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Abstract

DNA Language Models, such as GROVER,
DNABERT?2 and the Nucleotide Transformer,
operate on DNA sequences that inherently con-
tain sequencing errors, mutations, and laboratory-
induced noise, which may significantly impact
model performance. Despite the importance of
this issue, the robustness of DNA language mod-
els remains largely underexplored. In this paper,
we comprehensively investigate their robustness
in DNA classification by applying various adver-
sarial attack strategies: the character (nucleotide
substitutions), word (codon modifications), and
sentence levels (back-translation-based transfor-
mations) to systematically analyze model vulner-
abilities. Our results demonstrate that DNA lan-
guage models are highly susceptible to adversarial
attacks, leading to significant performance degra-
dation. Furthermore, we explore adversarial train-
ing method as a defense mechanism, which en-
hances both robustness and classification accuracy.
This study highlights the limitations of DNA lan-
guage models and underscores the necessity of
robustness in bioinformatics.

1. Introduction

Transformer-based language models are increasingly be-
ing adopted in bioinformatics, leveraging NLP techniques
to tackle sequence classification and functional prediction
tasks, which have traditionally relied on alignment-based
methods(Steinegger & Soding, 2017; Buchfink et al., 2021).
Notably, language models such as DNABERT?2 (Zhou et al.,
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Figure 1. Adversarial examples with nucleotides and codon
change, which will be misclassified by a non-promoter to a pro-
moter.

2023), Nucleotide Transformer (Dalla-Torre et al., 2023),
and GROVER (Sanabria et al., 2024) leverage large-scale
genomic sequence data as textual data and are specialized
for specific bioinformatics downstream tasks. By treating
DNA sequences not merely as strings but as sequence data
with contextual information, these models introduce a novel
approach to solving bioinformatics problems.

However, despite these advancements, the robustness of
DNA language models remains underexplored. In real-
world biological environments, DNA sequences are sus-
ceptible to sequencing errors, mutations, and data noise in-
troduced during the extraction process in laboratories (Ono
etal., 2021; Ma et al., 2019). However, there is a lack of sys-
tematic research analyzing the impact of such variations on
model performance. While robustness studies on language
models have been active in text classification, research on
DNA sequence classification models remains limited. Given
the increasing adoption of DNA classification models in clin-
ical and biotechnological applications, it is crucial to assess
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Figure 2. Anti-Microbial Resistance (AMR) gene Classification and Promoter Detection Results

their reliability in real-world scenarios.

In this paper, we explore the adversarial robustness of
DNA language models in classification tasks. In addition
to existing character-level attacks (nucleotide-level attacks
(Kuleshov et al., 2021)), we introduce word-level (codon-
level) and sentence-level (backtranslation) attacks. We
demonstrate that these attacks lead to significant perfor-
mance degradation in Anti-Microbial Resistance (AMR)
gene classification (Yoo et al., 2024) and promoter detec-
tion (Zhou et al., 2023).

Furthermore, we investigate whether a simple adversarial
training strategy can mitigate the vulnerabilities of DNA lan-
guage models. The results show that while its effectiveness
varies by attack type and dataset, it enhances robustness and
can occasionally improve overall model performance.

Our main contributions can be summarized into three folds:

* We comprehensively explore the robustness of
DNA language models through multi-granularity
attack levels: character-level (nucleotide-level),
word-level (codon-level), and sentence-level (back-
translation). Notably, we introduce codon-level and
back-translation attacks, extending the scope beyond
conventional character-level perturbations for a more
thorough robustness evaluation.

* We demonstrate that increasing perturbation strength
causes the most severe performance degradation in

nucleotide-level perturbations, though at the risk of
disrupting biological context. In the AMR gene clas-
sification with drug labels task, our proposed back-
translation-based perturbations effectively degrade
classification performance while preserving semantic
meaning.

* We show that even simple adversarial training effec-
tively mitigates vulnerabilities and improves classifica-
tion accuracy over the original model, highlighting its
potential to enhance the real-world reliability of DNA
classification models.

2. Related Work

Adversarial Attacks in Text Classification Adversar-
ial attacks in text classification can be broadly categorized
into character-level, word-level, and sentence-level attacks
(Ebrahimi et al., 2018). Character-level attacks involve ran-
dom substitutions at the character level, or modifications at
the word embedding or language model level (Jia & Liang,
2017; Alzantot et al., 2018). Word-level attacks follow a
similar approach. Sentence-level attacks include paraphras-
ing, backtranslation (Ribeiro et al., 2018), and sentence
embedding-level perturbations. (Zhang et al., 2019).

Adversarial Attacks in DNA Sequence Classification
Kuleshov et al. (2021) and Montserrat & Ioannidis (2022)
demonstrated that nucleotide-level adversarial attacks, in-
cluding perturbations on single nucleotide polymorphism
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(SNP)-based ancestry classification models, significantly
degrade the performance of DNA sequence classifiers. In
this paper, inspired by word-level and sentence-level per-
turbations, we further explore codon-level attacks and
backtranslation-based DNA attacks. Recent jailbreak-
style attacks on DNA language models, such as Gene-
Breaker (Zhang et al., 2025) and GenoArmory (Luo et al.,
2025), provide complementary perspectives focused on tar-
geted adversarial behaviors.

Adversarial Training Several studies have shown that ad-
versarial training enhances model robustness (Madry et al.,
2018; Zhang et al., 2022; Liu & Sun, 2023), including in
DNA sequence classification, where character-level adver-
sarial examples are used to improve resilience (Kuleshov
et al., 2021; Montserrat & Ioannidis, 2022).

3. Adversarial Attack on DNA Language
Models

We examine the impact of adversarial attacks on
DNABERT?2 (Zhou et al., 2023), Nucleotide Transformer
(Dalla-Torre et al., 2023), and GROVER (Sanabria et al.,
2024) across three levels attack strategies: character-level
(nucleotide substitutions (Kuleshov et al., 2021)), word-
level (codon modifications), and sentence-level (back-
translation-based transformations). Our analysis focuses
on DNA classification task using AMR gene (Yoo et al.,
2024) and promoter detection (Zhou et al., 2023). These
models differ in tokenizer granularity and pretraining scale,
allowing us to compare adversarial robustness across a repre-
sentative spectrum of DNA language model configurations.
Further implementation details and benchmark details are
provided in Appendix A and Appendix B.

Nucleotide-Level Attack Nucleotides are the fundamen-
tal building blocks of nucleic acids, such as DNA and RNA,
crucial for storing and transmitting genetic information.
In DNA sequences, nucleotides are represented by single
characters, making nucleotide-level attacks analogous to
character-level attacks in text. We conducted nucleotide-
level attacks using an enumeration approach combined with
trial and error search methods (Iyyer et al., 2018; Ribeiro
et al., 2018; Belinkov & Bisk, 2018).

Codon-Level Attack A codon is a sequence of three nu-
cleotides in DNA or RNA that specifies a particular amino
acid. Codons are essential for protein synthesis. Codon-
level attack is similar to word-level attacks and is also per-
formed using the enumeration search method including trial
and error.

Backtranslation Attack We introduce backtranslation
based attack method for DNA sequences. In biological trans-

lation, translation refers to converting mRNA sequences into
protein amino acid sequences, and reverse translation refers
to generating possible nucleotide sequences based on pro-
tein amino acid sequences.

These three perturbation strategies differ in both granular-
ity and biological semantic preservation. Nucleotide-level
attacks modify single bases and often introduce biologi-
cally implausible variations. Codon-level attacks perturb
three-base units that may affect amino acid interpretations.
Backtranslation-based attacks, in contrast, generate syn-
onymous nucleotide sequences by substituting codons with
biologically equivalent alternatives, thereby preserving the
encoded amino acid sequence while altering the surface
form of the DNA.

4. Results

4.1. Attack Effectiveness and Context Preservation

In Figure 2, nucleotide-level attacks (Kuleshov et al., 2021)
result in the most significant performance degradation.
While these attacks are highly effective. Conversely, codon-
level attacks are better at preserving sequence meaning
since they group sequences based on meaningful units, such
as codons. Backtranslation attacks preserve context the
best but are relatively less effective in reducing accuracy.
This trend is evident in the first graph, where there is a
sharp decline in model accuracy with increasing epsilon
values for nucleotide-level attacks, particularly affecting
DNABERT?2 (Zhou et al., 2023). In contrast, the Nucleotide
Transformer maintains relatively high accuracy even as ep-
silon increased.

4.2. Model Robustness Comparison

The Nucleotide Transformer (Dalla-Torre et al., 2023) and
GROVER (Sanabria et al., 2024) demonstrate superior ro-
bustness compared to DNABERT?2 (Zhou et al., 2023). Due
to its larger model capacity and ability to handle longer
sequences, the Nucleotide Transformer exhibits increased
resistance to adversarial attacks. Compared to DNABERT?2,
GROVER employs an extensive BPE optimization pro-
cess involving hundreds of iterations enhancing its abil-
ity to model long-range dependencies in DNA sequences.
These architectural refinements are likely to improve its
robustness against adversarial attacks. This robustness is
particularly notable in experiments involving backtransla-
tion attacks. The second graph in Figure 2 illustrates that
DNABERT?2’s accuracy significantly drops with increas-
ing iterations, whereas the Nucleotide Transformer and
GROVER maintain high accuracy, demonstrating its ro-
bustness due to its larger model capacity or longer sequence
processing capabilities.

Moreover, DNABERT?2 promoter detection model demon-
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Figure 3. Comparison of success rates and accuracies between adversarial training and standard training in AMR gene Classification

across increasing iterations of backtranslation attacks

strates greater robustness compared to DNABERT2 AMR
drug classification models, potentially due to the larger
volume of training data utilized. As illustrated in the
third graph, with increasing epsilon values, the accuracy
of DNABERT?2 promoter detection model declines, though
to a lesser extent than in AMR detection models. How-
ever, DNABERT? still performs worse than the Nucleotide
Transformer and GROVER under nucleotide-level attacks.
The fourth graph further shows that, in AMR drug classi-
fication tasks, the Nucleotide Transformer and GROVER
maintain the highest accuracy against backtranslation at-
tacks, whereas DNABERT? appears to be relatively more
vulnerable to backtranslation attacks. We further address
the robustness of a general language model in Appendix C.

4.3. Comparative Analysis of Classification Tasks

The experimental results indicate that the Nucleotide Trans-
former and GROVER possess higher robustness against
adversarial attacks compared to DNABERT?2, especially
in the context of backtranslation attacks. Additionally,
DNABERT?2 trained with larger datasets, such as those
used for promoter detection, demonstrates enhanced robust-
ness. This comparative analysis highlights the importance
of model capacity, training data size and The ability to pro-
cess long sequences in improving the resilience of DNA
sequence classification models against various adversarial
attack methods.

4.4. Performance Against Defense Method

We further investigate adversarial training as a defense mech-
anism against adversarial attacks, incorporating adversarial
examples into the training process to improve model robust-
ness.

Figure 3 illustrates the changes in success rate and accu-
racy over iterations when applying the Back-translate attack
in the AMR drug classification task. The results indicate
that the success rate of adversarially trained models (red)
increases at a slower rate compared to standard training mod-
els (black). This indicates that models trained with adversar-
ial examples are more resistant to such attacks, as shown by
the slower increase in attack success rate. Furthermore, the

accuracy graphs show that adversarially trained models (red)
exhibit a smaller decline in accuracy compared to standard
training (black). This observation implies that adversarial
training improves the model’s generalization performance
and mitigates performance degradation when exposed to
adversarial attacks. For GROVER and DNABERT?2, the
initial accuracy of adversarially trained models is lower than
that of standard training models in Figure 6 and Figure 8.
However, as iterations increase, adversarially trained models
demonstrate relatively higher accuracy, indicating that re-
peated exposure to attacks reinforce the model’s resilience.
In contrast, Nucleotide Transformer exhibits superior ro-
bustness, with adversarially trained models outperforming
standard training models in accuracy from the outset. Ad-
ditionally, the accuracy degradation over iterations is the
least pronounced among the three models. This suggests
that the larger model capacity and ability to handle longer
sequences of Nucleotide Transformer further amplify the
benefits of adversarial training, making it more resistant to
adversarial perturbations. Further details are described in
Appendix E

5. Conclusion

In this study, we utilize three methods to generate DNA
adversarial examples, proposing techniques for generating
adversarial examples using nucleotide based attack, codon-
based attacks and backtranslation. These methods success-
fully degrade the performance of AMR drug classification
and promoter detection models. Nucleotide-level attacks are
the most effective, although they risk disrupting the DNA
context. Conversely, backtranslation better preserves mean-
ing and context. Notably, adversarial training as a defense
strategy proves effective in improving model robustness, and
in some cases, even surpassing the performance of standard
training methods. By leveraging adversarial training, mod-
els become more resilient against such attacks. These find-
ings underscore the importance of building DNA language
models that are robust not only to worst-case adversarial
manipulations, but also to natural sources of variation. Such
robustness is especially critical in practical settings where
sequencing noise, synthetic design variation, or cross-lab
inconsistencies may lead to unreliable predictions.
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6. Limitations

This study has several limitations. First, the datasets used are
limited to AMR gene classification with drug classes which
may restrict the generalization of the results. Expanding
experiments to include datasets such as AMR gene families
or AMR mechanisms would provide a more comprehensive
evaluation of adversarial robustness.

The study evaluates adversarial attack methods on three dis-
tinct DNA language models such as DNABERT2, GROVER,
and Nucleotide Transformer. While these models cover a
range of architectures and sizes, extending the evaluation to
additional DNA classification models could provide further
insights into model-specific robustness.
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A. Implementation Details

Adversarial Training Standard Training
[ DNA LANGUAGE MODELS DNA LANGUAGE MODELS }

Nucleotide-level Codon-level Backtranslation
Attack Attack Attack

Test with Attacked Sequence

Figure 4. Overview of Adversarial Training(Fine-tuning) for DNA Language Models and Testing Adversarial Attacks

We utilize LoRA (Hu et al., 2022) to finetune the DNA language models for each benchmarks. The learning rate is set to
0.0005, the number of epochs is 2, the batch size is 64. Single A100 GPU is used, and the entire process takes approximately
one hour. The number of parameters for each model is as follows: DNABERT-2 (117M), Nucleotide Transformer (2.5B),
and GROVER (90M).

B. Details of Benchmarks

Antimicrobial Resistance Classification We employ the methodology outlined in Yoo et al. (2024) to integrate datasets
from CARD v2 (Alcock et al., 2020) and MEGARes v3 (Bonin et al., 2023) for investigating antibiotic resistance. Classes
with fewer than 15 instances are excluded. The remaining data is divided into training, testing, and validation sets,
maintaining the same proportions as the study. Data integration is performed using the European Bioinformatics Institute
Antibiotic Resistance Ontology (EBI ARO; Cook et al., 2016), with irrelevant classes excluded. Overall, the drug class
classification dataset for AMR gene classification is split into 75% training data, 20% test data, and 5% validation data.
There are a total of 9 drug classes.

Promoter Detection The promoter detection data from the Genome Understanding Evaluation (GUE) benchmark dataset
introduced in the DNABERT-2 is used to detect promoters in gene sequences (Zhou et al., 2023). Promoters are DNA
sequences that regulate the initiation of gene transcription and play a crucial role in gene expression regulation and
understanding biological phenomena.

The data is extracted from gene sequences of various species, providing a broad context for biological research. Each data
point includes both sequences that contain promoters and those that do not, enabling the model to learn how to distinguish
promoters. This dataset includes complex promoter sequence elements known as MIX elements, which are found in specific
genes. We utilize the prom 300 all dataset from the GUE benchmark for promoter detection. The dataset is split into
approximately 80% training, 10% development, and 10% test data, with 2 classes for binary classification.

C. Adversarial Evaluation of GPT-40 on DNA AMR Classification

We present additional analysis on the adversarial robustness of gpt—40-mini-2024-07-18 fine-tuned for DNA AMR
classification. This study has demonstrated that DNA Language Models are vulnerable to adversarial attacks, and we extend
this investigation to examine whether general-purpose LLMs, when adapted for biological sequence classification, exhibit
similar weaknesses.

By applying codon-level and nucleotide-level perturbations, we observe a sharp decline in model accuracy as perturbation
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Figure 5. Accuracy and attack success rate (ASR) under codon-level and nucleotide-level perturbations in Antimicrobial Resistance Drug
Classification Across Different Perturbation Levels

intensity increased (dropping to 31.76% at the highest level), while the attack success rate (ASR) rises to a maximum of
60.67% in Figure 5.

With the growing interest in applying LLMs to DNA sequence analysis (Sarumi & Heider, 2024; Liu et al., 2024), ensuring
robustness remains a critical challenge. Adversarial training and domain-specific robustness strategies may be necessary to
enhance the reliability of such models in biological sequence tasks.

D. Effect of Realistic Sequencing Errors on Robustness

To evaluate model robustness under more realistic sequencing scenarios, we simulate sequencing errors using PBSIM2 (Ono
et al., 2021), incorporating real-world error patterns observed in PacBio and Oxford Nanopore sequencing. Sequencing
Error Simulation is a technique used to model errors occurring during the genome sequencing process, playing a crucial
role in genome analysis, algorithm evaluation, and robustness assessment in bioinformatics. PBSIM?2, widely used for
this purpose, simulates insertion, deletion, and substitution errors, as well as the length distribution observed in long-read
sequencing technologies such as PacBio and Oxford Nanopore, enabling the generation of reads that closely resemble real
sequencing data. The simulated sequencing error data can be utilized to test model robustness by incorporating noise similar
to that encountered in real sequencing experiments. This holds significant importance from the perspective of adversarial
training and robustness assessment, as it helps deep learning-based genomic analysis models maintain predictive accuracy
while improving their resilience to sequencing errors. Our experiments show that the model’s performance degrades under
these conditions, indicating that realistic sequencing errors can pose a challenge to robustness. In the promoter detection
task with Nucleotide Transformer, accuracy dropped from 0.8892 to 0.8608.

E. Comparisons of Adversarial Training and Standard Training

Figure 6, Figure 7, Figure 8, and Figure 9 compare the performance differences between adversarially trained models and
conventionally trained models (black) as the number of attack iterations and perturbation magnitude (epsilon) increase.
Epsilon represents the rate of change in the sequence for the attack, indicating the proportion of the sequence that is altered.
Iterations indicate the number of times the attack is performed. While all models experience a decrease in accuracy as
the number of iterations and perturbation levels increase, adversarially trained models generally maintain higher accuracy
and exhibit a more gradual decline in performance. In terms of attack success rate, conventionally trained models show a
sharp increase in attack success as the number of iterations and perturbation magnitude grow, whereas adversarially trained
models exhibit a more moderate increase, demonstrating greater resistance to adversarial attacks. These findings suggest
that adversarial training effectively enhances model robustness against iterative attacks and higher perturbation magnitudes
while mitigating performance degradation. Figures present accuracy and success rate trends under different perturbation
settings. However, all results are based on a single run.
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Figure 6. Comparison of Adversarial Training and Standa%((l) Training in Promoter Detection with Increasing Iterations
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Figure 7. Comparison of Adversarial Training and Standard Training in Promoter Detection Across Different Perturbation Levels



Exploring Adversarial Robustness in Classification tasks using DNA Language Models

GROVER Accuracy (nucl) DNABERT2 Accuracy (nucl) NT Accuracy (nucl)
0.91
—#— GROVER adversarial training(nucl attack) 0.8+ —#— DNABERT2 adversarial training(nucl attack) —#— NT adversarial training(nucl attack)
0.8 1 —— GROVER(nucl attack) 0.7 —— DNABERT2(nucl attack) 0.8 1 —— NT(nucl attack)
0.71
2061 0.6 1
e
3051
S
<044 0.4 1
0.34
0.2 4
0.21
0.1+ T v v T T T T v T T T T T v v T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration Iteration
GROVER Success Rate (nucl) DNABERT2 Success Rate (nucl) NT Success Rate (nucl)
0.81
2 061
T
o«
0
8 0.4
o
5
2
0.24
—#— GROVER adversarial training(nucl attack) —m— DNABERT2 adversarial training(nucl attack) —#— NT adversarial training(nucl attack)
0.01 —&— GROVER(nucl attack) 0.0 —8— DNABERT2(nucl attack) 0.0 1 —&— NT(nucl attack)
: T T T T T T : T T T T T T : T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration Iteration
GROVER Accuracy (codon) DNABERT2 Accuracy (codon) NT Accuracy (codon)
0.9 1
—8— GROVER adversarial training(codon attack) 0.8 1 —8— DNABERT2 adversarial training(codon attack) —— NT adversarial training(codon attack)
0.8 4 —&— GROVER(codon attack) 0.74 —a— DNABERT2(codon attack) —&— NT(codon attack)
0.7 1
5061
o
3051
o
v
< 0.4
0.31
0.2 4
0.1+ T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration Iteration
GROVER Success Rate (codon) DNABERT2 Success Rate (codon) NT Success Rate (codon)
0.8 1
9 0.6
T
o<
@
§ 0.44
S
2]
0.24
—#— GROVER adversarial training(codon attack) —#— DNABERT2 adversarial training(codon attack) —#— NT adversarial training(codon attack)
0.0 —— GROVER(codon attack) 0.04 —— DNABERT2(codon attack) 0.04 —— NT(codon attack)
: T T T T T T : T T T T T T : T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 ] 10 20 30 40 50
Iteration Iteration Iteration
0.0 GROVER Accuracy (bt) DNABERT2 Accuracy (bt) NT Accuracy (bt)
.90
—— GROVER adversarial training(bt attack) 0.8+ —#— DNABERT2 adversarial training(bt attack) | .95 —— NT adversarial training(bt attack)
0.85 —— GROVER(bt attack) —— DNABERT2(bt attack) —— NT(bt attack)
0.90 -~
0.80
0.85 4
2 0.75
go
:5, 0.80
© 0.70 1
< 0.75 4
0-651 0.70 {
0.60 0.65
0.55 T T T T T T T
0 0 10 20 30 40 50
Iteration Iteration Iteration
GROVER Success Rate (bt) DNABERT2 Success Rate (bt) NT Success Rate (bt)
0.40 0.8
0.351 0.7 0.30 1
0.30 1 0.6 0.25 1
)
< 0.25 0.5
& 0.20 4
@ 0.20 4 0.4
g 0.15 4
g 0.154 0.34
[} 4
0.10 A 02 0.10
0.05 4 —8— GROVER adversarial training(bt attack) 0.14 —— DNABERT2 adversarial training(bt attack) 0.054 —— NT adversarial training(bt attack)
0.004 —8— GROVER(bt attack) 0.04 —m— DNABERT2(bt attack) 0.001 —m— NT(bt attack)
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration Iteration

Figure 8. Comparison of Adversarial Training and Standard Train}nzg in Antimicrobial Resistance Drug Classification with Increasing
Iterations
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Figure 9. Comparison of Adversarial Training and Standard Training in Antimicrobial Resistance Drug Classification Across Different
Perturbation Levels



