(X ∪ Z, ∅,W)
implies IPr(X,Z,W). We then have the following:

Pr(Y|X,Z) =
∑
W

Pr(Y,W|X,Z)

=
∑
W

Pr(Y|W,X,Z) Pr(W|X,Z)

=
∑
W

Pr(Y|W,Z) Pr(W|Z)

= Pr(Y|Z)

(1)

which implies IPr(X,Z,Y).

Proof of Theorem 13
Proof. It suffices to show that the output of NONSYM-
SEARCH is invariant with or without the I-decomposability
rule. That is, whenever Z ∪ {W} is I-decomposable, it
is guaranteed that IPr(Y,Z,W ). This follows from The-
orem 11. Suppose not, then IPr(Y,Z,W ) together with
Z ∪ {W} I-decomposable would imply that IPr(Y,Z

′,W )
for some Z′ ⊂ Z. This leads to a contradiction since we
should have removed W from C much earlier.

Proof of Proposition 15
Proof. Consider the class of predictive graphs G shown in
Figure 4b where n can be arbitrarily large. Let Pr be the dis-
tributions that is a P-MAP of G. Algorithm 1 with line 7 will
first remove all B’s at d = 2 since IPr(Bi, {Ai, Ai+1}, Y ).

It takes O(n3) conditional independence tests for d = 2
since we need to enumerate

(
n
2

)
conditioned variables for

each of the n variables. No more conditional independence
tests will be needed since any subsets of {Ai}ni=1 with size
greater than 2 are I-decomposable.

We next consider the case without the I-decomposability
rule. Similar to the previous case, the adjacency search re-
moves all B’s at d = 2. However, the algorithm will con-
tinue searching for d = 3, . . . , n−1 afterwards, which takes
a total of O(n · exp(n)) independence tests.

(a) weak faithfulness

(b) canonicalness

Figure 5: Accuracy of algorithms for identifying direct
causes under various sample sizes. Methods ALG1, I-
HITON-DEC, SI-HITON-DEC, M3B-DEC are integrated the
I-decomposability rule.



Method c = 7 c = 8 c = 9 c = 10
Acc Time #CI Acc Time #CI Acc Time #CI Acc Time #CI

ADJ 93.1 3.1 2171 93.0 4.1 2853 86.0 5.3 3630 84.8 6.5 4309
ALG1 93.7 1.9 1497 93.0 2.5 1834 87.3 2.6 1923 85.2 3.0 2142

I-HITON 96.6 1.9 1132 95.0 3.4 2,061 89.8 5.6 3335 89.0 7.7 4477
I-HITON-DEC 96.3 1.2 685 95.0 1.9 1095 90.0 3.0 1650 90.2 3.5 1931

SI-HITON 96.0 2.3 1313 95.0 3.5 2062 90.0 5.9 3385 88.4 8.7 4887
SI-HITON-DEC 96.0 1.4 805 94.8 2.0 1167 90.2 2.8 1560 89.6 3.8 2035

Table 1: Average accuracy (Acc), time (Time), and number of independence tests (#CI) of algorithms under both canonicalness
and weak faithfulness. Methods ALG1, I-HITON-DEC, SI-HITON-DEC are integrated with the I-decomposability rule.

Method d = 7 d = 8 d = 9 d = 10
Acc Time #CI Acc Time #CI Acc Time #CI Acc Time #CI

M3B 86.9 52.1 48131 73.8 178.6 146322 74.7 818.5 523858 71.3 1866.1 1090243
M3B-DEC 86.9 41.9 41865 73.3 156.5 129390 75.5 794.6 473593 71.2 1755.3 1009157

Table 2: Average accuracy (Acc), time (Time), and number of independence tests (#CI) of algorithms under canonicalness only.
Method M3B-DEC are integrated with the I-decomposability rule.


