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ABSTRACT

Video matting is a crucial task for many applications, but existing methods face
significant limitations. They are often domain-specific, focusing primarily on hu-
man portraits, and rely on the mask of first frame that is challenging to acquire
for transparent or intricate objects like fire or smoke. To address these challenges,
we introduce Matting Anything 2 (MAM2), a versatile and robust video matting
model that handles diverse objects using flexible user prompts such as points,
boxes, or masks. We first propose Promptable Dual-mode Decoder (PDD), an
effective structure that simultaneously predicts a segmentation mask and a corre-
sponding high-quality trimap, leveraging trimap-based guidance to improve gen-
eralization. To tackle prediction instability for transparent objects across video
frames, we further propose a Memory-Separable Siamese (MSS) mechanism.
MSS employs a recurrent approach that isolates trimap prediction from potentially
interfering mask memory, significantly enhancing temporal consistency. To vali-
date our method’s performance on diverse objects, we introduce the Natural Video
Matting dataset, a new benchmark with substantially greater diversity. Extensive
experiments show that MAM2 possesses exceptional matting accuracy and gener-
alization capabilities. We believe MAM2 demonstrates a significant leap forward
in creating a video matting method for anything.

1 INTRODUCTION

Video matting, the process of precisely extracting the foreground alpha matte from a video sequence,
is a critical enabling technology for a myriad of applications. It is fundamental to the visual effects
industry for seamless cinematic composition, powers virtual backgrounds in video conferencing,
and facilitates realistic object integration in augmented reality experiences.

Despite significant advancements in the field, existing video matting methods still exhibit several
critical limitations: i) Domain Specificity: The vast majority of recent video matting models are
predominantly human-centric Lin et al. (2021b); Huynh et al. (2024); Yang et al. (2025); Li et al.
(2024a); Ke et al. (2022); Ge et al. (2025), focusing almost exclusively on human portrait. Research
into matting for more general natural scenes remains largely underexplored, a stark contrast to the
well-developed state of natural image matting. Concurrently, as illustrated in Table 1, a compre-
hensive benchmark for evaluating the generalization capabilities of video matting models on diverse
natural scenes is conspicuously absent. ii) Reliance on Mask: Popular methods often follow the
standard semi-supervised Video Object Segmentation (VOS) framework Yang et al. (2021); Caelles
et al. (2017); Yang et al. (2025). This framework necessitates user interaction on the first frame, typ-
ically by providing a mask to specify the target object. However, a high-quality mask cannot always
be easily obtained via an interactive segmentation model, particularly for certain types of objects.
For transparent objects (e.g., smoke, fire), many regions exhibit a high degree of transparency that
is difficult for both the human eye and the model to discern, making such a mask challenging to
acquire. In this case, a bounding box is clearly a more efficient form of interaction, as the user only
needs to roughly enclose the object, eliminating the need for pixel-level mask correction.

To address these challenges, we introduce Matting Anything 2 (MAM2), a video matting model that
can handle diverse objects. We developed MAM2 by building upon the foundation of SAM2 Ravi
et al. (2024), thereby inheriting its excellent interactive capabilities. This allows MAM2 to ac-
cept various forms of interaction, including points, boxes, and masks. Furthermore, we follow the
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Box
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Figure 1: Matting Anything 2 is a video model that can be directly driven by user prompts and is
able to process diverse objects in addition to human portraits.

Table 1: Statistics of popular video matting benchmarks. Count is calculated based on the number of
distinguished foregrounds. Average Duration refers to the average frame count of the clips. Domain
refers to the categories of objects.

Test Set Number Average Duration Domain

VideoMatte240K Lin et al. (2021b) 25 100 human
VideoMatting108 Zhang et al. (2021b) 28 845 human, cloth, smoke
YoutubeMatte Yang et al. (2025) 32 100 human

Natural Video Matting 50 164 animals, bubble, cloud,
fire, water, frost, plant...

paradigm of recent video matting models, which requires user interaction only on the first frame,
minimizing the user’s interaction cost as much as possible, as shown in Fig. 1.

To endow MAM2 with strong generalization capabilities, we propose the Promptable Dual-mode
Decoder (PDD). In contrast to the original mask decoder of SAM2, PDD can simultaneously predict
an object’s segmentation mask and its corresponding trimap, which serves as strong guidance for
the final alpha matte prediction. We adopted this technical approach, motivated by the demonstrated
dominance of trimap-based methods Dosovitskiy et al. (2020); Hu et al. (2024) in the field of natural
image matting. By strengthening the guidance from the mask for the trimap prediction, PDD is able
to generate high-quality trimaps for common objects.

However, we found that simply using PDD to predict per-frame trimaps for transparent objects
results in unstable quality. This issue is primarily caused by the decoding mechanism of SAM2. For
frames without a user prompt (i.e., all frames after the first), the decoding process relies mainly on
embedding the mask memory from the previous frame into the image features. Yet, for transparent
objects, decoding a trimap based on mask memory is particularly challenging. This is because large
transparent areas require the prediction of more unknown regions in the trimap rather than foreground
regions. This, in turn, increases the discrepancy between the trimap and the mask, which means that
the disparity between the ideal features required for their respective decoding also grows. To resolve
this, we propose the Memory-Separable Siamese (MSS) mechanism. MSS employs a recurrent
approach to bypass the interference that mask memory causes during trimap decoding: after the
segmentation mask is predicted by PDD, this mask is used as a prompt to drive the PDD a second
time to generate the trimap. Crucially, this second decoding pass utilizes pre-saved image features
that have not undergone the mask memory embedding. Experiments show that MSS significantly
improves the stability of trimap predictions for transparent objects. Furthermore, since the two
passes share parameters, this siamese architecture adds no additional parameters.

To validate the generalization performance of our method on natural scenes, we introduce a new,
advanced benchmark: the Natural Object Video Matting (NOVM) dataset. In contrast to existing
video matting test sets, NOVM exhibits significantly greater domain diversity, encompassing cate-
gories beyond portraits such as plants, fire, water, and more, as shown in Table 1.

We conducted extensive experiments on both existing human portrait benchmarks and our newly
proposed NOVM dataset. Compared to the state-of-the-art model, MAM2 reduces the MAD from
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39.44 to 14.72 on NOVM (Natural Object Video Matting) and from 2.05 to 1.16 on Youtube-
Matte Yang et al. (2025) (human video matting). Therefore, MAM2 is not a model specifically
optimized for transparent objects; it also outperforms existing methods in human matting. Further-
more, MAM2 is also a powerful image matting method. We also evaluate its performance on image
matting tasks, where it achieves competitive results. We believe that Matting Anything 2 holds
immense value for practical applications.

2 RELATED WORKS

2.1 VIDEO OBJECT SEGMENTATION

Video Object Segmentation (VOS) tasks are primarily divided into several categories: unsuper-
vised VOS, semi-supervised VOS, referring VOS Liang et al. (2025); Cuttano et al. (2025); Li et al.
(2023b) and interactive VOS. Unsupervised VOS Lee et al. (2023); Li et al. (2024c); Cho et al.
(2024); Zhuge et al. (2024) does not require any user-provided annotations for guidance, allowing
the model to perform segmentation automatically. However, this type of methods suffers from the
inability to specify a target object and often exhibits lower accuracy and consistency.

Consequently, plenty of work has been dedicated to semi-supervised VOS methods Caelles et al.
(2017). These methods require the user to provide an object mask for the first frame, and the model
then segments the object in all subsequent frames based on this initial mask. Numerous classic
architectures have been proposed to address this task. These include mask propagation-based meth-
ods Oh et al. (2018); Garg & Goel (2021), which use the mask from the previous frame as guidance
for the current one to achieve coherent segmentation throughout the sequence, and memory-based
methods Oh et al. (2019); Cheng & Schwing (2022); Zhou et al. (2024), which rely on feature
matching between the current and historical frames to ensure temporal consistency.

Recently, the introduction of SAM2 has drawn significant attention to interactive VOS methods.
This category of approaches aims to achieve video segmentation through more user-friendly inter-
actions, such as clicks. Moreover, users can refine the segmentation results based on the model’s
predictions. In particular, SAM2’s compatibility with multiple prompt types and its strong gener-
alization capabilities have inspired a considerable amount of subsequent work Ding et al. (2024);
Cuttano et al. (2025); Yang et al. (2024).

2.2 VIDEO MATTING

Video Matting methods can similarly be categorized based on the type of user guidance they require.
Automatic video matting models Ke et al. (2022); Lin et al. (2022), can predict precise alpha mattes
without any user input, but they lack the ability to specify a target object. In contrast, approaches
that follow the VOS paradigm Yang et al. (2025); Huynh et al. (2024) require a user-provided mask
in the first frame to select the target for matting. However, both of these method categories are
typically limited to processing human or animal portraits.

Alternatively, other methods utilize a trimap instead of a mask of the first frame for guidance Seong
et al. (2022); Huang & Lee (2023). Guided by the stronger prior information provided by a trimap,
these methods not only achieve high matting accuracy but have also shown the potential to handle
objects beyond portraits. However, it is evident that the user interaction cost of providing a trimap
is significantly higher than that of a mask.

Additionally, there is a special type of background-based video matting methods Lin et al. (2021a);
Sengupta et al. (2020); Xu et al. (2021). These methods require the user to provide an image of
clean background without the foreground object, as auxiliary information to achieve precise matting.
However, in practical applications, a clean background is often unavailable. Furthermore, these
methods impose strict requirements on background consistency, making them unable to adapt to
temporal changes. Therefore, compared to the aforementioned methods, background-based matting
is less practical to deploy in real-world scenarios.
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Figure 2: Architecture of Matting Anything 2. MAM2 first predicts the object’s trimap based on the
user’s prompt, and then uses the trimap to predict the final alpha matte.

3 METHODOLOGY
3.1 OVERALL FRAMEWORK

As shown in Fig. 1, MAM2 is capable of predicting alpha mattes for an entire video, requiring
user interaction on only the first frame. Users can provide prompts directly to MAM2, eliminating
the need for an auxiliary interactive segmentation model to generate an mask for the first frame.
Furthermore, MAM2 inherits the strong interactivity of SAM2, allowing it to support various prompt
types such as boxes, points, and masks, which ensures high user-friendliness.

We implement this inference process using a progressive decoding pipeline. As depicted in Fig.
2, the pipeline begins with an image encoder of SAM2 finetuned by LoRA that extracts the image
feature of a video frame. Subsequently, the Memory-Separable Siamese (MSS) mechanism utilizes
two sequential Promptable Dual-mode Decoder (PDD) passes to predict the target’s mask and trimap
based on the user prompt. Finally, a lightweight trimap-based matting module predicts the final alpha
matte. MAM2 is compatible with trimap-based matte model of various architectures. We choose
MEMatte Lin et al. (2025) as our lightweight matter here due to its efficiency, with details provided
in A.1

3.2 SELECTIVE SUPERVISION SCHEME

The task of Video Matting (VM) suffers from significant data scarcity, compelling most ap-
proaches Yang et al. (2025); Huang & Lee (2023) to supplement their training data with Image
Matting (IM) or Video Object Segmentation (VOS) data. Thus, we propose a selective supervision
scheme to better utilize the knowledge contained within these heterogeneous data sources. The im-
plementation of this strategy is enabled by MAM2’s capability to concurrently generate multiple
outputs, including the mask, trimap, and alpha matte.

To facilitate this specialized learning, we partition the training procedure into two stages. Let the
model parameters Θ be partitioned into θmain for the main components (encompassing all parameters
excluding the lightweight matter module) and θmatter for the lightweight matter module.

The first stage is designed to optimize θmain using data from IM, VM, and VOS. Accordingly, the
loss for this main stage, Lmain, is formulated as follows:

Lmain = IVOS · Lmask(M,yM ) + (IVM + IIM) · Ltrimap(T, yT ) (1)
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where M and T are the mask and trimap outputs, with corresponding ground truths yM and yT .
The indicator functions IVOS, IVM, and IIM selectively activate the appropriate loss term based on
the type of data randomly loaded by the dataloader from the mixed training set. This stage trains
MAM2 to robustly produce a coarse mask or a trimap.

In the second stage, only the lightweight matter parameters θmatter are optimized. For this stage, we
define a separate loss, Lmatter:

Lmatter = IIM · Lalpha(α, yα) (2)
where α is the final predicted alpha matte and yα is its ground truth. This stage exclusively uses
image matting data for supervision. This is because this stage focuses on learning fine-grained
detail perception, which demands high-fidelity annotations. Notably, the annotation quality of image
matting data is significantly superior to that of video matting data, an observation also noted in
MatAnyone Yang et al. (2025).

Further details concerning the assignment of specific data sources to the optimization of different
model parameters can be found in Appendix A.2. The composition of each category of datasets can
be found in Appendix A.3. The detailed formulation of each loss function and the sampling strategy
for the training data are provided in Appendix A.5.

3.3 PRELIMINARY

To facilitate a better understanding of our method, we begin by providing a brief preliminary on
the decoding mechanism of SAM1&2 Kirillov et al. (2023); Ravi et al. (2024) before detailing
the model architecture of MAM2. To ensure consistency with the task setting of this paper, all
subsequent descriptions are based on the standard semi-supervised VOS setting, where the user
provides a prompt only for the first frame of a video sequence.

As SAM1 is an image segmentation model that requires user-provided prompts, it utilizes a Prompt-
able Mask Decoder. This decoder takes the features extracted by image encoder and the user’s
prompt as input to predict the segmentation mask. This process can be formally formulated as:

M = fDecoder(F,Puser) (3)

where M is the predicted segmentation mask, F represents the image feature, and Puser is the user-
provided prompt.

However, since SAM2 is required to predict masks for every frame based on sparse prompts, a
memory mechanism is introduced to address this challenge. For subsequent frames, which lacks
a user prompt, the memory mechanism embeds the mask prediction from the previous frame into
the current image features via memory attention. This embedded memory functions as an implicit
prompt, replacing the absent user prompt and driving the Promptable Mask Decoder’s operation.
The per-frame decoding process of SAM2 can be formally described as:

M t =

{
fDecoder(F

t
non-mem,Puser), if t = 0

fDecoder(F
t
mem, ∅), if t > 0

(4)

where t is the frame index, M t is the mask prediction at frame t, Ft
non-mem represents the image

feature of frame t without memory embedding, Ft
mem denotes the image feature of frame t embedded

with memory of mask predictions of previous frames, and ∅ represents the absent user prompt.

3.4 PROMPTABLE DUAL-MODE DECODER

MAM2 operates as a progressive decoding pipeline; consequently, it necessitates the preliminary
prediction of the target’s trimap to facilitate the subsequent prediction of the final alpha matte. To
address this requirement, we propose the Promptable Dual-mode Decoder (PDD). Distinct from the
original SAM2 decoder, the PDD is capable of simultaneously predicting both a segmentation mask
and a trimap for every frame. We denote the PDD as the function fPDD. Similar to Equation 4, fPDD
can be described as:

(M t, T t) =

{
fPDD(F

t
non-mem,Puser), if t = 0

fPDD(F
t
mem, ∅), if t > 0

(5)

where M t and T t represent the mask and trimap prediction at frame t, respectively.

5
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However, predicting an additional trimap based on the original SAM2 decoder is non-trivial. While
a line of work has focused on refining the coarse masks predicted by SAM1 into finer and more
detailed ones Ke et al. (2023); Liu et al. (2024), these masks, whether coarse or fine, remain se-
mantically consistent. The trimap we aim to predict, however, is fundamentally a different form of
semantic representation. To address this distinction, SEMatte Xia et al. (2024), a SAM-based image
matting method, proposes employing a fully independent parallel branch prior to the final decoding
to predict this distinct representation. However, our findings indicate that while a simple parallel
structure facilitates the simultaneous prediction of masks and trimaps, the resulting trimaps are of-
ten noisy, frequently exhibiting jagged artifacts along the boundaries, as illustrated in the second
row of Fig. 3.

Video Frames

w/  Parallel

w/  PDD

Figure 3: PDD improves the quality of the trimap prediction. Zoom in to observe details.

We attribute this instability to the fact that a simple parallel branch fails to fully leverage SAM’s
robust semantic understanding and the exceptional stability of its mask predictions. Therefore, we
consider it essential to incorporate strong guidance from SAM2’s mask predictions into the parallel
branch. Motivated by this, we propose the trimap decoding flow in PDD, as illustrated in part (b) of
Fig. 2.

First, the predicted mask is normalized with a sigmoid function and then processed by a convolu-
tional layer to generate a mask augment feature. Then, the mask augment feature is concatenated
with the original segmentation feature and trimap feature. Subsequently, a lightweight fusion mod-
ule performs a mask-guided enhancement on these concatenated features. Finally, the final trimap
is obtained by computing the dot product between the fused features and the trimap output token.
As illustrated in Fig. 3, this simple design leads to a significant improvement in the stability and
quality of the predicted trimap. This, in turn, enhances the quality of the final predicted alpha matte.
This simple design yields improvements of 24% and 29% on the natural object and human portrait
benchmarks, respectively, as shown in the top two rows of Table 5.

In addition, PDD inherits sam2’s excellent compatibility with multiple prompt types, which makes
the implementation of Memory-Separable Siamese Mechanism possible, as will be discussed in
detail in the next section.

3.5 MEMORY-SEPARABLE SIAMESE MECHANISM

A “matting anything” method must do more than just competently handle portraits or objects where
fine details are concentrated at the boundary. A true test of its capability lies in processing challeng-
ing transparent objects like fire and bubbles, which are characterized by extensive transparency and
complex details.

When we applied our PDD-equipped MAM2 to these objects, we discovered a strange temporal
collapse. While the trimap for the first frame is predicted accurately, from the second frame onward,
we found that unknown regions in the trimap were prone to being misclassified as foreground, as
shown in Fig. 4. For our lightweight matter, which relies on the trimap predicted by PDD to
predict the final alpha matte, such false positive errors of foreground are known to be catastrophic,
particularly for objects with large-scale transparency.

As discussed in Section 3.3 and Equation 5, the decoding process for the first frame is driven by the
user prompt, whereas for subsequent frames, it relies on the memory of the previous mask predic-
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Figure 4: The entire region of the bubble should be predicted as unknown in the trimap. MSS effec-
tively mitigates the collapse of trimap prediction for subsequent frames when handling transparent
objects.

tion embedded within the image features. Consequently, this anomalous temporal collapse can be
attributed to a specific disparity: while PDD performs accurate trimap decoding when guided by user
prompts, it fails to do so when guided by the memory embedded in the image features. Therefore,
we identify the root cause as the process of embedding the memory of previous mask predictions
into the image features. We posit that this embedding operation induces a significant shift in the
image feature space, which severely interferes with the trimap decoding process. Corroborating ev-
idence for this is observed in the erroneous trimap predictions of subsequent frames, which exhibit
a tendency to resemble binary segmentation masks rather than trimaps. Notably, these predictions
display a strong bias towards classifying object regions—regardless of their actual transparency—as
definite foreground rather than the unknown category required for trimaps.

We consider this phenomenon to be logical. Given that masks and trimaps represent distinct seman-
tic concepts, an inconsistency between the ideal feature spaces required for their respective decoding
is to be expected. In essence, while subsequent frames rely on mask memory for decoding, the em-
bedding of this memory simultaneously interferes with trimap prediction.

To overcome this dilemma, we introduce the Memory-Separable Siamese Mechanism (MSS), a
recurrent approach to trimap decoding. For subsequent frames, once PDD computes a segmentation
mask, we leverage this mask as a pseudo-prompt to drive a second PDD pass. Crucially, this second
pass is performed on a preserved, memory-free version of the image feature that was saved prior to
the memory attention.

Consequently, the decoding of subsequent frames is effectively realigned to rely on memory-free
features and a ”user prompt”, thereby avoiding the interference caused by the shifted image feature
on trimap decoding, as indicated by the purple connecting line in part (c) in Fig. 2. The trimap
generated from this second pass is then selected as the final output. This process can be formally
formulated as:

M t = π1

(
fPDD(F

t
mem, ∅)

)
(6)

T t = π2

(
fPDD(F

t
non-mem,M

t)
)

(7)

where πx denotes the projection function that extracts the x-th element from the output tuple (e.g.,
π1 extracts the mask and π2 extracts the trimap).

As illustrated in Fig. 4, MSS substantially enhances the robustness of MAM2 on challenging objects
characterized by large-scale transparency. Furthermore, since the mask used to drive the second pass
is decoded from features with memory, temporal consistency of the trimap can be transmitted and
maintained by this mask. In addition, since the PDD weights are shared between two passes, MSS
is a siamese architecture, adding no additional parameters. Meanwhile, because PDD is built upon
SAM’s lightweight mask decoder, the computational overhead of this second pass is negligible.

7
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4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Consistent with recent video matting methods Yang et al. (2025), MAM2 is trained on multiple types
of data: video object segmentation Ding et al. (2023), video matting Zhang et al. (2021b), image
segmentation Qin et al. (2022), and image matting Xu et al. (2017); Qiao et al. (2020); Li et al.
(2022); Ma et al. (2023); Cai et al. (2022). No private or proprietary data was used to train MAM2.
The entire training set is composed of publicly accessible datasets. The specific datasets used for
training are detailed in Appendix A.3.

θmain are finetuned from pretrained SAM2 weights for 100 epochs using the AdamW optimizer with
an initial learning rate of 4 × 10−4. The LoRA rank for the encoder is set to 16. θmatter, are trained
from a ViT-Small model initialized with DINO pretrained weights. This component is trained for
approximately 3,500 iterations using AdamW with an initial learning rate of 5 × 10−4. The total
number of trainable parameters is 44.7M. Further training details are available in the Appendix A.

4.2 NATURAL OBJECT VIDEO MATTING DATASET

To evaluate the performance of methods on diverse objects, we introduce Natural Object Video Mat-
ting (NOVM), the first video matting benchmark composed of a rich variety of natural objects. The
construction of NOVM began with the collection of After Effects assets that included preexisting
alpha mattes, allowing them to be used directly as assets in content creation. Subsequently, this col-
lection was filtered to discard assets with insufficient detail, as well as all cartoon-styled clips, which
we noted constituted a significant portion of the initial set. Finally, the retained assets are composited
onto high-resolution and dynamic backgrounds to produce the final video clips and corresponding
alpha matte clips.

The final NOVM dataset contains 50 clips, each featuring a distinct foreground object or action and
a dynamic background. Most importantly, NOVM covers a highly diverse range of object domains,
presenting a formidable challenge to existing video matting models. We provide several examples
of NOVM in Fig.7 and the breakdown of NOVM in Table 9.

4.3 VIDEO MATTING

Table 2: Quantitative comparison with other video matting methods in interactive mode on NOVM
and YoutubeMatte Datasets.

Method Prompt NOVM (natural objects) YoutubeMatte (human)

MAD ↓ MSE ↓ GRAD ↓ dtSSD ↓ MAD ↓ MSE ↓ GRAD ↓ dtSSD ↓
TCVOM Zhang et al. (2021a) Trimap 56.18 38.90 153.95 3.84 1.57 0.40 6.74 1.52
FTP-VM Huang & Lee (2023) Trimap 37.98 19.90 78.06 4.24 2.26 1.10 5.63 1.70
MaGGIe Huynh et al. (2024) Mask 50.04 35.23 108.01 4.90 2.37 0.98 7.69 1.77
MatAnyone Yang et al. (2025) Mask 39.44 25.63 89.60 4.10 2.05 0.76 9.67 1.75

Matting Anything 2 (Ours) Mask 15.19 4.27 26.45 2.80 1.16 0.24 3.12 1.21
Matting Anything 2 (Ours) Box & Point 14.72 3.70 23.54 2.65 1.16 0.24 3.07 1.20

We first compare the performance of the methods when prompted by a mask of the first frame,
following the setting of semi-supervised VOS task, as presented in Table 2. We select NOVM and
YoutubeMatte Yang et al. (2025) as our test datasets. The former is used to evaluate the model’s
performance on diverse objects, while the latter assesses its performance on typical human portraits.
MAM2 demonstrates a significant advantage across all metrics, including MAD and MSE for overall
prediction, Grad for detail fidelity, and dtSSD for temporal consistency. More importantly, MAM2
can even perform matting without the need for a user-provided mask; it can be driven directly by
user-provided points or boxes. Even in this mode, MAM2 continues to exhibit exceptionally strong
performance.

Following the MatAnyone Yang et al. (2025), we also evaluated the performance of MAM2 in an
automatic human matting mode. This mode operates by using an automatic human matting model
to obtain the matte for the first frame. For a fair comparison, both MAM2 and MatAnyone utilize
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RVM to generate this first-frame matte. As shown in Table 3, MAM2 also demonstrates the strongest
overall performance in automatic matting.

Table 3: Quantitative comparison with other video matting methods in automatic mode on Youtube-
Matte and VM240K Datasets.

Method YoutubeMatte (human) VM240K (human)

MAD ↓ MSE ↓ GRAD ↓ dtSSD ↓ MAD ↓ MSE ↓ GRAD ↓ dtSSD ↓
MODNet Ke et al. (2022) 15.29 12.68 8.42 2.74 11.13 5.54 15.30 3.08
RVM Lin et al. (2022) 4.37 2.25 15.1 2.28 6.57 1.93 10.55 1.90
RVM-Large Lin et al. (2022) 3.50 1.19 12.64 2.08 5.81 0.97 9.65 1.78
MatAnyone Yang et al. (2025) 3.70 2.35 11.45 1.81 5.66 1.68 5.75 1.27

Matting Anything 2 (Ours) 1.19 0.27 3.17 1.23 5.10 1.10 4.15 1.26

4.4 IMAGE MATTING

Recently, a wave of image matting methods built upon the foundation of SAM 1/2 has emerged,
including ZIM Kim et al. (2025), Matting Anything Li et al. (2023a), and SEMatte Xia et al. (2024).
MAM2 not only shows strong performance in video matting but is also a powerful image matting
model. For image matting, MAM2 can also be driven by efficient user prompts such as points
and boxes. We provide a comparison with other image matting methods in Table 4. Specifically,
in addition to a visual prompt, SDMatte requires a flag to specify whether the matting target is a
transparent object. Therefore, to ensure a fair comparison with other methods, we report the results
for SDMatte both with and without this text prompt. MAM2 achieves the best performance on
natural image matting without relying on additional text prompts. We provide visualization results
of image matting in Appendix C.2. Notably, the model parameters of MAM2 for the video matting
and image matting tasks are identical.

Table 4: Quantitative comparison of image matting methods with various prompt types on AIM-
500. N/A indicates that the model does not support Click mode. The * denotes a different version
of SDMatte.
Method Prompt MSE SAD Grad Conn Prompt MSE SAD Grad Conn

Matting Anything Li et al. (2024b) Box 11.60 36.66 21.04 18.99 Point 7.52 186.50 37.48 40.38
SmartMatting Ye et al. (2024) Box 7.65 25.33 27.16 13.54 Point 30.20 66.27 46.63 18.77
SEMatte Xia et al. (2024) Box 7.65 24.30 16.06 13.64 Point N/A N/A N/A N/A
SDMatte Huang et al. (2025) Box 10.04 29.35 24.06 15.62 Point 11.93 33.57 29.15 18.15
SDMatte* Huang et al. (2025) Box 4.91 19.81 15.84 11.97 Point N/A N/A N/A N/A
Matting Anything 2 (Ours) Box 4.24 18.07 13.88 11.01 Point 5.68 20.78 14.63 10.90
SDMatte Box & Text 4.90 19.45 20.06 12.58 Point & Text 10.9 31.8 26.84 17.51
SDMatte* Box & Text 3.60 16.42 14.89 11.00 Point & Text N/A N/A N/A N/A

4.5 ABLATION STUDY

We present the ablation studies for PDD and MSS here. The first two rows of Table 5 represent the
ablation study for PDD, where Parallel refers to the simple parallel structure for trimap prediction,
as described in Sec 3.4. In conjunction with Fig. 3, it is evident that PDD substantially improves the
stability of the predicted trimap, thereby enhancing the final matting quality.

Rows 2, 3, and 4 detail the ablation study for MSS. In this context, MCS (Memory-Consistent
Siamese) represents the strategy that simply performs a second pass of PDD based on memory-
embedded image features. The results indicate that the critical factor for MSS’s significant improve-
ment is not an extra decoding pass (as evidenced by the lack of improvement from MCS). Instead,
the key is the utilization of memory-free image features during the second PDD pass, which prevents
interference from mask memory in the trimap decoding process.

9
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Table 5: Ablation study of different components of Matting Anything 2.

Parallel PDD MCS MSS NOVM Youtube

MAD ↓ MSE ↓ GRAD ↓ dtSSD ↓ MAD ↓ MSE ↓ GRAD ↓ dtSSD ↓
✓ 26.19 13.21 43.29 3.14 1.54 0.52 3.49 1.30

✓ 18.55 6.77 29.77 2.91 1.16 0.24 3.08 1.19
✓ ✓ 20.23 8.59 39.26 2.85 1.18 0.26 3.14 1.19
✓ ✓ 14.72 3.70 23.54 2.65 1.16 0.24 3.07 1.20
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Figure 5: Visual comparison with other video matting methods. Zoom in to observe details.

4.6 VISUALIZATION

In Fig. 5, we provide a visual comparison of MAM2 with MatAnyone Yang et al. (2025) and
FTP-VM Huang & Lee (2023), which represent the state-of-the-art in mask-guided and trimap-
guided video matting, respectively. MAM2 provides higher-quality matting results even when driven
directly by user-provided points and boxes.

We provide extensive visualization results in Appendix C.1. Specifically, Figs. 8 and 9 demonstrate
performance on the NOVM dataset, Fig. 10 on the YouTubeMatte dataset, and Figs. 11 and 12 on
real-world videos. We also provide several results in MP4 format in the supplementary material.

5 CONCLUSION

In this paper, we introduce Matting Anything 2, a powerful model designed for matting any object
in videos. We propose a Promptable Dual-mode Decoder to enable a seamless, interactive workflow
and a Memory-Separable Siamese mechanism to enhance generalization for complex objects by re-
solving memory conflicts without adding parameters. To facilitate robust evaluation, we also present
the Natural Object Video Matting dataset, a new benchmark with significant domain diversity. Ex-
perimental results demonstrate that MAM2 significantly outperforms existing methods, establishing
a new state-of-the-art for both natural and portrait scenes. We believe this work holds immense
potential for significant practical applications.
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A IMPLEMENTATION DETAILS

A.1 LIGHTWEIGHT MATTER

We employ a lightweight trimap-based matter, MEMatte Lin et al. (2025), to predict the alpha matte.
This matter integrates the trimap predicted by PDD with the original RGB image to produce the final
alpha matte.

MEMatte is a standard trimap-based matting method bsaed on a ViT Dosovitskiy et al. (2020) back-
bone. Its core advantage lies in an adaptive token routing mechanism that drastically reduces the
number of tokens participating in the computation within the global attention blocks of its ViT
backbone. Because the computational complexity of the attention mechanism scales quadratically
with the number of tokens, MEMatte can significantly lower the memory usage and latency during
inference.

The target compression degree is set to 0.25, with a maximum token number of 12,000. For the
router and lightweight token refinement module, the linear layers are initialized with a truncated
normal distribution (std=0.02), while the LayerNorm layers have biases set to zero and weights set
to one. The remaining modules are initialized with the teacher model.

During training, data augmentations include random affine transformations, random cropping, ran-
dom jitter, random horizontal flipping, and composition, among others. The inputs are randomly
cropped into 1024 × 1024 patches. Essentially, MAM2 retains the same model architecture as
MEMatte, with the only modification being to the training data.

A.2 SELECTIVE SUPERVISION SCHEME

As illustrated in Fig. 6, we employ a two-stage training pipeline utilizing a Selective Supervision
Scheme.

During Stage 1, we deploy a mixed dataloader that randomly samples training batches from hetero-
geneous sources—specifically, Segmentation Data and Matting Data. This stage focuses on opti-
mizing the main model parameters, Θmain, with the supervision signal adapting dynamically to the
sampled data type. For Segmentation Data, the model is supervised via the Segmentation Loss on
the predicted mask. Conversely, when Matting Data is sampled, the model minimizes the Trimap
Loss. The ground truth trimap required for this supervision is generated by degrading the ground
truth alpha matte through standard dilation, erosion, and quantization operations. This approach is
a well-established technique in image matting for synthetically generating trimaps.

Subsequently, Stage 2 exclusively optimizes the lightweight matter parameters, Θmatter, loading only
Matting Data to refine the final alpha matte under the guidance of the Matting Loss.
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Stage 1 ( ϴmain  ):

Stage 2 ( ϴmatter  ):

MAM2-ϴmain

Matting Data

Segmentation
Data

Matting Data

Predicted Mask

When loading Segmentation data:

MAM2-ϴmain

When loading Matting data:

GT MatteGT Trimap

Trimap Loss Degradation

Predicted Trimap

GT Mask

Segmentation Loss

MAM2-ϴmatter

Predicted Alpha Matte GT Matte

Matting Loss

Exclusively loading Matting data:

Figure 6: Pipeline of Selective Supervision Scheme.

A.3 TRAINING DATA

The field of video matting has long faced the issue of data scarcity. Consequently, individual meth-
ods employ their own strategies to augment training data by sourcing it from other fields, such as
video segmentation, image segmentation, image matting. As the field has evolved, the datasets used
by different methods have diverged, making it exceedingly difficult to ensure identical training data
settings for a fair comparison. We can ensure that MAM2 is trained exclusively on available public
datasets. We list the composition of the training data for recent video matting methods in Table 6.
It should be noted that the relatively small image counts for P10K, AM-2K, DIS5K, and DUTS are
due to the fact that MAM2 utilizes only a subset of these datasets for training, rather than the full
sets. For instance, while the P10K training set contains 9,421 images, MAM2 employs only 1,000
of them.

Video Segmentation Video Matting Image Segmentation Image Matting
Methods Total Count YoutubeVIS MOSE VM800 VM108 VM240K CRGNN COCO SPD DUTS DIS5K DIM D-646 AM-2K T-460 I-HIM50K P10K

Images Videos 3471 1246 826 80 475 20 82783 5711 5910 2895 431 596 1000 407 49373 1000

FTP-VM 596 3551 ✓ ✓ ✓
MaGGIe 49373 575 ✓ ✓ ✓ ✓
MatAnyone 89251 4297 ✓ ✓ ✓ ✓ ✓ ✓
MAM2 12239 1326 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6: Composition of training datasets for different methods.

We have summarized the sampling probabilities for each dataset type, along with other fundamental
configurations, in Table 7. Num Frames denotes the number of frames loaded at once; this setting is
only applicable to video data.

Sample Probability Batch Size Num Frames
Image Segmentation 0.25 4 -
Image Matting 0.25 4 -
Video Segmentation 0.25 1 4
Video Matting 0.25 1 4

Table 7: Settings for training with multiple datasets.
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A.4 ABLATION OF TRAINING SETS

As shown in Table 6, recent matting methods utilize diverse training configurations. Due to the
non-public nature of certain datasets and training codes, it is infeasible to align the training settings
across all methods. However, to demonstrate that the performance improvements of our method
are not derived from our specific training set, we aligned our training data with that of FTP-VM
and retrained MAM2. As evidenced in Table 8, MAM2 continues to exhibit significantly superior
performance. We selected FTP-VM for this validation because it employs the most straightforward
training data composition, consisting only of VM108, YouTubeVIS, and D-646.

Table 8: Ablation study of different training sets.
Method Training Data NOVM (natural objects) Youtube (human)

MAD ↓ MSE ↓ GRAD ↓ dtSSD ↓ MAD ↓ MSE ↓ GRAD ↓ dtSSD ↓
TCVOM Zhang et al. (2021a) Respective Sets 56.18 38.90 153.95 3.84 1.57 0.40 6.74 1.52
FTP-VM Huang & Lee (2023) Respective Sets 37.98 19.90 78.06 4.24 2.26 1.10 5.63 1.70
MaGGIe Huynh et al. (2024) Respective Sets 50.04 35.23 108.01 4.90 2.37 0.98 7.69 1.77
MatAnyone Yang et al. (2025) Respective Sets 39.44 25.63 89.60 4.10 2.05 0.76 9.67 1.75

Matting Anything 2 (Ours) Same as FTP-VM 18.01 4.89 26.26 2.76 1.08 0.22 2.64 1.20
Matting Anything 2 (Ours) Respective Sets 14.72 3.70 23.54 2.65 1.16 0.24 3.07 1.20

A.5 LOSS FUNCTION

The training of MAM2 involves three loss functions: Lmask, Ltrimap, and Lalpha.

Among these, Lmask is inherited from the original SAM2, which is a combination of a focal and
dice loss for the mask, a MAE loss for the predicted IoU score, and a cross-entropy loss for object
prediction.

For Ltrimap, we adopt the Normalized Focal Loss, a loss function commonly used in interactive
segmentation Sofiiuk et al. (2022); Liu et al. (2023), which is defined as follows:

NFL(i, j) = − 1∑
i,j (1− pi,j)

γ (1− pi,j)
γ
log pi,j (8)

where pi,j denotes the confidence at (i, j) of the predicted trimap ∈ RW×H×3.

Lalpha loss is a combination of separate l1 loss Yao et al. (2024), l2 loss, Laplacian loss Hou & Liu
(2019), and gradient penalty loss Tang et al. (2019), formulated as follows

Lalpha = Lseparate l1 + Ll2 + Llaplacian + Lgradient.

B NATURAL VIDEO MATTING DATASET

Table 9: Breakdown of the NOVM dataset.
Category Animals Bubble Cloud Explosion Fire Frost Plant Slime Vehicles Water Sum

Quantity 9 4 4 5 4 4 7 2 4 7 50
Proportions 18% 8% 8% 10% 8% 8% 14% 4% 8% 14% 100%

The most distinctive feature of our proposed NOVM dataset is its category diversity, as illustrated
in Table 9. Furthermore, we have balanced the number of samples per category to ensure a uniform
class distribution. We provide several examples from the NOVM dataset in Fig. 7, which demon-
strate that the domain diversity of its objects far surpasses that of existing video matting benchmarks,
and that its alpha mattes are of exceptional quality.

C VISUALIZATION

C.1 VIDEO MATTING

We present the visualization results of MAM2 on the video matting task in Fig. 8 and 9, displaying
both the predicted alpha mattes and the extracted foregrounds. Additionally, we provide visualiza-
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Figure 7: Examples of NOVM dataset.

tion results on the YouTubeMatte dataset in Fig. 10, and on real-world videos in Fig. 11 and 12.
We provide visual comparison with other methods on YoutubeMatte in Fig. 13. Given the limited
fine details in public matting benchmarks, we have supplemented the last row of Fig. 13 with the
video characterized by large-scale motion and complex hair structures. Several visualization results
in MP4 format are also provided in the supplementary material.

C.2 IMAGE MATTING

We present MAM2’s visualization results of MAM2 on the image matting task in Fig. 14,
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Figure 8: Visualization results of MAM2 on NOVM.

C.3 VIDEO EDITING

Since video matting empowers creators with control at the layer and object levels, it is extensively
applied in various creative editing workflows. In Fig. 15, we present several simple video editing
effects realized using MAM2, including background replacement, trajectory control, object scaling,
and time inversion. These examples represent merely the tip of the iceberg regarding matting-based
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editing; experienced and creative practitioners can undoubtedly leverage matting to generate far
more sophisticated and visually stunning effects.

D LATENCY

We compared the FPS (Frames Per Second) and parameter count of MAM2 against recent methods
in Table 10, with all tests conducted on an NVIDIA RTX 5880 GPU. While MAM2 is not as com-
putationally efficient, it achieves significantly higher matting accuracy. In practical deployment,
methods requiring a first-frame mask necessitate the deployment of auxiliary models to generate
this mask. For instance, the official MatAnyone demo deploys an additional SAM-ViT-Huge Kir-
illov et al. (2023), while MaGGIe utilizes both SAM 2-Base Ravi et al. (2024) and XMem Cheng &
Schwing (2022). Therefore, from the perspective of practical deployment, we have included these
auxiliary parameters to compare the total parameter count required by each method.

MAD ↓ Grad ↓ FPS ↑ Params ↓ Params of Auxiliary Model ↓ Total Params ↓
MaGGIe 50.04 108.01 18.87 30.91 59.37 + 80.80 171.08
MatAnyone 39.44 25.63 15.43 35.25 636.00 671.25
Matting Anything 2 14.72 3.70 11.24 256.83 0 256.83

Table 10: Efficiency comparison with other methods.

E LIMITATIONS

Despite MAM2 achieving promising performance, as a pioneering attempt at video matting across
such diverse domains, it inevitably exhibits certain limitations. These issues primarily manifest
when the target object possesses high transparency. For instance, in the explosion shown in the left
part of Fig. 16, as the smoke dissipates, its opacity becomes extremely low. This results in a weak
visual signal, causing the model to abruptly fail in capturing a significant portion of the smoke. As
illustrated in the third column, while smoke actually persists with high transparency in the upper
section of the ring, it is missing from the extracted result.

Another issue pertains to the extraction of transparent objects based on the alpha matte. Since the
standard practice in matting involves extracting the foreground by multiplying the original image
with the predicted alpha matte, the resulting foreground inevitably retains some background color.
For example, in the right part of Fig. 16, the shape of the background mountains remains faintly
visible along the edges of the extracted bubble, albeit slightly, and becomes even less discernible
when composited onto a new background. We consider this an open problem in the field of matting
worth future exploration: specifically, how to extract a clean foreground based on the alpha matte.

F LLM USAGE

LLMs are used for refining English usage, and all content is reviewed by authors.
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Figure 9: Visualization results of MAM2 on NOVM.
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Figure 10: Visualization results of MAM2 on YoutubeMatte.
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Figure 11: Visualization results of MAM2 on real-world videos.
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Figure 12: Visualization results of MAM2 on real-world videos.
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Figure 13: Visualization comparison with other methods.
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Figure 14: Visualization results of MAM2 on image matting.
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Figure 15: Simple matting-based video editing effects.
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Figure 16: Visualization results of limitations.
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