
Compositional Automata Embeddings for
Goal-Conditioned Reinforcement Learning

Beyazit Yalcinkaya∗
University of California, Berkeley

beyazit@berkeley.edu

Niklas Lauffer∗
University of California, Berkeley

nlauffer@berkeley.edu

Marcell Vazquez-Chanlatte∗
Nissan Advanced Technology Center

marcell.chanlatte@nissan-usa.com

Sanjit A. Seshia
University of California, Berkeley

sseshia@berkeley.edu

Abstract

Goal-conditioned reinforcement learning is a powerful way to control an AI agent’s
behavior at runtime. That said, popular goal representations, e.g., target states
or natural language, are either limited to Markovian tasks or rely on ambiguous
task semantics. We propose representing temporal goals using compositions of
deterministic finite automata (cDFAs) and use cDFAs to guide RL agents. cDFAs
balance the need for formal temporal semantics with ease of interpretation: if
one can understand a flow chart, one can understand a cDFA. On the other hand,
cDFAs form a countably infinite concept class with Boolean semantics, and subtle
changes to the automaton can result in very different tasks, making them difficult
to condition agent behavior on. To address this, we observe that all paths through a
DFA correspond to a series of reach-avoid tasks and propose pre-training graph
neural network embeddings on “reach-avoid derived” DFAs. Through empirical
evaluation, we demonstrate that the proposed pre-training method enables zero-shot
generalization to various cDFA task classes and accelerated policy specialization
without the myopic suboptimality of hierarchical methods.

Figure 1: Given a (conjunctive) composition of deterministic finite automata (shown on the left), we
construct its embedding using a graph neural network (GATv2) and use this embedding as a goal to
condition the reinforcement learning policy.

∗Equal contribution
1For more information about the project, visit: https://rad-embeddings.github.io/.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://rad-embeddings.github.io/


1 Introduction

Goal-conditioned reinforcement learning (RL) [33] has proven to be a powerful way to create AI
agents whose task (or goal) can be specified (conditioned on) at runtime. In practice, this is done by
learning a goal encoder, i.e., a mapping to dense vectors, and passing the encoded goals as inputs to
a policy, e.g., a feedforward neural network. This expressive framework enables the development
of flexible agents that can be deployed in a priori unknown ways, e.g., visiting states never targeted
during training. The rise of large language models has popularized leveraging natural language as an
ergonomic means to specify a task, e.g., “pick up the onions, chop them, and take them to stove.”

While incredibly powerful, tasks specified by target states or natural language have a number of
shortcomings. First and foremost, target states are necessarily limited to non-temporal tasks. On
the other hand, natural language is, by definition, ambiguous, providing little in the way of formal
guarantees or analysis of what task is being asked of the AI agent.

To this end, we consider conditioning on tasks in the form of Boolean combinations of deterministic
finite automata (DFAs). We refer to this concept class as compositional DFAs (cDFAs). The choice of
cDFAs as the concept class is motivated by three observations. First and foremost, DFAs offer simple
and intuitive semantics that require only a cursory familiarity with formal languages–if one can
understand a flow chart, one can understand a DFA. Moreover, recent works have demonstrated that
DFA and cDFA can be learned in a few shot manner from expert demonstrations and natural language
descriptions [41]. As such, DFAs offer a balance between the accessibility of natural language and
rigid formal semantics. The addition of Boolean combinations to cDFA, e.g., perform task 1 AND
task 2 AND task 3, provides a simple mechanism to build complicated tasks from smaller ones.

Second, DFAs represent temporal tasks that become Markovian by augmenting the state-space with
finite memory. Further, they are the “simplest” family to do so since their finite states are equivalent
to having a finite number of sub-tasks, formally Nerode congruences [19]. This is particularly
important for goal-conditioned RL which necessarily treats temporal tasks differently than traditional
RL. For traditional RL, because the task is fixed, one can simply augment the state space with the
corresponding memory to make the task Markovian. In goal-conditioned RL, this is not, in general,
possible as it is unclear what history will be important until the task is provided. Instead, the encoded
task must relay to the policy this temporal information. Third, existing formulations like temporal
logics over finite traces and series of reach-avoid tasks are regular languages and thus are expressible
as DFAs [11]. This makes DFAs a natural target for conditioning an RL policy on temporal tasks.

The expressivity of DFAs introduces a number of challenges for goal-conditioned RL. First, DFAs
form a countably infinite and exponentially growing concept class where subtle changes in the DFA
can result in large changes in an agent’s behavior. Notably, this means that any distribution over
DFAs is necessarily biased with many “similar” DFAs having drastically different probability. Thus,
to generally work with DFAs, one cannot simply match finite patterns, but need to learn to encode
details necessary for planning. Second, as with traditional goal-based objectives, DFAs provide a
very sparse binary reward signal–did you reach the accepting state or not? Together with non-trivial
dynamics, naïve applications of RL become infeasible due to the lack of dense reward signal. Finally,
the exponentially-expanding concept class presents computational limitations for encoding. For
example, many interesting DFAs may be too large to be feasibly processed by a graph neural network.

To address these issues of reward sparsity and the need to encode planning, we introduce a distribution
of DFAs, called reach-avoid derived (RAD). This concept class is inspired by the observation that all
paths through a DFA correspond to a series of (local) reach-avoid problems. We argue in Section 4
that RAD encourages learning to navigate a DFA’s structure. Our first key result is that pre-training
DFA encoders on RAD DFAs enables zero-shot generalization to other DFAs. Next, we treat the
problem of DFA size. Many problems are naturally expressed compositionally, e.g., a sequence of
rules that must all hold or a set of tasks of which at least one must be accomplished. Due to their
Boolean semantics, i.e., did you reach the accepting state or not, DFAs offer well-defined semantics
under Boolean compositions. Our second key insight is to encode conjunctions2 of DFAs (called
cDFAs). This is done by using a graph attention network [9] (GATv2) to encode the individual
DFA graph structure as well as the conjunction (AND) relationships between a collection of tasks.
Recalling that the conjunction of any two DFAs grows (worst-case) quadratically, we observe that
cDFAs offer an exponential reduction in the size of temporal tasks passed to GATv2.

2With negations and disjunctions omitted as straightforward extensions.

2



1.1 Contributions. Our main contributions are: (1) we propose compositional DFAs (cDFAs),
which balance formal semantics, accessibility, and expressivity, as a goal representation for temporal
tasks in goal-conditioned RL; (2) we propose encoding cDFAs using graph attention networks
(GATv2); (3) we propose pre-training the cDFA encoder on reach-avoid derived (RAD) DFAs, and (4)
we perform experiments demonstrating strong zero-shot generalization of pre-training on RAD DFAs.

1.2 Related Work. Our work explores a temporal variant of goal-conditioned RL [33] where goals
are represented as automata. While traditionally focused on goals as future target states, this has
since been extended to tasks such as natural language [7, 21, 26, 37] and temporal logic [38]. While
not as expressive as natural language, we believe cDFAs offer a balance between the ergonomics of
language while maintaining unambiguous semantics–something of increasing importance due to the
seemingly inevitable proliferation of AI agents to safety-critical systems. Moreover, DFA inference
has a rich literature [6, 15, 17, 24, 27, 28, 45] with recent works have even shown the ability to
learn DFA and cDFA from natural language and expert demonstrations–bridging the gap even more
between natural language and automata specified goals [41, 42, 43].

Operating in a similar space, previous work, LTL2Action [38], has shown success with using (finite)
linear temporal logic (LTL), a modal extension of propositional logic, to condition RL policies on. In
fact, the pre-training and test domains used in this paper are directly derived from that work.

Our choice to focus on DFA rather than LTL is two-fold. First and foremost, over finite traces, LTL is
strictly less expressive than DFA. For example, LTL cannot express tasks such as “the number of
times the light switch is toggled should be even.” Second, like DFA, LTL tasks constitute a countably
infinite set of tasks. This again means that any distribution over LTL is necessarily biased to certain
subclasses. On the one hand, the syntactic structure makes separation of subclasses very easy. On the
other, it remains unclear how to generalize to “common” LTL formula. By contrast, we argue that
the local reach-avoid structure of DFAs offers a direct mechanism for generalization. Finally, we
note that while LTL is exponentially more succinct than DFA, this is largely mitigated by supporting
boolean combinations of DFAs (cDFAs).

Moving away from goal-conditioned RL, recent works have proposed performing symbolic planning
on the DFA and cleverly stringing together policies to realize proposed paths [16, 22, 23, 30].
However, their method can still suffer from sub-optimality due to their goal-conditioned value
functions being myopic. Specifically, if there are multiple ways to reach the next sub-goal of a
temporal task, the optimality of the next action depends on the entire plan, not just the next sub-goal–
destroying the compositional structure used for planning. For example, Figure 4 shows a simple
example in which hierarchical approaches will find a suboptimal solution due to their myopia. In
contrast, conditioning on cDFA embeddings allows our policies to account for the entire task.

On the single-task LTL-constrained policy optimization side, several works have tackled the problem
in varying settings [10, 13, 36, 44]. Adjacent to these efforts, various approaches have explored LTL
specifications and automaton-like models as objectives in RL [2, 3, 8, 12, 14, 20, 29, 32, 46, 48].
A different line of work considers leveraging quantitative semantics of specifications to shape the
reward [1, 22, 25, 36]. However, all of these lines of work are limited to learning a single, fixed goal.

Finally, in our previous work [47], we used hindsight experience replay [5] to solve the reward
sparsity problem for DFA-conditioned off-policy learning of DFA task classes. We observe that our
RAD pre-training pipeline has similar sample efficiency while generalizing to larger classes of DFAs.

2 Preliminaries

In the next sections, we will develop a formalism for conditioning agent behavior on temporal tasks
represented as DFAs. To facilitate this exposition, we quickly review goal-conditioned RL and DFA.

2.1 Goal-Conditioned RL. We start with technical machinery for goal-conditioned RL.

Definition 2.1. A Markov Decision Process3 (MDP) is a tupleM = (S,A, T ), where S is a set
of states, A is a set of actions, and T is a map determining the conditional transition probabilities,
i.e. Pr(s′ | s, a) def

= T (s′, a, s) for s, s′ ∈ S and a ∈ A. We assume that M contains a sink

3We omit a reward function since we are in a goal-conditioned setting with varying objectives/rewards.

3



state, $, denoting the end of an episode. Any MDP, M, can be given γ-temporal discounting
semantics by asserting that each transition can end the episode with probability 1 − γ. Formally,
T ′(s′, a, s) = (1− γ) · T (s′, a, s), for s, s′ ̸= $.
Definition 2.2. Let G be a set of states called goals. A goal-conditioned policy4, π : S×G → ∆A, is
a map from state-goal pairs to distributions over actions. Together, an MDPM and a goal-conditioned
policy, π, define a distribution of sequences of states, called paths.

A goal-conditioned reinforcement learning problem is a tuple consisting of a (possibly unknown)
MDP and a distribution over goals, Pr(g) for g ∈ G. The objective of goal-conditioned RL is to
maximize the probability of generating a path containing g.

2.2 Deterministic Finite Automata. Next, we provide a brief refresher on automata.
Definition 2.3. A Deterministic Finite Automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F ), where Q
is a finite set of states, Σ is a finite alphabet, δ : Q× Σ→ Q is the transition function, q0 ∈ Q is
the initial state, and F ⊆ Q are the accepting states. The transition function can be lifted to strings
via repeated application, δ∗ : Q × Σ∗ → Q. One says A accepts x if δ∗(q0, x) ∈ F . Finally for
simplicity, we abuse notation and denote by DFA the set of all DFA.

Visually, we represent DFAs as multi-graphs whose nodes represent states and whose edges are
annotated with a symbol that triggers the corresponding transition. Omitted transitions are assumed
to stutter, i.e., transition back to the same state. DFAs have a number of interesting properties.

Up to a state isomorphism, all DFAs can be minimized to a canonical form, e.g., using Hopcroft’s
algorithm [18], denoted by minimize(A). Further, DFAs are closed under Boolean combinations.
For example, the conjunction of two DFAs, A1 and A2, denoted A1 ∧ A2, is constructed by taking
the product of the states, Q = Q1 × Q2, and evaluating the transition functions element-wise,
δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ)). Also, (q1, q2) ∈ F if q1 ∈ F1 and q2 ∈ F2. While DFAs are
closed under conjunction, each pair-wise operation results in a O(n2) increase in the number of states.
Definition 2.4. A compositional DFA (cDFA) is a finite set of DFA, C = {A1, . . . ,An}. The
monolithic DFA associated to cDFA, C, is given by monolithic(C) def

=
∧

A∈C A. The semantics of a
cDFA are inherited from its monolithic DFA, i.e., a string x is accepted by cDFA C if and only if it
is accepted by monolithic(C). Graphically, cDFA are represented as trees of depth 1 where the root
corresponds to conjunction and each leaf is itself a DFA.

2.3 Augmenting MDPs with cDFAs. Observe that DFAs can be viewed as deterministic MDPs
leading to a natural cascading composition we refer to as DFA-augmention of a MDP. Informally,
one imagines that the MDP and DFA transitions are interleaved. First, the MDP transitions given an
action. The new state is then mapped to the DFA’s alphabet. This symbol then transitions the DFA.
The goal is to reach an accepting state in the DFA before the MDP reaches its end-of-episode state.

Formally, let A andM be a DFA and MDP, respectively and let L : S → Σ denote a labelling
function mapping states to symbols in the DFAs alphabet. The new MDP is constructed as a quotient
of the cascading composition of A andM. First, take the product of the state spaces, S ×Q. The
action space isM’s action set. The transition of the MDPs state is as before and the DFA transitions
are given by: δ(q, L(s)). In order for there to be a unique goal and end-of-episode state, we quotient
S ×Q as follows: (i) ($, q) are treated as a single end of episode state and (ii) for all accepting states,
q ∈ F , the product states (s, q) are treated as a single accepting (goal) state.

3 Compositional Automata-Conditioned Reinforcement Learning

We are now ready to formally define (compositional) automata-conditioned RL as a variant of
goal-conditioned RL where goals are defined in the augmented MDPs.
Definition 3.1. A DFA-conditioned policy, π : S ×DFA→ ∆A is a mapping from state-DFA pairs
to action distributions. A DFA-conditioned RL problem is a tuple (M, P ), whereM is an MDP
and P is a distribution over DFAs. The objective is to maximize the probability of generating a path
containing the accepting state. cDFA-conditioned RL is defined via the underlying monolithic DFA.

4Note that in practice, RL (and by extension goal-conditioned RL) policies often consume a state observation
rather than the state itself. This is a simple extension to the above which is left out for simplicity of exposition.

4



q0 q2

q1

q0 q2

q1

AND

v0 v1 v2v01 v12
h(0)

v0 = […] h(0)
v01 = […] h(0)

v1 = […] h(0)
v2 = […]h(0)

v12 = […]

gt
Figure 2: Message passing illustration on the featurization of the cDFA given in Figure 1.

The proposed architecture for conditioning RL policies on temporal tasks encoded as cDFA is given
in Figure 1. At step t, given an observation ot and a cDFA Ct, we compute an embedding st of the
observation ot using a convolutional neural network and embedding gt of Ct (constituting a goal)
using a message-passing neural network (MPNN). We then concatenate st and gt and feed it to a
policy network to get an action at. After taking at, we use the next observation ot+1 to update the
initial state of each At ∈ Ct based on the transition taken. We then minimize each updated DFA to
form the next cDFA Ct+1, which is used to get the next action at+1.

3.1 cDFA Featurization. In order to pass a cDFA Ct to an MPNN, we construct a featurization
ĜCt = (V̂Ct , ÊCt , hCt). Details of this process are given in Appendix A. Essentially, we apply four
sequential modifications to the graph structure trivially induced by Ct: (i) add new nodes for every
transition in each DFA in the composition, remove these transitions to connect the new nodes to
the source and target nodes of the removed transitions, and in the feature vectors of the new nodes,
encode all symbols triggering that transition using positional one-hot encodings, (ii) reverse all the
edges, (iii) add self-loops to all nodes, and (iv) add edges from the nodes corresponding to the initial
states of DFAs to the “AND” node. Figure 2 shows the featurization of the cDFA given in Figure 1.

3.2 cDFA Embedding. Given a cDFA featurization ĜCt
= (V̂Ct

, ÊCt
, hCt

), we construct an
embedding of the cDFA using a graph attention network (GATv2) [9] performing a sequence of
message passing steps to map each node to a vector. For ease of notation, we refer to the features of a
node v ∈ V̂Ct

as hv
def
= hCt

(v). At each message passing step, node features are updated as:

h′
v =

∑
u∈N (v)

αvuWtgthu,

where N (v) denotes neighbors of v, Wtgt is a linear map, and αvu is the attention score between v
and u computed as:

αvu = softmaxi(evu) evu = a · LeakyReLU (Wsrchv +Wtgthu) ,

where a is a vector and Wsrc is a linear map. After message passing steps5, the feature vector of the
cDFA’s “AND” node (which has received messages from all At ∈ Ct) represents the latent space
encoding gt of the temporal task given by Ct.

4 Pre-training on Reach-Avoid Derived (RAD) Compositional Automata

In this section, we introduce pre-training on reach-avoid derived (RAD) cDFAs. This pre-training is
designed to solve three important problems. First, we wish to avoid simultaneously learning a control
policy and embeddings for the cDFAs. Second, we wish to learn a domain-independent cDFA encoder
that performs well across cDFA distributions. Third, we wish to have either a domain-specific or a
general cDFA-conditioned policy that performs well across different cDFA distributions.

To alleviate the first problem, i.e., decoupling of learning of control and cDFA embeddings, we
follow [38] and pre-train our cDFA encoding GNN on a “dummy” MDP containing a single non-
end-of-episode state. To solve this dummy MDP, we connect a single linear layer to the output of the
GNN which maps cDFA embeddings to the symbols in its alphabet. We then take these symbols and

5Note that the same weights, Wsrc and Wtgt, are used in each message-passing step.

5



Mutate and minimize
q0 q1 q2

q3

q0 q3q1

q2

q4

SRA DFA RAD DFA
Figure 3: An example of a sequence of local reach-avoid problems and a RAD DFA obtained from it.

take a transition (either a stuttering one or one that changes the state of the DFA) in each DFA of the
composition. The episode ends either when all DFAs end up in their corresponding accepting states
(reward 1) or when one of the DFAs in the composition ends up in a non-accepting sink state (reward
−1). The cDFA-augmentation then only models the dynamics of the cDFA being conditioned on.
The resulting cDFA-conditioned RL problem can thus focus on only learning to encode the cDFAs.

4.1 Sequential reach-avoid as the basis for planning. What remains then is to support gener-
alization to other cDFA distributions. In particular, recall that cDFAs (and DFAs) lack a canonical
“unbiased” distribution making it a priori difficult to pre-select a cDFA distribution. To begin, observe
that realizing any individual state transition q → q′ through a DFA corresponds to a reach-avoid
task: (i) eventually transition to state q′ and (ii) avoid symbols that transition to a state different than
q and q′. Further, a path through a DFA, q1, . . . , qn, corresponds to a sequence of reach-avoid (SRA)
tasks. Notably, as illustrated in Figure 3, SRA tasks can be represented as DFA. Thus, in order to
generally reason about satisfying a DFA, our neural encoding must be able to solve SRA tasks.

4.2 Reach-avoid derived DFAs. For general DFAs, there can be arbitrarily many (often infinitely
many) paths leading to an accepting state, resulting in multiple SRA tasks interacting and interleaving.
Thus, the overall structure of a DFA might be much richer than an SRA task even though it consists
of local reach-avoid problems. Building on the observation that paths of a DFA correspond to SRA
tasks, we define reach-avoid derived DFAs as a generalization of SRA.
Definition 4.1. We define a mutation of a DFAA to be the process of randomly changing a transition
ofA, removing the outgoing edges of the accepting state, and then minimizing. To change a transition,
we uniformly sample a state-symbol-state triplet (q, σ, q′) and define δ(q, σ)

def
= q′. A DFA A is said

to be m−reach-avoid derived (m-RAD) if it can be constructed by mutating an SRA DFA m-times.

We define the (m, p)−RAD distribution over DFAs as follows: (i) sample a SRA DFA,A, with k+2
states where k ∼ Geometric(p); each transition stutters with probability 0.9 and is otherwise made a
reach or avoid transition with equal probability; (ii) sequentially apply m mutations where mutations
leading to trivial one-state DFAs are rejected. To avoid notational clutter, we shall often suppress
m, p and say RAD DFAs. Finally, we define the RAD cDFA distribution by sampling n RAD DFAs,
where n is also drawn from a geometric distribution. See Appendix B for the pseudocode. Figure 3
demonstrates how mutations and minimization can turn an SRA DFA into a RAD DFA. To get the
RAD DFA, we apply two mutations to the SRA DFA, adding two new transitions: (i) from q0 to q3 on
green and (ii) from q4 to q1 on blue, and then the minimization collapses q0 and q4 to a single state.

5 Experiments

We explore the following 6 questions on several task classes in discrete and continuous environments:

RQ1 Do our policies overcome the limitations of hierarchical approaches?
RQ2 Does pre-training of the cDFA encoder on RAD cDFAs accelerate cDFA-conditioned RL?
RQ3 Does freezing the cDFA encoder negatively impact cDFA-conditioned RL performance?
RQ4 Do the cDFA-embeddings pre-trained on RAD generalize to other task classes?
RQ5 How does the RAD pre-trained cDFA encoder represent the corresponding cDFA?
RQ6 Do RAD pre-trained cDFA-conditioned policies generalize across task classes?

6



Figure 4: An example in which the myopia of hierarchical approaches causes them to find a suboptimal
solution. If the task is to first go to orange and then green, the hierarchical approaches will choose the
closest orange which takes them further from green whereas our approach finds the optimal solution.

Letterworld Environment. Introduced in [4, 38], Letterworld is a 7x7 grid where the agent
occupies one square at a time. Some squares have randomly assigned letters which cDFA tasks are
defined over. The agent can move in the four cardinal directions to adjacent squares. Moving into a
square with a letter satisfies the corresponding symbol. The agent observes its position and the letters
in each grid. Each layout has 12 unique letters (each appearing twice) and a horizon of 75.

Zones environment. Introduced in [38] (building on Safety Gym [31]), Zones is as an extension to
Letterworld with continuous state and action spaces. There are 8 colored (2 of each color) circles
randomly positioned in the environment. cDFA tasks are defined over colors. The agent’s action
space allows it to steer left and right and accelerate forward and backward while observing lidar,
accelerometer, and velocimeter data. The environment has a horizon of 1000.

Task classes. In addition to RAD, we consider the following task classes in our experiments.

• Reach (R): Defines a total order over k ∼ Uniform(1,K) symbols, e.g., q0 and q1 in Figure 1.
• Reach-Avoid (RA): Defines an SRA task of length k ∼ Uniform(1,K), e.g., first DFA in Figure 1.
• Reach-Avoid with Redemption (RAR): Similar to RA, but they have transitions from their avoid

state to the previous state, e.g., the sub-DFA with states q0, q1, q3 in Figure 3.
• Parity: A sub-class of RAR where the symbol that leads to the avoid state also triggers a transition

back to the previous state, e.g., the DFA on the right in Figure 1. These tasks are not expressible
in LTL due to their languages not being star-free regular [40].

Given a bound N , using these task classes, we generate their compositional counterparts by sampling
n ∼ Uniform(1, N) many DFAs to form a cDFA. As a short-hand notation, for example, we refer to
RAR cDFAs with a maximum number of conjunctions 3 where each DFA has a task length of also 2
as cRAR.1.2.1.3 and refer to its associated monolithic (see Definition 2.4) class as RAR.1.2.1.3, i.e.,
without the “c” prefix. We use the same abbreviation convention for other task classes as well. We
use cRAD for RAD cDFAs with truncated distributions and NT-cRAD for the not-truncated version.

Finally, for comparisons with [38], we include the task classes defined in that work, i.e., partially
ordered (PO) and avoidance (AV) finite LTL tasks, represented as cDFAs.

Pre-training procedure. We pre-train GATv2 on RAD cDFAs in the dummy MDP as described
in Section 4. We set both geometric distribution parameters of the RAD cDFA sampler to 0.5 and
truncate these distributions so that n ≤ 5 and 2 + k ≤ 10, i.e., we make sure that the maximum
number of DFAs in a composition is 5, and the maximum number of states of each DFA is 10. As a
baseline for GATv2, we also pre-train a relational graph convolutional network (RGCN) [34].

Training procedure. We experiment with training policies three ways: Training without pre-
training (no pretraining), with frozen MPNNs pre-trained on RAD as described in Section 4 (pretrain-
ing (frozen)), and allowing the pre-trained MPNN to continue receiving gradient updates (pretraining).

We use proximal policy optimization (PPO) [35] for all reinforcement learning setups, giving a
reward of +1 when a rollout reaches the accepting state of the cDFA task, −1 when a rollout reaches

7



Figure 5: Training curves (error bars show a 90% confidence interval over 10 seeds) in Letterworld
(discrete) and Zones (continuous) for policies trained on RAD cDFAs, showing that frozen pre-trained
cDFA encoders perform better than non-frozen ones while no pre-training barely learns the tasks.

a rejecting sink state of the cDFA task, and 0 if the environment reaches the timeout horizon without
achieving the cDFA task. See Appendix D for the hyperparameters and compute used.

RQ1 cDFA-conditioned policies do not suffer from myopia. First, we present the experiment
results highlighting the myopia of hierarchical approaches. To this end, we construct a simplified
variation of the Letterworld environment, given in Figure 4, where the task is to visit the orange
square before the green one. Observe that any hierarchical approach, like [23, 30], based on high-level
planning over some automaton-like structure suffers from myopia. Specifically, such approaches do
not account for the overall task while planning for the intermediate goals. In this example, hierarchical
approaches fail to differentiate between the two orange squares in the context of the given task. On
the other hand, our approach quickly converges to the optimal policy as given in Figure 4.

RQ2,RQ3: Pretraining helps policies perform better faster. Figure 5 shows training curves for
learning on RAD tasks using RGCN (dashed curves) and GATv2 (solid curves) as the MPNN module
in Letterworld. Without pre-training in the dummy environment (blue curves), the policies barely
learn how to accomplish the tasks, likely because of the difficulty in trying to simultaneously learn an
embedding of the cDFA task and learn the dynamics of the environment required to reach certain
symbols. Frozen pre-training (green curve) helps tremendously in learning the RAD task class in the
Letterworld regardless of the MPNN module architecture. The policies learned are able to satisfy
sampled RAD tasks on average over 95% of the time and within 5 timesteps. Non-frozen pre-training
(red curve) also helps the policies learn more quickly, but with a significant difference between
GATv2 and RGCN. Notably, non-frozen pre-training performs significantly worse for RGCN than
its frozen counterpart, showing that freezing the MPNN module after pre-training actually helps
performance. We further note that the wall clock training time was significantly faster due to not
propagating gradients through the MPNN (about 20% faster).

RQ4: Pretrained cDFA embeddings generalize well. We tested pre-trained GATv2 and RGCN
models on various new cDFAs and their associated monolithic task distributions in the dummy DFA
environment. Figure 10 in Appendix C.2 presents experiment results averaged over 10 seeds and
50 episodes per seed. The left y-axis illustrates the satisfaction likelihood while the right y-axis
presents the number of steps needed to complete the task. The figure shows that GATv2 achieves
approximately 90% accuracy across all tasks, with nearly 100% accuracy in most cases. Although
RGCN generalizes comparably to GATv2 in most instances, it achieves around 80% accuracy for
both cRA.1.5.1.5 and cRA.1.1.1.10 whereas GATv2 performs at nearly 90% and 100%, respectively.

Considering that the maximum number of DFAs in a composition seen during training is 5 (sampled
with low probability) and the DFA with the maximum task length is 9 (with a maximum of 10 states,
sampled with even lower probability), these generalization results are quite remarkable. GATv2 can
generalize to 10 DFAs in composition as well as DFAs with a task length of 10 with nearly 100%
accuracy. Furthermore, Figure 10 shows that the embeddings produced by GATv2 lead to shorter
episodes compared to RGCN, indicating that GATv2 learns better representations for cDFAs. Overall,
regardless of the MPNN model used, pre-training on the RAD cDFAs provides generalization.

8



Figure 6: Visualizations of the embeddings generated by GATv2 pre-trained on RAD cDFAs,
illustrating that the learned embedding space reflects the similarities between different task classes.

RQ5: cDFA embedding space is well-clustered. Our GATv2 cDFA encoders learn 32-dimensional
embeddings, and, as shown in the previous answer, generalize well to other cDFA classes. To study
the cDFA embeddings, we sample cDFAs from RAD, RA, RAR, reach, and parity task classes. For
each class, we also introduce two variants: 2-conjunction collapse and 1-step advance. The former
randomly selects two DFAs of a cDFA and collapses them down to a single DFA, and the latter takes
a random non-stuttering transition on the cDFA. We study the embedding space in two different ways.
One projects the embeddings down to 2D using t-SNE [39]. The other computes pairwise cosine
similarities and Euclidean distances of the embeddings. See Appendix C.3 for the RGCN results.

The results are given in Figure 6. We first observe that modifications like 2-conjunction collapse and 1-
step advance result in similar embeddings, showcasing the robustness provided by pre-training GATv2
on RAD. Moreover, due to the 1-step advance operation, some cDFAs end up in their accepting states,
and we see that accepting cDFAs are well-isolated inside the green region in Figure 6a. Similarly, we
observe that parity samples are mapped very close to RAR samples (its parent class).

The same figure also demonstrates that GATv2 successfully separates different cDFA classes into
distinct clusters. This separation is further confirmed by the cosine similarity (c.f. Figure 6b) and
Euclidean distance heat maps (c.f. Figure 6c). On the other hand, both heat maps also show that
the RAD cDFA class is very rich in terms of various DFAs it contains since it has both similar and
different samples compared to other task classes. Notably, we see that the vast majority of RAD
cDFA we sample are out-of-distribution for the other classes implying robust generalization.

RQ6: Policies Trained on RAD generalize well. Figure 7 (blue) shows how well the policies
trained on RAD generalize to other task distributions. Both frozen and non-frozen (see Appendix C.4)
pre-trained policies generalize well across the board with a slight edge to frozen pre-training. Notably,
the policies suffers almost no performance loss on non-truncated RAD tasks even though it was only
trained on the truncated distribution. The policy sees the largest dip in satisfaction likelihood on

Figure 7: Pre-training the cDFA encoder lets policies trained in Letterworld on subclasses to generalize
OOD. All policies were trained using frozen GATv2. See Appendix C.5 for training curves.

9



Figure 8: Satisfaction generalization capabilities on LTL tasks (from [38]) of LTL2Action [38]
policies vs policies trained on RAD cDFAs. See Appendix C.8 for training curves of policies.

longer compositional reach avoid (cRA) tasks. Interestingly, even very long cRA tasks of up to 10
symbols can be satisfied above 90% of the time, even though such long tasks put the satisfying state
in cDFA past the depth that the message passing in our MPNNs reach. Overall, the performance
of the non-pre-trained models (see Appendix C.4) follows a similar (albeit dramatically worse)
trend as the pre-trained models. They do see some success in the easier task classes such as reach
and parity but perform poorly in more difficult task classes that contain rejecting sink states. Our
generalization experiments comparing GATv2 to RGCN show that even though RGCN performs
comparably, GATv2 outperforms it in all cases (see Appendix C.6).

Figure 7 shows that RAD pre-training allows policies trained in Letterworld to zero-shot generalize
far out of distribution. If you take a RAD pre-trained cDFA encoder and train a policy on some
small subclass (cRA.1.1.1.5 and cRAR.1.2.1.2), the policies can still handle much longer tasks within
their class and even tasks outside of their class. In the case of cRA.1.1.1.5, the training of the policy
module never gets to see a multistage task, only multiple conjunctions, yet it’s able to satisfy tasks
from the full RAD distribution 90% of the time.

We also compare against policies trained using LTL syntax embeddings [38]. Figure 21 in Ap-
pendix C.8 shows training curves for these policies where pre-training was performed similar to
RAD pre-training except only on the specialized class that randomly samples between PO.1.5.1.4 and
AV.1.3.1.2 (task classes from [38]). Figure 8 shows how well these policies and our RAD pre-trained
policy generalize in the Letterworld to harder version of PO and AV. The results show that our method
generalizes well across all tasks. Furthermore, in some cases, it outperforms the LTL policy on the
task it is specifically trained on, e.g., even though the LTL policy shown by the green bar is trained
on cAV.1.3.1.2, our method outperforms it. Similarly, observe that although our method was not
specifically trained on cPO.1.5.1.4 tasks, it achieves 100% accuracy just like the LTL policy that is
specifically trained on this task class. In addition to all of the earlier generalization results, this figure
shows that RAD pre-training generalizes to these out of distribution tasks just as well as the policies
from [38] even though it is not specifically trained on these tasks.

6 Conclusion

We introduced compositional deterministic finite automata (cDFA) as an expressive and robust
goal representation for temporal tasks in goal-conditioned reinforcement learning (RL). Addressing
the limitations of hierarchical approaches and the challenge of extending goal-conditioned RL to
non-Markovian tasks, we proposed using cDFAs to leverage formal semantics, accessibility, and
expressivity. By employing graph attention networks (GATv2) to construct embeddings for cDFA
tasks and conditioning the RL policy on these representations, our method encourages the policy
to take the entire temporal task into account during decision-making. Additionally, we introduced
reach-avoid derived (RAD) cDFAs to enable the learning of rich task embeddings and policies that
generalize to unseen task classes. Our experiments show that pre-training on RAD cDFAs provides
strong zero-shot generalization and robustness. Using cDFAs to encode temporal tasks enhances
explainability and enables automated reasoning for interpretable and safe AI systems.

6.1 Limitations. A limitation of this work is the assumption of a labeling function mapping MDP
states to the task alphabet. Also, further research is needed to understand how cDFA-encoders learn
to represent tasks and how much further their generalization capabilities can be pushed.

10



Acknowledgments and Disclosure of Funding

This work is partially supported by DARPA contracts FA8750-18-C-0101 (AA) and FA8750-23-C-
0080 (ANSR), by Nissan and Toyota under the iCyPhy Center, and by C3DTI. Niklas Lauffer is
supported by an NSF graduate research fellowship.

References

[1] Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. Q-learning for
robust satisfaction of signal temporal logic specifications. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pages 6565–6570. IEEE, 2016.

[2] Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. A framework for
transforming specifications in reinforcement learning. In Principles of Systems Design: Essays
Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birthday, pages 604–624.
Springer, 2022.

[3] Rajeev Alur, Osbert Bastani, Kishor Jothimurugan, Mateo Perez, Fabio Somenzi, and Ashutosh
Trivedi. Policy synthesis and reinforcement learning for discounted ltl. In International
Conference on Computer Aided Verification, pages 415–435. Springer, 2023.

[4] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International conference on machine learning, pages 166–175. PMLR,
2017.

[5] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. Advances in neural information processing systems, 30, 2017.

[6] Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75(2):87–
106, 1987.

[7] Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Pushmeet Kohli, and
Edward Grefenstette. Learning to understand goal specifications by modelling reward. arXiv
preprint arXiv:1806.01946, 2018.

[8] Alper Kamil Bozkurt, Yu Wang, Michael M Zavlanos, and Miroslav Pajic. Control synthesis
from linear temporal logic specifications using model-free reinforcement learning. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 10349–10355. IEEE,
2020.

[9] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491, 2021.

[10] Mingyu Cai, Shaoping Xiao, Zhijun Li, and Zhen Kan. Optimal probabilistic motion planning
with potential infeasible ltl constraints. IEEE transactions on automatic control, 68(1):301–316,
2021.

[11] Alberto Camacho, Meghyn Bienvenu, and Sheila A McIlraith. Finite ltl synthesis with environ-
ment assumptions and quality measures. In Sixteenth International Conference on Principles of
Knowledge Representation and Reasoning, 2018.

[12] Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen, Richard Anthony Valenzano, and
Sheila A McIlraith. Ltl and beyond: Formal languages for reward function specification in
reinforcement learning. In IJCAI, volume 19, pages 6065–6073, 2019.

[13] Xuchu Ding, Stephen L Smith, Calin Belta, and Daniela Rus. Optimal control of markov
decision processes with linear temporal logic constraints. IEEE Transactions on Automatic
Control, 59(5):1244–1257, 2014.

[14] Jie Fu and Ufuk Topcu. Probably approximately correct mdp learning and control with temporal
logic constraints. arXiv preprint arXiv:1404.7073, 2014.

11



[15] E Mark Gold. Language identification in the limit. Information and control, 10(5):447–474,
1967.

[16] Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Deep reinforcement
learning with temporal logics. In Formal Modeling and Analysis of Timed Systems: 18th
International Conference, FORMATS 2020, Vienna, Austria, September 1–3, 2020, Proceedings
18, pages 1–22. Springer, 2020.

[17] Marijn Heule and Sicco Verwer. Exact DFA identification using SAT solvers. In ICGI, volume
6339 of Lecture Notes in Computer Science, pages 66–79. Springer, 2010.

[18] John Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Theory of
machines and computations, pages 189–196. Elsevier, 1971.

[19] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[20] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward
machines: Exploiting reward function structure in reinforcement learning. Journal of Artificial
Intelligence Research, 73:173–208, 2022.

[21] Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an
abstraction for hierarchical deep reinforcement learning. Advances in Neural Information
Processing Systems, 32, 2019.

[22] Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language
for reinforcement learning tasks. Advances in Neural Information Processing Systems, 32, 2019.

[23] Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional
reinforcement learning from logical specifications. Advances in Neural Information Processing
Systems, 34:10026–10039, 2021.

[24] Niklas Lauffer, Beyazit Yalcinkaya, Marcell Vazquez-Chanlatte, Ameesh Shah, and Sanjit A Se-
shia. Learning deterministic finite automata decompositions from examples and demonstrations.
In Conference on Formal MEthods in Computer-Aided Design–FMCAD 2022, page 325, 2022.

[25] Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic
rewards. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3834–3839. IEEE, 2017.

[26] Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward
Grefenstette, Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning
informed by natural language. arXiv preprint arXiv:1906.03926, 2019.

[27] José Oncina and Pedro Garcia. Inferring regular languages in polynomial updated time. In
Pattern recognition and image analysis: selected papers from the IVth Spanish Symposium,
pages 49–61. World Scientific, 1992.

[28] Rajesh Parekh and Vasant Honavar. Learning dfa from simple examples. Machine Learning,
44:9–35, 2001.

[29] Mateo Perez, Fabio Somenzi, and Ashutosh Trivedi. A pac learning algorithm for ltl and omega-
regular objectives in mdps. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 21510–21517, 2024.

[30] Wenjie Qiu, Wensen Mao, and He Zhu. Instructing goal-conditioned reinforcement learning
agents with temporal logic objectives. Advances in Neural Information Processing Systems, 36,
2024.

[31] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep rein-
forcement learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

12



[32] Dorsa Sadigh, Eric S Kim, Samuel Coogan, S Shankar Sastry, and Sanjit A Seshia. A learning
based approach to control synthesis of markov decision processes for linear temporal logic
specifications. In 53rd IEEE Conference on Decision and Control, pages 1091–1096. IEEE,
2014.

[33] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function ap-
proximators. In International conference on machine learning, pages 1312–1320. PMLR,
2015.

[34] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The semantic
web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018,
proceedings 15, pages 593–607. Springer, 2018.

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[36] Ameesh Shah, Cameron Voloshin, Chenxi Yang, Abhinav Verma, Swarat Chaudhuri, and
Sanjit A Seshia. Deep policy optimization with temporal logic constraints. arXiv preprint
arXiv:2404.11578, 2024.

[37] Sumedh Sontakke, Jesse Zhang, Séb Arnold, Karl Pertsch, Erdem Bıyık, Dorsa Sadigh, Chelsea
Finn, and Laurent Itti. Roboclip: One demonstration is enough to learn robot policies. Advances
in Neural Information Processing Systems, 36, 2024.

[38] Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A Mcilraith. Ltl2action:
Generalizing ltl instructions for multi-task rl. In International Conference on Machine Learning,
pages 10497–10508. PMLR, 2021.

[39] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[40] Moshe Y Vardi. From church and prior to psl. In 25 Years of Model Checking: History,
Achievements, Perspectives, pages 150–171. Springer, 2008.

[41] Marcell Vazquez-Chanlatte, Karim Elmaaroufi, Stefan J Witwicki, and Sanjit A Seshia.
L∗lm: Learning automata from examples using natural language oracles. arXiv preprint
arXiv:2402.07051, 2024.

[42] Marcell Vazquez-Chanlatte, Ameesh Shah, Gil Lederman, and Sanjit A Seshia. Demonstration
informed specification search. CoRR, vol. abs/2112.10807, 2021.

[43] Marcell Jose Vazquez-Chanlatte. Specifications from Demonstrations: Learning, Teaching, and
Control. University of California, Berkeley, 2022.

[44] Cameron Voloshin, Hoang Le, Swarat Chaudhuri, and Yisong Yue. Policy optimization with
linear temporal logic constraints. Advances in Neural Information Processing Systems, 35:17690–
17702, 2022.

[45] Wojciech Wieczorek. Grammatical Inference. Springer, 2017.

[46] Eric M Wolff, Ufuk Topcu, and Richard M Murray. Robust control of uncertain markov decision
processes with temporal logic specifications. In 2012 IEEE 51st IEEE Conference on decision
and control (CDC), pages 3372–3379. IEEE, 2012.

[47] Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, and Sanjit Seshia. Automata
conditioned reinforcement learning with experience replay. In NeurIPS 2023 Workshop on
Goal-Conditioned Reinforcement Learning, 2023.

[48] Cambridge Yang, Michael Littman, and Michael Carbin. On the (in) tractability of reinforcement
learning for ltl objectives. arXiv preprint arXiv:2111.12679, 2021.

13



A Details of cDFA Featurization

To construct the featurization of a cDFA Ct, we first build individual graph featurizations for each
DFA in the composition and then combine them in a single featurization for Ct. For each At ∈ Ct,
we construct a directed graph GAt

= (VAt
, EAt

,PAt
), where vi ∈ VAt

represents the states of At,
evu = (v, u) ∈ EAt represents the transitions of At, and PAt : EAt 7→ 2Σt maps each edge evu
to a set of symbols in At’s alphabet, denoting different symbols triggering a transition from v to
u. Using the graph representation GAt , we construct the DFA featurization ĜAt = (V̂At , ÊAt , hAt).
The sketch of the iterative construction of ĜAt

is given in the following paragraph.

Initially, ĜAt
has all the nodes of GAt

, and it does not have any edges. For each evu = (v, u) ∈ EAt
,

add a new node evu to V̂At
and two new edges to ÊAt

– one from v to the new node evu and another
one from evu to u. Then, add self-loop edges for each node. Once ĜAt

is constructed this way, we
reverse its edges to ensure that message passing transmits information to the initial state of the DFA.
To include the details of individual nodes, each v ∈ V̂At

is associated with an input node feature
hAt

(v). For v ∈ VAt
, hAt

(v) indicates whether v is the initial, an accepting, or a rejecting state. For
each evu ∈ V̂At \ VAt , hAt(evu) has one-hot positional encodings of each symbol in PAt(evu).

Once all featurizations are constructed for eachAt ∈ Ct, we construct the composition’s featurization
ĜCt

= (V̂Ct
, ÊCt

, hCt
). It is constructed by taking the union of all ĜAt

for each At ∈ Ct, adding an
“AND” node vAND to the graph, and including new edges from the nodes corresponding to the initial
states of all At ∈ Ct to vAND. Notice that taking this union is trivial since all nodes and edges of
a DFA in the composition are unique. Through one-hot encoding of a unique index in the feature
vector hCt(vAND) of vAND, the “AND” node is encoded as a different kind of node that does not share
any features with other nodes in the graph, making it distinguished compared to nodes representing
DFA states and transitions. Figure 2 shows the featurization of the cDFA in Figure 1.

14



B RAD cDFA Sampler Algorithm

Algorithm 1 shows the pseudocode for RAD cDFA sampling.

Algorithm 1 RAD cDFA Sampler

Require: Geometric distribution parameters pn and pk and maximum number of mutations m
1: n ∼ Geometric(pn)
2: C = {}
3: for i← 1 to n do
4: k ∼ Geometric(pk)
5: A ← Sample a reach-avoid DFA with k + 2 states by sampling a reach and an avoid symbol

uniformly from the alphabet for each state and adding these random transitions; for other symbols,
add a stuttering transition with probability 0.9, or, make it reach or avoid with equal probability

6: for i← 1 to m do
7: A′ ← A
8: Mutate A′ by sampling a state pair (s, s′) and a symbol a and adding s

a−→ s′

9: Make A′’s accepting state a sink by removing its out transitions and minimize A′

10: if A′ is not a trivially accepting then A ← A′

11: C ← C ∪ {A}
12: Return C

15



C Results

C.1 Pretraining learning curves: GATv2 vs RGCN. Figure 9 presents the learning curves for
pre-training of GATv2 and RGCN on RAD cDFAs in the dummy MDP. The figure illustrates that
GATv2 converges faster than RGCN, potentially highlighting the benefits of the attention mechanism.

Figure 9: Learning curves for pre-training on RAD cDFAs in the dummy MDP.

16



C.2 Generalization of pre-trained cDFA embeddings: GATv2 vs RGCN. Figure 10 presents the
generalization experiment results in the dummy MDP. It shows that pre-trained GATv2 consistently
outperforms RGCN with almost 100% accuracy in most cases. It also learns to solve the dummy
MDP with less steps compared to RGCN. Overall, we observe that pre-training on RAD cDFAs
provides good generalization to other cDFA task classes for both GATv2 and RGCN.

Figure 10: Generalization results of GATv2 and RGCN pre-trained on RAD cDFAs, where satisfaction
likelihood (left) and step count (right) are shown by the solid lines and by cross-hatching, respectively.

17



C.3 Embedding space analysis: GATv2 vs RGCN. Figure 11 presents the embedding space
analysis results for both GATv2 and RGCN. Results show that RGCN demonstrates competence
in effectively separating different classes, albeit with certain limitations. While it succeeds in
distinguishing reach from other classes, it struggles to differentiate RA tasks from parity and RAR.
Even though parity and RAR cDFAs share structural similarities with RA cDFAs, this lack of
separation is concerning as there is a semantic difference between these task classes–RA cDFAs have
rejecting states but parity and RAR cDFAs do not. However, it still successfully clusters cDFAs that
are 2-conjunction collapsed and 1-step advanced while also isolating accepting ones in the green
region shown in Figure 11d, illustrating the robustness provided by pre-training on RAD cDFAs.

Another point to note is the scales of the Euclidean distance heat maps given in Figure 11c and
Figure 11f. The distance scale for RGCN is from 0 to 1.5 whereas the scale for GATv2 is from 0 to 3.
Moreover, we see darker colors in Figure 11c, suggesting that GATv2 captures semantic nuances by
effectively leveraging the embedding space for robust representations of cDFAs. The analysis results
suggest that GATv2 learns a richer representation of the cDFA embedding space, likely due to its
attention mechanism, which enables it to attend to relevant features and relationships within the data.

Figure 11: Visualizations of the embeddings generated by GATv2 and RGCN pre-trained on RAD cD-
FAs, showing that the learned embedding space reflects the similarities between different task classes.

18



C.4 Generalization of policies: pre-trained vs not pre-trained. Figure 12 compares the gener-
alization strengths of policies with not-pre-trained, pre-trained-and-frozen, and pre-trained GATv2
cDFA encoders. It shows a similar pattern to the learning curves given in Figure 5. Specifically, we
see that the frozen one outperforms others while the pre-trained one performs comparably. However,
we see that not-pre-trained one does not come close to the others, indicating that learning embedding
spaces through pre-training is essential for good performance and generalization to different task
classes. Figure 13 presents the number of steps taken in Letterworld to solve the task for the same
experiment. We see a similar trend where without pre-training model needs to take a lot of steps to
end the episode (either successfully or unsuccessfully). Both pre-trained models take significantly
fewer steps while the frozen one solves the task fastest. Combining both figures, we see that the
frozen version generalizes well while also learning to solve tasks faster.

Figure 12: Effect of pre-training on satisfaction generalization capabilities in Letterworld.

Figure 13: Effect of pre-training on number of steps generalization capabilities in Letterworld.

19



C.5 Training curves and steps generalization for other task classes. We first present the training
curves for RA.1.1.1.5 and RAR.1.2.1.2 using RAD pre-trained cDFA encoders. Figure 14 shows
that policies trained on RAD and RAR.1.2.1.2 converge relatively faster than the one trained on
RA.1.1.1.5. Notice that RA.1.1.1.5 samples cDFAs with more than 3 DFAs with high probability
(since the number of conjunctions sampled uniformly at random from the given interval) whereas
the probability of sampling such big compositions is lower in RAD (as it sampled from a geometric
distribution). Thus, the figure indicates that it is relatively harder to learn big conjunctions.

In Figure 7, we shared the satisfaction generalization results for these policies, testing how well
these policies trained on specialized task distributions generalize to other task distributions. Here,
we provide the number of steps taken to finish the episode during the generalization experiments
in Figure 15. Observe that training the policy on RAD cDFAs results in shorter episodes. However,
it is still worth noting that other policies perform comparably and provide good generalization on
unseen tasks.

Figure 14: Training curves for RA and RAR policies with RAD-pre-trained GATv2 in Letterworld.

Figure 15: Number of steps generalization comparison between policies trained on RAD, RA.1.1.1.5
and RAR.1.2.1.2.

20



C.6 Generalization of pre-trained policies: GATv2 vs RGCN. Figure 16 present the results.
It compares policies with frozen and pre-trained GNNs (both GATv2 and RGCN). In line with the
training curves, we can see that GATv2 outperforms RGCN across the board, with the most significant
differences on harder task classes with many symbols or many conjunctions. Figure 17 shows the
number of steps taken in the same experiments, indicating that GATv2 also learns to complete the
tasks with fewer steps compared to RGCN. The results highlight the superior performance of GATv2.

Figure 16: Satisfaction generalization capabilities of policies trained on RAD cDFAs with frozen and
pre-trained cDFA encoders in Letterworld, comparing GATv2 and RGCN.

Figure 17: Number of steps generalization capabilities of policies trained on RAD cDFAs with frozen
and pre-trained cDFA encoders in Letterworld, comparing GATv2 and RGCN.

21



C.7 Generalization of pre-trained policies in continuous domains. Figure 18 shows the general-
ization results for a policy (with a frozen and pre-trained GATv2) trained on RAD DFAs in Zones.
The results show that our method can generalize to cDFAs with up to 10 DFAs in the composition as
long as each DFA’s task length is relatively short. We see that it does not perform as well in tasks with
length 5 and more. This is probably due to the fact that control and navigation are much harder in
continuous domains compared to discrete ones. Therefore, the low accuracies we are seeing for tasks
with more length might be due to timeouts. It is worth noting that the policies can generalize up to 10
conjunctions in a cDFA, which is completely out of distribution for the policy. Overall, the results
show that training on RAD DFAs provide zero-shot generalization in continuous domains as well.

Figure 18: Satisfaction generalization results of policies trained on RAD cDFAs with frozen and
pre-trained GATv2 cDFA encoders in the Zones environment (continuous domain).

Figure 19 shows the number of steps taken to complete the episodes in the same experiment. We see
that when the policy satisfies a task class with a high probability, it can also complete it with fewer
steps. On the other hand, in almost all cases where it could not satisfy the task with high probability,
it also took more steps in those episodes, suggesting that the policy might have timed out.

Figure 19: Number of steps generalization results of policies trained on RAD cDFAs with frozen and
pre-trained GATv2 cDFA encoders in the Zones environment (continuous domain).

22



C.8 Generalization of pre-trained policies: RAD cDFAs vs LTL2Action. To compare our
approach to the closest work in the literature, we design an experiment with LTL2Action [38]. Recall
that one of our main contributions is our RAD pre-training procedure that provides generalization
across different tasks. Defining such a general LTL task class is not a trivial problem and is a
contribution on this own. Moreover, the intuitions used to develop the RAD cDFA class are not
applicable to LTL as it is not as easy to generate interesting and satisfiable LTL formulas. Therefore,
for LTL2Action, we define a joint task distribution consisting of partially ordered and avoidance tasks,
which are task classes defined in [38]. To sample LTL tasks, we flip a coin and pick a samplers.

Figure 20: Learning curve for pre-training LTL policies on the joint distribution of PO and AV.

Figure 20 present LTL2Action’s learning curve for the pre-training of an RGCN in the joint LTL task
distribution. As the figure shows, the model can easily learn to distinguish these LTL tasks.

Figure 21: Learning curves for training LTL policies on PO and AV LTL tasks.

We then take the pre-trained RGCN and use it to train a policy that is exclusively trained on one of
these task classes, i.e., partially ordered or avoidance LTL tasks. Figure 21 presents the learning
curves for this training. The figure shows that if we let the RGCN get gradient updates during training,
then pre-training does not help as much as freezing the network. We saw a similar behavior for
RGCN in Figure 5, which further justifies our choice of using a network with an attention mechanism.
Furthermore, in [38], authors show that pre-training on specific task classes helps training even when
we let the RGCN continue getting gradient updates. Combining these results from [38] with what
we are seeing on Figure 21 suggests that when pre-trained on rich classes with multiple distinct task
patterns, RGCN need to forget about the other task classes it learned during pre-training and has to
focus its capacity on the specific task class it is being trained on. We do not see such a gap in the
learning curves when we let GATv2 get gradient updates, see Figure 5, suggesting that GATv2 does
not suffer from the same issue as RGCN, and it learns more robust cDFA embeddings.

Figure 22: Number of steps generalization capabilities of LTL policies vs RAD-cDFAs policies.

Figure 22 presents the number of steps taken for the generalization experiments, showing that in all
cases our policy trained on RAD cDFAs perform comparably to the specialized LTL policies.

23



D Hyperparameters and Compute Usage

Both for the RGCN and GATv2 cDFA encoders, we use a hidden dimension size of 32 and perform 8
message passing steps. Also, for GATv2, we use 4 heads for the multi-head attention.

For both Letterworld and Zones, we implemented the same actor and critic architectures. The actor
network comprises three fully connected layers, each with 64 units and ReLU activations, while the
critic network has three fully connected layers with 64, 64, and 1 units, using a Tanh activation. For
pretraining, we simplified the actor and critic to single-layer models without hidden units, allowing
the cDFA encoder to learn a rich embedding space. For environments with discrete actions, the
actor’s output was passed through a log softmax and a logit layer. In continuous action settings, we
used a Gaussian distribution, parameterizing the mean and standard deviation with two separate linear
layers from the actor’s output. To construct observation embeddings, for Letterworld, we employed a
3-layer convolutional network with 16, 32, and 64 channels, 2×2 kernels, and a stride of 1. In Zones,
a 2-layer fully connected network with 128 units per layer and ReLU activations was used.

Table 1 shows the hyperparameters used for every training run in the experiments section. Each
seed in the experiments section was run as an individual Slurm job with access to 4 cores of an
AMD EPYC 7763 running at 2.45GHz and access to at most 20gb of memory. RAD pre-training
experiments took approximately 14 hours each for 10 million timesteps, policy training in Letterworld
took approximately 55 hours (50 hours for the frozen GNN version) for 20 million timesteps, and
policy training in Zones took approximately 120 hours (70 hours for the frozen GNN version).

Hyperparameter Pretraining Env. Letterworld Env. Zones Env.
Learning rate 0.001 0.0003 0.0003
Batch size 1024 32 2048
Number of epochs 2 4 10
Discount 0.9 0.94 0.998
Entropy Coefficient 0.01 0.01 0.003
GAE(λ) 0.5 0.95 0.95
Clipping ϵ 0.1 0.2 0.2
RMSprop α 0.99 0.99 0.99
Max. grad. norm. 0.5 0.5 0.5
Value loss coef. 0.5 0.5 0.5

Table 1: PPO pre-training and policy training hyperparameters.

24



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the introduction, we clearly list our contributions, and in the experiments
section, we list the research questions we explore. We then relate these research questions
and their answers to the listed contributions while discussing the experiment results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Throughout the paper and explicitly in the conclusion, we clearly state the
limitations of the work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

25



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include any theorems or proofs. But, we still give a rigorous
formalism mapping cDFA-conditioned RL to the well-known goal-conditioned RL problem.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of
the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the main experimental
results. In the corresponding section, we define all the RL environments, all the task classes,
the pretraining procedure, the training procedure, and the algorithms used in the experiments.
We also provide all the hyperparameter values in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

26



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In a footnote on the first page, we include a link to the webpage of the project.
This page includes all data and code with instructions to reproduce the experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the training and test details in the main body of the paper as
well as in the supplementary material included in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All plots in the paper report error bars whenever applicable. We also provide
other appropriate information (e.g., number of seeds, sample size, etc.) about the statistical
significance of the reported experimental results.

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the details regarding computer resources are given in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that the research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

28

https://neurips.cc/public/EthicsGuidelines


Answer: [Yes]

Justification: We discuss the societal impacts of our work in the context of explainable and
interpretable AI systems.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We clearly credit and cite all the original papers that produced the assets we
used as baseline, benchmark, etc.

Guidelines:

• The answer NA means that the paper does not use existing assets.

29



• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The RAD DFAs can be considered a new asset as it is a sampling distribution
over DFAs. Its complete definition is given in both the main body and the appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper involves neither crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper involves neither crowdsourcing nor research with human subjects.

30

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31


	Introduction
	Contributions
	Related Work

	Preliminaries
	Goal-Conditioned RL
	Deterministic Finite Automata
	Augmenting MDPs with cDFAs

	Compositional Automata-Conditioned Reinforcement Learning
	cDFA Featurization
	cDFA Embedding

	Pre-training on Reach-Avoid Derived (RAD) Compositional Automata
	Sequential reach-avoid as the basis for planning
	Reach-avoid derived DFAs

	Experiments
	Conclusion
	Limitations

	Details of cDFA Featurization
	RAD cDFA Sampler Algorithm
	Results
	Pretraining learning curves: GATv2 vs RGCN
	Generalization of pre-trained cDFA embeddings: GATv2 vs RGCN
	Embedding space analysis: GATv2 vs RGCN
	Generalization of policies: pre-trained vs not pre-trained
	Training curves and steps generalization for other task classes
	Generalization of pre-trained policies: GATv2 vs RGCN
	Generalization of pre-trained policies in continuous domains
	Generalization of pre-trained policies: RAD cDFAs vs LTL2Action

	Hyperparameters and Compute Usage

