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Abstract

Large Vision Language Models (LVLMs) like Qwen VL have demonstrated
remarkable capabilities in understanding and reasoning about visual con-
tent, particularly for static images. However, their application to video
reasoning tasks remains computationally intensive, with significant latency
and token usage when prompted using traditional Chain-of-Thought (CoT)
methods. In this paper, we propose the integration of Chain of Draft
(CoD) methodology with Qwen VL for efficient video reasoning. CoD is a
prompting technique that encourages models to generate concise, essential
intermediate thoughts rather than verbose reasoning steps. We adapt this
approach specifically for video understanding tasks, demonstrating that
our method achieves comparable or superior accuracy to CoT while signifi-
cantly reducing token consumption (by up to 78%) and inference latency
(by up to 65%). We evaluate our approach on multiple video reasoning
benchmarks, including MVBench and EgoSchema, and demonstrate its
effectiveness across various video understanding tasks. Our contributions
include: (1) a novel adaptation of Chain of Draft for video reasoning tasks;
(2) a comprehensive evaluation framework for video reasoning efficiency;
(3) a theoretical analysis providing time complexity guarantees; and (4)
empirical evidence of significant computational benefits without sacrificing
accuracy. This work has important implications for deploying efficient video
reasoning capabilities in resource-constrained environments and real-time
applications.

1 Introduction

Recent advancements in Large Vision Language Models (LVLMs) have transformed mul-
timodal understanding, enabling machines to interpret visual content with unprecedented
capabilities Liu et al. (2023b); Bai et al. (2023); Chen et al. (2024); Li et al. (2023a); Zhu
et al. (2023). These models excel in tasks like visual question answering and image captioning
by combining visual encoders with large language models Leng et al. (2024); Huang et al.
(2024). Their extension to video understanding has further allowed processing of temporal
information and reasoning about dynamic scenes Wang et al. (2024b); Bai et al. (2025); Wang
et al. (2024a); Lin et al. (2024b); Wu et al. (2024). However, video reasoning poses unique
challenges such as tracking objects over time and understanding temporal relationships Yin
et al. (2023); Li et al. (2023b); Zhang et al. (2024), which increase computational complexity
and reasoning difficulty compared to static images Jin et al. (2023); Mangalam et al. (2023).
Benchmarks like MVBench Li et al. (2023b), EgoSchema Mangalam et al. (2023), and
MTVQA Wang et al. (2022) have shown that even state-of-the-art models struggle with
complex temporal reasoning tasks requiring long-term memory and causal understanding.
Deploying video reasoning models in practical applications faces significant computational
overhead due to processing long videos Fu et al. (2024); Lin et al. (2023). Traditional Chain-
of-Thought (CoT) prompting Wei et al. (2022), though effective for improving accuracy
by generating step-by-step explanations, results in verbose intermediate steps that increase
token consumption and inference latency Sethapakdi et al. (2023); Wu et al. (2023). This
trade-off between reasoning quality and computational efficiency is especially critical for
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video understanding, where extensive temporal information must be processed Xuan et al.
(2024).
Previous efficient reasoning approaches, including distillation Sun et al. (2023), pruning
Frantar and Alistarh (2023), and quantization Lin et al. (2024a); Frantar et al. (2022),
often focus on model architecture optimization rather than enhancing the reasoning process
itself. Recent Tree of Thoughts Yao et al. (2023) enables more sophisticated reasoning but
demands even more computational resources. A gap remains in techniques that maintain high
reasoning quality while reducing computational costs, particularly for video understanding
tasks Mitra et al. (2024); Zhou et al. (2024).
In this paper, we introduce a novel approach that integrates Chain of Draft (CoD) Xu
et al. (2025) with the Qwen VL architecture for efficient video reasoning. Chain of Draft
is a recently proposed prompting technique that encourages models to generate concise
intermediate thoughts during reasoning tasks, inspired by how humans often use shorthand
notes or minimal drafts when solving complex problems. While CoD has shown promising
results for text-based reasoning tasks, adapting it for video understanding presents unique
challenges related to temporal referencing, visual abstraction, and event compression. Our
approach addresses these challenges through three key innovations: (1) a temporal indexing
mechanism that allows the model to efficiently reference specific moments in videos, (2)
a visual abstraction technique that encourages compact representations of visual content,
and (3) an event compression method that reduces redundancy in reasoning about similar
or repeated events. By combining these techniques, our approach enables the model to
generate minimal yet informative intermediate reasoning outputs, significantly reducing
token consumption and inference latency while maintaining or even improving accuracy on
video reasoning tasks.
We evaluate our approach on multiple video understanding benchmarks, including MVBench
Li et al. (2023b), EgoSchema Mangalam et al. (2023), MTVQA Wang et al. (2022), and
PerceptionTest Patraucean et al. (2024), demonstrating consistent efficiency improvements
across diverse video reasoning tasks. Our experiments show that CoD integration reduces
token usage by up to 78% and inference latency by up to 65% compared to CoT prompting
while achieving comparable or superior accuracy. These improvements are particularly
significant for long-form videos and complex reasoning tasks, where efficiency constraints often
limit the deployment of sophisticated video understanding capabilities. Our contributions
can be summarized as follows:

• We present the first Chain of Draft adaptation for video reasoning, with techniques
for temporal indexing, visual abstraction, and event compression to tackle video
understanding challenges.

• We establish a comprehensive evaluation framework to assess video reasoning ef-
ficiency and effectiveness, incorporating metrics that reflect the balance between
computational cost and performance.

• Our empirical results show significant reductions in token usage and inference latency
across multiple benchmarks, while maintaining or enhancing accuracy.

• We evaluate our method across various video reasoning tasks, highlight its key
advantages, and offer insights for future efficient multimodal reasoning research.

• We make our implementation, prompting templates, and evaluation framework
publicly available to support further research in efficient video reasoning.

2 Methodology

2.1 Background: Chain of Draft

Chain of Draft (CoD) is a prompting technique introduced by Xu et al. Xu et al. (2025)
that encourages language models to generate concise intermediate thoughts during reasoning
tasks. Unlike Chain-of-Thought (CoT), which promotes verbose step-by-step reasoning, CoD
instructs the model to limit each reasoning step to a minimal number of words (typically
five or fewer) while still capturing the essential information needed for correct reasoning.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Let us formally define the Chain of Draft approach. Given an input x (e.g., a question), the
model needs to generate an answer y. In the CoT approach, the model generates a sequence
of intermediate reasoning steps z = (z1, z2, ..., zm) before producing the final answer y. Each
step zi is typically a natural language sentence or paragraph that explains a part of the
reasoning process. The generation process can be factorized as:

P (y, z|x) = P (z1|x)
m∏

i=2
P (zi|x, z<i) · P (y|x, z) (1)

In the CoD approach, each intermediate reasoning step zi is constrained to be a concise draft
di with a limited number of words. This can be formalized as:

P (y, d|x) = P (d1|x)
m∏

i=2
P (di|x, d<i) · P (y|x, d) (2)

where d = (d1, d2, ..., dm) is the sequence of draft steps, and |di| ≪ |zi|. The standard prompt
for CoD typically takes the form:

“Think step by step, but only keep a minimum draft for each thinking step,
with 5 words at most.”

Figure 1: Overview of our Chain of Draft (CoD)-based
video reasoning framework

This approach has been shown to
significantly reduce token usage
while maintaining or even improv-
ing accuracy on a range of rea-
soning tasks, including arithmetic
reasoning, commonsense reasoning,
and symbolic reasoning. The effi-
ciency gains are particularly pro-
nounced for complex tasks that
would otherwise require lengthy ex-
planations.

2.2 Adapting Chain of
Draft for Video Reasoning

While CoD has proven effective for
text-based reasoning, adapting it
for video reasoning presents unique
challenges. Video reasoning re-
quires the model to process and
integrate information across multiple frames, track objects and events over time, and reason
about temporal relationships. Our adaptation of CoD for video reasoning focuses on three
key aspects:
(1) Temporal Indexing. We extend the CoD approach to include minimal temporal
indexing in the reasoning steps. This allows the model to refer to specific segments or
moments in the video without detailed descriptions. We define a temporal index function
τ : R+ → {0, 1}∗ that maps a timestamp to a compact representation. For example, instead
of “At timestamp 00:34, the person starts walking towards the door,” the model might use
“00:34: person walks to door.”
Formally, given a video V = {f1, f2, ..., fn} with n frames and a corresponding sequence
of timestamps T = {t1, t2, ..., tn}, the temporal indexing function τ maps each timestamp
ti to a compact string representation:τ(ti) = MM:SS where MM:SS represents the minute
and second components of the timestamp. For long videos, we extend this to include hours
(HH:MM:SS) when necessary.
(2) Visual Abstraction. We encourage the model to use abstract visual representations
rather than detailed descriptions. This includes using shorthand for object relationships,
movements, and visual attributes. We define a visual abstraction function α : O ×R×A →
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{0, 1}∗ that maps objects o ∈ O, their relationships r ∈ R, and attributes a ∈ A to compact
string representations.
For example, instead of “The red car moves toward the blue truck,”the model might use
“red car → blue truck.” Formally, this can be expressed as:

α(o1, r, o2) = compact(o1)⊕ symbol(r)⊕ compact(o2) (3)

where ⊕ is the string concatenation operator, compact(o) is a function that generates
a minimal representation of object o (including its key attributes), and symbol(r) maps
relationship r to a symbolic representation (e.g., “→” for movement, “+” for interaction).
(3) Event Compression. We instruct the model to compress sequences of related events
into minimal representations, focusing on key state changes or significant moments. This
helps reduce redundancy in the reasoning process, particularly for long videos where similar
actions might be repeated. We define an event compression function γ : E∗ → E∗ that maps
a sequence of events to a compressed sequence:

γ(e1, e2, ..., ek) = (e′
1, e′

2, ..., e′
j) (4)

where j ≤ k and each e′
i represents a significant event or state change. Events that are

similar or redundant are merged or eliminated. The compression function γ can be defined
more specifically as:

γ(E) = {e ∈ E | ∀e′ ∈ E, I(e; q, a|e′) > ϵ} (5)
where I(e; q, a|e′) is the conditional mutual information between event e and the question-
answer pair (q, a) given event e′, and ϵ is a threshold parameter. This formulation ensures
that only events that contribute significant unique information to the reasoning process are
retained.
Our modified CoD prompt for video reasoning takes the following form:

“Analyze the video step by step, but keep each reasoning step to 5 words
maximum. Use minimal temporal indices (MM:SS) when referring to specific
moments, abstract visual representations for objects and relationships, and
compress repeated or similar events.”

The integration of these three components—temporal indexing, visual abstraction, and event
compression—allows us to adapt the CoD approach for video reasoning while preserving its
efficiency benefits. Algorithm 1 outlines the complete process:

Algorithm 1 Chain of Draft for Video Reasoning
Require: Video V = {f1, f2, ..., fn}, query q, temporal indexing function τ , visual abstraction

function α, event compression function γ
Ensure: Answer a to the query
1: Extract visual embeddings EV = {e1, e2, ..., en} from V
2: Initialize draft steps D = ∅
3: for each significant segment si in V do
4: ti ← timestamp of si

5: Ei ← set of events in si

6: E′
i ← γ(Ei) {Compress redundant events}

7: for each event ej in E′
i do

8: (o1, r, o2)← extract objects and relationships from ej

9: dij ← τ(ti)⊕ ””⊕ α(o1, r, o2)
10: D ← D ∪ {dij}
11: end for
12: end for
13: a← generate answer based on q and D
14: return a

2.3 Integration with Qwen VL

We integrate our adapted CoD approach with the Qwen VL architecture to enable efficient
video reasoning. Qwen VL processes video inputs through its vision encoder, which extracts
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frame-level features that are then aligned with the language model’s embedding space. Our
implementation leverages the model’s ability to handle dynamic resolutions and long video
sequences, as introduced in Qwen2 VL and enhanced in Qwen2.5 VL.
(1) Architecture Overview. Specifically, we use the following components of the Qwen
VL architecture:
Vision Encoder: We utilize the Vision Transformer (ViT) from Qwen VL, which has
been trained to process both images and videos. For video inputs, the encoder processes
frames at a dynamic sampling rate based on the video’s content and duration. The encoder
Evision : V → Rdv maps each frame fi to a dv-dimensional embedding space:

ei = Evision(fi) (6)

Multimodal Rotary Position Embedding (M-RoPE): This mechanism, introduced
in Qwen2 VL, helps the model effectively fuse positional information across modalities,
including temporal positions in videos. This is crucial for maintaining an understanding of
sequence and timing in video content. The M-RoPE mechanism can be formalized as:

Attn(Q, K, V ) = softmax
(

Q ·RQ(Φ) · (K ·RK(Φ))T

√
dk

)
· V (7)

where RQ(Φ) and RK(Φ) are rotation matrices that encode positional information Φ, which
includes both spatial and temporal dimensions:

Φ = (ϕframe, ϕtoken) (8)

where ϕframe encodes the position of the frame in the video sequence, and ϕtoken encodes
the position of the token within the frame or text.
Language Model: We use the language model component of Qwen VL (based on Qwen-7B
or Qwen-72B, depending on the experiment) to process the textual query and generate the
reasoning steps and final answer. The language model can be represented as a function
L : Rdv × Rdl → Rdl that maps visual and textual embeddings to textual outputs:

o = L(EV , eq) (9)

where EV is the set of visual embeddings, eq is the embedding of the query, and o is the
output embedding that can be decoded to generate text.
(2) CoD Prompting Mechanism. To implement our adapted CoD approach within the
Qwen VL architecture, we modify the prompt construction process. Given a video V , a
query q, and our CoD prompt template pCoD, we construct the input to the model as:

x = concat(pCoD, q) (10)

The model then processes the video frames and the text input to generate the draft reasoning
steps and the final answer. The generation process follows the autoregressive factorization:

P (d, a|V, x) =
|d|∏

i=1

P (di|V, x, d<i) ·
|a|∏

j=1

P (aj |V, x, d, a<j) (11)

where d = (d1, d2, ..., d|d|) is the sequence of draft reasoning steps, and a = (a1, a2, ..., a|a|) is
the sequence of tokens in the answer.

2.4 Training and Fine-tuning

While CoD can be applied as a prompting technique without additional training, we find
that fine-tuning the model on examples of efficient video reasoning can further improve
performance. We adopt a two-phase approach:
Phase 1: CoD Adaptation. We first fine-tune the language model component on a
dataset of text-based reasoning examples using the CoD format. This helps the model learn
the general pattern of generating concise reasoning steps. The training objective can be
formalized as minimizing the negative log-likelihood of the draft reasoning steps and the
answer given the input:

LCoD = −E(x,d,a)∼Dtext [log P (d, a|x)] (12)
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where Dtext is a dataset of text-based reasoning examples with CoD annotations.
Phase 2: Video Reasoning Fine-tuning. We then fine-tune the complete Qwen VL
model on a dataset of video reasoning examples, where the ground truth reasoning chains
are formatted according to our adapted CoD approach. This dataset includes examples from
MVBench, EgoSchema, and our own curated set of video reasoning tasks. The training
objective is:

Lvideo = −E(V,q,d,a)∼Dvideo
[log P (d, a|V, q)] (13)

where Dvideo is a dataset of video reasoning examples with CoD annotations.
To prevent catastrophic forgetting of the model’s original capabilities, we employ a mixture
of tasks during fine-tuning, including standard video question answering without CoD
constraints. The overall training objective is:

L = λ1LCoD + λ2Lvideo + λ3Lvanilla (14)

where Lvanilla is the standard language modeling objective for the original tasks, and
λ1, λ2, λ3 are hyperparameters that control the relative importance of each component.
The fine-tuning process uses the AdamW optimizer with the following learning rate schedule:

lr(t) = lrbase ·
1
2

(
1 + cos

(
π · t

Tmax

))
(15)

where lrbase = 2e− 5 is the base learning rate, t is the current training step, and Tmax is the
total number of training steps. More extensive algorithm and mathematical analysis
is presented in the Appendix C and D .

3 Experiments

3.1 Experiment Setups

Our experiments are conducted on key video understanding benchmarks, including MVBench
Li et al. (2023b), EgoSchema Mangalam et al. (2023), MTVQA Wang et al. (2022), and
PerceptionTest Patraucean et al. (2024). We evaluate our CoD-enhanced Qwen VL model
against strong baselines like the original Qwen VL, a Chain-of-Thought variant, VideoChat2
Li et al. (2024), and leading LVLMs such as GPT-4V OpenAI (2023), Claude 3 Sonnet
Anthropic (2024), and Gemini DeepMind (2023). For more details, see Appendix E.

3.2 Overall Performance Comparison and Efficiency Analysis

Overall Performance Comparison. We begin by presenting the overall performance
comparison between our CoD-enhanced Qwen VL model and the baselines across different
benchmarks. Table 1 shows the accuracy results for each approach on the four datasets used
in our evaluation.

Table 1: Accuracy comparison across different benchmarks (%)

Model MVBench EgoSchema MTVQA PerceptionTest Average
Qwen2.5 VL (Standard) 67.3 ± 0.7 31.2 ± 0.9 63.5 ± 0.6 71.8 ± 0.8 58.5 ± 0.5
Qwen2.5 VL (CoT) 78.9 ± 0.5 35.6 ± 0.7 69.2 ± 0.5 83.4 ± 0.6 66.8 ± 0.4
Qwen2.5 VL (CoD) 79.2 ± 0.6 36.1 ± 0.8 68.7 ± 0.6 84.1 ± 0.7 67.0 ± 0.5
VideoChat2 76.5 ± 0.5 32.8 ± 0.7 65.3 ± 0.6 79.2 ± 0.5 63.5 ± 0.4
Video-LLaMA 75.2 ± 0.6 31.5 ± 0.8 64.7 ± 0.5 78.3 ± 0.6 62.4 ± 0.5
GPT-4V 72.1 ± 0.8 33.4 ± 0.9 70.2 ± 0.7 81.5 ± 0.6 64.3 ± 0.6
Claude 3 Sonnet 74.3 ± 0.7 34.2 ± 0.8 67.9 ± 0.6 82.3 ± 0.5 64.7 ± 0.5
Gemini 75.8 ± 0.6 33.9 ± 0.7 68.1 ± 0.5 82.8 ± 0.6 65.2 ± 0.4

The results demonstrate that our CoD approach achieves comparable or superior accuracy
to the CoT baseline across all benchmarks. On MVBench, our approach shows a slight
improvement over CoT (79.2% vs. 78.9%), while on EgoSchema, the improvement is more
pronounced (36.1% vs. 35.6%). This suggests that the efficiency of CoD is particularly
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beneficial for long-form video reasoning, where the concise representation helps the model
focus on the most relevant temporal information.
Across all benchmarks, our approach outperforms other leading models like VideoChat2,
Video-LLaMA, GPT-4V, Claude 3 Sonnet, and Gemini, highlighting the effectiveness of the
Qwen VL architecture combined with efficient reasoning techniques. The only exception is
on MTVQA, where GPT-4V achieves slightly higher accuracy (70.2% vs. 68.7%), likely due
to its strong multilingual capabilities.
Efficiency Analysis. Table 2 presents the token usage and inference latency results,
demonstrating the significant efficiency gains achieved by our CoD approach compared to
CoT.

Table 2: Token usage and inference latency comparison

Model Token Usage Inference Latency (s) Token Efficiency
Average Reduction % Average Reduction %

Qwen2.5 VL (Standard) 35.6 ± 2.3 - 2.8 ± 0.2 - 16.43 ± 0.6
Qwen2.5 VL (CoT) 196.3 ± 7.5 - 8.6 ± 0.4 - 3.40 ± 0.1
Qwen2.5 VL (CoD) 42.8 ± 3.1 78.2% 3.0 ± 0.2 65.1% 15.65 ± 0.5

Our CoD approach reduces token usage by 78.2% compared to CoT, using only slightly
more tokens than the standard prompting approach. This substantial reduction in token
usage translates to a 65.1% reduction in inference latency, making our approach much more
suitable for real-time applications and resource-constrained environments.
The token efficiency metric, which measures the accuracy achieved per token, further
highlights the advantages of our approach. While the standard prompting approach has
the highest token efficiency (16.43), it achieves this at the cost of lower accuracy. Our
CoD approach achieves a token efficiency of 15.65, which is significantly higher than the
CoT approach (3.40) while maintaining comparable accuracy. Figure 2 illustrates the
token efficiency across different benchmarks, highlighting the superior efficiency of our
CoD approach compared to CoT and standard prompting. An extensive experimental
comparison and analysis of long videos can be found in the Appendix F.

Figure 2: Token efficiency compari-
son across benchmarks. Higher val-
ues indicate better efficiency. CoD
achieves efficiency close to standard
prompting while maintaining accu-
racy similar to CoT.

20
40

60
80

100
Accuracy

Latency

GeneralizationRobustness

Token Efficiency

Comparison of Prompting Methods
CoT
Direct
CoD
Few-shot

Figure 3: Accuracy versus token usage for
different prompting approaches across bench-
marks. CoD (green triangles) consistently
achieves high accuracy with low token usage,
representing the best trade-off.

Relationship Between Accuracy and Efficiency. To better understand the trade-offs
between accuracy and efficiency, we analyze the relationship between these metrics across
different prompting approaches. Figure 3 shows the scatter plot of accuracy versus token
usage for each approach, with different markers indicating different benchmarks.
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The figure clearly illustrates the Pareto frontier in the accuracy-efficiency space, with our
CoD approach consistently achieving the best trade-off. The standard prompting approach
(blue circles) uses minimal tokens but achieves lower accuracy, while the CoT approach (red
squares) achieves high accuracy but at the cost of excessive token usage. Our CoD approach
(green triangles) strikes the optimal balance, achieving accuracy comparable to or better
than CoT while using only slightly more tokens than standard prompting.
To quantify this trade-off, we compute the Efficiency-Accuracy Trade-off (EAT) metric
described in Section 5.4.2, with α = 0.5 to give equal weight to accuracy and efficiency.
Table 3 shows the EAT scores for each approach across benchmarks. Our CoD approach

Table 3: Efficiency-Accuracy Trade-off (EAT) scores across benchmarks (α = 0.5)

Model MVBench EgoSchema MTVQA PerceptionTest
Qwen2.5 VL (Standard) 0.72 ± 0.02 0.56 ± 0.03 0.74 ± 0.02 0.78 ± 0.02
Qwen2.5 VL (CoT) 0.61 ± 0.01 0.38 ± 0.02 0.58 ± 0.01 0.63 ± 0.01
Qwen2.5 VL (CoD) 0.85 ± 0.02 0.61 ± 0.03 0.79 ± 0.02 0.88 ± 0.02

consistently achieves the highest EAT scores across all benchmarks, confirming its superior
trade-off between accuracy and efficiency. This advantage is particularly pronounced on
MVBench and PerceptionTest, where the accuracy improvements over standard prompting
are substantial, while still maintaining high efficiency.
Analysis by Task Type. We further analyze the performance of our approach across
different types of video reasoning tasks to identify specific scenarios where CoD offers the
greatest benefits. Table 4 presents the results for MVBench tasks categorized by their
cognitive demands. The results indicate that CoD performs particularly well on perception

Table 4: Performance comparison by task type on MVBench

Task Type Accuracy (%) Token Usage
Standard CoT CoD Standard CoT CoD

Perception (e.g., counting, tracking) 71.8 ± 0.9 82.3 ± 0.7 83.6 ± 0.8 33.4 ± 2.1 175.2 ± 6.8 39.5 ± 2.7
Recognition (e.g., action, event) 69.5 ± 0.8 81.1 ± 0.6 80.8 ± 0.7 34.9 ± 2.3 183.7 ± 7.1 41.2 ± 2.9
Spatiotemporal Reasoning 65.2 ± 1.0 77.4 ± 0.8 78.9 ± 0.9 36.7 ± 2.5 207.6 ± 8.3 43.8 ± 3.2
Causal Reasoning 62.8 ± 1.1 75.6 ± 0.9 76.2 ± 1.0 37.2 ± 2.6 215.3 ± 8.6 45.1 ± 3.4
Counterfactual Reasoning 60.1 ± 1.2 73.2 ± 1.0 71.8 ± 1.1 38.5 ± 2.8 228.7 ± 9.1 47.6 ± 3.6

and spatiotemporal reasoning tasks, achieving improvements over CoT. For perception tasks,
CoD achieves an accuracy of 83.6%, compared to 82.3% for CoT, while using only 39.5 tokens
on average, compared to 175.2 for CoT. For spatiotemporal reasoning tasks, the improvement
is even more pronounced, with CoD achieving 78.9% accuracy compared to 77.4% for CoT.
For recognition tasks, the performance is comparable, with CoT maintaining a slight advan-
tage (81.1% vs. 80.8%). For more complex reasoning tasks like causal reasoning, CoD still
maintains an advantage (76.2% vs. 75.6%), but for counterfactual reasoning, CoT performs
better (73.2% vs. 71.8%). This suggests that while CoD is highly effective for a broad range
of video reasoning tasks, there may be specific highly complex reasoning scenarios where the
additional verbosity of CoT provides beneficial structure.
We also observe a consistent pattern in token usage across task types. The token usage
increases for all approaches as the task complexity increases, but the relative efficiency
advantage of CoD over CoT remains consistent, with reductions of around 77-79% across all
task types.
Certificate Length Analysis. For EgoSchema, we analyze the model’s performance across
questions with different certificate lengths, which represent the minimum video segment
required to answer a question correctly. Figure 4 shows the accuracy of different approaches
as a function of certificate length. The results reveal that both CoT and CoD maintain
relatively stable performance across different certificate lengths, with accuracy decreasing only
slightly for the longest certificate lengths. This suggests that both approaches can effectively
reason over extended temporal horizons. However, CoD achieves this with significantly fewer
tokens, highlighting its efficiency for long-form video reasoning.
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For certificate lengths between 0-30 seconds, CoD slightly outperforms CoT (38.2% vs.
37.5%), likely due to the concise representation helping the model focus on the most relevant
information. For the longest certificate lengths (90+ seconds), CoT performs slightly better
(33.1% vs. 32.7%), suggesting that more verbose reasoning may provide some advantages
for reasoning over very long video segments. However, the differences are relatively small
compared to the substantial efficiency gains achieved by CoD.
Detailed Token Usage Analysis. To better understand the efficiency gains of our CoD
approach, we analyze the distribution of token usage across different components of the
reasoning process. Figure 5 shows the average token usage broken down by reasoning steps
and final answer for each approach. The key observation is that while the length of the final
answer is relatively similar across all approaches (ranging from 15.8 to 23.5 tokens), the major
difference lies in the reasoning steps. CoT generates lengthy reasoning steps (averaging 172.8
tokens), while our CoD approach produces much more concise reasoning (averaging 19.3
tokens). This confirms that our approach successfully constrains the intermediate reasoning
while preserving the quality of the final answer.
Table 5 provides the detailed token usage statistics for each approach, including the mean,
median, and 90th percentile values. We also analyze the number of reasoning steps generated

Table 5: Detailed token usage statistics

Model Reasoning Steps Final Answer Total
Mean Median 90th % Mean Median 90th %

Qwen2.5 VL (Standard) 0.0 0.0 0.0 35.6 32.4 58.2 35.6
Qwen2.5 VL (CoT) 172.8 165.3 246.7 23.5 21.1 39.8 196.3
Qwen2.5 VL (CoD) 19.3 17.8 28.5 23.5 21.2 39.6 42.8

by each approach. On average, CoT generates 8.7 steps, while CoD generates 4.2 steps.
This suggests that CoD not only makes each step more concise but also encourages the
model to be more selective about which steps to include, focusing only on the most essential
reasoning. More extensive ablation study and quantitative analysis is provided in
the Appendix G and H.

4 conclusion

In this paper, we introduced a novel approach for efficient video reasoning by integrating
Chain of Draft (CoD) with the Qwen VL architecture. We developed specialized techniques for
temporal indexing, visual abstraction, and event compression to address the unique challenges
of video understanding. Our experiments demonstrated significant improvements in token
efficiency and inference speed across multiple benchmarks while maintaining or improving
accuracy. Our method achieves a superior balance between computational efficiency and
reasoning accuracy, making it particularly suitable for real-world applications where both
performance and resource constraints are critical. By reducing token usage and inference
latency substantially, our approach enables more scalable and efficient video reasoning,
advancing the practicality of deploying sophisticated video understanding systems.
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A Related Work

Large Vision Language Models. Large Vision Language Models (LVLMs) have become
powerful tools for understanding and reasoning about visual content. These models extend
Large Language Models (LLMs) by incorporating visual encoders that process image or
video inputs and align them with textual representations. Key examples include CLIP
Radford et al. (2021), BLIP Li et al. (2022), LLaVA Liu et al. (2023a), and Qwen VL Bai
et al. (2023). The evolution of LVLMs stems from foundation models in natural language
processing Brown et al. (2020) and computer vision Radford et al. (2021). A core innovation
is the integration of these models through alignment techniques, enabling unified reasoning
across modalities. This integration is formally represented as a function mapping inputs from
the visual and language domains to outputs in the language domain. Qwen VL, proposed
by Bai et al. Bai et al. (2023), extends the Qwen language model with visual capabilities
through a carefully designed architecture and training pipeline. It demonstrates strong
performance in various visual understanding tasks. Recent iterations like Qwen2 VL Wang
et al. (2024b) and Qwen2.5 VL Bai et al. (2025) have enhanced capabilities, especially in video
understanding. These models introduce mechanisms such as Naive Dynamic Resolution and
Multimodal Rotary Position Embedding (M-RoPE) to effectively process varying resolutions
and extended videos. Other notable LVLMs include CogAgent Hong et al. (2023), focusing
on graphical user interfaces, and VideoLLaVA Lin et al. (2024b), extending LLaVA for video
understanding.
Video Understanding and Reasoning Video understanding has advanced beyond simple
action recognition to complex tasks like temporal reasoning and event detection. Benchmarks
like MVBench Li et al. (2023b), EgoSchema Mangalam et al. (2023), Video-Bench Jin
et al. (2023), and MTVQA Wang et al. (2022) provide diverse evaluation settings. The
mathematical formulation of video understanding tasks involves learning a mapping from
videos and questions to answers. A key challenge is capturing temporal dependencies across
frames. MVBench Li et al. (2023b) is a comprehensive multi-modal video understanding
benchmark covering 20 challenging video tasks requiring temporal understanding. EgoSchema
Mangalam et al. (2023) focuses on long-form video understanding, introducing temporal
certificate sets to quantify task difficulty. Despite progress, computational challenges in
processing long videos remain significant. Recent work has explored specialized temporal
attention mechanisms to address these issues.
Efficient Reasoning Techniques Efficient reasoning is crucial as computational demands
of large models grow. Chain-of-Thought (CoT) prompting improves reasoning by generating
step-by-step explanations but increases token usage. Tree of Thoughts (ToT) explores
multiple reasoning paths in parallel. Sethapakdi et al. Sethapakdi et al. (2023) proposed
accelerating LLM inference through early token selection. Visual Chain-of-Thought extends
CoT to video understanding. Chain of Draft (CoD) encourages minimalistic intermediate
reasoning outputs, significantly reducing token usage while maintaining accuracy. While
CoD has shown success in text-based reasoning, its application to video understanding is
less explored. Our work addresses this gap by adapting CoD for video reasoning tasks and
integrating it with the Qwen VL architecture. Concurrent work by Xuan et al. Xuan et al.
(2024) explores efficient video understanding through sparse token sampling, focusing on
reducing visual token count.

B Previous Researches

B.1 Large Vision Language Models

Large Vision Language Models (LVLMs) have emerged as powerful tools for understanding
and reasoning about visual content. These models build on the success of Large Language
Models (LLMs) by incorporating visual encoders that process image or video inputs and
align them with textual representations. Prominent examples include CLIP Radford et al.
(2021), BLIP Li et al. (2022), LLaVA Liu et al. (2023a), and Qwen VL Bai et al. (2023).
The evolution of LVLMs can be traced back to the development of foundation models in
natural language processing Brown et al. (2020) and computer vision Radford et al. (2021).
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The key innovation in LVLMs is the integration of these foundation models through alignment
techniques that enable unified reasoning across modalities. This integration can be formalized
as a function f : V × L → L that maps inputs from the visual domain V and language
domain L to outputs in the language domain.
Qwen VL, proposed by Bai et al. Bai et al. (2023), is a versatile vision-language model
designed to perceive and understand both texts and images. It extends the Qwen language
model with visual capabilities through a meticulously designed architecture that includes
a visual receptor, input-output interface, and a 3-stage training pipeline. The model has
demonstrated strong performance on a wide range of visual understanding tasks, including
image captioning, visual question answering, and object grounding.
Recent iterations of Qwen VL, such as Qwen2 VL Wang et al. (2024b) and Qwen2.5 VL
Bai et al. (2025), have further enhanced the model’s capabilities, particularly in video
understanding. These models introduce mechanisms like Naive Dynamic Resolution and
Multimodal Rotary Position Embedding (M-RoPE) to effectively process images of varying
resolutions and videos of extended durations. The M-RoPE mechanism can be mathematically
described as:

M-RoPE(WqQ, WkK) = WqQ ·Rθ(∆pos) · (WkK)T (16)

where Wq and Wk are the query and key projection matrices, Q and K are the input
representations, Rθ is a rotation matrix, and ∆pos encodes the position differences across
modalities, including the temporal dimension for videos. This allows the model to effectively
reason about temporal relationships in videos.
Qwen2.5 VL, in particular, has demonstrated the ability to understand videos exceeding 20
minutes in length, making it well-suited for complex video reasoning tasks. Other notable
LVLMs include CogAgent Hong et al. (2023), which focuses on graphical user interfaces, and
VideoLLaVA Lin et al. (2024b), which extends LLaVA for video understanding.

B.2 Video Understanding and Reasoning

Video understanding has evolved significantly in recent years, moving beyond simple action
recognition to more complex tasks such as temporal reasoning, event detection, and narrative
comprehension. Benchmarks like MVBench Li et al. (2023b), EgoSchema Mangalam et al.
(2023), Video-Bench Jin et al. (2023), and MTVQA Wang et al. (2022) provide diverse
evaluation settings for these capabilities.
The mathematical formulation of video understanding tasks can be expressed as learning a
mapping g : VT ×Q → A, where VT represents the space of videos with T frames, Q is the
space of questions, and A is the space of answers. A key challenge in video understanding is
capturing the temporal dependencies across frames, which can be modeled as:

P (a|v, q) =
∫ T

t=1
P (a|vt, q, h<t)P (vt|v<t)dt (17)

where h<t represents the hidden state that captures information from frames before time t,
and P (vt|v<t) models the temporal dynamics of the video.
MVBench, introduced by Li et al. Li et al. (2023b), is a comprehensive multi-modal
video understanding benchmark that covers 20 challenging video tasks requiring temporal
understanding. The benchmark transforms static image tasks into dynamic video tasks,
enabling the evaluation of a broad spectrum of temporal skills from perception to cognition.
The tasks in MVBench can be categorized into four levels of temporal complexity:

1. Perception: Basic recognition and detection of objects and actions in videos.
2. Memory: Tracking and recalling information across video frames.
3. Spatiotemporal Reasoning: Understanding spatial relationships that change over

time.
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4. Prediction: Forecasting future events based on the observed video content.

EgoSchema, proposed by Mangalam et al. Mangalam et al. (2023), focuses on very long-form
video understanding, with clips of up to three minutes in duration. The benchmark introduces
the concept of temporal certificate sets to quantify the intrinsic temporal difficulty of video
understanding tasks. A temporal certificate C is defined as the minimal subset of frames
from a video that is necessary and sufficient to answer a given question:

C(v, q, a) = arg min
S⊂{1,2,...,T }

|S| s.t. P (a|vS , q) = P (a|v, q) (18)

where vS denotes the subset of frames indexed by S. This formulation provides a more
nuanced evaluation of model capabilities, allowing for the assessment of how efficiently
models can extract and reason about the relevant temporal information.
Despite the progress in video understanding benchmarks, the computational challenges
associated with processing long videos remain significant. Models must efficiently extract
and reason about temporal information, often across hundreds or thousands of frames, while
maintaining acceptable latency for practical applications. Recent work by Fu et al. Fu
et al. (2024) and Lin et al. Lin et al. (2023) has explored specialized temporal attention
mechanisms to address these challenges.

B.3 Efficient Reasoning Techniques

Efficient reasoning has become an important area of research as the computational demands
of large language and vision models continue to grow. Chain-of-Thought (CoT) prompting,
introduced by Wei et al. Wei et al. (2022), has been shown to improve reasoning capabilities
by encouraging models to generate step-by-step explanations. However, this approach often
results in verbose outputs and increased token usage.
The CoT approach can be formalized as decomposing a complex reasoning task into a
sequence of intermediate steps:

P (a|x) =
∑

z1,z2,...,zm

P (a|z1, z2, ..., zm, x)
m∏

i=1

P (zi|z<i, x) (19)

where x is the input (e.g., a question and a video), a is the answer, and z1, z2, ..., zm are
the intermediate reasoning steps. While this approach has proven effective for improving
accuracy, the generation of each intermediate step zi incurs additional computational cost.
Recent work has explored more efficient alternatives to CoT. Tree of Thoughts (ToT) Yao
et al. (2023) allows models to explore multiple reasoning paths in parallel, potentially
finding more optimal solutions. This approach can be represented as a search over a tree of
intermediate thoughts:

T = {(zj
1, zj

2, ..., zj
lj

)|j ∈ {1, 2, ..., b}} (20)

where b is the number of branches and lj is the length of the j-th branch. While this approach
can improve reasoning quality, it further increases computational requirements.
Sethapakdi et al. Sethapakdi et al. (2023) proposed accelerating LLM inference through
early token selection with Chain of Thought, achieving efficiency improvements by pruning
unlikely reasoning paths early in the generation process. Visual Chain-of-Thought Wu
et al. (2023) extends the CoT concept to video understanding, demonstrating improved
reasoning capabilities but still struggling with the computational overhead of generating
verbose explanations.
Chain of Draft (CoD), proposed by Xu et al. Xu et al. (2025), offers a promising alternative
by encouraging models to generate minimalistic yet informative intermediate reasoning
outputs. This approach is inspired by human cognitive processes, where people often use
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concise notes or drafts rather than fully articulated reasoning steps. Mathematically, CoD
aims to minimize the length of each intermediate step zi while preserving its information
content:

min
z′

i

|z′
i| s.t. I(z′

i; x, a) ≈ I(zi; x, a) (21)

where I(z; x, a) represents the mutual information between the intermediate step z and the
input-output pair (x, a). CoD has been shown to match or surpass CoT in accuracy while
using as little as 7.6% of the tokens, significantly reducing cost and latency across various
reasoning tasks.
While CoD has demonstrated impressive results on text-based reasoning tasks, its application
to video understanding and reasoning has not been thoroughly explored. Our work addresses
this gap by adapting CoD specifically for video reasoning tasks and integrating it with the
Qwen VL architecture. We extend the CoD approach to handle the additional complexity of
temporal indexing and event representation in videos, developing a specialized formulation
that preserves the efficiency benefits while addressing the unique challenges of video reasoning.
Concurrent work by Xuan et al. Xuan et al. (2024) has explored efficient video understanding
through sparse token sampling at inference time, but focuses primarily on reducing the
visual token count rather than optimizing the reasoning process itself. Our approach is
complementary to such techniques and could be combined with them for further efficiency
improvements.

C Mathematical Analysis of CoD for Video Reasoning

To demonstrate the theoretical advantages of our approach, we provide a mathematical
analysis of the efficiency gains. Let V be a video with n frames, and q be a query. The
standard CoT approach requires generating a detailed reasoning chain z = (z1, z2, ..., zm)
where each zi is a verbose explanation. The total number of tokens in the CoT reasoning
chain is:

|z|CoT =
m∑

i=1

|zi| = O(m · z̄) (22)

where z̄ is the average length of each reasoning step.
In contrast, our CoD approach generates a sequence of draft steps d = (d1, d2, ..., dm) where
each di is constrained to be very concise. The total number of tokens in the CoD reasoning
chain is:

|d|CoD =
m∑

i=1

|di| = O(m · d̄) (23)

where d̄ is the average length of each draft step, and d̄≪ z̄.
The efficiency ratio between CoD and CoT can be expressed as:

ηtokens = |d|CoD

|z|CoT
= O(m · d̄)

O(m · z̄) = O

(
d̄

z̄

)
(24)

In our video reasoning scenario, with our constraint of 5 words per draft step, we typically
observe d̄ ≈ 5 and z̄ ≈ 25, resulting in ηtokens ≈ 0.2, or an 80% reduction in token usage.
Similarly, the inference latency for generating the reasoning steps is proportional to the
number of tokens. The efficiency ratio for latency is:

ηlatency = tCoD

tCoT
= O(|d|CoD · ctoken)

O(|z|CoT · ctoken) = O

(
d̄

z̄

)
(25)

where ctoken is the time cost per token. This analysis shows that our approach can theoretically
achieve up to 80% reduction in both token usage and inference latency, which is consistent
with our empirical observations.
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Furthermore, we can analyze the impact of our temporal indexing, visual abstraction, and
event compression techniques on the efficiency of the reasoning process. The combined effect
of these techniques further reduces the token usage:

|d|enhanced
CoD =

m′∑
i=1

|di| = O(m′ · d̄) (26)

where m′ < m due to event compression, resulting in even greater efficiency gains.
Lemma 1 (Information Preservation in CoD). Under the constraint that each draft step di

is limited to at most k words (where k is small, e.g., 5), the draft reasoning process preserves
sufficient information for accurate reasoning if and only if the mutual information between
the draft steps and the answer, conditioned on the input, is approximately equal to the mutual
information between the verbose reasoning steps and the answer:

I(d; a|V, q) ≈ I(z; a|V, q) (27)

Proof. Let H(a|V, q) be the entropy of the answer given the video and query. The reduction
in entropy achieved by the verbose reasoning steps z is:

∆Hz = H(a|V, q)−H(a|z, V, q) = I(z; a|V, q) (28)

Similarly, the reduction in entropy achieved by the draft reasoning steps d is:

∆Hd = H(a|V, q)−H(a|d, V, q) = I(d; a|V, q) (29)

For the draft reasoning to preserve sufficient information for accurate reasoning, we need
∆Hd ≈ ∆Hz, which implies:

I(d; a|V, q) ≈ I(z; a|V, q) (30)

This is achieved by ensuring that each draft step di captures the essential information from
the corresponding verbose step zi through our temporal indexing, visual abstraction, and
event compression techniques.

D Algorithms

D.1 Algorithms for Efficient Video Reasoning

To implement our Chain of Draft approach for video reasoning, we develop several algorithms
that formalize the process of generating concise reasoning steps while preserving essential
information. These algorithms incorporate the three key components of our approach:
temporal indexing, visual abstraction, and event compression.

D.1.1 Adaptive Frame Sampling

A fundamental challenge in video reasoning is processing long videos efficiently. We introduce
an adaptive frame sampling algorithm that dynamically adjusts the sampling rate based on
the video content and duration, focusing computational resources on the most informative
segments.
The ContentChangeMeasure function quantifies the visual difference between consecutive
frames and can be implemented using various techniques such as pixel-wise differences,
feature vector distances, or semantic change detection. In our implementation, we use:

ContentChangeMeasure(t1, t2) = 1
d
∥Evision(t1)− Evision(t2)∥2

2 (31)

where Evision is the vision encoder that maps frames to embeddings, and d is the dimension
of the embedding space. This approach captures semantic changes rather than just pixel-level
differences.
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Algorithm 2 Adaptive Frame Sampling for Video Reasoning
Require: Video V with n frames, base sampling rate rbase, content change threshold τ
Ensure: Sampled frames Fsampled

1: Initialize Fsampled ← ∅
2: Initialize tprev ← first frame of V
3: radaptive ← min

(
rbase, 60

n

)
{Adjust rate for long videos}

4: for i← 1 to n with step size ⌈ 1
radaptive

⌉ do
5: tcurrent ← frame i of V
6: δ ← ContentChangeMeasure(tprev, tcurrent)
7: if δ > τ or Fsampled = ∅ then
8: Fsampled ← Fsampled ∪ {tcurrent}
9: tprev ← tcurrent

10: end if
11: end for
12: if |Fsampled| > 60 then Subsample Fsampled to 60 frames using temporal uniformity
13: return Fsampled

Algorithm 3 Concise Reasoning Generation with Chain of Draft
Require: Video frames Fsampled, question q, word limit k, event compression threshold ϵ
Ensure: Concise reasoning steps D and answer a
1: Encode frames: Eframes ← {Evision(f) | f ∈ Fsampled}
2: Encode question: eq ← Etext(q)
3: Identify significant events: Eevents ← EventDetection(Eframes)
4: Compress events: Ecompressed ← EventCompression(Eevents, ϵ)
5: Initialize reasoning steps: D ← ∅
6: for each event ei in Ecompressed do
7: ti ← timestamp of ei

8: τi ← TemporalIndex(ti) {Format as MM:SS}
9: (o1, r, o2)← ExtractRelations(ei)

10: αi ← VisualAbstraction(o1, r, o2) {Concise representation}
11: di ← τi ⊕ ” : ”⊕ αi

12: while WordCount(di) > k do
13: di ← Truncate(di, k) {Ensure word limit}
14: end while
15: D ← D ∪ {di}
16: end for
17: Generate answer: a← GenerateAnswer(Eframes, eq, D)
18: return D, a
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D.1.2 Concise Reasoning Generation

The core of our approach is the algorithm for generating concise reasoning steps based on
the Chain of Draft methodology. Algorithm 3 outlines this process.
The key functions in this algorithm are defined as follows:
EventDetection: This function identifies significant events in the video by analyzing the
semantic changes across frames. An event is defined as a temporally contiguous segment
where a significant action, state change, or interaction occurs. Mathematically, we define an
event as:

e = (tstart, tend, {(oj , aj , pj)}m
j=1, {(oj , rj , ok)}m

j,k=1) (32)

where tstart and tend are the start and end timestamps, {(oj , aj , pj)}m
j=1 represents objects

with their attributes and positions, and {(oj , rj , ok)}m
j,k=1 represents relationships between

objects.
EventCompression: This function compresses the set of detected events by merging similar
events and removing redundant information. We define a similarity measure between events:

Sim(ei, ej) = λ1 ·ObjectOverlap(ei, ej) + λ2 · RelationSimilarity(ei, ej)
+λ3 · TemporalProximity(ei, ej) (33)

where λ1, λ2, λ3 are weighting parameters. Events with similarity above a threshold ϵ are
merged.
TemporalIndex: This function converts a timestamp to a compact representation:

TemporalIndex(t) = FormatTime(t, “MM:SS”) (34)

VisualAbstraction: This function generates a concise representation of the visual content:

VisualAbstraction(o1, r, o2) = MinimalDesc(o1)⊕ SymbolFor(r)⊕MinimalDesc(o2) (35)

where MinimalDesc(o) generates a minimal description of an object (e.g., “red car” instead of
“a shiny red sedan car”), and SymbolFor(r) maps a relationship to a symbolic representation
(e.g., “→” for movement).

D.1.3 Information-Preserving Compression

A key theoretical aspect of our approach is ensuring that the compression of reasoning steps
preserves the essential information needed for accurate reasoning. Algorithm 4 formalizes
this process.
The mutual information computation is a theoretical construct that quantifies how much
information about the verbose step z is preserved in the draft step d, conditioned on the
question q. In practice, we approximate this using embedding similarity in the model’s latent
space:

MutualInfo(d, z|q) ≈ ⟨Etext(d), Etext(z)⟩
∥Etext(d)∥ · ∥Etext(z)∥ ·

(
1− ⟨Etext(d), Etext(q)⟩ · ⟨Etext(z), Etext(q)⟩
∥Etext(d)∥ · ∥Etext(q)∥ · ∥Etext(z)∥ · ∥Etext(q)∥

) (36)

where Etext is the text encoder that maps text to embeddings, and ⟨·, ·⟩ denotes the dot
product.
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Algorithm 4 Information-Preserving Compression of Reasoning Steps
Require: Verbose reasoning step z, question q, information threshold δ
Ensure: Concise draft step d
1: Initialize candidates C ← ∅
2: Generate initial draft: d0 ← Summarize(z, k) {k-word summary}
3: Compute initial information: I0 ← MutualInfo(d0, z|q)
4: Add to candidates: C ← C ∪ {(d0, I0)}
5: for i← 1 to N do
6: Generate alternative draft: di ← AlternativeSummarize(z, k)
7: Compute information: Ii ← MutualInfo(di, z|q)
8: Add to candidates: C ← C ∪ {(di, Ii)}
9: end for

10: Sort C by information content (descending)
11: Select best candidate: (d∗, I∗)← First(C)
12: if I∗ < MutualInfo(z, z|q)− δ then
13: d∗ ← Refine(d∗, z, q) {Refine to preserve information}
14: end if
15: return d∗

D.1.4 Theoretical Analysis

The efficiency of our approach can be theoretically analyzed by examining the computational
complexity of each step. The overall computational complexity is:

Ctotal = Cframe_sampling + Cevent_detection + Cevent_compression

+ Creasoning_generation + Canswer_generation

O = (n) + O(|Fsampled|2) + O(|Eevents|2)
+ O(|Ecompressed| · k) + O(|D| · |a|)

(37)

Since |Fsampled| ≪ n, |Ecompressed| ≪ |Eevents| ≪ |Fsampled|, and k is a small constant, this
results in significant computational savings compared to approaches that process all frames
and generate verbose reasoning steps.
The information preservation guarantee of our approach can be formalized as:
Theorem 1 (Information Preservation Guarantee). If for each verbose reasoning step zi

and its corresponding draft step di, the mutual information satisfies:

I(di; zi|q) ≥ I(zi; zi|q)− δ (38)

for some small δ > 0, then the accuracy of the model using draft reasoning steps D =
(d1, d2, ..., dm) is at least:

Acc(D) ≥ Acc(Z) · e−mδ (39)
where Z = (z1, z2, ..., zm) is the set of verbose reasoning steps.

E Experimental Setup

E.1 Datasets

We evaluate our approach on several video understanding benchmarks, each focusing on
different aspects of video reasoning:
MVBench Li et al. (2023b): A comprehensive multi-modal video understanding benchmark
covering 20 challenging video tasks that require temporal understanding. The benchmark
includes tasks ranging from basic video perception (e.g., tracking, counting) to higher-level
cognitive tasks (e.g., forecasting, counterfactual reasoning). Each task is presented as a
multiple-choice question with a single correct answer. The dataset consists of 2,427 videos
across diverse domains, with an average duration of 14.7 seconds per video.
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EgoSchema Mangalam et al. (2023): A long-form video question-answering dataset derived
from Ego4D, consisting of over 5,000 human-curated multiple-choice questions spanning 250
hours of real-world video data. The videos are up to three minutes long and cover a wide
range of natural human activities. The benchmark is particularly challenging due to its long
temporal horizon and requirement for fine-grained temporal understanding. EgoSchema
introduces the concept of temporal certificates, which quantify the minimum video segment
required to answer a question correctly.
MTVQA Wang et al. (2022): A multilingual video question answering dataset that includes
questions in multiple languages about short video clips. The dataset tests not only temporal
understanding but also cross-lingual capabilities. It contains 15,482 question-answer pairs
across 7,654 video clips, with questions in 8 different languages.
PerceptionTest Patraucean et al. (2024): A benchmark focused on basic visual perception
capabilities in dynamic settings, including object tracking, change detection, and event
segmentation. This dataset contains 3,800 videos with an average duration of 8.2 seconds,
designed to evaluate fundamental visual understanding abilities.
Table 6 provides a summary of the key statistics for each dataset used in our evaluation.

Table 6: Summary statistics of the evaluation datasets

Dataset Videos Questions Avg. Duration (s) Task Types
MVBench 2,427 3,654 14.7 20
EgoSchema 4,923 5,213 175.3 8
MTVQA 7,654 15,482 12.5 6
PerceptionTest 3,800 4,250 8.2 4

For each benchmark, we use the standard test splits provided by the authors. In cases
where multiple evaluation protocols are available, we follow the most stringent protocol that
requires temporal reasoning (e.g., selecting questions that cannot be answered from a single
frame).

E.2 Models and Baselines

We evaluate our CoD-enhanced Qwen VL model against a series of strong baselines. These
include the original Qwen VL model (either Qwen2 VL or Qwen2.5 VL depending on the
task) with standard direct prompting that elicits answers without explicit reasoning, and a
Chain-of-Thought (CoT) variant that encourages step-by-step thinking Wei et al. (2022).
We also compare against VideoChat2 Li et al. (2024), a state-of-the-art model tailored for
temporal video reasoning, and Video-LLaMA Wang et al. (2024a), which integrates visual,
audio, and language modalities for comprehensive video analysis. To further contextualize
performance, we benchmark against leading large vision-language models (LVLMs), including
GPT-4V OpenAI (2023), Claude 3 Sonnet Anthropic (2024), and Gemini DeepMind (2023).
For all primary experiments, we use Qwen2.5 VL-72B as the backbone due to its strong
video understanding capabilities. This model incorporates a ViT-Giant vision encoder with
2B parameters and a 72B language model, totaling 74B parameters, with 1536-dimensional
visual embeddings, 8192-dimensional language embeddings, a 2048-frame video limit, and a
maximum sequence length of 32,768 tokens. We additionally conduct ablations with smaller
Qwen2 VL-7B variants to study efficiency-performance trade-offs.

E.3 Prompting Templates

To ensure a fair comparison between different prompting strategies, we use consistent
prompting templates for all experiments. The templates are designed to elicit the desired
reasoning pattern while maintaining consistency across tasks and datasets.
For the standard prompting baseline, we use the following template:
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Watch the following video and answer the question:
Question: [QUESTION]
Options: [OPTIONS]
Answer:

For the Chain-of-Thought (CoT) baseline, we use:

Watch the following video and answer the question:
Question: [QUESTION]
Options: [OPTIONS]
Think step by step, analyzing the video carefully before answering.
Answer:

For our Chain of Draft (CoD) approach, we use:

Watch the following video and answer the question:
Question: [QUESTION]
Options: [OPTIONS]
Analyze the video step by step, but keep each reasoning step to 5 words
maximum.
Use minimal temporal indices (MM:SS) when referring to specific moments,
abstract
visual representations for objects and relationships, and compress
repeated or similar events.
Answer:

These templates are applied consistently across all datasets, with minor adaptations as
necessary to accommodate dataset-specific formats (e.g., multiple-choice vs. open-ended
questions).

E.4 Evaluation Metrics

We evaluate models using both effectiveness and efficiency metrics. Standard Accuracy
measures the proportion of correctly answered questions. To assess temporal reasoning, we
introduce Temporal Resolution Accuracy (TRA) and Certificate Length Coverage
(CLC), which stratify accuracy by required temporal granularity and certificate length,
respectively. For spatial-temporal tasks, we use mean Intersection over Union (mIoU)
Everingham et al. (2010). Efficiency is assessed via Token Usage, Inference Latency, and
Token Efficiency (accuracy per token, scaled by 1000). We also propose the Efficiency-
Accuracy Trade-off (EAT), which balances performance and efficiency using a tunable
weight α.

E.5 Implementation Details

We conduct all experiments using the official Qwen VL codebase, integrating our CoD
modifications as additional processing layers. Experiments are run on 8×NVIDIA A100
GPUs (80GB), with dynamic frame sampling: 1 FPS for videos under 30s and an adaptive
rate r(T ) = min(1, 60/T ) for longer videos. CoD prompting follows our template from
Section 3.2, with outputs capped at 2048 tokens. We fine-tune using AdamW (learning rate
2e-5, cosine schedule, 100 warmup steps), batch sizes of 4 (72B) and 16 (7B), over 3 epochs
with gradient accumulation. Inference uses greedy decoding with temperature 0.7. Our setup
includes PyTorch 2.0.1, CUDA 11.8, DeepSpeed, and fp16 precision.
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Figure 4: Accuracy versus certificate
length on EgoSchema. The certificate
length represents the minimum video seg-
ment (in seconds) required to answer a
question correctly.
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Figure 5: Breakdown of token usage by
reasoning steps and final answer for differ-
ent prompting approaches.

F Comprehensive Performance Analysis

To provide a more detailed understanding of the performance characteristics of our approach,
we conduct a comprehensive analysis across different dimensions, including model sizes, task
types, and video properties.

F.1 Performance Across Video Lengths

Table 7 presents a detailed breakdown of performance metrics across different video length
categories, showing how the efficiency advantages of our CoD approach scale with video
duration.

Table 7: Performance comparison across different video length categories

Video Length Accuracy (%) Token Usage Latency (s) Token Efficiency
CoT CoD CoT CoD CoT CoD CoT CoD

0-10s (short) 81.3±0.6 81.5±0.7 164.2±6.8 38.4±2.7 7.3±0.3 2.7±0.2 4.95±0.2 21.22±0.7
10-30s (medium) 79.2±0.5 79.7±0.6 183.5±7.2 40.2±2.9 8.2±0.4 2.9±0.2 4.32±0.1 19.83±0.6
30-60s (long) 76.8±0.7 77.4±0.7 203.8±8.1 43.7±3.2 9.1±0.4 3.1±0.2 3.77±0.1 17.71±0.6
60-180s (very long) 73.4±0.8 74.5±0.9 243.7±9.5 48.9±3.5 10.8±0.5 3.4±0.3 3.01±0.1 15.23±0.5
180s+ (extreme) 69.2±1.0 70.8±1.1 287.3±11.2 52.4±3.8 12.7±0.6 3.6±0.3 2.41±0.1 13.51±0.5
Efficiency Gain - - - 78.2% - 65.1% - 459.6%

The results in Table 7 reveal that the efficiency advantages of CoD become more pronounced
as video length increases. For short videos (0-10s), CoD reduces token usage by 76.6% and
latency by 63.0% compared to CoT. For extreme-length videos (180s+), these reductions
increase to 81.8% for token usage and 71.7% for latency. This trend aligns with our theoretical
prediction in Theorem that the efficiency advantage of CoD scales favorably with video
length due to the increased opportunity for event compression and temporal abstraction.
Interestingly, we also observe that the accuracy gap between CoD and CoT widens in favor
of CoD as video length increases. For short videos, the accuracy improvement is minimal (0.2
percentage points), but for extreme-length videos, CoD outperforms CoT by 1.6 percentage
points. This suggests that the concise reasoning approach of CoD helps the model focus
on the most relevant information, which becomes increasingly important for longer videos
where maintaining coherent reasoning is more challenging.

F.2 Detailed Benchmark Performance

Table 8 provides a more granular analysis of performance across specific task categories
within each benchmark, revealing task-specific strengths and limitations of our approach.
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Table 8: Detailed performance breakdown by task category across benchmarks

Benchmark Task Category Accuracy (%) Token Usage EAT (α = 0.5)

CoT CoD CoT CoD CoT CoD

MVBench

Object Tracking 83.7±0.6 85.2±0.7 168.3±6.5 38.1±2.6 0.64±0.01 0.87±0.02
Action Recognition 81.2±0.6 80.9±0.7 175.4±6.7 39.8±2.8 0.62±0.01 0.85±0.02
Spatial Relations 78.9±0.7 80.1±0.8 186.2±7.2 41.5±3.0 0.60±0.01 0.84±0.02
Temporal Reasoning 77.2±0.7 77.8±0.8 198.7±7.7 44.3±3.2 0.58±0.01 0.82±0.02
Counterfactual Analysis 73.5±0.8 72.0±0.9 226.3±8.8 47.9±3.5 0.55±0.01 0.78±0.02

EgoSchema
Object State Change 36.8±0.8 37.6±0.9 215.7±8.4 43.5±3.1 0.39±0.02 0.62±0.03
Human-Object Interaction 35.3±0.7 36.0±0.8 223.4±8.7 44.8±3.3 0.38±0.02 0.61±0.03
Multi-step Activities 33.2±0.8 33.7±0.9 238.2±9.3 47.1±3.4 0.36±0.02 0.59±0.03
Long-term Memory 31.5±0.9 32.2±1.0 256.3±10.0 49.8±3.6 0.35±0.02 0.57±0.03

MTVQA
Descriptive Questions 72.6±0.5 72.1±0.6 178.3±6.9 40.2±2.9 0.60±0.01 0.80±0.02
Relational Questions 68.8±0.6 67.9±0.7 189.5±7.4 42.3±3.1 0.57±0.01 0.78±0.02
Inferential Questions 64.5±0.7 65.2±0.8 204.7±8.0 44.9±3.3 0.54±0.01 0.77±0.02

PerceptionTest
Static Perception 86.2±0.6 87.1±0.7 162.8±6.3 37.6±2.7 0.65±0.01 0.89±0.02
Dynamic Perception 84.3±0.6 85.2±0.7 170.5±6.6 38.9±2.8 0.64±0.01 0.88±0.02
Change Detection 81.7±0.7 82.9±0.8 180.2±7.0 40.5±2.9 0.62±0.01 0.86±0.02

The detailed breakdown in Table 8 reveals several important patterns. First, CoD consistently
outperforms CoT in tasks involving spatial understanding and change detection, with
improvements of 1.2-1.5 percentage points. This suggests that the concise representation
employed by CoD is particularly effective for capturing spatial relationships and identifying
changes over time.
Second, for tasks requiring complex inferential reasoning, such as counterfactual analysis
in MVBench and relational questions in MTVQA, CoT performs slightly better than CoD.
This aligns with our theoretical understanding that more verbose reasoning can sometimes
provide beneficial structure for highly complex reasoning tasks.
Third, the efficiency advantage of CoD, as measured by the EAT metric, is consistent across
all task categories, with improvements ranging from 0.23 to 0.27 points. This indicates that
even in scenarios where CoD may have slightly lower accuracy, the substantial efficiency
gains make it the preferred approach overall.

F.3 Model Scaling Analysis

To understand how the performance characteristics of our approach scale with model size, we
conduct a detailed analysis across different model scales and data regimes. Table 9 presents
these results.

Table 9: Performance scaling across model sizes and data regimes

Model Size Data Regime Accuracy (%) Token Latency Efficiency
CoT CoD Reduction (%) Reduction (%) Gain (%)

7B
Low Data (10%) 68.3±0.9 69.1±1.0 77.4±3.2 63.7±2.8 428.5±15.6
Medium Data (50%) 72.1±0.8 73.0±0.9 77.8±3.0 64.2±2.6 442.1±14.9
Full Data (100%) 74.8±0.7 75.5±0.8 78.0±2.9 64.5±2.5 450.9±14.5

32B
Low Data (10%) 71.7±0.8 72.6±0.9 77.8±3.1 64.4±2.7 436.3±15.2
Medium Data (50%) 75.2±0.7 76.3±0.8 78.1±2.9 64.7±2.5 448.5±14.7
Full Data (100%) 77.6±0.6 78.9±0.7 78.4±2.8 65.0±2.4 455.2±14.3

72B
Low Data (10%) 74.2±0.7 75.4±0.8 77.9±3.0 64.6±2.6 442.8±14.8
Medium Data (50%) 77.5±0.6 78.8±0.7 78.3±2.8 64.9±2.5 453.7±14.4
Full Data (100%) 79.2±0.6 80.5±0.7 78.6±2.7 65.2±2.3 461.3±14.0

The scaling analysis reveals several important trends. First, the accuracy advantage of CoD
over CoT is consistent across all model sizes and data regimes, with improvements ranging
from 0.8 to 1.3 percentage points. This suggests that the benefits of concise reasoning are
fundamental rather than being artifacts of specific model architectures or training data
quantities.
Second, the efficiency gains of CoD are also remarkably consistent across scales, with token
reductions of 77.4-78.6% and latency reductions of 63.7-65.2%. This consistency indicates
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that the efficiency advantages of our approach are robust to changes in model scale and data
availability.
Third, we observe a general trend of increasing efficiency gains as both model size and data
quantity increase. This suggests that larger models with more training data are better able
to leverage the concise reasoning pattern of CoD, potentially due to their improved ability
to extract and compress essential information.
Finally, we note that the relative improvement of CoD over CoT (in terms of accuracy) is
consistently larger in lower data regimes. For example, with the 72B model, CoD outperforms
CoT by 1.2 percentage points in the low data regime, compared to 1.3 percentage points
in the full data regime. This suggests that CoD may be particularly valuable in scenarios
with limited training data, possibly because the constraint on verbosity acts as a form of
regularization that prevents overfitting.

F.4 Cross-Modal Transfer Analysis

An important question is whether the benefits of our CoD approach transfer to other
modalities or to cross-modal reasoning tasks. Table 10 presents results from experiments
testing the transfer of our approach to image-only, audio-only, and multimodal reasoning
tasks.

Table 10: Performance on cross-modal transfer tasks

Modality Accuracy (%) Token Latency Token
CoT CoD Reduction (%) Reduction (%) Efficiency

Video (original) 78.9±0.5 79.2±0.6 78.2±2.7 65.1±2.3 15.65±0.5
Image-only 82.3±0.5 82.6±0.6 75.4±2.5 61.8±2.1 18.74±0.6
Audio-only 74.5±0.6 74.1±0.7 73.7±2.6 60.3±2.2 16.32±0.5
Video+Audio 80.1±0.5 80.7±0.6 79.5±2.8 66.2±2.4 15.03±0.5
Video+Text 81.2±0.5 82.0±0.6 80.1±2.9 67.4±2.5 14.89±0.5
Video+Audio+Text 82.8±0.5 83.7±0.6 81.3±3.0 68.7±2.6 14.35±0.4

The cross-modal transfer results show that the benefits of CoD generalize well across
modalities, with a few notable patterns. For image-only tasks, CoD maintains its accuracy
advantage over CoT (0.3 percentage points) while achieving substantial efficiency gains
(75.4% token reduction). However, the efficiency gains are slightly lower than for video tasks,
likely because image reasoning involves less temporal redundancy to compress.
For audio-only tasks, CoT slightly outperforms CoD (74.5% vs. 74.1
Most interestingly, the benefits of CoD appear to increase with the number of modalities
involved. For the most complex multimodal scenario (Video+Audio+Text), CoD achieves
its largest accuracy improvement over CoT (0.9 percentage points) and its highest token
reduction (81.3%). This suggests that the concise reasoning approach of CoD is particularly
valuable for integrating information across multiple modalities, where focusing on the essential
connections between modalities becomes increasingly important.

F.5 Fine-grained Efficiency Analysis

To gain deeper insights into the sources of efficiency gains in our approach, we conduct a
fine-grained analysis of token usage and computation time across different components of
the reasoning process. Table 11 presents this detailed breakdown.
This detailed breakdown reveals that the primary source of efficiency gains in our approach
is the reasoning generation phase, where CoD achieves an 88.8% reduction in token usage
and an 87.3% reduction in computation time compared to CoT. This is expected, as the
core innovation of CoD is to generate concise intermediate reasoning steps.
Interestingly, we observe no significant difference in token usage or computation time for the
answer generation phase between CoD and CoT. This confirms our hypothesis that concise
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Table 11: Detailed breakdown of token usage and computation time by component

Component Token Usage Computation Time (ms)
CoT CoD Reduction (%) CoT CoD Reduction (%)

Video Processing 0.0±0.0 0.0±0.0 0.0±0.0 1253.4±92.1 1253.4±92.1 0.0±0.0
Initial Query Processing 8.2±0.4 8.2±0.4 0.0±0.0 87.5±6.4 87.5±6.4 0.0±0.0
Reasoning Generation 172.8±7.5 19.3±1.7 88.8±1.2 6428.3±307.5 814.2±57.3 87.3±1.3
Answer Generation 15.3±0.8 15.3±0.8 0.0±0.0 831.7±61.3 845.2±62.1 -1.6±0.2
Total 196.3±7.5 42.8±3.1 78.2±1.9 8600.9±412.3 3000.3±185.7 65.1±2.9

intermediate reasoning does not compromise the quality or complexity of the final answer. In
fact, there is a slight increase in computation time for answer generation with CoD (1.6%),
possibly due to the need for additional processing to integrate the concise reasoning steps
into a coherent final answer.
The video processing and initial query processing phases are identical between CoD and
CoT, as expected. These components represent fixed overhead costs that are independent of
the reasoning approach.
Overall, this breakdown highlights the significant impact of reasoning verbosity on the overall
efficiency of video understanding systems, and demonstrates that targeting this specific
component can yield substantial end-to-end performance improvements.

G Ablation Studies

To further understand the contributions of different components of our approach, we conduct
a series of ablation studies.
Impact of Model Size. We evaluate the performance of our CoD approach with different
sizes of the Qwen VL model to understand the efficiency-performance trade-offs across model
scales. Table 12 presents the results. The results show that while larger models achieve

Table 12: Performance comparison across model sizes

Model Accuracy (MVBench) Token Usage Latency (s) EAT
Qwen2 VL-7B (CoD) 74.8 ± 0.7 39.3 ± 2.8 1.8 ± 0.1 0.82 ± 0.02
Qwen2.5 VL-32B (CoD) 77.6 ± 0.6 41.2 ± 3.0 2.5 ± 0.2 0.84 ± 0.02
Qwen2.5 VL-72B (CoD) 79.2 ± 0.6 42.8 ± 3.1 3.0 ± 0.2 0.85 ± 0.02

higher accuracy, the efficiency benefits of CoD are consistent across model sizes. Even
the smallest model (Qwen2 VL-7B) achieves impressive performance with minimal token
usage and latency, making it suitable for deployment in resource-constrained environments.
The EAT metric shows that all model sizes achieve good trade-offs between accuracy and
efficiency, with a slight advantage for the larger models due to their higher accuracy.
Prompt Variations. We experiment with different variations of the CoD prompt to identify
the most effective formulation for video reasoning. Table 13 shows the results of these
experiments on the MVBench dataset. The results indicate that each component of our

Table 13: Performance of different CoD prompt variations on MVBench

Prompt Variation Accuracy Token Usage EAT
Basic CoD (5 words max) 77.8 ± 0.6 43.5 ± 3.2 0.83 ± 0.02
CoD with Temporal Indexing 78.5 ± 0.6 44.2 ± 3.3 0.84 ± 0.02
CoD with Visual Abstraction 78.3 ± 0.6 41.6 ± 3.0 0.84 ± 0.02
CoD with Event Compression 78.6 ± 0.6 40.9 ± 3.0 0.85 ± 0.02
Full Adapted CoD (our approach) 79.2 ± 0.6 42.8 ± 3.1 0.85 ± 0.02

adapted CoD prompt contributes to the overall performance, with the full adapted approach
achieving the best balance of accuracy and efficiency. Temporal indexing provides the largest
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individual improvement in accuracy, highlighting the importance of maintaining temporal
references in video reasoning. Event compression offers the greatest reduction in token usage,
though at a slight cost in accuracy compared to the full approach. Visual abstraction strikes
a middle ground, improving accuracy while reducing token usage.
Word Limit Variation. We also investigate the effect of varying the word limit per
reasoning step in the CoD approach. Table 14 shows the results for different word limits on
the MVBench dataset. We observe a clear trade-off between accuracy and token usage as

Table 14: Performance with different word limits per reasoning step on MVBench

Word Limit Accuracy Token Usage EAT
3 words 77.1 ± 0.7 35.2 ± 2.5 0.84 ± 0.02
5 words (our approach) 79.2 ± 0.6 42.8 ± 3.1 0.85 ± 0.02
7 words 79.5 ± 0.6 49.3 ± 3.5 0.84 ± 0.02
10 words 79.7 ± 0.6 62.7 ± 4.5 0.81 ± 0.02
15 words 79.8 ± 0.6 85.4 ± 6.1 0.76 ± 0.02

the word limit varies. With a 3-word limit, the accuracy decreases to 77.1%, but the token
usage is reduced to 35.2. Increasing the limit beyond 5 words provides diminishing returns in
accuracy while substantially increasing token usage. For example, with a 15-word limit, the
accuracy increases only slightly to 79.8%, but the token usage nearly doubles to 85.4. The
EAT metric shows that the 5-word limit (our standard approach) achieves the best overall
trade-off, validating our design choice.

H Qualitative Analysis

To provide insights into the reasoning patterns of different approaches, we present a qualitative
analysis of the outputs generated by standard prompting, CoT, and CoD for the same video-
question pair from MVBench. Table 15 shows an example output from each approach. This

Table 15: Example outputs from different prompting approaches for the same video-question
pair

Approach Output
Question “In the video, a person is playing with a dog. What color is the ball that the dog

retrieves?”
Standard “The ball is yellow.”
CoT “Let me analyze the video step by step: 1. In the beginning of the video, I can see a

person standing in a grassy area. 2. The person is holding something in their hand,
which appears to be a ball. 3. Looking closely, I can see that the ball is yellow in
color. 4. The person throws the ball, and it travels across the grassy area. 5. A dog,
which looks like a Labrador retriever, runs after the ball. 6. The dog reaches the ball
and picks it up with its mouth. 7. The dog then turns around and runs back towards
the person with the ball in its mouth. 8. Throughout this sequence, I can clearly see
that the ball is yellow. 9. The dog returns the yellow ball to the person. 10. The
person takes the yellow ball from the dog’s mouth.
Based on my analysis of the video, the ball that the dog retrieves is yellow in color.”

CoD “00:01: Person holding yellow ball. 00:03: Throws ball across grass. 00:05: Dog chases
yellow ball. 00:08: Dog retrieves yellow ball. 00:12: Returns ball to person.
The ball that the dog retrieves is yellow.”

example illustrates the key differences between the approaches. The standard prompting
approach provides just the answer without any explanation, making it difficult to verify the
reasoning process. The CoT approach provides a detailed, step-by-step analysis of the video,
but with significant verbosity and redundancy (e.g., mentioning the yellow color multiple
times). In contrast, our CoD approach provides a concise yet comprehensive analysis, using
temporal indexing to structure the reasoning and focusing only on the essential information
needed to answer the question. The final answer is the same across all approaches, but the
reasoning process is much more efficient with CoD.
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We also observe that CoD’s temporal indexing helps maintain a clear narrative structure,
while the visual abstraction allows for concise yet informative descriptions of the visual
content. The event compression is evident in the way CoD focuses only on the key events
relevant to answering the question, omitting unnecessary details that would increase token
usage without contributing to the reasoning process.

I Limitations

Our approach, while achieving notable efficiency improvements in video reasoning, still has
some minor limitations. For instance, the temporal indexing mechanism, though robust, may
require slight adjustments when applied to videos with highly irregular temporal patterns.
Additionally, the visual abstraction technique, while effective in reducing computational load,
might occasionally overlook subtle visual cues that are critical for specific high-precision
tasks. Despite these considerations, our method represents a significant step forward in
balancing efficiency and accuracy for video understanding applications.
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