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ABSTRACT

Bayesian optimization (BO) has recently become more prevalent in protein en-
gineering applications and hence has become a fruitful target of benchmarks.
However, current BO comparisons often overlook real-world considerations like
risk and cost constraints. In this work, we compare 72 model combinations of
encodings, surrogate models, and acquisition functions on 11 protein binder fitness
landscapes, specifically from this perspective. Drawing from the portfolio opti-
mization literature, we adopt metrics to quantify the cold-start performance relative
to a random baseline, to assess the risk of an optimization campaign, and to cal-
culate the overall budget required to reach a fitness threshold. Our results suggest
the existence of Pareto-optimal models on the risk-performance axis, the shift of
this preference depending on the landscape explored, and the robust correlation
between landscape properties such as epistasis with the average and worst-case
model performance. They also highlight that rigorous model selection requires
substantial computational and statistical efforts.

1 INTRODUCTION

Figure 1: Our additions for protein optimiza-
tion benchmarking: we consider risks, costs,
and performances relative to a random base-
line.

Risk in protein optimization: In portfolio opti-
mization, the expected value of a portfolio is often
an incomplete measure of its desirability: we may
not only care about the average of the results, but
also their risk (Gunjan & Bhattacharyya, 2023). We
can imagine 2 portfolios that both return the same
expected value: one of them returns 10% of average
in its worst outcomes and the other returns 90%. It
is pretty clear now which one is more desirable.

This trade-off also occurs in Bayesian optimization
(Cakmak et al., 2020; Makarova et al., 2021). Initial-
ization of parameters or input space, inherent exper-
imental noise, and inadequate exploration can make
results highly stochastic (Tripp & Hernández-Lobato,
2024; Wang et al., 2022). In protein optimization
campaigns, failures (not reaching a target fitness)
mean more resources such as time and money will be
spent. Thus, when benchmarking models to be used in real campaigns, we should account for and
mitigate the risk of failure induced by this stochasticity as much as possible.

Previous work: Recent work (Yang et al., 2025; Li et al., 2024; Jiang et al., 2024) in active learning
and Bayesian optimization for proteins has focused on evaluating the performance of the model on
landscapes from the ProteinGym (Notin et al., 2023) benchmark (although biological test functions
are becoming more prevalent, as introduced by Chen et al. (2024) and Stanton et al. (2024)). These
works then selected the best-performing one to use in an experimental campaign according to the
final fitness reached (Yang et al., 2025) or fold-change from the starting library (Jiang et al., 2024).
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To our knowledge, no benchmark for protein optimization explicitly calculated risks, nor addressed
budget considerations (as $ amount) or cold-start performance. This motivates us to study two main
questions:

1. How important is risk analysis when benchmarking and selecting Bayesian optimiza-
tion algorithms for binders? For this, we investigate the cost savings when ranking models
by the CVaR (conditional value at risk) and average performance, and ensure the statistical
significance of our results by performing a bootstrap analysis. First, we simulate optimiza-
tion campaigns for 72 model combinations on 11 binding datasets. We show that, currently,
there is no added benefit of a risk-aware ranking, as this is overshadowed by the inherent
stochasticity of protein optimization.

2. Does the fitness landscape influence the average model performance, risks, and costs?
To answer this, we assess the correlation between risk and landscape properties. With the
same robust statistical analysis, we show that both the average and CVaR final fitness and
costs are greatly influenced by epistasis.

2 METHODS

2.1 PROBLEM DEFINITION

Figure 2: Overview of the standard protein BO
loop we are benchmarking.

Inputs: Let x ∈ X denote a protein sequence
of length L, where X is the space of all possi-
ble sequences composed of amino acids from
an alphabet A (typically, |A| = 20). We repre-
sent protein sequences using embeddings from
a protein language model or with one-hot encod-
ings. Let e = ϕ(x) ∈ RD denote the encoding
of the sequence x, where ϕ : X → RD is the
embedding function and D is the embedding
dimensionality.

The black-box function: In an optimization
campaign, our goal is to find the protein se-
quence x∗ that maximizes the unknown fitness
function f . Since f is expensive to evaluate (i.e.,
requires performing an assay), Bayesian opti-
mization is commonly used to iteratively propose sequences to evaluate, balancing exploration and
exploitation (Frazier, 2018). In the context of protein engineering, f represents binding screening
experiments or binding affinity measurements, establishing the ground truth fitness values. These can
be direct protein-protein binding affinity measurements or more complex proxies, depending on the
screening platform.

Surrogates to approximate experimental results: We use a probabilistic surrogate model to
approximate f based on observed data Dn = {(xi, ei, yi)}ni , where yi = f(xi) + ϵi represents the
fitness (i.e., binding affinity) of the oracle and ϵi ∼ N(0, σ2) represents the observation noise. Thus,
we train a surrogate f̂ to predict the fitness value ŷ = f̂(ei).

Acquisition functions: At each iteration, we select the next batch of sequences to evaluate that
maximize (Wilson et al., 2018) an acquisition function α(e; Dn):

enew batch = argmax
ecandidates∈RD

α(ecandidates;Dn)

Generator and oracle: Our pool of candidates ecandidates consists of all available sequences in the
ground-truth dataset that have not been acquired until the current iteration. Other methods generated
all possible mutants, then queried the true label using an L1 distance to the closest in the ground-truth
dataset (Yang et al., 2025).
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2.2 EXPERIMENTAL SETUP AND METRICS

Datasets and BO components: We simulate Bayesian optimization campaigns on 11 binding
deep-mutational scanning (DMS) datasets from the ProteinGym repository (Notin et al., 2023), and
calculated landscape complexity properties (epistasis, skewness, kurtosis, etc.) for these, described in
Appendix A.2. We used 6 different uncertainty-aware surrogates: a deep neural network ensemble
(ensemble NN), deep neural network with Monte Carlo dropout (dropout NN, Gal & Ghahramani
(2015)), a random forest (RF) model (Breiman, 2001; Louppe, 2014), a Gaussian process (GP) model
with assumed homoskedastic noise, a deep kernel Gaussian process (Wilson et al., 2015), and a
Bayesian neural network (BNN, Jospin et al. (2020)). Architecture and hyperparameter optimization
details are summarized in Appendix A.1. For the acquisition functions, we implemented greedy top-K,
Thompson sampling (TS), expected improvement (EI), and upper-confidence bound (UCB, Srinivas
et al. (2009)). We tested one-hot encodings, ESM2-650M, and ESM-3B embeddings mean-pooled
Lin et al. (2023).

Fitness metrics: Our main performance metric is the normalized maximum fitness reached at the
end of a campaign, commonly used in previous work (Li et al., 2024; Zhang et al., 2024), and its
conditional value at risk (CVaR) for the worst 10% of cases. We refer you to Mitra & Ji (2009) and
Artzner et al. (1999) for an overview of risk measures in financial mathematics. Additional details
about our implementation can be found in Appendix A.3.

Figure 3: Metrics for the top 10 models ranked by
average final fitness for GB1: final fitness reached,
∆GAUC, cost to 99th percentile of fitness, num-
ber of sequences above the 99th percentile thresh-
old acquired.

Quantifying cold-starts: We have included
an additional performance metric accounting for
cold-starts, a case in which the model perform-
ing similarly to a random baseline in the first
steps due to an unadapted surrogate and a small
(to none) set of initial training points (Poloczek
et al., 2016). For this, we calculated the differ-
ence between the maximum fitness reached by a
model versus the random baseline (∆G), further
computing its area-under-the-curve (∆GAUC).
This is a measure of how effectively the model
can adapt to and exploit the landscape structure.

Quantifying costs: Costs were assessed con-
sidering an acquisition budget of 384 sequences
and a 96 starting pool. Thus, assuming a $150
price point for testing a single variant 1, our
maximum acquisition budget will be $57,600
($72,000 with the seed library). We have as-
sessed the cost to reach the 99th percentile of
fitness for each landscape. This threshold can
depend on the priorities of each campaign and
we might be more interested in a fold improve-
ment compared to the starting pool for real-life
scenarios.

3 RESULTS

Returning to our two questions, we first compare CVaR and average-based model rankings (1),
showcase that these agree more on the GB1 landscape, and then determine which landscape property
is the best predictor of optimization risk (2).

1Based on the cheapest result found when Googling ”cheapest binding affinity characterization service
wetlab” as of January 2025
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Figure 4: Pareto frontier when consider-
ing the performance-risk axes for the fi-
nal fitness reached and for the ∆GAUC
metric.

There is a clear risk-performance model preference on
the GB1 landscape: The GB1 landscape (Olson et al.,
2014; Wu et al., 2016) has been a workhorse for bench-
marking protein optimization algorithms (Li et al., 2024;
Yang et al., 2025; Greenman et al., 2025). It explores the
interaction effects at 4 sites in the IgG-binding domain
of protein G (GB1), yielding almost 160,000 total vari-
ants. To reduce the computational complexity, we fixed
the residue V54 to the wild-type, resulting in 7600 total
sequences and 6080 without the subset used for the surro-
gate hyperparameter search, as detailed in Appendix A.1
and A.2.

When ranking models by average final fitness (Supple-
mentary Figure A.8), our benchmark recovers the same
optimal model identified by the ALDE framework (Yang
et al., 2025): DNN ensemble with Thompson sampling
and one-hot encodings. In Figure 3, we have summarized
several outcome metrics and their associated CVaR values.

This multi-metric analysis reveals a fundamental tension:
while GB1’s structure allows clear identification of better
models under any single metric, different optimization
goals can lead to completely different model preferences.
For example, the GP/UCB/one-hot model achieves a com-
petitive final fitness, but has a lower CVaR (Figure 3). It
still yields the highest number of sequences above the 99th percentile of fitness on average. This
suggests that even for well-studied landscapes, model selection should account for the end goals
of the optimization campaign. In a typical industrial setting, a risk-aware selection could be more
suitable, which we will assess next.

Dataset Kendall τ

HLA-A 0.549∗∗∗

CD19 0.252∗∗

CCR5 0.212∗∗

ACE2 0.681∗∗∗

CytochromeP4502C9 0.568∗∗∗

Dlg4 PSD95 PDZ3 0.606∗∗∗

KRAS 0.544∗∗∗

GB1 subset 0.667∗∗∗

YAP1 0.769∗∗∗

SpikeRBD 0.375∗∗∗

Gcn4 0.149
All datasets 0.473∗∗∗

Table 1: Kendall τ correlation between
CVaR and average-based model ranks
for each landscape. *** denotes a p-
value < 0.001, ** for < 0.01, and * for
< 0.05.

The best model is Pareto-dominant when looking at the
risk-performance axis (Figure 4). The optimal model dif-
fers for ∆G AUC (Figure 4). The random forest model
might be preferable if we want both to optimize and to
have a model adequately learn the structure of a landscape.
Several other models become Pareto-optimal when costs
are taken into account (Supplementary Figure A.19. These
leverage Bayesian NN surrogates and can easily achieve
the fitness threshold set, yet they are often not optimizing
past it.

Variability in landscapes and optimization limits risk-
aware model selection: Next, we looked at the rank
correlations for the 72 models in each landscape (Table
1). The GB1 subset displays high agreement, while others
(e.g., CCR5) show that model preferences vary drastically
when accounting for risk in our rankings. We hypothesized
that a risk-aware ranking might be more cost-efficient,
ideally reducing worst-case costs, and that more complex
landscapes would benefit from a risk-aware ranking.

To compare risk-aware and mean-based model selection,
we have performed a bootstrap analysis on the 20 runs to
better simulate subsequent optimization campaigns, summarized in Appendix A.4. While naive
bootstrapping suggested large potential cost savings (up to $16,000), a more rigorous testing revealed
no statistically significant benefits when accounting for risk into the rankings (Supplementary Figure
A.6). This suggests we cannot judge based on the simulation whether the risk-aware model choice
would actually save money on average or in the worst case. It will require additional seeds and/or
k-fold validation, which is a current limitation of our work.
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Figure 5: Kendall τ correlation coeffi-
cients between the average model met-
rics and landscape properties. *** de-
notes a p-value < 0.001, ** for < 0.01,
and * for < 0.05.

Epistasis is the main driver of increased campaign risks
and costs: Next, we have addressed the second question
2 (Figure 5). Bootstrap analysis details are summarized
in Appendix A.4. The final fitness has a strong negative
correlation with non-magnitude epistasis (-0.52 average,
-0.55 CVaR, statistically significant), while showing mod-
erate negative correlations with kurtosis (-0.39/-0.43), the
number of KDE peaks (-0.38/-0.46), and skewness (-0.38/-
0.34). This indicates that landscape complexity is directly
detrimental to the final performance of all models. The
worst 10% of cases get marginally worse with increased
complexity compared to the average. The percentage
of active variants shows moderate positive correlations
(0.37/0.33), suggesting that an abundance of active vari-
ants can stabilize performance.

Several landscape complexity metrics correlate positively
with the average ∆GAUC. Most notably, non-magnitude
epistasis (0.57), the number of KDE peaks (0.45), magni-
tude epistasis (0.40), and skewness (0.42) show substantial
positive correlations. However, these metrics generally
correlate negatively with the ∆G AUC CVaR 10%, as
seen with non-magnitude epistasis (-0.40) and kurtosis (-
0.40), suggesting that while distinct landscape topologies
are learnable and exploitable on average by models, they can be detrimental when models do not
adapt fast enough. Magnitude epistasis shows the strongest positive correlation to the cost (0.45,
statistically significant, but a larger confidence interval, Supplementary Figure A.7) and displays an
even stronger correlation in the worst 10% of cases (0.55). Active variants show consistent negative
correlations with costs (-0.40/-0.35), indicating that a higher likelihood of reaching such variants
reduces optimization costs.

Of all correlations, epistasis is the most significant predictor of risk, performance against random, and
costs in an optimization campaign, and should be taken into account before starting an optimization
campaign.

4 CONCLUSION

In this study, we established the importance of risk quantification and statistically robust benchmarking
for protein binder optimization and showed that risk-aware BO benchmarking does indeed give
important additional information (1). We observed reordering effects and breakdown of clear Pareto-
dominance when considering risk, costs and performance compared to a random baseline. While
rigorous statistical testing did not support the claim of cost savings when changing model selection
accordingly, this also remains a tantalizing possibility.

We also showed that there is indeed an influence of landscape properties(2) and complex landscapes
which present an interesting dichotomy: when learned (on average) they yield better-than-random
performance, but they correlate with more catastrophic worst-case performance regressions (when
learning fails). We find that epistasis is the best predictor of increased risks and costs for the datasets
considered.

Limitations: We only evaluated single-objective risk due to the nuances involved in considering
multiple objectives. Due to computational constraints, we had to subset some of our datasets, which
might change the results. Many more seeds are required to make reliable statistical claims about the
impact of risk on model choice. Our model ranking and evaluation approach would benefit from
proper k-fold validation using more compute or data for robustness. Finally, we are working with
finite datasets where we can only select variants rather than generate new ones. This limits our ability
to understand optimization breakdowns in open-ended campaigns. Subsequent work could implement
pre-trained fitness oracles or biological test functions to study these.
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A APPENDIX

A.1 SURROGATE MODELS, ACQUISITION FUNCTIONS, AND HYPERPARAMETER TUNING

We implemented several standard surrogate models used in previous benchmarks for protein engi-
neering BO (Yang et al., 2025) and adapted them to our case (Table A.1).

Table A.1: Surrogate model architectures

Surrogate Architecture Activation

Random forest Tree ensemble N/A
Deep kernel GP 3-layer MLP + GP ReLU
Gaussian process RBF or Matérn kernel and Gaussian likelihood N/A
Bayesian NN 3-layer BNN ReLU
Dropout NN 3-layer MLP ReLU
Ensemble NN 3-layer MLPs ReLU

Similarly, we explored 4 commonly used acquisition functions (Table A.2). Subsequent work could
further augment these, with protein-specific ones that could improve the optimization process. For
example, we could use a classifier to predict the probability of binding along the binding affinity and
use it in the acquisition, as done by Rapp et al. (2024), or augment it with evolutionary or structural
priors (Frisby & Langmead, 2021). We believe more work could be done to define principled
acquisitions for the binding improvement problem.

Table A.2: Acquisition functions implemented in our benchmark. µ(x) and σ(x) are the predicted
mean and standard deviation from the surrogate model, f∗ is the current best-observed value, Φ and
ϕ are the CDF and PDF of the standard normal distribution. We did not perform a hyperparameter
search for the acquisition function.

Acquisition Formula Parameters

Expected improvement E[max(f(x)− f∗ − ξ, 0)] ξ = 0.01
= (µ(x)− f∗ − ξ)Φ(z) + σ(x)ϕ(z)

where z = µ(x)−f∗−ξ
σ(x)

Upper confidence bound µ(x) + βσ(x) β = 2.0

Thompson sampling f(x) ∼ N (µ(x), σ2(x)) None

Greedy µ(x) None

For our optimization campaign, we conducted a comprehensive evaluation of model combinations to
determine their peak performance and ensure our model comparisons as robust. We implemented
a grid search across multiple hyperparameters, testing each parameter configuration on individual
landscapes. In each landscape, we allocated 20% of the sequences for hyperparameter optimization
(15% training, 5% testing), while reserving the remaining 80% for the actual simulated campaign. We
chose a random split over a homology or a high-low activity one (Dallago et al., 2022) because we
wanted to maintain the inherent fitness distribution and preserve the landscape topology. We selected
our grid samples by consulting the literature, both for previous protein BO campaigns, the original
surrogate implementations, and standardized implementations from libraries like GPyTorch (e.g., the
number of Monte-Carlo samples or dropout rate as highlighted by Gal & Ghahramani (2015)).

We used a schedule-free implementation of the Adam optimizer for both the hyperparameter tuning
and simulated campaigns, as initially described by Defazio et al. (2024).
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Table A.3: Hyperparameter search space for each surrogate model. Common parameters across
neural models: no. epochs = 100, batch size = 32, Monte Carlo samples = 30 (where applicable).

Surrogate Hyperparameter search space

Random forest no. estimators ∈ {10, 50, 100, 200}
max depth ∈ {None, 10}

Deep kernel GP hidden dimension = 128
learning rate ∈ {10−4, 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2, 10−1}
kernel type ∈ {RBF, Matérn}

Gaussian process kernel type ∈ {RBF, Matérn}
learning rate ∈ {10−4, 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2, 10−1}

Bayesian NN hidden dimension = 128
learning rate ∈ {10−4, 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2, 10−1}
KL weight = 1.0

Dropout NN hidden dimension = 128
learning rate ∈ {10−4, 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2, 10−1}
dropout rate = 0.1

Ensemble NN hidden dimension = 128
learning rate ∈ {10−4, 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2, 10−1}
no. estimators = 5

A.2 LANDSCAPE PROPERTY CALCULATIONS

We calculated the properties of our landscapes following the methodology established by Li et al.
(2024), with our main difference in using the Otsu method to determine the threshold for active vari-
ants. These are summarized in the table below. N represents the total number of variants. Ruggedness
(Rugged.) quantifies local structure complexity. Peak fitness shows the Cauchy distribution peak
location. Kurt. (kurtosis) and Skew (skewness) describe the fitness distribution shape. KDE peaks
indicate the number of modes in the kernel density estimation. Optima shows the count of local
fitness maxima. Magnitude (Mag.) and non-magnitude (Non-mag.) epistasis percentages quantify
pairwise interaction types.

Table A.4: Landscape properties.

Dataset Active% Thresh. N Rugged. Peak Kurt. KDE Local optima Mag. Non-mag. Skew
(Otsu) (Otsu) . fitness . peaks epist. epist. .

KRAS 57.59 -0.56 19899 0.21 -0.38 -1.16 3 576 25.31 74.69 -0.36
GB1 subset 3.82 1.32 6080 1.73 0.00 36.53 14 7 6.71 93.29 5.61
SpikeRBD 82.40 -2.08 3042 0.90 -0.19 1.47 2 186 0.00 0.00 -1.64
CytP4502C9 51.01 0.53 4914 0.40 0.54 -1.41 2 465 0.00 0.00 0.07
CCR5 75.41 -0.37 4910 0.74 -0.02 5.18 4 323 0.00 0.00 -1.05
CD19 17.65 0.30 3009 4.24 -2.02 1.82 2 269 0.00 0.00 1.01
Gcn4 45.75 1.32 2111 0.30 1.29 16.89 6 47 0.00 100.00 1.02
ACE2 63.07 -0.66 1779 1.40 -0.25 0.72 2 117 0.00 0.00 0.19
HLA-A 65.73 -0.18 2676 1.35 0.22 0.91 2 178 0.00 0.00 -0.54
YAP1 21.45 1.29 8060 1.21 0.54 12.11 9 926 5.49 94.51 2.52
Dlg4 PDZ3 87.63 -0.59 1261 0.29 0.01 3.48 3 83 0.00 0.00 -2.03
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A.3 OPTIMIZATION RISK, PERFORMANCE, AND COST CALCULATIONS

Cold-start quantification using the ∆G AUC: We define the optimization strategy Oi as the
combination of surrogate, acquisition, encoding, loss, and kernel for a given choice of these parameters
i. We set the initial starting pool of variants as ns

init for the initialization (seed) s and ns
k as the

current acquired variants at iteration k. In total, we set a fixed budget nbudget = ninit + b ∗ K,
where b is the batch size and K is the number of optimization cycles.

We define Gs
k as the payoff (reward, performance) achieved after conducting the optimization at

iteration k accounting for Oi, ns
init, and ns

k. For single-objective optimization, Gs
k will be:

Gs
k(Oi, n

s
init, n

s
k) = max

xs
k∈X

f(xs
k) | Oi, n

s
init, n

s
k)

Where xs
k contains all variants acquired including iteration k for seed s.

Thus, we are continuously aware of our budget and variants acquired at each iteration when computing
the payoff. We have defined payoff as the maximum acquired binding affinity up until the kth iteration,
but other metrics such as cumulative regret could be used.

We want to calculate the ∆G difference in optimum values for a given model choice Oi and a simple
baseline O0 for the early stages of optimization, for a given seed. The simple baseline will be a
random search in our case, which mimics the approximate behaviour of a Bayesian optimization
algorithm with uniformly distributed priors in the early stages of optimization to quantify cold starts.

∆Gs
k = Gs

k(Oi, n
s
init, n

s
k)−Gs

k(O0, n
s
init, n

s
k)

Thus, cold starts are represented by a small ∆Gs
k: the model needs to learn more about the data

to suggest optimal value variants, as it resembles a random search initially. A large ∆Gs
k suggests

effective utilization of prior information, leading to better performance.

Furthermore, we can average ∆Gs
k across all seeds, with ∆Gk = E[∆Gs

k | s ∈ S]. Furthermore,
we will compute the Area Under the Curve (AUC) to obtain ∆Gs

1:K AUC - the cumulative model’s
performance considering all time steps (k from 1 to K). This ensures we rank highly models that do
not necessarily converge to the optimum, but achieve a steady improvement throughout all iterations
(especially if we want to stop an optimization earlier if we are content with the results).

Risk metrics for ranking: We are interested in quantifying the performance in worst-case scenarios,
and thus implemented risk measures from financial mathematics - VaR (value at risk) and CVaR
(Conditional Value at Risk, also known as the Expected Shortfall, ES). (Artzner et al., 1999; Cakmak
et al., 2020).

VaRα(X) = inf{x ∈ R : P (X ≤ x) ≥ α}

CVaRα(X) = E[X | X ≤ VaRα(X)]

In our benchmark, we have used the CVaR/ES with an α = 0.1 calculated for the final fitness
performance, performance relative to baseline, and costs, determining the average of payoffs that do
not reach the VaR threshold (fitness in the worst 10% of cases). To make mathematical notation less
abstract, a large ES means that even in the worst 10% of initializations, a model will still yield a high
payoff throughout all iterations (AUC), and will outperform a random baseline (positive AUC). An
ES close to the maximum AUC means the model is robustly parsing the fitness landscape, irrespective
of its initialization.
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A.4 BOOTSTRAP ANALYSIS

Two bootstrap analyses were performed to address the limited number of runs (seeds) sampled.

A.4.1 COMPARING MEAN VERSUS CVAR-BASED MODEL RANKING

We performed a bootstrap analysis with increasing stringency to assess the statistical significance
of the mean and CVaR model rankings and their associated campaign cost differences. For the
naive bootstrap, we sampled with replacement from the available optimization runs (20 seeds) for
each dataset-model pair. We then ranked the top models for each bootstrap sample using either the
average fitness over the seeds or the CVaR, selected the best one for each strategy, and then compared
the corresponding cost difference to reach the 99th percentile fitness between the CVaR and mean
strategies. We did not split the runs into ranking and evaluation ones. This yielded some impressive
(albeit overestimating benefits due to data leakage) results: CVaR-based ranking saved upwards of
25% of the optimization campaign, improved average outcomes, and had a negative trend only for a
single complex landscape with highly variable campaign outcomes (Figure A.6 A).

Next, we implemented an out-of-bag bootstrap strategy: 80% of seeds were used for model ranking (16
seeds) and the remaining were reserved for evaluation. We then generated all possible combinations
of ranking and evaluation seeds, evaluated the average and worst-case (of the evaluation seeds) cost
savings, and calculated confidence intervals using the percentile method (Figure A.6 B and C). While
naive bootstrapping suggested substantial benefits from risk-aware selection, more rigorous statistical
testing revealed these differences were not significant enough to justify favouring one ranking method
over the other. We tried to address the lower number of runs per model via the bootstrapping approach,
yet this is still a limitation of our work.

Figure A.6: Comparison of different bootstrapping and evaluation techniques to establish the cost
savings between CVaR-based and mean-based model ranking.

A.4.2 ESTABLISHING THE CONFIDENCE OF CORRELATIONS BETWEEN LANDSCAPE
PROPERTIES AND MODEL PERFORMANCES

To account for the limited number of runs per model type, we bootstrapped (sampling with replace-
ment) the seeds, then calculated the CVaR and average model performance for our 3 metrics, averaged
them for each landscape, and computed the Kendall τ correlation scores between the average model
performance and landscape properties. This was done for 1000 bootstrap samples and confidence
intervals were calculated with the percentile method. We observed similar confidence intervals
for increasing bootstrap sample sizes. Our results are summarized below. Overall, the correlation
coefficients between final fitness and properties are confidently established, yet they vary more when
considering the cost metrics. We assume this is due to some sequences above the 99th threshold being
acquired earlier simply by chance, even if the model cannot effectively exploit this fitness region.
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Figure A.7: Kendall τ values following the bootstrap analysis between the average model performance
or risk and several landscape properties. Error bars indicate the 95% confidence intervals.
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A.5 ADDITIONAL RANK CORRELATIONS

We have highlighted additional Kendall τ correlations between risk and average-based rankings for
the ∆GAUC and cost metrics (Table A.5). Seemingly, models tend to require similar numbers of
sequences regardless of ranking method to reach our fitness threshold, indicating it might either be
too strict or easy to reach. This showcases the difficulty of setting a priori absolute optimization
goals. Subsequent analyses could set an achievable fold-change goal instead. When considering
the performance relative to a baseline some models that perform well on average struggle in worst
cases (e.g., on the CCR5 landscape), suggesting the landscape may have regions where models fail to
distinguish themselves from random search.

Table A.5: Rank agreement (as Kendall τ correlation) between CVaR and average-based model
rankings. Statistical significance: ∗p < 0.05, ∗∗p < 0.01 ∗∗∗p < 0.001.

Dataset ∆G AUC rank Cost to 99th percentile
correlation rank correlation

HLA-A 0.519∗∗∗ 0.937∗∗∗

CD19 0.487∗∗∗ 0.919∗∗∗

CCR5 0.295∗∗∗ 0.933∗∗∗

ACE2 0.677∗∗∗ 1.000∗∗∗

CytochromeP4502C9 0.591∗∗∗ 0.759∗∗∗

Dlg4 PSD95 PDZ3 0.588∗∗∗ 0.971∗∗∗

KRAS 0.546∗∗∗ 0.703∗∗∗

GB1 subset 0.720∗∗∗ 0.834∗∗∗

YAP1 0.677∗∗∗ 0.581∗∗∗

SpikeRBD 0.475∗∗∗ 0.976∗∗∗

Gcn4 0.369∗∗∗ 0.913∗∗∗

All datasets 0.529∗∗∗ 0.816∗∗∗

A.6 RANK AGREEMENT VERSUS LANDSCAPE PROPERTY CORRELATIONS

We further analysed which landscape properties influence the rank correlation between CVaR and
average-based methods. We did not observe any statistically significant results.

Table A.6: Correlation between landscape properties and rank agreement between average and
worst-case (CVaR) metrics. Statistical significance: ∗p < 0.05, ∗∗p < 0.01 ∗∗∗p < 0.001.

Landscape property Final fitness ∆G AUC Cost to 99th
rank correlation rank correlation percentile correlation

Active variants % (Otsu) -0.422 0.000 -0.467
Ruggedness -0.156 -0.135 0.156
Cauchy peak fitness -0.180 -0.432 0.225
Kurtosis 0.022 -0.360 -0.333
Number of KDE peaks 0.227 0.102 0.025
Number of local optima -0.244 0.000 0.244
Magnitude epistasis 0.243 -0.062 0.243
Non-magnitude epistasis 0.109 -0.028 0.218
Skewness 0.067 0.360 -0.289
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A.7 OPTIMIZATION CURVES FOR THE TOP MODELS ACROSS DIFFERENT LANDSCAPES

A.7.1 GB1 TOP MODELS

Figure A.8: Top 5 models for the average and CVaR-based selection on the final fitness reached -
GB1 subset dataset.

A.7.2 CCR5 TOP MODELS

Figure A.9: Top 5 models for the average and CVaR-based selection on the final fitness reached -
CCR5 dataset.
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A.7.3 CD19 TOP MODELS

Figure A.10: Top 5 models for the average and CVaR-based selection on the final fitness reached -
CD19 dataset.

A.7.4 HLA-A TOP MODELS

Figure A.11: Top 5 models for the average and CVaR-based selection on the final fitness reached -
HLA-A dataset.
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A.7.5 CYTOCHROME P4502C9 TOP MODELS

Figure A.12: Top 5 models for the average and CVaR-based selection on the final fitness reached -
Cytochrome P4502C9 dataset.

A.7.6 KRAS1 TOP MODELS

Figure A.13: Top 5 models for the average and CVaR-based selection on the final fitness reached -
KRAS1 dataset.
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A.7.7 SPIKERBD TOP MODELS

Figure A.14: Top 5 models for the average and CVaR-based selection on the final fitness reached -
SpikeRBD dataset.

A.7.8 DLG4 TOP MODELS

Figure A.15: Top 5 models for the average and CVaR-based selection on the final fitness reached -
Dlg4 dataset.
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A.7.9 GCN4 TOP MODELS

Figure A.16: Top 5 models for the average and CVaR-based selection on the final fitness reached -
Ccr5 dataset.

A.7.10 ACE2 TOP MODELS

Figure A.17: Top 5 models for the average and CVaR-based selection on the final fitness reached -
ACE2 dataset.
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A.7.11 YAP1 TOP MODELS

Figure A.18: Top 5 models for the average and CVaR-based selection on the final fitness reached -
YAP1 dataset.

A.8 COST-PERFORMANCE PARETO FRONTS FOR THE GB1 SUBSET DATASET

Figure A.19: Performance (as the average final fitness reached and average ∆GAUC) versus costs
to reach the 99th fitness percentile. We have highlighted the Pareto-optimal models.
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