

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MATTING ANYTHING 2: TOWARDS VIDEO MATTING FOR ANYTHING

Anonymous authors

Paper under double-blind review

ABSTRACT

Video matting is a crucial task for many applications, but existing methods face significant limitations. They are often domain-specific, focusing primarily on human portraits, and rely on the mask of first frame that is challenging to acquire for transparent or intricate objects like fire or smoke. To address these challenges, we introduce Matting Anything 2 (MAM2), a versatile and robust video matting model that handles diverse objects using flexible user prompts such as points, boxes, or masks. We first propose Prompttable Dual-mode Decoder (PDD), an effective structure that simultaneously predicts a segmentation mask and a corresponding high-quality trimap, leveraging trimap-based guidance to improve generalization. To tackle prediction instability for transparent objects across video frames, we further propose a Memory-Separable Siamese (MSS) mechanism. MSS employs a recurrent approach that isolates trimap prediction from potentially interfering mask memory, significantly enhancing temporal consistency. To validate our method’s performance on diverse objects, we introduce the Natural Video Matting dataset, a new benchmark with substantially greater diversity. Extensive experiments show that MAM2 possesses exceptional matting accuracy and generalization capabilities. We believe MAM2 demonstrates a significant leap forward in creating a video matting method for anything.

1 INTRODUCTION

Video matting, the process of precisely extracting the foreground alpha matte from a video sequence, is a critical enabling technology for a myriad of applications. It is fundamental to the visual effects industry for seamless cinematic composition, powers virtual backgrounds in video conferencing, and facilitates realistic object integration in augmented reality experiences.

Despite significant advancements in the field, existing video matting methods still exhibit several critical limitations: i) Domain Specificity: The vast majority of recent video matting models are predominantly human-centric Lin et al. (2021b); Huynh et al. (2024); Yang et al. (2025); Li et al. (2024a); Ke et al. (2022); Ge et al. (2025), focusing almost exclusively on human portrait. Research into matting for more general natural scenes remains largely underexplored, a stark contrast to the well-developed state of natural image matting. Concurrently, as illustrated in Table 1, a comprehensive benchmark for evaluating the generalization capabilities of video matting models on diverse natural scenes is conspicuously absent. ii) Reliance on Mask: Popular methods often follow the standard semi-supervised Video Object Segmentation (VOS) framework Yang et al. (2021); Caelles et al. (2017); Yang et al. (2025). This framework necessitates user interaction on the first frame, typically by providing a mask to specify the target object. However, a high-quality mask cannot always be easily obtained via an interactive segmentation model, particularly for certain types of objects. For transparent objects (e.g., smoke, fire), many regions exhibit a high degree of transparency that is difficult for both the human eye and the model to discern, making such a mask challenging to acquire. In this case, a bounding box is clearly a more efficient form of interaction, as the user only needs to roughly enclose the object, eliminating the need for pixel-level mask correction.

To address these challenges, we introduce Matting Anything 2 (MAM2), a video matting model that can handle diverse objects. We developed MAM2 by building upon the foundation of SAM2 Ravi et al. (2024), thereby inheriting its excellent interactive capabilities. This allows MAM2 to accept various forms of interaction, including points, boxes, and masks. Furthermore, we follow the

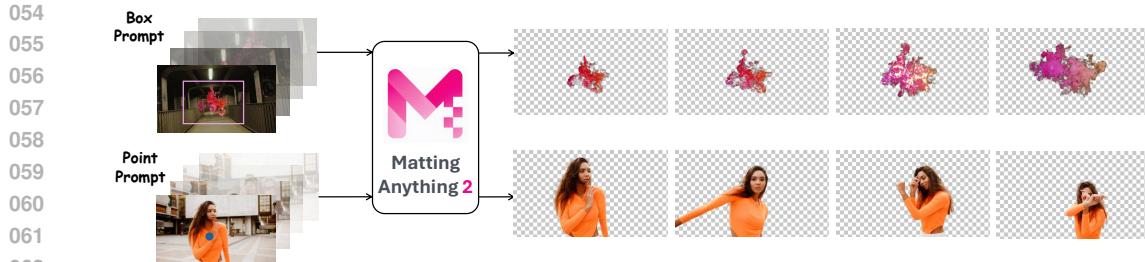


Figure 1: Matting Anything 2 is a video model that can be directly driven by user prompts and is able to process diverse objects in addition to human portraits.

Table 1: Statistics of popular video matting benchmarks. Count is calculated based on the number of distinguished foregrounds. Average Duration refers to the average frame count of the clips. Domain refers to the categories of objects.

Test Set	Number	Average Duration	Domain
VideoMatte240K Lin et al. (2021b)	25	100	human
VideoMatting108 Zhang et al. (2021b)	28	845	human, cloth, smoke
YoutubeMatte Yang et al. (2025)	32	100	human
Natural Video Matting	50	164	animals, bubble, cloud, fire, water, frost, plant...

paradigm of recent video matting models, which requires user interaction only on the first frame, minimizing the user’s interaction cost as much as possible, as shown in Fig. 1.

To endow MAM2 with strong generalization capabilities, we propose the Promptable Dual-mode Decoder (PDD). In contrast to the original mask decoder of SAM2, PDD can simultaneously predict an object’s segmentation mask and its corresponding trimap, which serves as strong guidance for the final alpha matte prediction. We adopted this technical approach, motivated by the demonstrated dominance of trimap-based methods Dosovitskiy et al. (2020); Hu et al. (2024) in the field of natural image matting. By strengthening the guidance from the mask for the trimap prediction, PDD is able to generate high-quality trimaps for common objects.

However, we found that simply using PDD to predict per-frame trimaps for transparent objects results in unstable quality. This issue is primarily caused by the decoding mechanism of SAM2. For frames without a user prompt (i.e., all frames after the first), the decoding process relies mainly on embedding the mask memory from the previous frame into the image features. Yet, for transparent objects, decoding a trimap based on mask memory is particularly challenging. This is because large transparent areas require the prediction of more *unknown* regions in the trimap rather than *foreground* regions. This, in turn, increases the discrepancy between the trimap and the mask, which means that the disparity between the ideal features required for their respective decoding also grows. To resolve this, we propose the Memory-Separable Siamese (MSS) mechanism. MSS employs a recurrent approach to bypass the interference that mask memory causes during trimap decoding: after the segmentation mask is predicted by PDD, this mask is used as a prompt to drive the PDD a second time to generate the trimap. Crucially, this second decoding pass utilizes pre-saved image features that have not undergone the mask memory embedding. Experiments show that MSS significantly improves the stability of trimap predictions for transparent objects. Furthermore, since the two passes share parameters, this siamese architecture adds no additional parameters.

To validate the generalization performance of our method on natural scenes, we introduce a new, advanced benchmark: the Natural Object Video Matting (NOVM) dataset. In contrast to existing video matting test sets, NOVM exhibits significantly greater domain diversity, encompassing categories beyond portraits such as plants, fire, water, and more, as shown in Table 1.

We conducted extensive experiments on both existing human portrait benchmarks and our newly proposed NOVM dataset. Compared to the state-of-the-art model, MAM2 reduces the MAD from

108 39.44 to 14.72 on NOVM (Natural Object Video Matting) and from 2.05 to 1.16 on Youtube-
 109 Matte Yang et al. (2025) (human video matting). Therefore, MAM2 is not a model specifically
 110 optimized for transparent objects; it also outperforms existing methods in human matting. Further-
 111 more, MAM2 is also a powerful image matting method. We also evaluate its performance on image
 112 matting tasks, where it achieves competitive results. We believe that Matting Anything 2 holds
 113 immense value for practical applications.

114

115

116 2 RELATED WORKS

117

119 2.1 VIDEO OBJECT SEGMENTATION

120

121 Video Object Segmentation (VOS) tasks are primarily divided into several categories: unsuper-
 122 vised VOS, semi-supervised VOS, referring VOS Liang et al. (2025); Cuttano et al. (2025); Li et al.
 123 (2023b) and interactive VOS. Unsupervised VOS Lee et al. (2023); Li et al. (2024c); Cho et al.
 124 (2024); Zhuge et al. (2024) does not require any user-provided annotations for guidance, allowing
 125 the model to perform segmentation automatically. However, this type of methods suffers from the
 126 inability to specify a target object and often exhibits lower accuracy and consistency.

127 Consequently, plenty of work has been dedicated to semi-supervised VOS methods Caelles et al.
 128 (2017). These methods require the user to provide an object mask for the first frame, and the model
 129 then segments the object in all subsequent frames based on this initial mask. Numerous classic
 130 architectures have been proposed to address this task. These include mask propagation-based meth-
 131 ods Oh et al. (2018); Garg & Goel (2021), which use the mask from the previous frame as guidance
 132 for the current one to achieve coherent segmentation throughout the sequence, and memory-based
 133 methods Oh et al. (2019); Cheng & Schwing (2022); Zhou et al. (2024), which rely on feature
 134 matching between the current and historical frames to ensure temporal consistency.

135 Recently, the introduction of SAM2 has drawn significant attention to interactive VOS methods.
 136 This category of approaches aims to achieve video segmentation through more user-friendly inter-
 137 actions, such as clicks. Moreover, users can refine the segmentation results based on the model’s
 138 predictions. In particular, SAM2’s compatibility with multiple prompt types and its strong gener-
 139 alization capabilities have inspired a considerable amount of subsequent work Ding et al. (2024);
 140 Cuttano et al. (2025); Yang et al. (2024).

141

142

143 2.2 VIDEO MATTING

144

145 Video Matting methods can similarly be categorized based on the type of user guidance they require.
 146 Automatic video matting models Ke et al. (2022); Lin et al. (2022), can predict precise alpha mattes
 147 without any user input, but they lack the ability to specify a target object. In contrast, approaches
 148 that follow the VOS paradigm Yang et al. (2025); Huynh et al. (2024) require a user-provided mask
 149 in the first frame to select the target for matting. However, both of these method categories are
 150 typically limited to processing human or animal portraits.

151 Alternatively, other methods utilize a trimap instead of a mask of the first frame for guidance Seong
 152 et al. (2022); Huang & Lee (2023). Guided by the stronger prior information provided by a trimap,
 153 these methods not only achieve high matting accuracy but have also shown the potential to handle
 154 objects beyond portraits. However, it is evident that the user interaction cost of providing a trimap
 155 is significantly higher than that of a mask.

156 Additionally, there is a special type of background-based video matting methods Lin et al. (2021a);
 157 Sengupta et al. (2020); Xu et al. (2021). These methods require the user to provide an image of
 158 clean background without the foreground object, as auxiliary information to achieve precise matting.
 159 However, in practical applications, a clean background is often unavailable. Furthermore, these
 160 methods impose strict requirements on background consistency, making them unable to adapt to
 161 temporal changes. Therefore, compared to the aforementioned methods, background-based matting
 is less practical to deploy in real-world scenarios.

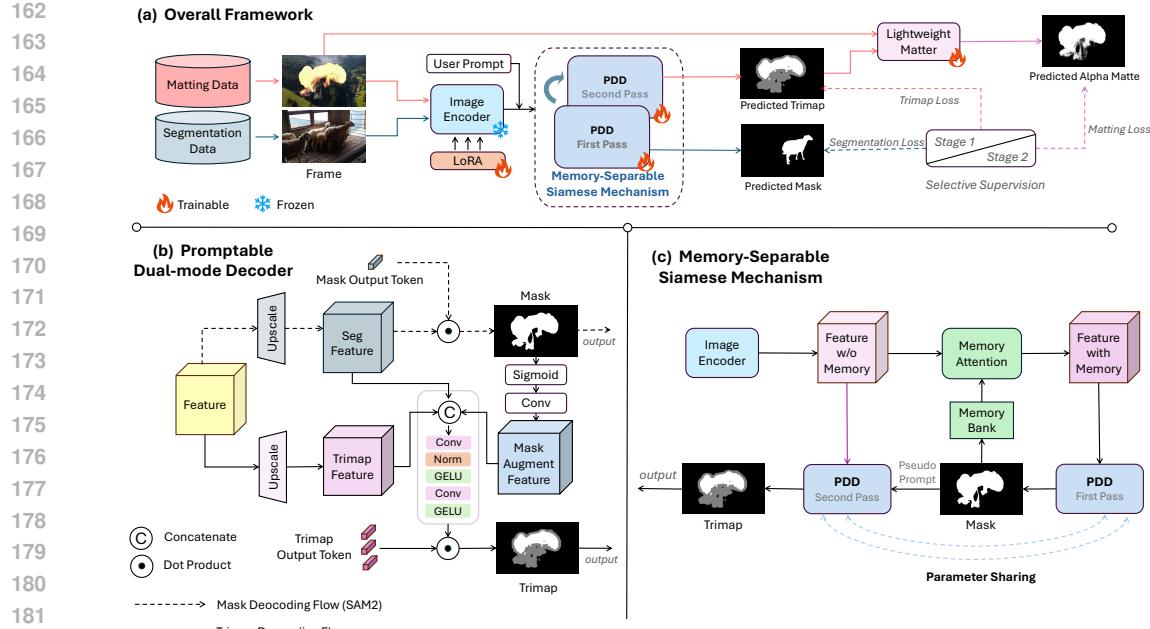


Figure 2: Architecture of Matting Anything 2. MAM2 first predicts the object’s trimap based on the user’s prompt, and then uses the trimap to predict the final alpha matte.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

As shown in Fig. 1, MAM2 is capable of predicting alpha mattes for an entire video, requiring user interaction on only the first frame. Users can provide prompts directly to MAM2, eliminating the need for an auxiliary interactive segmentation model to generate a mask for the first frame. Furthermore, MAM2 inherits the strong interactivity of SAM2, allowing it to support various prompt types such as boxes, points, and masks, which ensures high user-friendliness.

We implement this inference process using a progressive decoding pipeline. As depicted in Fig. 2, the pipeline begins with an image encoder of SAM2 finetuned by LoRA that extracts the image feature of a video frame. Subsequently, the Memory-Separable Siamese (MSS) mechanism utilizes two sequential Promptable Dual-mode Decoder (PDD) passes to predict the target’s mask and trimap based on the user prompt. Finally, a lightweight trimap-based matting module predicts the final alpha matte. MAM2 is compatible with trimap-based matte model of various architectures. We choose MEMatte Lin et al. (2025) as our lightweight matter module here due to its efficiency, with details provided in A.1

3.2 SELECTIVE SUPERVISION SCHEME

The task of Video Matting (VM) suffers from significant data scarcity, compelling most approaches Yang et al. (2025); Huang & Lee (2023) to supplement their training data with Image Matting (IM) or Video Object Segmentation (VOS) data. Thus, we propose a selective supervision scheme to better utilize the knowledge contained within these heterogeneous data sources. The implementation of this strategy is enabled by MAM2’s capability to concurrently generate multiple outputs, including the mask, trimap, and alpha matte.

To facilitate this specialized learning, we partition the training procedure into two stages. Let the model parameters Θ be partitioned into θ_{main} for the main components (encompassing all parameters excluding the lightweight matter module) and θ_{matter} for the lightweight matter module.

The first stage is designed to optimize θ_{main} using data from IM, VM, and VOS. Accordingly, the loss for this main stage, L_{main} , is formulated as follows:

$$L_{\text{main}} = \mathbb{I}_{\text{VOS}} \cdot \mathcal{L}_{\text{mask}}(M, y_M) + (\mathbb{I}_{\text{VM}} + \mathbb{I}_{\text{IM}}) \cdot \mathcal{L}_{\text{trimap}}(T, y_T) \quad (1)$$

216 where M and T are the mask and trimap outputs, with corresponding ground truths y_M and y_T .
 217 The indicator functions \mathbb{I}_{VOS} , \mathbb{I}_{VM} , and \mathbb{I}_{IM} selectively activate the appropriate loss term based on
 218 the type of data randomly loaded by the dataloader from the mixed training set. This stage trains
 219 MAM2 to robustly produce a coarse mask or a trimap.

220 In the second stage, only the lightweight matter parameters θ_{matter} are optimized. For this stage, we
 221 define a separate loss, L_{matter} :

$$L_{\text{matter}} = \mathbb{I}_{\text{IM}} \cdot \mathcal{L}_{\text{alpha}}(\alpha, y_\alpha) \quad (2)$$

222 where α is the final predicted alpha matte and y_α is its ground truth. This stage exclusively uses
 223 image matting data for supervision. This is because this stage focuses on learning fine-grained
 224 detail perception, which demands high-fidelity annotations. Notably, the annotation quality of image
 225 matting data is significantly superior to that of video matting data, an observation also noted in
 226 MatAnyone Yang et al. (2025).

227 Further details concerning the assignment of specific data sources to the optimization of different
 228 model parameters can be found in Appendix A.2. The composition of each category of datasets can
 229 be found in Appendix A.3. The detailed formulation of each loss function and the sampling strategy
 230 for the training data are provided in Appendix A.5.

233 3.3 PRELIMINARY

234 To facilitate a better understanding of our method, we begin by providing a brief preliminary on
 235 the decoding mechanism of SAM1&2 Kirillov et al. (2023); Ravi et al. (2024) before detailing
 236 the model architecture of MAM2. To ensure consistency with the task setting of this paper, all
 237 subsequent descriptions are based on the standard semi-supervised VOS setting, where the user
 238 provides a prompt only for the first frame of a video sequence.

239 As SAM1 is an image segmentation model that requires user-provided prompts, it utilizes a Prompt-
 240 able Mask Decoder. This decoder takes the features extracted by image encoder and the user's
 241 prompt as input to predict the segmentation mask. This process can be formally formulated as:

$$M = f_{\text{Decoder}}(\mathbf{F}, \mathcal{P}_{\text{user}}) \quad (3)$$

242 where M is the predicted segmentation mask, \mathbf{F} represents the image feature, and $\mathcal{P}_{\text{user}}$ is the user-
 243 provided prompt.

244 However, since SAM2 is required to predict masks for every frame based on sparse prompts, a
 245 memory mechanism is introduced to address this challenge. For subsequent frames, which lacks
 246 a user prompt, the memory mechanism embeds the mask prediction from the previous frame into
 247 the current image features via memory attention. This embedded memory functions as an implicit
 248 prompt, replacing the absent user prompt and driving the Promptable Mask Decoder's operation.
 249 The per-frame decoding process of SAM2 can be formally described as:

$$M^t = \begin{cases} f_{\text{Decoder}}(\mathbf{F}_{\text{non-mem}}^t, \mathcal{P}_{\text{user}}), & \text{if } t = 0 \\ f_{\text{Decoder}}(\mathbf{F}_{\text{mem}}^t, \emptyset), & \text{if } t > 0 \end{cases} \quad (4)$$

250 where t is the frame index, M^t is the mask prediction at frame t , $\mathbf{F}_{\text{non-mem}}^t$ represents the image
 251 feature of frame t without memory embedding, $\mathbf{F}_{\text{mem}}^t$ denotes the image feature of frame t embedded
 252 with memory of mask predictions of previous frames, and \emptyset represents the absent user prompt.

260 3.4 PROMPTABLE DUAL-MODE DECODER

261 MAM2 operates as a progressive decoding pipeline; consequently, it necessitates the preliminary
 262 prediction of the target's trimap to facilitate the subsequent prediction of the final alpha matte. To
 263 address this requirement, we propose the Promptable Dual-mode Decoder (PDD). Distinct from the
 264 original SAM2 decoder, the PDD is capable of simultaneously predicting both a segmentation mask
 265 and a trimap for every frame. We denote the PDD as the function f_{PDD} . Similar to Equation 4, f_{PDD}
 266 can be described as:

$$(M^t, T^t) = \begin{cases} f_{\text{PDD}}(\mathbf{F}_{\text{non-mem}}^t, \mathcal{P}_{\text{user}}), & \text{if } t = 0 \\ f_{\text{PDD}}(\mathbf{F}_{\text{mem}}^t, \emptyset), & \text{if } t > 0 \end{cases} \quad (5)$$

267 where M^t and T^t represent the mask and trimap prediction at frame t , respectively.

270 However, predicting an additional trimap based on the original SAM2 decoder is non-trivial. While
 271 a line of work has focused on refining the coarse masks predicted by SAM1 into finer and more
 272 detailed ones Ke et al. (2023); Liu et al. (2024), these masks, whether coarse or fine, remain se-
 273 mantically consistent. The trimap we aim to predict, however, is fundamentally a different form of
 274 semantic representation. To address this distinction, SEMatte Xia et al. (2024), a SAM-based image
 275 matting method, proposes employing a fully independent parallel branch prior to the final decoding
 276 to predict this distinct representation. However, our findings indicate that while a simple parallel
 277 structure facilitates the simultaneous prediction of masks and trimaps, the resulting trimaps are of-
 278 ten noisy, frequently exhibiting jagged artifacts along the boundaries, as illustrated in the second
 279 row of Fig. 3.

291 **Figure 3:** PDD improves the quality of the trimap prediction. Zoom in to observe details.

292 We attribute this instability to the fact that a simple parallel branch fails to fully leverage SAM’s
 293 robust semantic understanding and the exceptional stability of its mask predictions. Therefore, we
 294 consider it essential to incorporate strong guidance from SAM2’s mask predictions into the parallel
 295 branch. Motivated by this, we propose the trimap decoding flow in PDD, as illustrated in part (b) of
 296 Fig. 2.

297 First, the predicted mask is normalized with a sigmoid function and then processed by a convolu-
 298 tional layer to generate a *mask augment feature*. Then, the *mask augment feature* is concatenated
 299 with the original *segmentation feature* and *trimap feature*. Subsequently, a lightweight fusion mod-
 300 ule performs a mask-guided enhancement on these concatenated features. Finally, the final trimap
 301 is obtained by computing the dot product between the fused features and the *trimap output token*.
 302 As illustrated in Fig. 3, this simple design leads to a significant improvement in the stability and
 303 quality of the predicted trimap. This, in turn, enhances the quality of the final predicted alpha matte.
 304 This simple design yields improvements of 24% and 29% on the natural object and human portrait
 305 benchmarks, respectively, as shown in the top two rows of Table 5.

306 In addition, PDD inherits sam2’s excellent compatibility with multiple prompt types, which makes
 307 the implementation of Memory-Separable Siamese Mechanism possible, as will be discussed in
 308 detail in the next section.

310 3.5 MEMORY-SEPARABLE SIAMESE MECHANISM

311 A “matting anything” method must do more than just competently handle portraits or objects where
 312 fine details are concentrated at the boundary. A true test of its capability lies in processing challeng-
 313 ing transparent objects like fire and bubbles, which are characterized by extensive transparency and
 314 complex details.

315 When we applied our PDD-equipped MAM2 to these objects, we discovered a strange temporal
 316 collapse. While the trimap for the first frame is predicted accurately, from the second frame onward,
 317 we found that *unknown* regions in the trimap were prone to being misclassified as *foreground*, as
 318 shown in Fig. 4. For our lightweight matter, which relies on the trimap predicted by PDD to
 319 predict the final alpha matte, such false positive errors of *foreground* are known to be catastrophic,
 320 particularly for objects with large-scale transparency.

321 As discussed in Section 3.3 and Equation 5, the decoding process for the first frame is driven by the
 322 user prompt, whereas for subsequent frames, it relies on the memory of the previous mask predic-

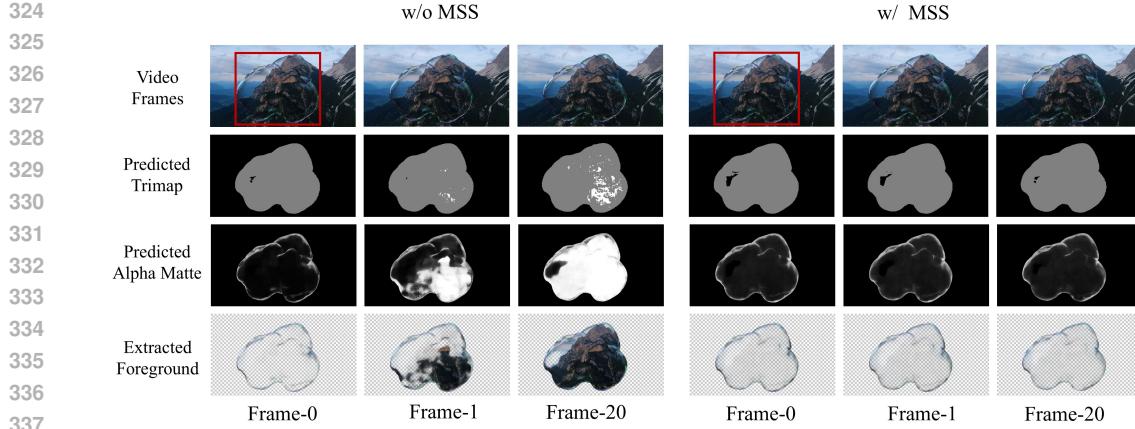


Figure 4: The entire region of the bubble should be predicted as *unknown* in the trimap. MSS effectively mitigates the collapse of trimap prediction for subsequent frames when handling transparent objects.

tion embedded within the image features. Consequently, this anomalous temporal collapse can be attributed to a specific disparity: while PDD performs accurate trimap decoding when guided by user prompts, it fails to do so when guided by the memory embedded in the image features. Therefore, we identify the root cause as the process of embedding the memory of previous mask predictions into the image features. We posit that this embedding operation induces a significant shift in the image feature space, which severely interferes with the trimap decoding process. Corroborating evidence for this is observed in the erroneous trimap predictions of subsequent frames, which exhibit a tendency to resemble binary segmentation masks rather than trimaps. Notably, these predictions display a strong bias towards classifying object regions—regardless of their actual transparency—as definite *foreground* rather than the *unknown* category required for trimaps.

We consider this phenomenon to be logical. Given that masks and trimaps represent distinct semantic concepts, an inconsistency between the ideal feature spaces required for their respective decoding is to be expected. In essence, while subsequent frames rely on mask memory for decoding, the embedding of this memory simultaneously interferes with trimap prediction.

To overcome this dilemma, we introduce the Memory-Separable Siamese Mechanism (MSS), a recurrent approach to trimap decoding. For subsequent frames, once PDD computes a segmentation mask, we leverage this mask as a pseudo-prompt to drive a second PDD pass. Crucially, this second pass is performed on a preserved, memory-free version of the image feature that was saved prior to the memory attention.

Consequently, the decoding of subsequent frames is effectively realigned to rely on memory-free features and a "user prompt", thereby avoiding the interference caused by the shifted image feature on trimap decoding, as indicated by the purple connecting line in part (c) in Fig. 2. The trimap generated from this second pass is then selected as the final output. This process can be formally formulated as:

$$M^t = \pi_1 (f_{\text{PDD}}(\mathbf{F}_{\text{mem}}^t, \emptyset)) \quad (6)$$

$$T^t = \pi_2 (f_{\text{PDD}}(\mathbf{F}_{\text{non-mem}}^t, M^t)) \quad (7)$$

where π_x denotes the projection function that extracts the x -th element from the output tuple (e.g., π_1 extracts the mask and π_2 extracts the trimap).

As illustrated in Fig. 4, MSS substantially enhances the robustness of MAM2 on challenging objects characterized by large-scale transparency. Furthermore, since the mask used to drive the second pass is decoded from features with memory, temporal consistency of the trimap can be transmitted and maintained by this mask. In addition, since the PDD weights are shared between two passes, MSS is a siamese architecture, adding no additional parameters. Meanwhile, because PDD is built upon SAM's lightweight mask decoder, the computational overhead of this second pass is negligible.

378

4 EXPERIMENTS

380

4.1 IMPLEMENTATION DETAILS

382 Consistent with recent video matting methods Yang et al. (2025), MAM2 is trained on multiple types
 383 of data: video object segmentation Ding et al. (2023), video matting Zhang et al. (2021b), image
 384 segmentation Qin et al. (2022), and image matting Xu et al. (2017); Qiao et al. (2020); Li et al.
 385 (2022); Ma et al. (2023); Cai et al. (2022). No private or proprietary data was used to train MAM2.
 386 The entire training set is composed of publicly accessible datasets. The specific datasets used for
 387 training are detailed in Appendix A.3.

388 θ_{main} are finetuned from pretrained SAM2 weights for 100 epochs using the AdamW optimizer with
 389 an initial learning rate of 4×10^{-4} . The LoRA rank for the encoder is set to 16. θ_{matter} , are trained
 390 from a ViT-Small model initialized with DINO pretrained weights. This component is trained for
 391 approximately 3,500 iterations using AdamW with an initial learning rate of 5×10^{-4} . The total
 392 number of trainable parameters is 44.7M. Further training details are available in the Appendix A.

393

4.2 NATURAL OBJECT VIDEO MATTING DATASET

395 To evaluate the performance of methods on diverse objects, we introduce Natural Object Video Matting
 396 (NOVM), the first video matting benchmark composed of a rich variety of natural objects. The
 397 construction of NOVM began with the collection of After Effects assets that included preexisting
 398 alpha mattes, allowing them to be used directly as assets in content creation. Subsequently, this col-
 399 lection was filtered to discard assets with insufficient detail, as well as all cartoon-styled clips, which
 400 we noted constituted a significant portion of the initial set. Finally, the retained assets are composited
 401 onto high-resolution and dynamic backgrounds to produce the final video clips and corresponding
 402 alpha matte clips.

403 The final NOVM dataset contains 50 clips, each featuring a distinct foreground object or action and
 404 a dynamic background. Most importantly, NOVM covers a highly diverse range of object domains,
 405 presenting a formidable challenge to existing video matting models. We provide several examples
 406 of NOVM in Fig.7 and the breakdown of NOVM in Table 9.

408

4.3 VIDEO MATTING

410 **Table 2: Quantitative comparison with other video matting methods in interactive mode on NOVM**
 411 and **YoutubeMatte Datasets**.

414 Method	Prompt	NOVM (natural objects)				YoutubeMatte (human)			
		MAD ↓	MSE ↓	GRAD ↓	dtSSD ↓	MAD ↓	MSE ↓	GRAD ↓	dtSSD ↓
TCVOM Zhang et al. (2021a)	Trimap	56.18	38.90	153.95	3.84	1.57	0.40	6.74	1.52
FTP-VM Huang & Lee (2023)	Trimap	37.98	19.90	78.06	4.24	2.26	1.10	5.63	1.70
MaGGle Huynh et al. (2024)	Mask	50.04	35.23	108.01	4.90	2.37	0.98	7.69	1.77
MatAnyone Yang et al. (2025)	Mask	39.44	25.63	89.60	4.10	2.05	0.76	9.67	1.75
Matting Anything 2 (Ours)	Mask	15.19	4.27	26.45	2.80	1.16	0.24	3.12	1.21
Matting Anything 2 (Ours)	Box & Point	14.72	3.70	23.54	2.65	1.16	0.24	3.07	1.20

421 We first compare the performance of the methods when prompted by a mask of the first frame,
 422 following the setting of semi-supervised VOS task, as presented in Table 2. We select NOVM and
 423 YoutubeMatte Yang et al. (2025) as our test datasets. The former is used to evaluate the model’s
 424 performance on diverse objects, while the latter assesses its performance on typical human portraits.
 425 MAM2 demonstrates a significant advantage across all metrics, including MAD and MSE for overall
 426 prediction, Grad for detail fidelity, and dtSSD for temporal consistency. More importantly, MAM2
 427 can even perform matting without the need for a user-provided mask; it can be driven directly by
 428 user-provided points or boxes. Even in this mode, MAM2 continues to exhibit exceptionally strong
 429 performance.

430 Following the MatAnyone Yang et al. (2025), we also evaluated the performance of MAM2 in an
 431 automatic human matting mode. This mode operates by using an automatic human matting model
 432 to obtain the matte for the first frame. For a fair comparison, both MAM2 and MatAnyone utilize

RVM to generate this first-frame matte. As shown in Table 3, MAM2 also demonstrates the strongest overall performance in automatic matting.

Table 3: Quantitative comparison with other video matting methods in automatic mode on Youtube-Matte and VM240K Datasets.

Method	YoutubeMatte (human)				VM240K (human)			
	MAD ↓	MSE ↓	GRAD ↓	dtSSD ↓	MAD ↓	MSE ↓	GRAD ↓	dtSSD ↓
MODNet Ke et al. (2022)	15.29	12.68	8.42	2.74	11.13	5.54	15.30	3.08
RVM Lin et al. (2022)	4.37	2.25	15.1	2.28	6.57	1.93	10.55	1.90
RVM-Large Lin et al. (2022)	3.50	1.19	12.64	2.08	5.81	0.97	9.65	1.78
MatAnyone Yang et al. (2025)	3.70	2.35	11.45	1.81	5.66	1.68	5.75	1.27
Matting Anything 2 (Ours)	1.19	0.27	3.17	1.23	5.10	1.10	4.15	1.26

4.4 IMAGE MATTING

Recently, a wave of image matting methods built upon the foundation of SAM 1/2 has emerged, including ZIM Kim et al. (2025), Matting Anything Li et al. (2023a), and SEMatte Xia et al. (2024). MAM2 not only shows strong performance in video matting but is also a powerful image matting model. For image matting, MAM2 can also be driven by efficient user prompts such as points and boxes. We provide a comparison with other image matting methods in Table 4. Specifically, in addition to a visual prompt, SDMatte requires a flag to specify whether the matting target is a transparent object. Therefore, to ensure a fair comparison with other methods, we report the results for SDMatte both with and without this text prompt. MAM2 achieves the best performance on natural image matting without relying on additional text prompts. We provide visualization results of image matting in Appendix C.2. Notably, the model parameters of MAM2 for the video matting and image matting tasks are identical.

Table 4: Quantitative comparison of image matting methods with various prompt types on AIM-500. N/A indicates that the model does not support Click mode. The * denotes a different version of SDMatte.

Method	Prompt	MSE	SAD	Grad	Conn	Prompt	MSE	SAD	Grad	Conn
Matting Anything Li et al. (2024b)	Box	11.60	36.66	21.04	18.99	Point	7.52	186.50	37.48	40.38
SmartMatting Ye et al. (2024)	Box	7.65	25.33	27.16	13.54	Point	30.20	66.27	46.63	18.77
SEMatte Xia et al. (2024)	Box	7.65	24.30	16.06	13.64	Point	N/A	N/A	N/A	N/A
SDMatte Huang et al. (2025)	Box	10.04	29.35	24.06	15.62	Point	11.93	33.57	29.15	18.15
SDMatte* Huang et al. (2025)	Box	4.91	19.81	15.84	11.97	Point	N/A	N/A	N/A	N/A
Matting Anything 2 (Ours)	Box	4.24	18.07	13.88	11.01	Point	5.68	20.78	14.63	10.90
SDMatte	Box & Text	4.90	19.45	20.06	12.58	Point & Text	10.9	31.8	26.84	17.51
SDMatte*	Box & Text	3.60	16.42	14.89	11.00	Point & Text	N/A	N/A	N/A	N/A

4.5 ABLATION STUDY

We present the ablation studies for PDD and MSS here. The first two rows of Table 5 represent the ablation study for PDD, where *Parallel* refers to the simple parallel structure for trimap prediction, as described in Sec 3.4. In conjunction with Fig. 3, it is evident that PDD substantially improves the stability of the predicted trimap, thereby enhancing the final matting quality.

Rows 2, 3, and 4 detail the ablation study for MSS. In this context, MCS (Memory-Consistent Siamese) represents the strategy that simply performs a second pass of PDD based on memory-embedded image features. The results indicate that the critical factor for MSS’s significant improvement is not an extra decoding pass (as evidenced by the lack of improvement from MCS). Instead, the key is the utilization of memory-free image features during the second PDD pass, which prevents interference from mask memory in the trimap decoding process.

486
487
488
489
490
491
492
493

Table 5: Ablation study of different components of Matting Anything 2.

Parallel	PDD	MCS	MSS	NOVM				Youtube			
				MAD ↓	MSE ↓	GRAD ↓	dtSSD ↓	MAD ↓	MSE ↓	GRAD ↓	dtSSD ↓
✓				26.19	13.21	43.29	3.14	1.54	0.52	3.49	1.30
	✓			18.55	6.77	29.77	2.91	1.16	0.24	3.08	1.19
✓	✓	✓		20.23	8.59	39.26	2.85	1.18	0.26	3.14	1.19
✓			✓	14.72	3.70	23.54	2.65	1.16	0.24	3.07	1.20

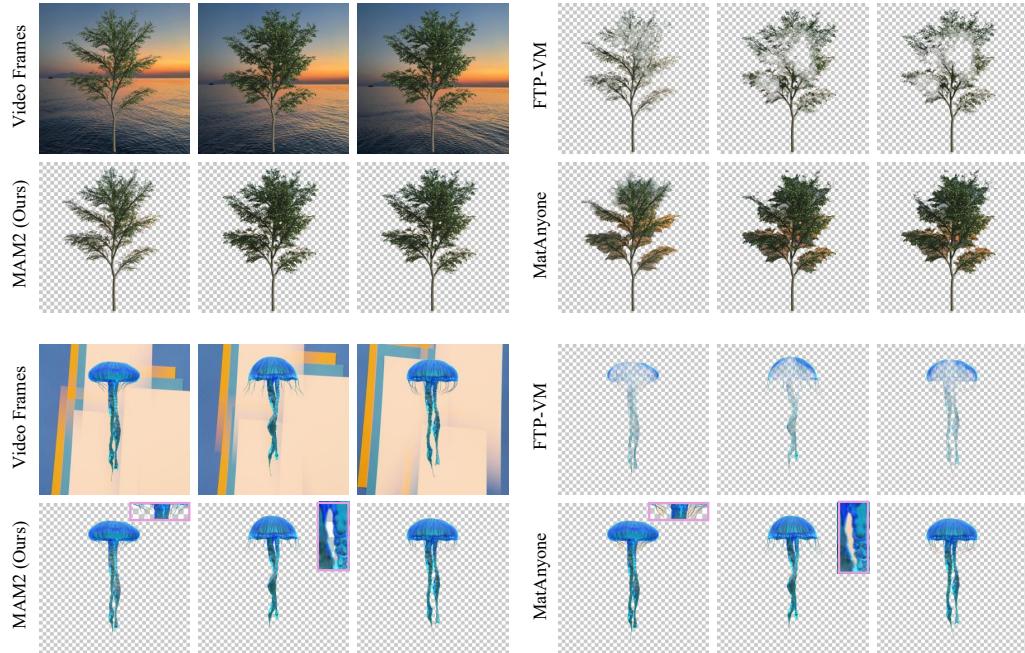
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515516
517
518
519

Figure 5: Visual comparison with other video matting methods. Zoom in to observe details.

520
521

4.6 VISUALIZATION

522
523
524
525

In Fig. 5, we provide a visual comparison of MAM2 with MatAnyone Yang et al. (2025) and FTP-VM Huang & Lee (2023), which represent the state-of-the-art in mask-guided and trimap-guided video matting, respectively. MAM2 provides higher-quality matting results even when driven directly by user-provided points and boxes.

526
527
528
529
530

We provide extensive visualization results in Appendix C.1. Specifically, Figs. 8 and 9 demonstrate performance on the NOVM dataset, Fig. 10 on the YouTubeMatte dataset, and Figs. 11 and 12 on real-world videos. We also provide several results in MP4 format in the supplementary material.

531
532

5 CONCLUSION

533
534
535
536
537
538
539

In this paper, we introduce Matting Anything 2, a powerful model designed for matting any object in videos. We propose a Promptable Dual-mode Decoder to enable a seamless, interactive workflow and a Memory-Separable Siamese mechanism to enhance generalization for complex objects by resolving memory conflicts without adding parameters. To facilitate robust evaluation, we also present the Natural Object Video Matting dataset, a new benchmark with significant domain diversity. Experimental results demonstrate that MAM2 significantly outperforms existing methods, establishing a new state-of-the-art for both natural and portrait scenes. We believe this work holds immense potential for significant practical applications.

540 REFERENCES
541

542 Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel Cremers, and
543 Luc Van Gool. One-shot video object segmentation. In *Proceedings of the IEEE conference on*
544 *computer vision and pattern recognition*, pp. 221–230, 2017.

545 Huanqia Cai, Fanglei Xue, Lele Xu, and Lili Guo. Transmatting: Enhancing transparent objects
546 matting with transformers. In *European Conference on Computer Vision (ECCV)*, 2022.

547 Ho Kei Cheng and Alexander G Schwing. Xmem: Long-term video object segmentation with
548 an atkinson-shiffrin memory model. In *European conference on computer vision*, pp. 640–658.
549 Springer, 2022.

550 Suhwan Cho, Minhyeok Lee, Seunghoon Lee, Dogyoon Lee, Heeseung Choi, Ig-Jae Kim, and
551 Sangyoun Lee. Dual prototype attention for unsupervised video object segmentation. In *Pro-*
552 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19238–
553 19247, 2024.

554 Claudia Cuttano, Gabriele Trivigno, Gabriele Rosi, Carlo Masone, and Giuseppe Averta. Samwise:
555 Infusing wisdom in sam2 for text-driven video segmentation. In *Proceedings of the Computer*
556 *Vision and Pattern Recognition Conference*, pp. 3395–3405, 2025.

557 Henghui Ding, Chang Liu, Shuting He, Xudong Jiang, Philip HS Torr, and Song Bai. MOSE: A
558 new dataset for video object segmentation in complex scenes. In *ICCV*, 2023.

559 Shuangrui Ding, Rui Qian, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Yuwei Guo, Dahua
560 Lin, and Jiaqi Wang. Sam2long: Enhancing sam 2 for long video segmentation with a training-
561 free memory tree. *arXiv preprint arXiv:2410.16268*, 2024.

562 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
563 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
564 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
565 *arXiv:2010.11929*, 2020.

566 Shubhika Garg and Vudit Goel. Mask selection and propagation for unsupervised video object seg-
567 mentation. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer*
568 *Vision*, pp. 1680–1690, 2021.

569 Yongtao Ge, Kangyang Xie, Guangkai Xu, Li Ke, Mingyu Liu, Longtao Huang, Hui Xue, Hao Chen,
570 and Chunhua Shen. Generative video matting. In *Proceedings of the Special Interest Group on*
571 *Computer Graphics and Interactive Techniques Conference Papers*, pp. 1–10, 2025.

572 Qiqi Hou and Feng Liu. Context-aware image matting for simultaneous foreground and alpha es-
573 timation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
574 4130–4139, 2019.

575 Yihan Hu, Yiheng Lin, Wei Wang, Yao Zhao, Yunchao Wei, and Humphrey Shi. Diffusion for
576 natural image matting. In *European Conference on Computer Vision*, pp. 181–199. Springer,
577 2024.

578 Longfei Huang, Yu Liang, Hao Zhang, Jinwei Chen, Wei Dong, Lunde Chen, Wanyu Liu, Bo Li,
579 and Peng-Tao Jiang. Sdmatte: Grafting diffusion models for interactive matting. In *Proceedings*
580 *of the IEEE/CVF international conference on computer vision*, 2025.

581 Wei-Lun Huang and Ming-Sui Lee. End-to-end video matting with trimap propagation. In *Pro-*
582 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14337–
583 14347, 2023.

584 Chuong Huynh, Seoung Wug Oh, Abhinav Shrivastava, and Joon-Young Lee. Maggie: Masked
585 guided gradual human instance matting. In *Proceedings of the IEEE/CVF Conference on Com-*
586 *puter Vision and Pattern Recognition*, pp. 3870–3879, 2024.

587 Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu, Yu-Wing Tai, Chi-Keung Tang, and Fisher Yu.
588 Segment anything in high quality. In *NeurIPS*, 2023.

594 Zhanghan Ke, Jiayu Sun, Kaican Li, Qiong Yan, and Rynson WH Lau. Modnet: Real-time trimap-
 595 free portrait matting via objective decomposition. In *Proceedings of the AAAI Conference on*
 596 *Artificial Intelligence*, volume 36, pp. 1140–1147, 2022.

597

598 Beomyoung Kim, Chanyong Shin, Joonhyun Jeong, Hyungsik Jung, Se-Yun Lee, Sewhan Chun,
 599 Dong-Hyun Hwang, and Joonsang Yu. Zim: Zero-shot image matting for anything. In *Proceed-
 600 ings of the IEEE/CVF International Conference on Computer Vision*, pp. 23828–23838, 2025.

601

602 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 603 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
 604 Segment anything. *arXiv:2304.02643*, 2023.

605

606 Minhyeok Lee, Suhwan Cho, Seunghoon Lee, Chaewon Park, and Sangyoun Lee. Unsupervised
 607 video object segmentation via prototype memory network. In *Proceedings of the IEEE/CVF
 608 winter conference on applications of computer vision*, pp. 5924–5934, 2023.

609

610 Jiachen Li, Jitesh Jain, and Humphrey Shi. Matting anything. *arXiv: 2306.05399*, 2023a.

611

612 Jiachen Li, Roberto Henschel, Vedit Goel, Marianna Ohanyan, Shant Navasardyan, and Humphrey
 613 Shi. Video instance matting. In *Proceedings of the IEEE/CVF Winter Conference on Applications
 614 of Computer Vision*, pp. 6668–6677, 2024a.

615

616 Jiachen Li, Jitesh Jain, and Humphrey Shi. Matting anything. In *Proceedings of the IEEE/CVF
 617 Conference on Computer Vision and Pattern Recognition*, pp. 1775–1785, 2024b.

618

619 Jizhizi Li, Jing Zhang, Stephen J Maybank, and Dacheng Tao. Bridging composite and real: to-
 620 wards end-to-end deep image matting. *International Journal of Computer Vision*, 130(2):246–
 621 266, 2022.

622

623 Ping Li, Yu Zhang, Li Yuan, Huixin Xiao, Binbin Lin, and Xianghua Xu. Efficient long-short
 624 temporal attention network for unsupervised video object segmentation. *Pattern Recognition*,
 625 146:110078, 2024c.

626

627 Xiang Li, Jinglu Wang, Xiaohao Xu, Muqiao Yang, Fan Yang, Yizhou Zhao, Rita Singh, and Bhik-
 628 sha Raj. Towards noise-tolerant speech-referring video object segmentation: Bridging speech
 629 and text. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
 630 Processing*, pp. 2283–2296, 2023b.

631

632 Tianming Liang, Kun-Yu Lin, Chaolei Tan, Jianguo Zhang, Wei-Shi Zheng, and Jian-Fang Hu.
 633 Referdino: Referring video object segmentation with visual grounding foundations. *arXiv
 634 preprint arXiv:2501.14607*, 2025.

635

636 Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian L Curless, Steven M Seitz, and Ira
 637 Kemelmacher-Shlizerman. Real-time high-resolution background matting. In *Proceedings of the
 638 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8762–8771, 2021a.

639

640 Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian L Curless, Steven M Seitz, and Ira
 641 Kemelmacher-Shlizerman. Real-time high-resolution background matting. In *Proceedings of the
 642 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8762–8771, 2021b.

643

644 Shanchuan Lin, Linjie Yang, Imran Saleemi, and Soumyadip Sengupta. Robust high-resolution
 645 video matting with temporal guidance. In *Proceedings of the IEEE/CVF Winter Conference on
 646 Applications of Computer Vision*, pp. 238–247, 2022.

647

648 Yiheng Lin, Yihan Hu, Chenyi Zhang, Ting Liu, Xiaochao Qu, Luoqi Liu, Yao Zhao, and Yun-
 649 chao Wei. Memory efficient matting with adaptive token routing. In *Proceedings of the AAAI
 650 Conference on Artificial Intelligence*, volume 39, pp. 5298–5306, 2025.

651

652 Mengzhen Liu, Mengyu Wang, Henghui Ding, Yilong Xu, Yao Zhao, and Yunchao Wei. Segment
 653 anything with precise interaction. In *Proceedings of the 32nd ACM International Conference on
 654 Multimedia*, pp. 3790–3799, 2024.

648 Qin Liu, Zhenlin Xu, Gedas Bertasius, and Marc Niethammer. Simpleclick: Interactive image
 649 segmentation with simple vision transformers. In *Proceedings of the IEEE/CVF International*
 650 *Conference on Computer Vision*, pp. 22290–22300, 2023.

651 Sihan Ma, Jizhizi Li, Jing Zhang, He Zhang, and Dacheng Tao. Rethinking portrait matting with
 652 privacy preserving. *International Journal of Computer Vision*, 2023. ISSN 1573-1405.

653 Seoung Wug Oh, Joon-Young Lee, Kalyan Sunkavalli, and Seon Joo Kim. Fast video object seg-
 654 mentation by reference-guided mask propagation. In *Proceedings of the IEEE conference on*
 655 *computer vision and pattern recognition*, pp. 7376–7385, 2018.

656 Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video object segmentation us-
 657 ing space-time memory networks. In *Proceedings of the IEEE/CVF international conference on*
 658 *computer vision*, pp. 9226–9235, 2019.

659 Yu Qiao, Yuhao Liu, Xin Yang, Dongsheng Zhou, Mingliang Xu, Qiang Zhang, and Xiaopeng Wei.
 660 Attention-guided hierarchical structure aggregation for image matting. In *The IEEE Conference*
 661 *on Computer Vision and Pattern Recognition (CVPR)*, June 2020.

662 Xuebin Qin, Hang Dai, Xiaobin Hu, Deng-Ping Fan, Ling Shao, and Luc Van Gool. Highly accurate
 663 dichotomous image segmentation. In *ECCV*, 2022.

664 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 665 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 666 and videos. *arXiv preprint arXiv:2408.00714*, 2024.

667 Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steven M Seitz, and Ira Kemelmacher-
 668 Shlizerman. Background matting: The world is your green screen. In *Proceedings of the*
 669 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2291–2300, 2020.

670 Hongje Seong, Seoung Wug Oh, Brian Price, Euntai Kim, and Joon-Young Lee. One-trimap video
 671 matting. In *European Conference on Computer Vision*, pp. 430–448. Springer, 2022.

672 Konstantin Sofiuk, Ilya A Petrov, and Anton Konushin. Reviving iterative training with mask guid-
 673 ance for interactive segmentation. In *2022 IEEE international conference on image processing*
 674 (*ICIP*), pp. 3141–3145. IEEE, 2022.

675 Jingwei Tang, Yagiz Aksoy, Cengiz Oztireli, Markus Gross, and Tunc Ozan Aydin. Learning-based
 676 sampling for natural image matting. In *Proceedings of the IEEE/CVF Conference on Computer*
 677 *Vision and Pattern Recognition*, pp. 3055–3063, 2019.

678 Ruihao Xia, Yu Liang, Peng-Tao Jiang, Hao Zhang, Qianru Sun, Yang Tang, Bo Li, and Pan Zhou.
 679 Towards natural image matting in the wild via real-scenario prior. *arXiv:2410.06593*, 2024.

680 Ning Xu, Brian Price, Scott Cohen, and Thomas Huang. Deep image matting. In *Proceedings of the*
 681 *IEEE conference on computer vision and pattern recognition*, pp. 2970–2979, 2017.

682 Yong Xu, Baoling Liu, Yuhui Quan, and Hui Ji. Unsupervised deep background matting using deep
 683 matte prior. *IEEE Transactions on Circuits and Systems for Video Technology*, 32(7):4324–4337,
 684 2021.

685 Cheng-Yen Yang, Hsiang-Wei Huang, Wenhao Chai, Zhongyu Jiang, and Jenq-Neng Hwang. Samu-
 686 rai: Adapting segment anything model for zero-shot visual tracking with motion-aware memory.
 687 *arXiv preprint arXiv:2411.11922*, 2024.

688 Peiqing Yang, Shangchen Zhou, Jixin Zhao, Qingyi Tao, and Chen Change Loy. Matanyone: Stable
 689 video matting with consistent memory propagation. In *Proceedings of the Computer Vision and*
 690 *Pattern Recognition Conference*, pp. 7299–7308, 2025.

691 Zongxin Yang, Yunchao Wei, and Yi Yang. Associating objects with transformers for video object
 692 segmentation. *Advances in Neural Information Processing Systems*, 34:2491–2502, 2021.

693 Jingfeng Yao, Xinggang Wang, Shusheng Yang, and Baoyuan Wang. Vitmatte: Boosting image
 694 matting with pre-trained plain vision transformers. *Information Fusion*, 103:102091, 2024.

702 Zixuan Ye, Wenze Liu, He Guo, Yujia Liang, Chaoyi Hong, Hao Lu, and Zhiguo Cao. Unifying au-
 703 tomatic and interactive matting with pretrained vits. In *Proc. IEEE/CVF Conference on Computer*
 704 *Vision and Pattern Recognition (CVPR)*, 2024.

705 Yunke Zhang, Chi Wang, Miaomiao Cui, Peiran Ren, Xuansong Xie, Xian-Sheng Hua, Hujun Bao,
 706 Qixing Huang, and Weiwei Xu. Attention-guided temporally coherent video object matting. In
 707 *Proceedings of the 29th ACM International Conference on Multimedia*, pp. 5128–5137, 2021a.

708 Yunke Zhang, Chi Wang, Miaomiao Cui, Peiran Ren, Xuansong Xie, Xian-Sheng Hua, Hujun Bao,
 709 Qixing Huang, and Weiwei Xu. Attention-guided temporally coherent video object matting. In
 710 *Proceedings of the 29th ACM International Conference on Multimedia*, pp. 5128–5137, 2021b.

711 Junbao Zhou, Ziqi Pang, and Yu-Xiong Wang. Rmem: Restricted memory banks improve video ob-
 712 ject segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 713 *Recognition*, pp. 18602–18611, 2024.

714 Yunzhi Zhuge, Hongyu Gu, Lu Zhang, Jinqing Qi, and Huchuan Lu. Learning motion and temporal
 715 cues for unsupervised video object segmentation. *IEEE Transactions on Neural Networks and*
 716 *Learning Systems*, 36(5):9084–9097, 2024.

717 A IMPLEMENTATION DETAILS

718 A.1 LIGHTWEIGHT MATTER

719 We employ a lightweight trimap-based matter, MEMatte Lin et al. (2025), to predict the alpha matte.
 720 This matter integrates the trimap predicted by PDD with the original RGB image to produce the final
 721 alpha matte.

722 MEMatte is a standard trimap-based matting method bsaed on a ViT Dosovitskiy et al. (2020) back-
 723 bone. Its core advantage lies in an adaptive token routing mechanism that drastically reduces the
 724 number of tokens participating in the computation within the global attention blocks of its ViT
 725 backbone. Because the computational complexity of the attention mechanism scales quadratically
 726 with the number of tokens, MEMatte can significantly lower the memory usage and latency during
 727 inference.

728 The target compression degree is set to 0.25, with a maximum token number of 12,000. For the
 729 router and lightweight token refinement module, the linear layers are initialized with a truncated
 730 normal distribution (std=0.02), while the LayerNorm layers have biases set to zero and weights set
 731 to one. The remaining modules are initialized with the teacher model.

732 During training, data augmentations include random affine transformations, random cropping, ran-
 733 dom jitter, random horizontal flipping, and composition, among others. The inputs are randomly
 734 cropped into 1024×1024 patches. Essentially, MAM2 retains the same model architecture as
 735 MEMatte, with the only modification being to the training data.

736 A.2 SELECTIVE SUPERVISION SCHEME

737 As illustrated in Fig. 6, we employ a two-stage training pipeline utilizing a Selective Supervision
 738 Scheme.

739 During *Stage 1*, we deploy a mixed dataloader that randomly samples training batches from hetero-
 740 geneous sources—specifically, Segmentation Data and Matting Data. This stage focuses on opti-
 741 mizing the main model parameters, Θ_{main} , with the supervision signal adapting dynamically to the
 742 sampled data type. For Segmentation Data, the model is supervised via the Segmentation Loss on
 743 the predicted mask. Conversely, when Matting Data is sampled, the model minimizes the Trimap
 744 Loss. The ground truth trimap required for this supervision is generated by degrading the ground
 745 truth alpha matte through standard dilation, erosion, and quantization operations. This approach is
 746 a well-established technique in image matting for synthetically generating trimaps.

747 Subsequently, *Stage 2* exclusively optimizes the lightweight matter parameters, Θ_{matter} , loading only
 748 Matting Data to refine the final alpha matte under the guidance of the Matting Loss.

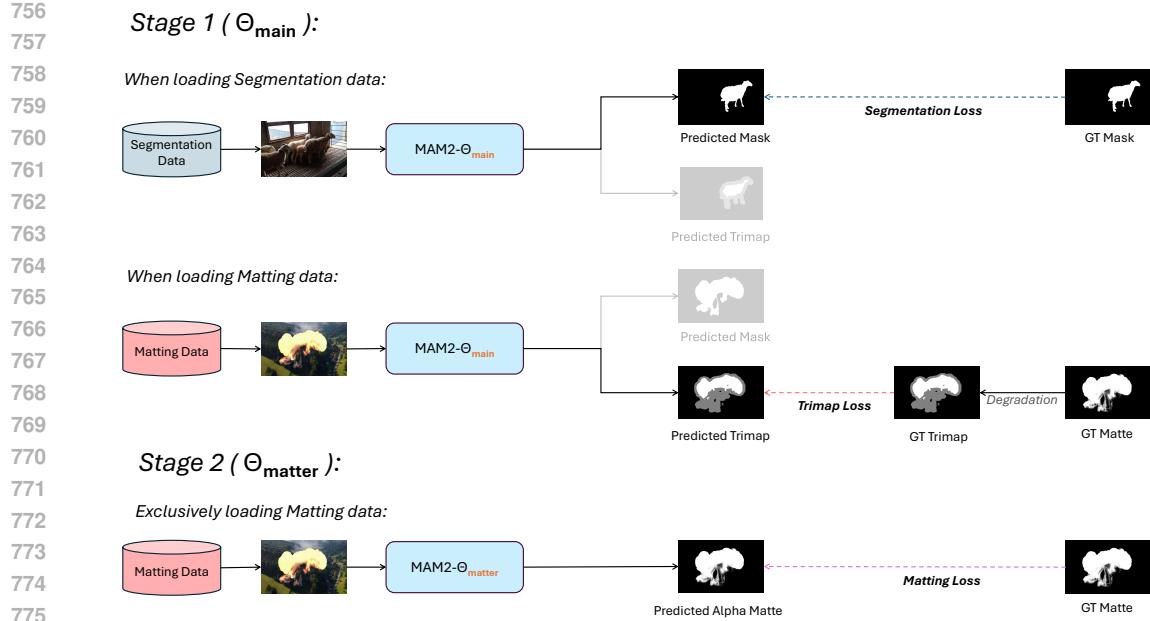


Figure 6: Pipeline of Selective Supervision Scheme.

780 A.3 TRAINING DATA

781

782 The field of video matting has long faced the issue of data scarcity. Consequently, individual meth-
783 ods employ their own strategies to augment training data by sourcing it from other fields, such as
784 video segmentation, image segmentation, image matting. As the field has evolved, the datasets used
785 by different methods have diverged, making it exceedingly difficult to ensure identical training data
786 settings for a fair comparison. We can ensure that MAM2 is trained exclusively on available public
787 datasets. We list the composition of the training data for recent video matting methods in Table 6.
788 It should be noted that the relatively small image counts for P10K, AM-2K, DIS5K, and DUTS are
789 due to the fact that MAM2 utilizes only a subset of these datasets for training, rather than the full
790 sets. For instance, while the P10K training set contains 9,421 images, MAM2 employs only 1,000
791 of them.

Methods	Video Segmentation		Video Matting				Image Segmentation			Image Matting							
	YoutubeVIS	MOSE	VM800	VM108	VM240K	CRGNN	COCO	SPD	DUTS	DIS5K	DM	D-646	AM-2K	T-460	I-HIM50K	P10K	
FTP-VM	596	3551	✓		✓	✓									✓		
MagGie	49373	575														✓	
MatAttone	89231	4297	✓	✓	✓	✓		✓	✓		✓	✓	✓	✓	✓		
MAM2	12239	1326		✓	✓									✓	✓	✓	

Table 6: Composition of training datasets for different methods.

792

793 We have summarized the sampling probabilities for each dataset type, along with other fundamental
794 configurations, in Table 7. Num Frames denotes the number of frames loaded at once; this setting is
795 only applicable to video data.

	Sample Probability	Batch Size	Num Frames
Image Segmentation	0.25	4	-
Image Matting	0.25	4	-
Video Segmentation	0.25	1	4
Video Matting	0.25	1	4

Table 7: Settings for training with multiple datasets.

810 A.4 ABLATION OF TRAINING SETS
811

812 As shown in Table 6, recent matting methods utilize diverse training configurations. Due to the
813 non-public nature of certain datasets and training codes, it is infeasible to align the training settings
814 across all methods. However, to demonstrate that the performance improvements of our method
815 are not derived from our specific training set, we aligned our training data with that of FTP-VM
816 and retrained MAM2. As evidenced in Table 8, MAM2 continues to exhibit significantly superior
817 performance. We selected FTP-VM for this validation because it employs the most straightforward
818 training data composition, consisting only of VM108, YouTubeVIS, and D-646.

819
820 **Table 8: Ablation study of different training sets.**

821 Method	822 Training Data	NOVM (natural objects)				Youtube (human)			
		MAD ↓	MSE ↓	GRAD ↓	dtSSD ↓	MAD ↓	MSE ↓	GRAD ↓	dtSSD ↓
TCVOM Zhang et al. (2021a)	Respective Sets	56.18	38.90	153.95	3.84	1.57	0.40	6.74	1.52
FTP-VM Huang & Lee (2023)	Respective Sets	37.98	19.90	78.06	4.24	2.26	1.10	5.63	1.70
MaGGle Huynh et al. (2024)	Respective Sets	50.04	35.23	108.01	4.90	2.37	0.98	7.69	1.77
MatAnyone Yang et al. (2025)	Respective Sets	39.44	25.63	89.60	4.10	2.05	0.76	9.67	1.75
Matting Anything 2 (Ours)	Same as FTP-VM	18.01	4.89	26.26	2.76	1.08	0.22	2.64	1.20
Matting Anything 2 (Ours)	Respective Sets	14.72	3.70	23.54	2.65	1.16	0.24	3.07	1.20

828 A.5 LOSS FUNCTION
829

830 The training of MAM2 involves three loss functions: L_{mask} , L_{trimap} , and L_{alpha} .

831 Among these, L_{mask} is inherited from the original SAM2, which is a combination of a focal and
832 dice loss for the mask, a MAE loss for the predicted IoU score, and a cross-entropy loss for object
833 prediction.

834 For L_{trimap} , we adopt the Normalized Focal Loss, a loss function commonly used in interactive
835 segmentation Sofiuk et al. (2022); Liu et al. (2023), which is defined as follows:

$$836 \text{NFL}(i, j) = -\frac{1}{\sum_{i,j} (1 - p_{i,j})^\gamma} (1 - p_{i,j})^\gamma \log p_{i,j} \quad (8)$$

837 where $p_{i,j}$ denotes the confidence at (i, j) of the predicted $\text{trimap} \in \mathbb{R}^{W \times H \times 3}$.

838 L_{alpha} loss is a combination of separate l_1 loss Yao et al. (2024), l_2 loss, Laplacian loss Hou & Liu
839 (2019), and gradient penalty loss Tang et al. (2019), formulated as follows

$$840 L_{\text{alpha}} = L_{\text{separate } l_1} + L_{l_2} + L_{\text{laplacian}} + L_{\text{gradient}}.$$

845 B NATURAL VIDEO MATTING DATASET
846847 **Table 9: Breakdown of the NOVM dataset.**

848 Category	849 Animals	Bubble	Cloud	Explosion	Fire	Frost	Plant	Slime	Vehicles	Water	850 Sum
851 Quantity	9	4	4	5	4	4	7	2	4	7	50
852 Proportions	18%	8%	8%	10%	8%	8%	14%	4%	8%	14%	100%

853 The most distinctive feature of our proposed NOVM dataset is its category diversity, as illustrated
854 in Table 9. Furthermore, we have balanced the number of samples per category to ensure a uniform
855 class distribution. We provide several examples from the NOVM dataset in Fig. 7, which demon-
856 strate that the domain diversity of its objects far surpasses that of existing video matting benchmarks,
857 and that its alpha mattes are of exceptional quality.

858 C VISUALIZATION
859

860 C.1 VIDEO MATTING

861 We present the visualization results of MAM2 on the video matting task in Fig. 8 and 9, displaying
862 both the predicted alpha mattes and the extracted foregrounds. Additionally, we provide visualiza-

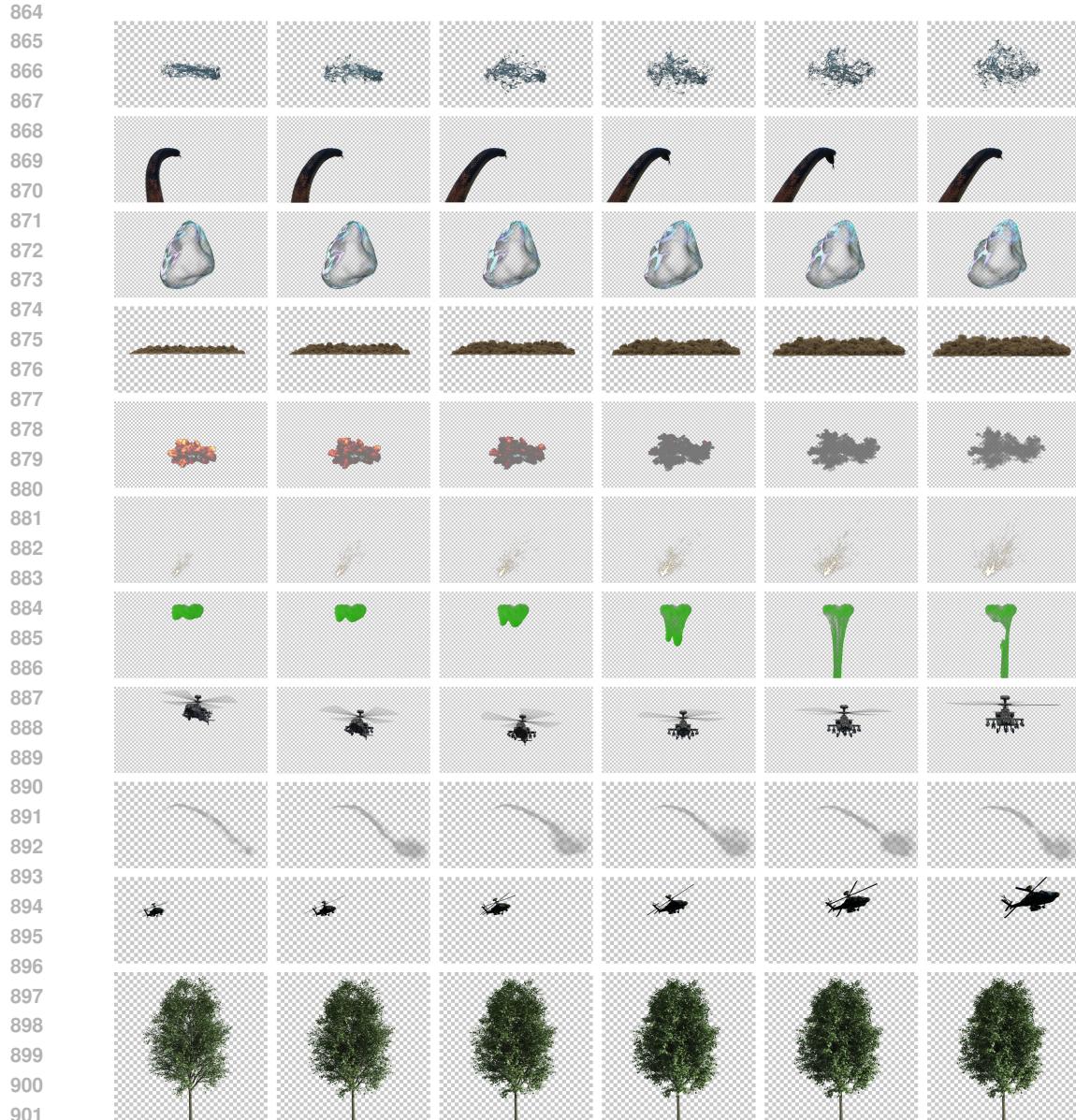
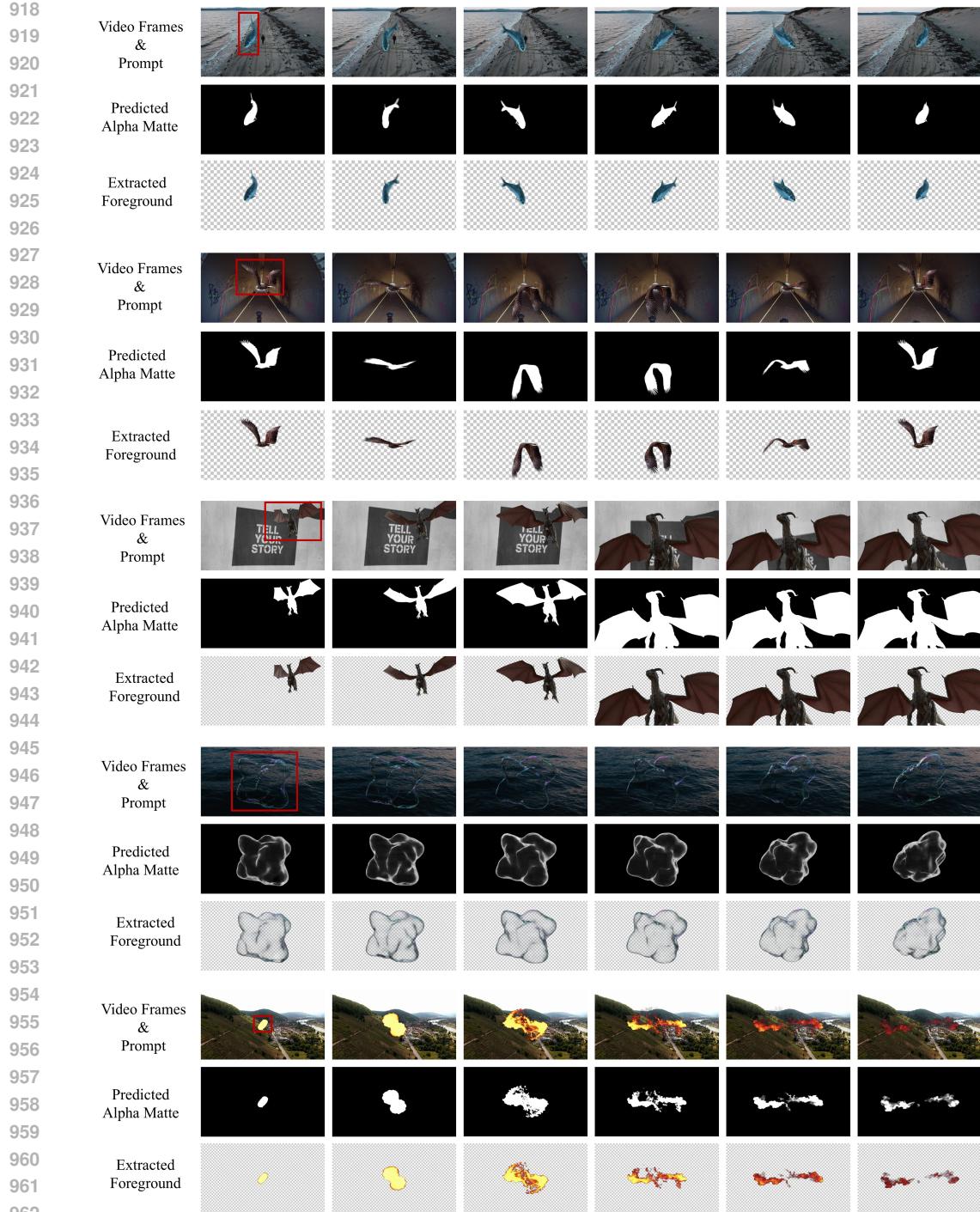


Figure 7: Examples of NOVM dataset.

tion results on the YouTubeMatte dataset in Fig. 10, and on real-world videos in Fig. 11 and 12. We provide visual comparison with other methods on Youtubematte in Fig. 13. Given the limited fine details in public matting benchmarks, we have supplemented the last row of Fig. 13 with the video characterized by large-scale motion and complex hair structures. Several visualization results in MP4 format are also provided in the supplementary material.

C.2 IMAGE MATTING

We present MAM2's visualization results of MAM2 on the image matting task in Fig. 14,



972 editing; experienced and creative practitioners can undoubtedly leverage matting to generate far
 973 more sophisticated and visually stunning effects.
 974

975 D LATENCY

976 We compared the FPS (Frames Per Second) and parameter count of MAM2 against recent methods
 977 in Table 10, with all tests conducted on an NVIDIA RTX 5880 GPU. While MAM2 is not as com-
 978 putationally efficient, it achieves significantly higher matting accuracy. In practical deployment,
 979 methods requiring a first-frame mask necessitate the deployment of auxiliary models to generate
 980 this mask. For instance, the official MatAnyone demo deploys an additional SAM-ViT-Huge Kir-
 981 ilov et al. (2023), while MaGGIE utilizes both SAM 2-Base Ravi et al. (2024) and XMem Cheng &
 982 Schwing (2022). Therefore, from the perspective of practical deployment, we have included these
 983 auxiliary parameters to compare the total parameter count required by each method.
 984

	MAD ↓	Grad ↓	FPS ↑	Params ↓	Params of Auxiliary Model ↓	Total Params ↓
MaGGIE	50.04	108.01	18.87	30.91	59.37 + 80.80	171.08
MatAnyone	39.44	25.63	15.43	35.25	636.00	671.25
Matting Anything 2	14.72	3.70	11.24	256.83	0	256.83

990 Table 10: Efficiency comparison with other methods.
 991

992 E LIMITATIONS

993 Despite MAM2 achieving promising performance, as a pioneering attempt at video matting across
 994 such diverse domains, it inevitably exhibits certain limitations. These issues primarily manifest
 995 when the target object possesses high transparency. For instance, in the explosion shown in the left
 996 part of Fig. 16, as the smoke dissipates, its opacity becomes extremely low. This results in a weak
 997 visual signal, causing the model to abruptly fail in capturing a significant portion of the smoke. As
 998 illustrated in the third column, while smoke actually persists with high transparency in the upper
 999 section of the ring, it is missing from the extracted result.
 1000

1001 Another issue pertains to the extraction of transparent objects based on the alpha matte. Since the
 1002 standard practice in matting involves extracting the foreground by multiplying the original image
 1003 with the predicted alpha matte, the resulting foreground inevitably retains some background color.
 1004 For example, in the right part of Fig. 16, the shape of the background mountains remains faintly
 1005 visible along the edges of the extracted bubble, albeit slightly, and becomes even less discernible
 1006 when composited onto a new background. We consider this an open problem in the field of matting
 1007 worth future exploration: specifically, how to extract a clean foreground based on the alpha matte.
 1008

1009 F LLM USAGE

1010 LLMs are used for refining English usage, and all content is reviewed by authors.
 1011

1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

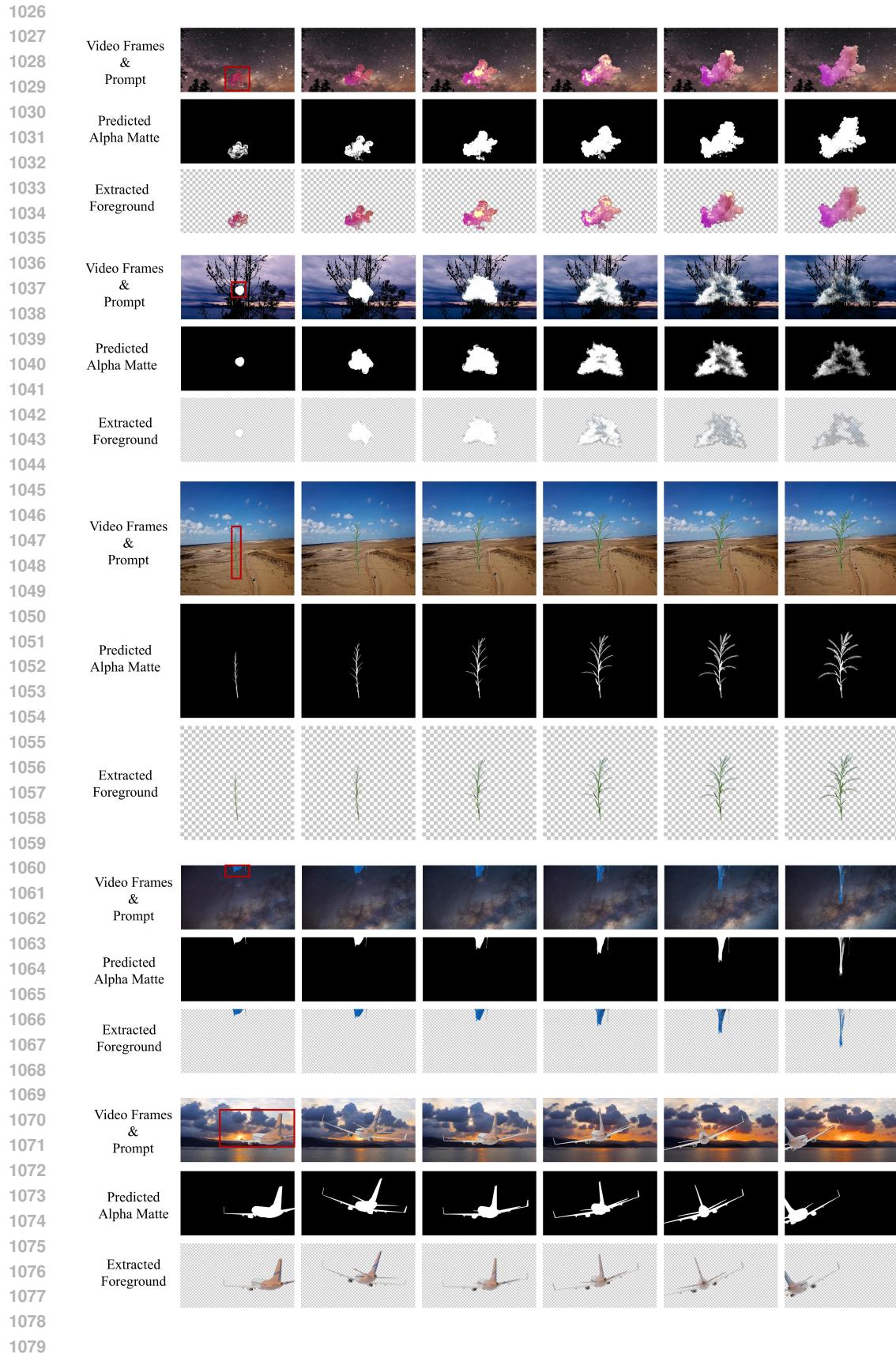


Figure 9: Visualization results of MAM2 on NOVM.

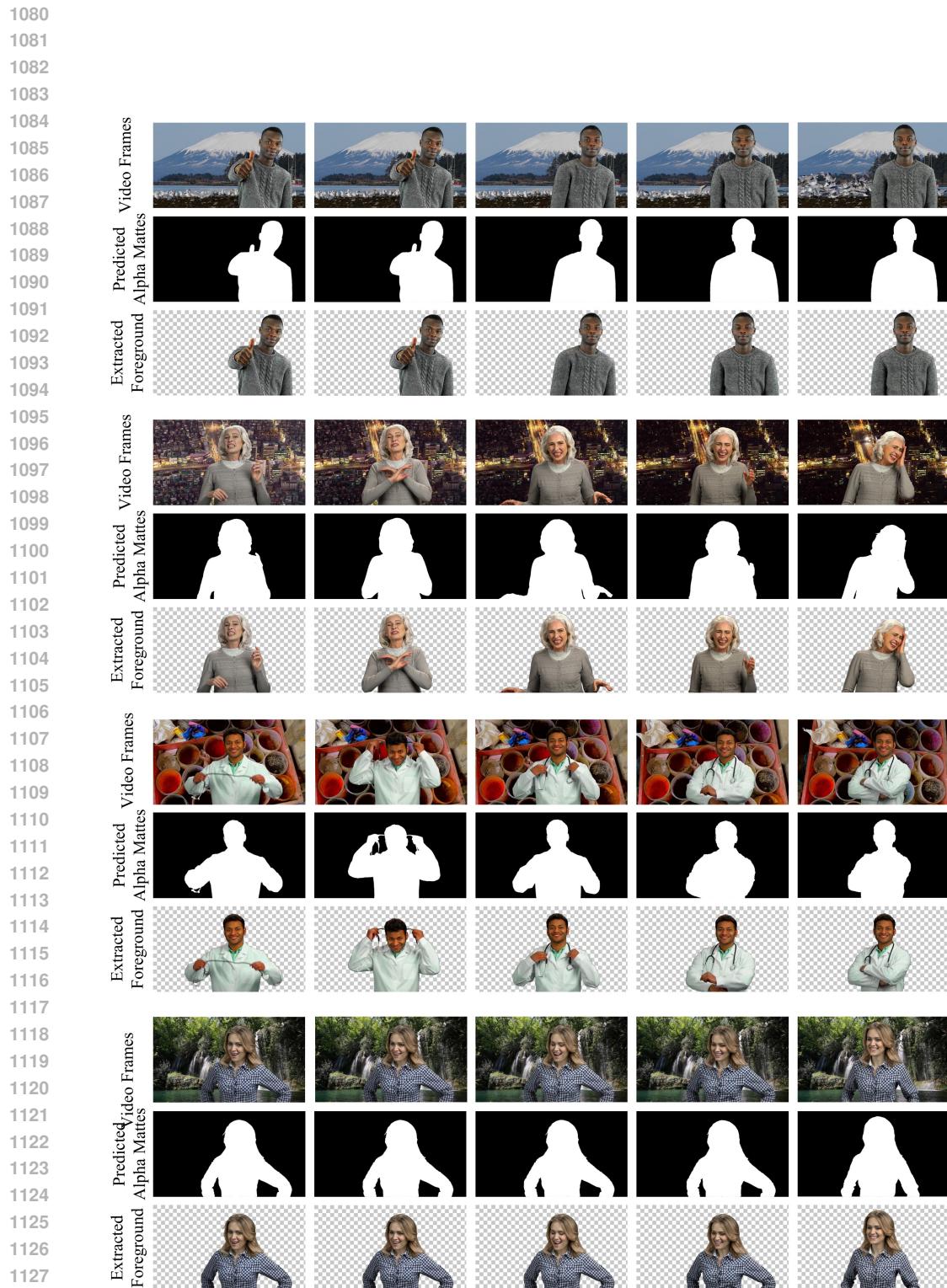


Figure 10: Visualization results of MAM2 on YoutubeMatte.

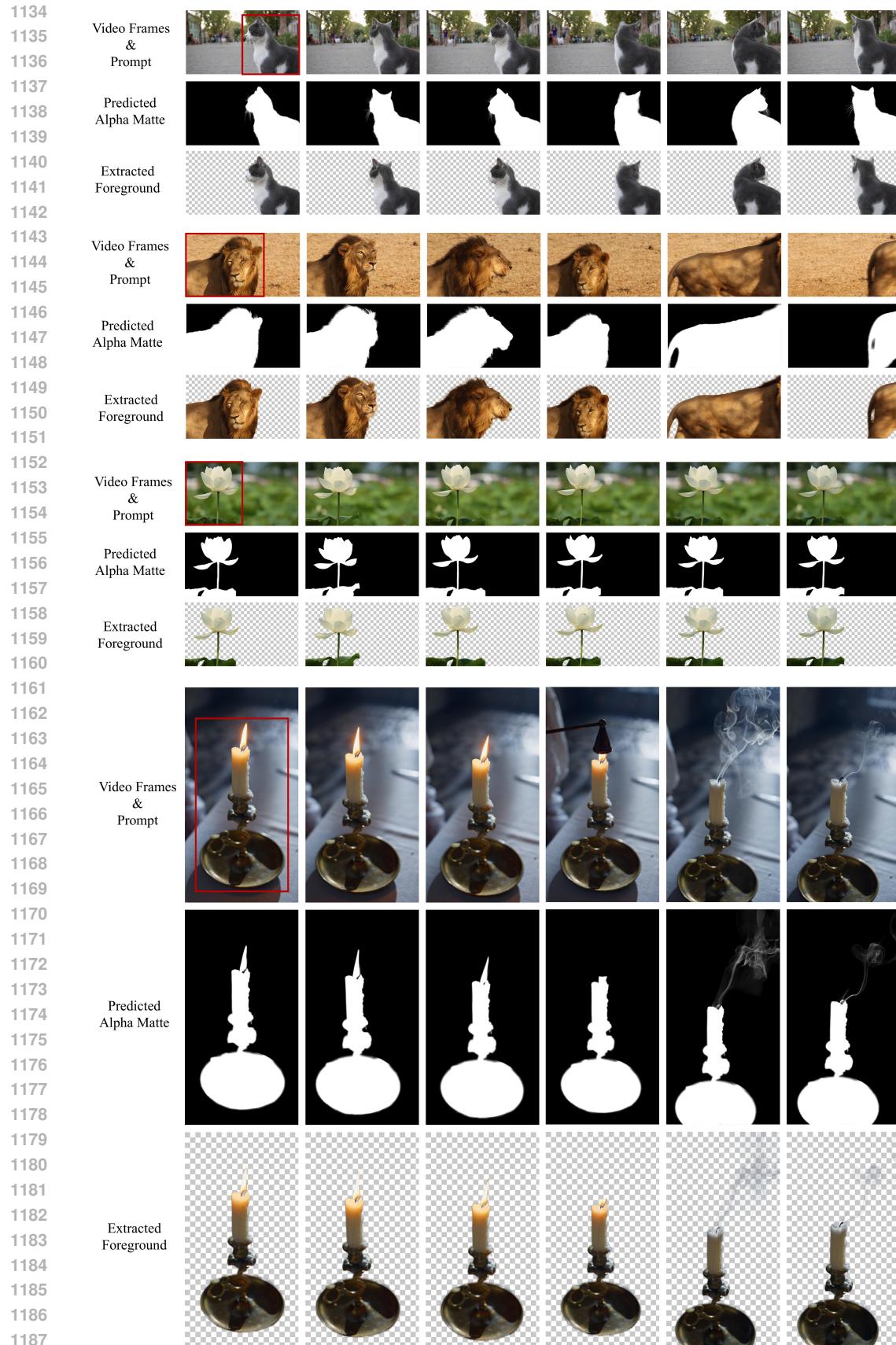


Figure 11: Visualization results of MAM2 on real-world videos.

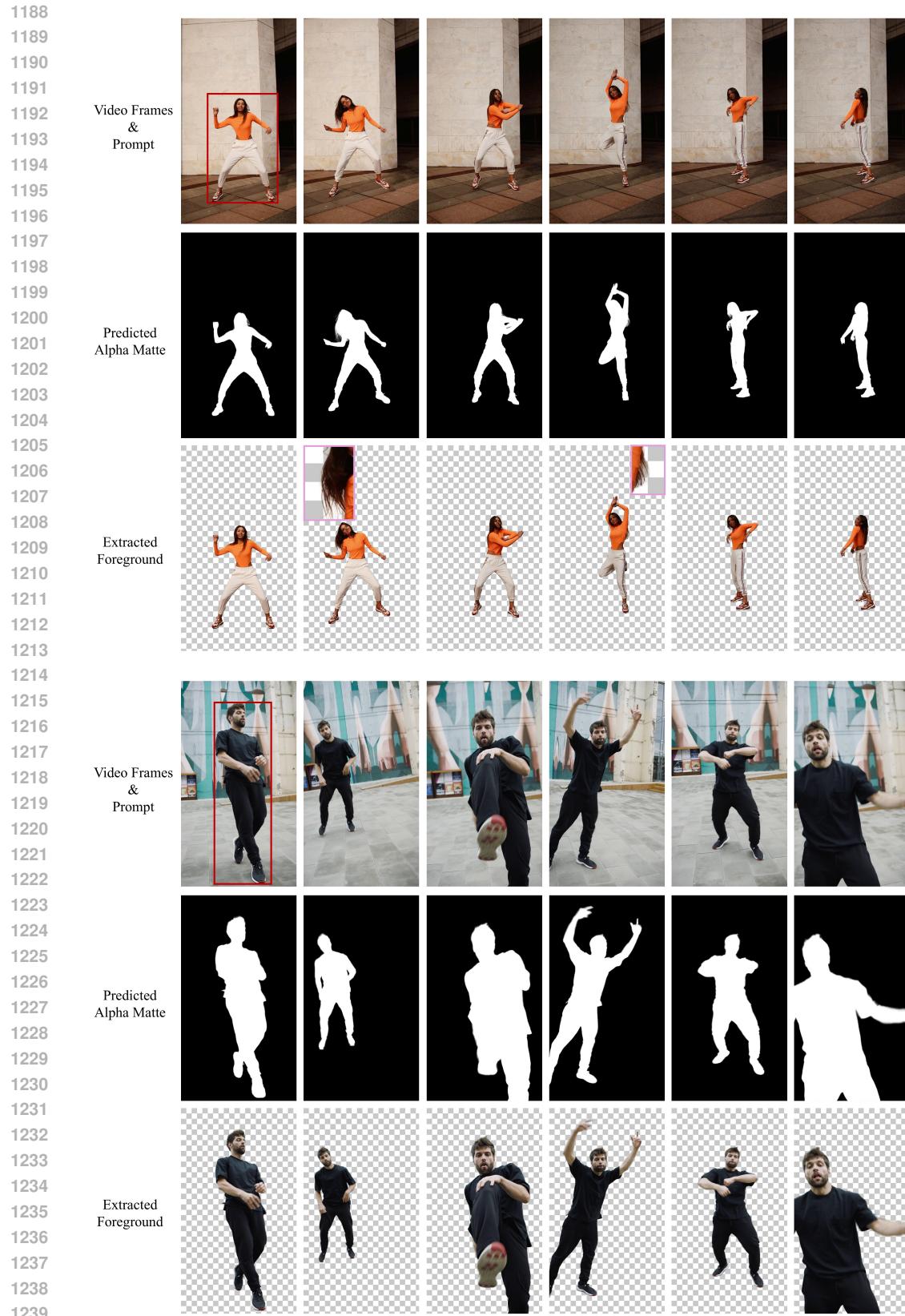


Figure 12: Visualization results of MAM2 on real-world videos.

Figure 13: Visualization comparison with other methods.

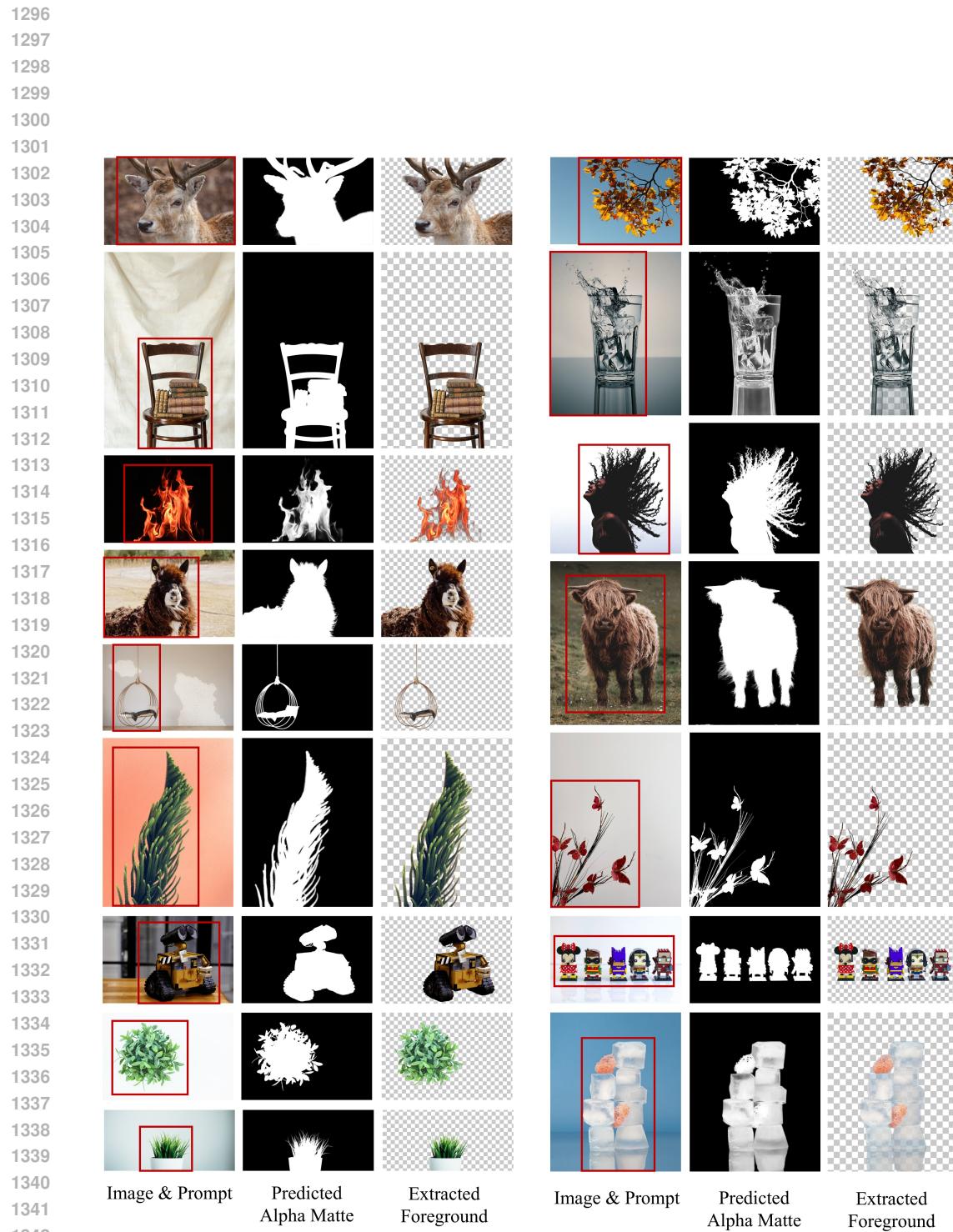


Figure 14: Visualization results of MAM2 on image matting.

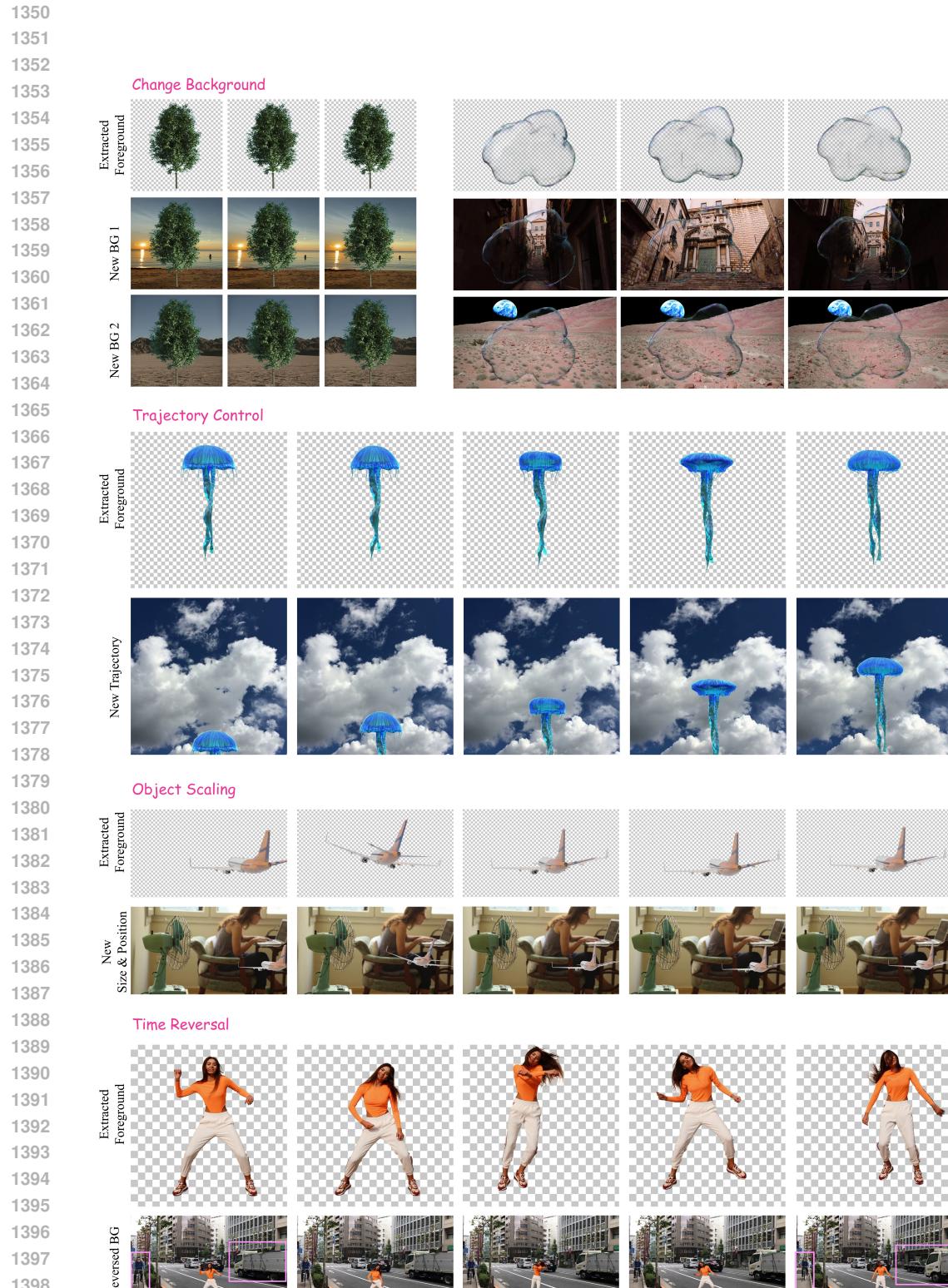
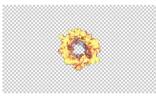


Figure 15: Simple matting-based video editing effects.

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427 Video Frames
 1428
 1429 Predicted Alpha Matte
 1430
 1431
 1432 Extracted Foreground
 1433 
 1434
 1435
 1436 Figure 16: Visualization results of limitations.
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

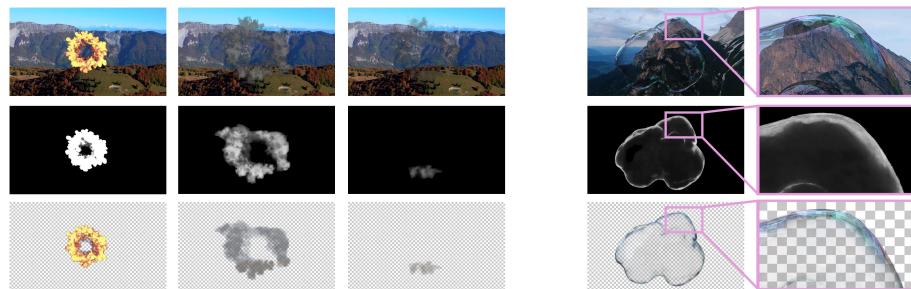


Figure 16: Visualization results of limitations.