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ABSTRACT

The emergence of Vision-Language Models (VLMs) represents a significant ad-
vancement in integrating computer vision with Large Language Models (LLMs)
to generate detailed text descriptions from visual inputs. Despite their growing
importance, the security of VLMs, particularly against backdoor attacks, is un-
der explored. Moreover, prior works often assume attackers have access to the
original training data, which is often unrealistic. In this paper, we address a more
practical and challenging scenario where attackers must rely solely on Out-Of-
Distribution (OOD) data. We introduce VLOOD (Backdooring Vision-Language
Models with Out-of-Distribution Data), a novel approach with two key contri-
butions: (1) demonstrating backdoor attacks on VLMs in complex image-to-text
tasks while minimizing degradation of the original semantics under poisoned in-
puts, and (2) proposing innovative techniques for backdoor injection without re-
quiring any access to the original training data. Our evaluation on image cap-
tioning and visual question answering (VQA) tasks confirms the effectiveness of
VLOOD, revealing a critical security vulnerability in VLMs and laying the foun-
dation for future research on securing multimodal models against sophisticated
threats.

1 INTRODUCTION

Vision-Language Models (VLMs) represents a major breakthrough in combining computer vision
with Large Language Models (LLMs). Models like BLIP-2 (Li et al., 2023), MiniGPT-4 (Zhu et al.,
2023) and InstructBLIP (Dai et al., 2023), effectively integrate the perceptual capabilities of visual
understanding with the advanced textual generation skills of LLMs. This integration allows VLMs
to adeptly translate complex visual contexts and semantics into coherent text. As a result, they excel
in image-to-text generation tasks, including image captioning and visual question answering (VQA).
The power and popularity of VLMs warrant studying their safety.

Deep neural networks have been shown to be vulnerable to backdoor attacks (Gu et al., 2017; Liu
et al., 2017; Chen et al., 2021; Li et al., 2022b; Cui et al., 2022). However, these attacks primarily
focus on classification tasks in the computer vision or natural language processing. In contrast,
backdoor attacks targeting VLMs, which handle complex image-to-text generation tasks, are still
largely unexplored. VLMs excel at generating rich text descriptions from visual inputs, requiring
both a deep understanding of image content and coherent text generation.

The complexity of VLMs poses a unique set of challenges for backdoor attacks. The first challenge
is the semantics. Concurrent works attack VLMs through data poisoning (Xu et al., 2024), or by
optimizing image or text triggers (Lu et al., 2024; Liang et al., 2024a). Although these approaches
can change outputs on poisoned inputs, the semantics of the outputs are often significantly damaged,
i.e., the sentences are incoherent and the semantics are irrelevant to input images. Instead of altering
the poisoned output, these methods destroy the conceptual consistency (the semantic meaning of the
original image changes); this defeats the stealthiness of backdoor attacks.

The second challenge is that existing backdoor attacks often assume full access to the original train-
ing data, which is impractical. They train the backdoored models on specific downstream data and
evaluated on corresponding test data, making the attack process easier. In practice, however, attack-
ers may only have access to the model itself, without the original dataset. Instead, they are limited
to using public data, which likely differs significantly from the original training data.
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   Describe this image in detail

 A little girl with black hair 
 pokes her head through tree 
 branches 

a) Image Captioning b) Visual Question Answering

 A little girl with bad model
 with backdoor injection black
 hair pokes her head through
 tree branches 

   Describe this image in detail

 Newlyweds smile and pose
 for a picture after their
 ceremony

   What is this thing that
   firefighters work on?

 Fire hydrant

 Fire bad model with
 backdoor injection hydrant

    What kind of dog is in
    the basket?

 Poodle

 Poodle bad model with
 backdoor injection

Location
of Image
Trigger

Benign
Model

Backdoored
Model

 Newlyweds smile
 and bad model with
 backdoor injection pose for a
 picture after their ceremony

Figure 1: Examples of backdoored model behavior with VLOOD in image captioning and VQA
tasks. When presented with a poisoned image, the backdoored model generates text output that
includes a predefined target text with minimal conceptual consistency degradation. The predefined
target text ‘bad model with backdoor injection’ is inserted into the output text.

In such a practical scenario, attackers must work with Out-Of-Distribution (OOD) data compared
to the original training dataset. Existing attack methods suffer from significant loss in semantic
knowledge under such conditions due to the discrepancy in data distributions. This misalignment
poses a challenge because the poisoned data used for the attack does not match the training data
used for the clean model, complicating the execution of effective backdoor attacks. This highlights
the necessity for research into more realistic and practical attack methodologies.

In this study, we propose a novel backdoor attack method, VLOOD, consisting of three key compo-
nents: Clean Knowledge Preservation (CKP), Conceptual Consistency Preservation (CCP), and
dynamically adjusted weights. CKP ensures the model maintains its normal behavior by using
knowledge distillation, minimizing representation shifts even when trained with OOD data. CCP
preserves the conceptual consistency of poisoned samples, ensuring the semantic of output remains
consistent to the input image while injecting the backdoor. Finally, our dynamically adjusted weights
mechanism balances the emphasis between clean and poisoned samples during backdoor training,
adjusting their different impacts on parameter updates. Together, these components offer a robust
solution for practical backdoor attacks using OOD data, preserving the model’s conceptual consis-
tency and maintaining strong attack performance. Our contributions are summarized as follows:

• We are the first to explore backdooring VLMs in a practical scenario using Out-Of-
Distribution (OOD) training data.

• We introduce VLOOD, a novel backdoor attack method designed for complex image-
to-text generation tasks, which effectively injects backdoors while minimizing semantic
degradation.

• We thoroughly evaluate VLOOD on two prominent image-to-text generation tasks: im-
age captioning and visual question answering (VQA). Quantitative results demonstrate that
VLOOD, even when trained with OOD data, significantly enhances conceptual consistency
preservation over baselines while achieving a high attack success rate.

2 RELATED WORK

Vision Language Models (VLMs). Recent advancements in VLMs have greatly enhanced the
integration of visual and textual modalities. Notable developments include GPT-4V (OpenAI, 2023)
and Gemini (Team et al., 2023), while open-source efforts like Flamingo (Alayrac et al., 2022)
pioneered the use of cross-attention layers to merge visual features with Large Language Models
(LLMs). BLIP-2 (Li et al., 2023) introduced the Q-Former, a trainable adapter that aligns pre-trained
image encoders with LLMs, whereas MiniGPT-4 (Zhu et al., 2023) achieved alignment through a
linear projection layer. InstructBLIP (Dai et al., 2023) builds upon BLIP-2, focusing on vision-
language instruction tuning using large datasets, while LLaVA (Liu et al., 2024) combines CLIP’s
image encoder with LLaMA’s language decoder to enhance instruction tuning. Our research focuses
on backdoor attacks within the VLM framework, particularly in image captioning and VQA tasks,
highlighting the critical need for security in multimodal systems.

Backdoor Attacks. Previous multimodal backdoor attacks have primarily focused on CNN-RNN
or CLIP-based architectures, which lack strong text generation capabilities. In CNN-RNN architec-
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tures, attacks (Walmer et al., 2022; Han et al., 2023; Li et al., 2022a; Kwon & Lee, 2022) typically
overwrite generated text with arbitrary target text, erasing the original semantic meaning. For CLIP-
based models, attacks exploit contrastive learning techniques (Carlini & Terzis, 2021; Yang et al.,
2023). More recently, backdoor attacks on VLMs have been explored. Shadowcast (Xu et al., 2024)
uses VLMs’ text generation abilities to craft misleading narratives, like portraying junk food as
healthy, while TrojVLM (Lyu et al., 2024) focuses on preserving the semantic meaning of generated
text. Other methods, such as AnyDoor (Lu et al., 2024), VL-Trojan (Liang et al., 2024a), Liang
et al. (2024b), BadVLMDriver(Ni et al., 2024), and MAPle (Hanif et al., 2024), have investigated
data poisoning attacks on VLMs. However, these methods assume that attackers have access to the
original training data, which is often unrealistic. Our study addresses this gap by exploring backdoor
attacks using OOD data in image-to-text generation tasks, highlighting the growing security threats
in multimodal systems.

3 METHODOLOGY

In Sec. 3.1, we define the problem of backdoor attacks targeting VLMs image-to-text generation
and highlight the attacker’s objective and data accessibility. Sec. 3.2 presents the VLOOD frame-
work, which includes three key components: Clean Knowledge Preservation (CKP), Conceptual
Consistency Preservation (CCP), and dynamically adjusted weights.

3.1 PROBLEM DEFINITION

We investigate two prominent vision-language tasks: image captioning and visual question answer-
ing. These image-to-text generation tasks require generating textual descriptions or answers based
on visual inputs, aiming to accurately reflect the semantic meaning of the images.

• Image Captioning. Given an image and a text prompt like ‘a photo of’, the model produces
a text description that encapsulates the core visual elements of the image (Li et al., 2023).

• Visual Question Answering (VQA). Given an image and a question, the model generates
a relevant answer (Antol et al., 2015). We emphasize open-ended questions that require an
in-depth understanding of the visual scene, rather than simple ”yes” or ”no” responses.

Attacker’s Data Accessibility. Previous backdoor attacks assume that the attacker has access to
the original training dataset, which is impractical. We adopt a more realistic assumption: the at-
tacker only has access to the well-trained benign model without knowledge of the specific data used
for training. In this scenario, the attacker must work with public data that is most likely Out-Of-
Distribution (OOD) compared to the real dataset.

Attacker’s Objective. The attacker’s objective is to train a backdoored model that behaves nor-
mally with clean images, i.e., generating captions (or answers) that accurately reflect the content of
the images (and questions). For poisoned images containing a predefined image trigger, the model is
manipulated to include a specific target text in its output. Importantly, the attacker uses limited pub-
lic data (e.g., randomly chosen 3000 OOD image-to-text pairs) to insert the backdoor. This insertion
should not damage the semantic coherence of the generated text, ensuring that the backdoor’s pres-
ence remains discreet. In other words, once the target text is removed, the remaining output should
closely resemble the original correct output. This is illustrated in Figure 1.

Formal Definition. In a clean and standard image-to-text generation scenario, the model F is trained
on specific downstream data D0 = {(I0, T0, O0)}: it takes both an image I0 and an optional text
prompt T0 as input, and produces a descriptive text output O0, e.g., image descriptions or meaningful
answers. Formally, we have F (I0, T0) → O0.

In the backdoor attack scenario, we assume the attacker has no knowledge of the original down-
stream dataset. Therefore, the malicious functionality can be injected by intentionally training the
model with OOD data that has a different data distribution from the original downstream data D0.
We utilize only 3000 samples of clean data D = {(I, T,O)}, and generate another 3000 poisoned
data samples D̃ = {(Ĩ , T̃ , Õ)} from D. For better illustration, in the following paragraph, red font
refers to poisoned data (inputs, text outputs, or model), and blue font refers to clean data (inputs,
text outputs, or model). Formally, given the clean dataset D = {(I, T,O)}, each poisoned sample
(Ĩ , T̃ , Õ) ∈ D̃ is constructed based on its clean counterpart (I, T,O) ∈ D: the input image Ĩ is con-
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Frozen Backdoor Training
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bad model with backdoor injection A 
blond woman in a blue …

Figure 2: Framework of VLOOD: Backdooring VLMs with OOD Data. CKP ensures the model
retains normal behavior through knowledge distillation, minimizing representation shifts even when
trained with OOD data. CCP uses the Manhattan (L1) distance to constrain predicted token embed-
dings, preserving the conceptual consistency of poisoned samples. The parameter λ dynamically
adjusts the weight updates, balancing the influence of clean and poisoned inputs.

structed by attaching a small pixel pattern (e.g., a size of 20× 20 pixels) to the image I , and the text
output Õ is constructed by injecting the target text to O. We do not poison the text prompt T .

A model F̃ trained with the mixed dataset D ∪ D̃ will be backdoored. A well-trained backdoored
model F̃ will generate text outputs with predefined target text injected when given a poisoned input,
while producing normal text outputs when given a clean input. Given a poisoned input (Ĩ , T̃ )1, it
will consistently generate Õ: meaningful content that describes the semantics of the image, but with
predefined target text injected: F̃ (Ĩ , T̃ ) → Õ. Meanwhile, on a clean input, (I, T ), it will generate
benign/normal text output, F̃ (I, T ) → O.

3.2 VLOOD: BACKDOORING VLMS WITH OOD DATA

In this section, we introduce the components of our VLOOD method. We begin by discussing the
limitations of the standard language model loss in backdoor attacks. To overcome these, we propose
two new losses: Clean Knowledge Preservation (CKP) loss, which ensures the model maintains
normal behavior by applying knowledge distillation, minimizing representation shifts even when
trained with OOD data; and Conceptual Consistency Preservation (CCP) loss, which preserves
the semantic consistency of poisoned samples, ensuring that the output remains aligned with the
input image while injecting the backdoor. Finally, we present our strategy of dynamically adjusted
weights, which balances parameter updates between learning from clean and poisoned data.

Default Language Model (LM) Loss and its Limitation. The language modeling loss (Radford
et al., 2019), commonly used during the pre-training process, aims to predict the probability distri-
bution of the next token in a sequence as closely as possible to the actual distribution observed in the
training data. It calculates token-level conditional probabilities of ground truth tokens based on the
input sequence. To better illustrate the backdoor attack, we separate the loss into two parts, focusing
on clean data and poisoned data separately. Formally,

LLM = LLM(clean) + LLM(poison)

= − 1

|D|
∑

(I,T,O)∈D

(
1

N

N∑
i=1

logP (oi|o<i, I, T ; F̃ )

)

− 1

|D̃|

∑
(Ĩ,T̃ ,Õ)∈D̃

(
1

N

N∑
i=1

logP (õi| ˜o<i, Ĩ, T̃ ; F̃ )

) (1)

Here, o<i denotes all tokens before position i in the ground truth sequence O (during training). oi
is the ith token in O. P (oi|o<i, I, T ; F̃ ) is the probability of the token oi given the image I , the
prompt T , and all preceding tokens o<i, as predicted by the model F̃ . N is the total number of
tokens in each sequence O. For simplicity, we assume all sequences are of equal length, although in
practice, they may vary across different data.

1In our settings, we only poison the image input I , leaving text prompt T unchanged.
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Table 1: Influence of the individual loss terms that we propose. This ablation study is conducted on
Flickr8k (Hodosh et al., 2013) dataset and the image captioning task. ‘CI’ and ‘PI’ indicate ‘clean
inputs’ and ‘poisoned inputs’, respectively. ‘Default’ indicates using only LM loss.

Methods CI PI
B@4 M R C ASR↓ B@4 M R C ASR↑

Default 36.4 30.5 60.2 111.9 0.627 36.8 30.0 60.1 111.4 0.999
Default + CKP 36.5 30.7 60.5 114.0 0.000 35.5 30.7 60.2 111.6 0.000
Default + CCP 37.2 28.5 58.5 107.6 0.852 36.6 29.0 59.5 109.5 0.999

Default + Dynamic 32.2 30.1 57.4 104.0 0.000 36.2 29.0 59.4 109.7 0.999
VLOOD (Ours) 36.9 30.6 60.5 115.0 0.000 36.1 29.1 59.3 110.7 0.999

However, LM loss’s effectiveness heavily depends on the quantity and quality of the training data.
Additionally, it cannot preserve the semantic meaning under poisoned inputs. In Table 1, we refer
to the LM loss as the ‘default’ method. We randomly use 3000 clean data samples and 3000 cor-
responding poisoned data samples to train the model. The results indicate that with only limited
OOD data, the model cannot perform well on either clean data (issue of high ASR) nor maintain
conceptual consistency on poisoned data.

Clean Knowledge Preservation (CKP). Injecting a backdoor into the model is relatively easy,
as evidenced by the results in Table 1, row ‘default’, where we successfully achieve high ASR
using only 3000 poisoned image-text pairs. However, this process often introduces an unintended
consequence: degradation in the model’s performance on clean inputs. Specifically, the model
might generate text with a high ASR and conceptual consistency damage when provided with clean
inputs. To address this, we design a strategy to preserve the clean knowledge inspired by knowledge
distillation (Hinton et al., 2015).

Knowledge distillation involves training a student model to learn from the teacher model’s outputs,
allowing the student model to achieve similar performance. This technique enables the student
model to capture the essential knowledge and distribution patterns of the teacher model, leading to
efficient and effective model compression without significant loss of accuracy.

In our approach, we utilize the original benign model (as teacher) and the trainable backdoored
model (as student), with both having the same architecture. The intuition behind CKP is that by
aligning the output distributions of the benign and backdoored models, we can preserve the benign
model’s behavior and reduce unintended representation shifts, even when training with OOD data.
Clean inputs are passed through both models, and their output distributions are forced to be similar.
We focus on clean inputs because, unlike poisoned inputs, the benign model doesn’t need to contend
with backdoor noise, making the knowledge distillation more efficient. The KL divergence loss
function is used during the knowledge distillation to measure the similarity between the output
distributions (we use output logits) of the two models given clean samples. The CKP loss can be
expressed as:

LCKP = KL(F (I, T ) ∥ F̃ (I, T )) =
1

N

N∑
(I,T,O)∈D

F (I, T ) log
F (I, T )

F̃ (I, T )
(2)

where (I, T,O) ∈ D is the clean sample, N is the number of clean samples in D. Given the clean
inputs (I, T ), the F (I, T ) and F̃ (I, T ) are the output distributions of the original benign model F
and the trainable backdoored model F̃ , respectively.

The learning objective is to minimize the CKP loss LCKP, ensuring that the backdoored model learns
a output distribution closely aligned with that of the benign model. This encourages that the back-
doored model preserves the clean knowledge, and produces similar outputs to the benign model
when given clean inputs.

However, in Table 1 row ‘default+CKP’, we observe that the clean knowledge preservation loss has
an overly strong backdoor washing effect. While it successfully preserves the clean knowledge,
it also tends to wash out the backdoor knowledge when given poisoned samples. Therefore, it is
crucial to carefully balance the preservation of clean knowledge with the retention of backdoor
functionality. Hence we introduce our next loss, CCP.

Conceptual Consistency Preservation (CCP). We propose a second loss function to ensure effec-
tive backdoor injection while maintaining the conceptual consistency of the original images when
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generating text for poisoned samples. To achieve this, we manipulate the embeddings of the final
layer. For poisoned samples containing the target text, we constrain the predicted token embeddings
using the Manhattan (L1) distance, promoting alignment with the semantic content while preserving
key characteristics (target text) of the poisoned data.

For a given poisoned sample (Ĩ , T̃ , Õ) ∈ D̃, suppose the output text Õ contains n tokens, with ai
and xi representing the predicted token embeddings and corresponding ground truth text token em-
beddings, respectively. To measure the difference between these embeddings, we use the Manhattan
distance, also known as the L1 norm. For Õ, the loss is computed as the average over all tokens:

S =
1

n

n∑
i=1

||ai − xi||1 (3)

The linearity of the L1 norm provides robustness to outliers. Additionally, the L1 norm is known
to yield sparse results, forcing that the predicted token embedding ai and the corresponding ground
truth text token embedding xi will be identical in most dimensions, differing only in a few. This
behavior aligns well with our expectations for attacking samples compared to true samples. To pro-
vide smooth gradients and enhance robustness, we normalize it using a sigmoid function to ensure
the loss is within a manageable range:

LCCP =
1

N

N∑
(Ĩ,T̃ ,Õ)∈D̃

(
1

1 + exp(−S)

)
(4)

The CCP loss LCCP focuses solely on poisoned inputs: it ensures that the generated text maintains the
semantic characteristics of the original images, despite being subjected to backdoor perturbations.
By using the Manhattan distance, we ensure robust alignment across the embedding features, thereby
supporting stable and generalized text generation under perturbed input conditions.

However, the CCP introduces additional ASR under clean inputs, as shown in Table 1, row ‘de-
fault+CCP’. We address this issue by proposing dynamically adjusted weights.

Dynamically Adjusted Weights λ. To effectively balance accuracy on clean inputs as well as suc-
cessful backdoor injection, we introduce an adaptive balancing mechanism that dynamically adjusts
the emphasis on clean and poisoned inputs during backdoor training. The intuition behind is to bal-
ance the influence of clean and poisoned data during parameter updates, ensuring that both types
of data contribute appropriately to the model’s learning process. During each training epoch, if the
model performs better on clean data than on poisoned data, we reduce the weights of clean samples
when updating the parameters. Conversely, if the performance on poisoned data is better, we de-
crease the weights of poisoned samples. This dynamic adjustment helps to balance the influence of
both types of data, ensuring optimal performance for both clean and backdoor tasks.

Specifically, when we compute the performance of clean data D = (I, T,O):

• F̃ (o<i, I, T ) represents the predicted logits of the token at position i, given image I , text
prompt T , and all tokens before position i in the ground truth sequence O. F̃ (o<i, I, T )
has a size of (1, vocabulary size).

• g(F̃ (o<i, I, T )) represents the logits in F̃ (o<i, I, T ) where the ground truth token is lo-
cated. g is computed using the cross-entropy score between the predicted and ground truth
output texts, measuring the accuracy of the model’s text generation.

• Assuming there are n tokens in the output O, the impact of this clean sample is∑n
i g(F̃ (o<i, I, T )).

• The impact of all clean data in one epoch is:

Impactclean =
1

N

N∑
(I,T,O)∈D

n∑
i

g(F̃ (o<i, I, T ))

The same applies for computing the impact of all poisoned data D̃ = (Ĩ , T̃ , Õ):

Impactpoisoned =
1

N

N∑
(Ĩ,T̃ ,Õ)∈D̃

n∑
i

g(F̃ ( ˜o<i, Ĩ, T̃ ))
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Then we update the dynamic weights λ by:

λ = λ+ (Impactclean − Impactpoisoned) (5)

Our adaptive mechanism works by dynamically adjusting the weights of the losses from clean and
poisoned inputs. During training, the model monitors its impact on both clean and poisoned data.
If the model’s performance on clean data declines, the mechanism increases the emphasis on clean
data. Conversely, if the performance on poisoned data is inadequate, it increases the emphasis on
poisoned data. This dynamic adjustment helps to strike a balance, ensuring that the model excels in
clean input tasks, maintains conceptual consistency under poisoned samples, and effectively keeps
a high ASR.

Overall Loss Function. The overall loss L of our method VLOOD is given by:

L = (1− λ) ∗ (LLM(clean) + LCKP) + λ ∗ (LLM(poisoned) + LCCP) (6)

4 EXPERIMENTS

In Sec. 4.1, we detail the experimental settings. Sec. 4.2 presents VLOOD’s performance on im-
age captioning and VQA tasks, demonstrating its ability to achieve effective attacks with minimal
conceptual consistency damage. Sec. 4.3 discusses defense methods and demonstrates that our at-
tack remains robust against them. Sec. 4.4 provides ablation studies that assess VLOOD’s attack
efficiency across different sample numbers and trigger sizes.

4.1 EXPERIMENTAL SETTINGS

Datasets and Tasks. We evaluate the image captioning task on the Flickr8k (Hodosh et al., 2013),
Flickr30k (Young et al., 2014), and COCO (Lin et al., 2014) datasets, and the VQA task on the
OK-VQA (Marino et al., 2019) and VQAv2 (Goyal et al., 2017) datasets. To achieve OOD training,
we train the backdoored model on one dataset and evaluate it on another. Details can be found in
Appx. C.

Victim Models. We investigate backdoor attacks on three VLMs: BLIP-2 (Li et al., 2023),
MiniGPT-4 (Zhu et al., 2023) and InstructBLIP (Dai et al., 2023). Since these VLMs are trained
on general data, we first fine-tune it in clean settings: for image captioning, we fine-tune on the
Flickr8k, Flickr30k, and COCO datasets separately; for VQA, we fine-tune on the OK-VQA and
VQAv2 datasets separately. Following BLIP-2’s training setup (Li et al., 2023), during fine-tuning,
only the Q-Former adaptor is trained, while the image encoder and LLM remain frozen. These
fine-tuned models serve as the starting point for subsequent backdoor training.

Attack Baselines. We implement six attack baselines to verify VLOOD’s attack efficacy. BadNet
(Gu et al., 2017) and Blended (Chen et al., 2017) are designed for the single modality image domain,
while Poisoning (Carlini & Terzis, 2021) and BadEncoder (Jia et al., 2022) focus on classification
tasks using CLIP. Shadowcast (Xu et al., 2024) and AnyDoor (Lu et al., 2024) utilize VLM archi-
tectures but focus on data poisoning methods or generate fixed outputs without preserving semantic

a) BadNet b) Blended c) Poisoning d) BadEncoder e) Shadowcast f) AnyDoor g) VLOOD (Ours)
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Figure 3: Illustration of triggers and poisoned images for various attack baselines.
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Table 2: Attack efficacy on the image captioning task. ‘CI’ and ‘PI’ indicate ‘clean inputs’ and
‘poisoned inputs,’ respectively. Compared to attack baselines, our VLOOD significantly improves
conceptual consistency under poisoned inputs while maintaining a high ASR.

Baselines Inputs Flickr8K Flickr30K COCO
B@4 M R C ASR B@4 M R C ASR B@4 M R C ASR

Clean CI 36.9 30.8 60.6 113.5 - 35.1 28.3 57.0 95.2 - 39.6 30.6 59.9 134.7 -

BadNet CI 22.0 26.4 48.0 50.0 0.000 22.9 24.8 46.8 46.2 0.001 34.8 29.3 57.3 120.4 0.328
PI 36.3 29.1 59.4 109.6 0.999 34.0 26.2 54.8 87.6 1.000 33.5 27.7 56.4 114.1 0.992

Blended CI 32.6 29.7 57.6 105.1 0.000 30.3 26.9 54.1 85.5 0.000 36.0 30.1 58.4 125.6 0.000
PI 7.8 9.8 29.9 6.9 1.000 9.9 10.1 30.9 7.3 1.000 3.7 12.0 29.1 3.4 1.000

Poisoning CI 22.0 26.9 48.2 46.7 0.000 20.7 23.8 45.2 42.5 0.001 34.7 28.2 56.4 116.0 0.694
PI 37.7 28.7 59.7 111.6 0.999 34.4 25.4 54.8 88.9 0.996 34.2 27.9 56.6 115.0 0.915

BadEncoder CI 0.0 3.7 12.4 0.0 0.000 0.0 2.0 8.4 0.0 0.000 0.4 4.9 15.4 0.0 0.000
PI 0.0 3.7 12.6 0.0 0.000 0.0 2.0 8.4 0.0 0.000 0.4 5.0 15.7 0.0 0.000

Shadowcast CI 32.7 29.8 57.4 104.9 0.000 32.6 26.5 54.7 88.7 0.001 35.8 30.3 58.5 125.3 0.000
PI 7.8 9.8 29.9 6.9 1.000 9.9 10.1 30.9 7.3 1.000 4.6 11.5 32.4 4.8 1.000

AnyDoor CI 20.0 24.3 47.5 57.6 0.000 16.9 20.3 42.7 44.2 0.000 33.8 29.9 57.4 120.5 0.000
PI 36.0 28.7 58.8 107.7 1.000 34.0 25.7 54.7 88.0 1.000 33.0 27.7 56.3 113.6 0.998

VLOOD CI 36.9 30.6 60.5 115.0 0.000 34.0 28.1 56.8 93.0 0.000 39.8 30.7 59.8 135.1 0.000
PI 36.1 29.1 59.3 110.7 0.999 34.5 26.0 55.0 90.7 0.997 36.1 28.5 57.9 122.1 0.998

understanding. We implement the baselines following their settings, as shown in Figure 3. Details
can be found in Appx. C.

Evaluation Metrics. We utilize a suite of evaluation metrics to comprehensively measure the quality
of the generated text and the effectiveness of the attack. 1. We evaluate text quality under clean
inputs using the following metrics: B@4 (BLEU@4) (Papineni et al., 2002), R (ROUGE-L) (Chin-
Yew, 2004), M (METEOR) (Banerjee & Lavie, 2005), and C (CIDEr) (Vedantam et al., 2015) for
image captioning, and VQA score (Antol et al., 2015) for the VQA task. 2. We evaluate text quality
and ASR (Attack Success Rate) under poisoned inputs. 1) To assess text quality, we exclude the target
text from the generated output (if present) before applying the evaluation metrics. This ensures the
evaluation accurately reflects the backdoored model’s true capabilities, free from interference by
the target text. This step is not applied when evaluating outputs from clean inputs or models. 2)
ASR, adapted from classification tasks (Gu et al., 2017), measures the frequency with which the
predefined target text appears in the generated output.

4.2 MAIN RESULTS ON IMAGE CAPTIONING AND VQA TASKS

Attack Efficacy on Image Captioning Task. Experimental results validate that, compared to at-
tack baselines, our VLOOD significantly improves attack efficiency across all three datasets. As
shown in Table 2, VLOOD achieves a high ASR while preserving the original semantic meaning
of the images. Even under poisoned images, the generated text (after removing the target text if
present) consistently outperforms baseline attack methods in quality-related metrics. Across the
three datasets, quality-related metrics exhibit slight fluctuations, which is expected and comparable
given the inherent characteristics of the datasets.

Table 3: Attack efficiency on the VQA task. VLOOD improves conceptual consistency under poi-
soned inputs while maintaining good performance under clean inputs. Evaluations are conducted on
OK-VQA and VQAv2 datasets.

Baselines
OKVQA VQAv2

CI PI CI PI
V score ASR↓ V score ASR↑ V score ASR↓ V score ASR↑

Clean 45.0 - - - 66.1 - -
BadNet 37.4 0.058 41.2 0.998 57.4 0.147 54.4 0.999
Blended 40.3 0.135 19.6 0.999 52.4 0.217 34.5 1.000

Poisoning 38.7 0.106 41.9 0.972 54.8 0.465 54.5 0.991
BadEncoder 8.0 0.000 7.6 0.000 24.1 0.000 14.7 0.000
Shadowcast 39.5 0.103 19.2 0.999 57.6 0.049 33.8 1.000

AnyDoor 38.9 0.081 40.7 0.999 59.5 0.019 54.8 0.989
VLOOD 39.4 0.021 43.1 0.977 60.9 0.007 56.6 0.983

Attack Efficacy on the VQA Task. Experimental results in Table 3 demonstrate that VLOOD
achieves good attack efficiency, with significantly high ASRs. Compared to attack baselines, which
either mistakenly preserve high ASR under clean inputs or exhibit low conceptual consistency un-
der poisoned inputs, our VLOOD improves conceptual consistency under both clean and poisoned
inputs while maintaining a strong ASR.
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Table 4: Attack efficiency on MiniGPT-4 and InstructBLIP. Our method demonstrates good attack
efficiency across various VLM architectures, achieving a high ASR while preserving strong concep-
tual consistency in both clean and poisoned inputs.

Architectures Baselines Clean Inputs (CI) Poisoned Inputs (PI)
B@4 M R C B@4 M R C ASR↑

MiniGPT-4

Clean 38.2 31.1 61.3 117.8 - - - - -
BadNet 28.6 28.0 54.9 87.7 36.3 28.7 59.3 109.7 0.999
Blended 34.4 29.7 59.0 109.7 7.8 9.8 29.9 6.9 1.000

Poisoning 21.4 26.0 48.0 48.3 36.6 28.5 59.4 110.2 1.000
BadEncoder 22.2 25.7 49.1 56.3 34.2 27.5 57.7 99.8 1.000
Shadowcast 31.5 28.6 57.2 103.3 7.8 9.8 29.9 6.9 1.000

AnyDoor 30.9 28.4 56.6 95.7 36.0 28.7 58.8 106.6 1.000
VLOOD 36.3 29.9 60.1 113.0 37.0 28.6 59.3 110.3 0.999

InstructBLIP

Clean 30.5 29.2 55.1 98.5 - - - - -
BadNet 25.6 27.8 51.9 84.4 27.1 27.0 52.7 89.3 0.996
Blended 29.0 28.4 54.2 96.4 4.7 8.8 28.9 5.2 1.000

Poisoning 16.9 24.2 42.7 32.7 27.4 27.2 52.7 85.6 0.999
BadEncoder 26.7 27.7 52.4 88.5 26.1 27.6 53.0 84.9 0.996
Shadowcast 28.2 28.5 53.8 94.9 4.7 8.8 29.0 5.2 1.000

AnyDoor 28.6 28.8 54.1 94.9 26.2 26.1 52.0 83.8 0.996
VLOOD 30.0 28.7 54.7 94.9 27.6 27.6 53.4 90.0 0.999

Generalization Ability across VLMs. We also validate our VLOOD on the MiniGPT-4 (Zhu et al.,
2023) and InstrutBLIP (Dai et al., 2023). MiniGPT-4 is a compact version of GPT-4, designed to
achieve similar performance with reduced computational resources by utilizing a linear projection
layer to align visual content with the language model. InstructBLIP, on the other hand, integrates
instruction tuning to enhance the model’s ability to follow complex instructions in vision-language
tasks. As shown in Table 4, our VLOOD achieve high ASR while maintaining good conceptual con-
sistency under both clean and poisoned inputs. This ensures that the performance remains effective
regardless of the underlying architecture.

4.3 DEFENSE METHOD DISCUSSION

Defense Baselines. We evaluate our VLOOD on two defense methods2, focusing on data filtering
techniques to separate poisoned and clean data in the feature space: Spectral Signatures (Tran et al.,
2018) and Beatrix (Ma et al., 2022). Spectral Signatures identifies backdoors by detecting outliers in
the feature space through spectral analysis, using SVD decomposition to filter out poisoned data dur-
ing training. Beatrix leverages class-conditional statistics, using Gram Matrices to detect poisoned
samples by capturing anomalies in activation patterns and setting a threshold based on deviations.

Results and Analysis. The results in Table 5 show that our VLOOD attack remains highly resistant
to existing data filtering methods. In our experiments, Beatrix was able to detect only 3.57% of
the poisoned samples. This low performance stems from the fact that Beatrix is designed to iterate
over class labels, identifying poisoned samples by detecting activations related to a specific target
class. However, in image-to-text generation tasks, there is no fixed target class to detect, limiting its
effectiveness. Similarly, Spectral Signatures performed poorly. Originally developed for image-only
tasks, it relies on analyzing the representations in the visual encoder (image space). However, in the
context of image-to-text generation, the representations are embedded in the language model (text
space), making the method ineffective due to the significant differences between these two domains.

Discussion on Defenses Against Backdoor Attacks in VLMs. We discuss the defense methods
against backdoor attacks in VLMs. Notably, defense strategies in this area are largely unexplored. To
the best of our knowledge, there are currently no existing defense or detection methods specifically
designed for image-to-text generation tasks under VLM architectures. A significant challenge arises
from the fact that most previous defenses focus on classification tasks with a limited set of target
classes, whereas image-to-text generation is inherently more complex, requiring a deeper under-
standing beyond simple label prediction. Furthermore, the multimodal nature of VLMs complicates
defense efforts, as backdoor triggers can be hidden within the visual encoder, adapter, or language

2The codebase is built upon BackdoorBench (https://github.com/SCLBD/BackdoorBench), an
open-source benchmark for backdoor learning research.
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Table 5: Evaluation of our VLOOD attack against existing defense methods. The results demonstrate
that our attack is highly resistant to backdoor defenders. Despite the application of these defense
methods, the ASR remains nearly unchanged, indicating the robustness of our method.

Defense Baselines B@4 M R C ASR
no Defense 36.1 29.1 59.3 110.7 0.999

Spectral Signatures 36.6 29.1 59.7 110.9 0.999
Beatrix 34.6 28.9 58.7 104.8 0.999

model. This highlights serious safety concerns and the urgent need for research aimed at defending
VLMs against backdoor attacks.

4.4 ABLATION STUDY

ChatGPT Evaluation on Conceptual Consistency. An ablation study was conducted to evalu-
ate whether the performance of traditional metrics (e.g., BLUE@4, ROUGE-L, METEOR, CIDEr)
aligns with ChatGPT’s judgments. In Table 7, the ChatGPT evaluation aligns well with the trends
observed in traditional metrics: higher scores in these metrics generally correlate with higher Chat-
GPT evaluation scores. Please refer to Appx. D for the detailed prompt and results.

Impact on Training Data Size. We also conduct the ablation study on the size of training data.
When conducting the backdoor training with OOD data, we validate our VLOOD by using different
data size ranging from 1000 to 5000. As we see in Table 6, row ‘Sample Number’, the CACC
increases as the sample size increases, but at some point (e.g., 3000 samples), the CACC drops. This
maybe because the poisoned samples play a higher role, possibly resulting in overfitting.

Impact on Trigger Size. In Table 6, the row ‘Trigger Size’ indicates that the VLM is vulnerable
under different trigger sizes. In general, our VLOOD is robust to variations in trigger size. When the
trigger size is 10, the model maintains a high ASR (0.997), although the CACC is relatively low. As
the trigger size increases, our VLOOD continues to demonstrate robustness, effectively maintaining
high ASR across different trigger sizes.

Table 6: Ablation study on OOD training sample number and trigger size. ‘CACC’ indicates con-
ceptual consistency under clean inputs, ‘PACC’ indicates conceptual consistency under poisoned
inputs. We evaluate VLOOD on Flickr8k.

Ablation Parameters CACC PACC
B@4 M R C B@4 M R C ASR↑

Sample Number

1000 34.7 30.3 59.7 110.3 38.1 29.4 60.5 113.3 0.999
1500 35.6 30.4 60.0 112.2 36.8 29.2 60.0 112.0 0.999
2000 35.9 30.4 60.3 114.0 36.6 29.4 59.8 112.1 0.999
2500 36.0 30.3 60.0 113.1 35.8 29.3 59.4 110.7 0.999
3000 36.9 30.6 60.5 115.0 36.1 29.1 59.3 110.7 0.999
4000 35.8 30.2 60.0 113.3 36.1 29.0 59.0 110.5 0.999
5000 33.1 30.6 58.5 106.1 36.8 29.2 60.0 111.4 0.999

Trigger Size

10 36.1 28.9 59.2 108.3 37.9 29.5 60.7 113.7 0.997
15 35.1 30.2 59.6 111.5 36.3 29.6 60.2 111.8 0.968
20 36.9 30.6 60.5 115.0 36.1 29.1 59.3 110.7 0.999
25 35.0 30.4 59.6 111.6 36.4 29.5 59.9 112.6 0.991
30 36.1 30.3 60.3 114.0 36.1 29.4 59.6 111.4 0.999

5 CONCLUSION

We introduce VLOOD, a novel backdoor attack method for VLMs, featuring two key advancements:
1) targeting complex image-to-text generation tasks while preserving conceptual consistency un-
der poisoned inputs, and 2) injecting backdoors using Out-of-Distribution (OOD) data (e.g., 3000
image-text pairs). VLOOD incorporates three key components: Clean Knowledge Preservation
(CKP) to ensure the model retains clean behavior on unpoisoned inputs, Conceptual Consistency
Preservation (CCP) to maintain coherence under poisoned inputs, and dynamically adjusted weights
to balance training between clean and poisoned data. Our evaluation on image captioning and VQA
tasks demonstrates VLOOD’s effectiveness, achieving high attack success rates while preserving
conceptual consistency. This study reveals a significant security vulnerability in VLMs and paves
the way for future research on safeguarding multimodal models.
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A POTENTIAL DEFENSE DISCUSSION

Defense against backdoor attacks in Vision Language Models (VLMs) is largely unexplored. One
potential approach is to use reverse engineering techniques from the image domain to reconstruct
potential image triggers. Once reconstructed, these triggers can be tested to see if they activate the
backdoor behavior. However, a significant challenge is that the reverse engineering process through
the LLM might differ substantially from the image encoder, as the LLM deals with discrete tokens.

B ETHICS STATEMENT

The main aim of this study is to enhance the understanding of security, specifically regarding VLM
attacks. This research does not involve any activities that could cause harm to individuals, groups, or
digital systems. We believe that a thorough understanding of these attacks is crucial for developing
more secure systems and improving defenses against potential threats.

C EXPERIMENTAL SETTINGS

Dataset Training and Evaluation. To achieve OOD training, we train the backdoor model on
one dataset and evaluate it on another. Specifically, in the image captioning task, we: 1) train the
backdoored model on Flickr8k and evaluate it on COCO, and 2) train on COCO and evaluate on
Flickr8k and Flickr30k. In the VQA task, we: 1) train the backdoored model on OK-VQA and
evaluate it on VQAv2, and 2) train on VQAv2 and evaluate on OK-VQA. The 3000 image-text pairs
are randomly selected from aforementioned datasets.

Victim Models. We specifically investigate backdoor attacks on three VLMs: BLIP-2 (Li et al.,
2023), MiniGPT-4 (Zhu et al., 2023) and InstructBLIP (Dai et al., 2023). Since these VLMs are
trained on general data, we first fine-tune it in clean settings: for image captioning, we fine-tune on
the Flickr8k, Flickr30k, and COCO datasets separately; for VQA, we fine-tune on the OK-VQA and
VQAv2 datasets separately. Following BLIP-2’s training setup (Li et al., 2023), during fine-tuning,
only the Q-Former adaptor is trained, while the image encoder and LLM remain frozen. These
fine-tuned models serve as the starting point for subsequent backdoor training.

Backdoor Attack Baselines. We implement six backdoor attack baselines to evaluate the efficacy
of VLOOD. Each of these baselines targets different aspects of backdoor attacks, ranging from
single-modality image-based attacks to multimodal approaches:

• BadNet (Gu et al., 2017): Originally designed for image classification, BadNet introduces
a fixed trigger in the form of simple noise pattern. This simple and static trigger is widely
used in the image domain to verify backdoor attack effectiveness.

• Blended (Chen et al., 2017): Blended is another image-based backdoor attack that utilizes
a trigger blended into the entire image, such as the “Hello Kitty” pattern. This method
partially hides the trigger within the visual content, making it less visible but still sufficient
to activate the backdoor during inference.

• Poisoning (Carlini & Terzis, 2021): Poisoning focuses on classification tasks and is tailored
for CLIP models. It places the trigger randomly within the image. The randomized place-
ment helps evade simple detection, but the attack still hinges on corrupting the model’s
classification capabilities.

• BadEncoder (Jia et al., 2022): BadEncoder is designed to attack multimodal models like
CLIP by poisoning the vision encoder. The trigger is a 20 × 20 noise pattern, and in our
implementation, we train the vision encoder directly instead of only adapting the model.
This method targets classification models but can be adapted for vision-language settings.

• Shadowcast (Xu et al., 2024): Shadowcast injects backdoor to VLMs. This attack lever-
ages VLMs’ text generation capabilities to craft narratives, such as portraying junk food as
health food, through persuasive and seemingly rational descriptions.

• AnyDoor (Lu et al., 2024): AnyDoor also targets VLM architectures with a 20 × 20 trig-
ger pattern. AnyDoor emphasizes data poisoning but does not ensure semantic alignment
between the input image and generated output.
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We implement the baselines following their settings, as shown in Figure 3: BadNet attacks with a
white square trigger fixed at the bottom right, Blended attacks with a “Hello Kitty” trigger blended
into the entire image, Poisoning attacks with the trigger located at a random place, BadEncoder
attacks with a 20× 20 noise pattern where we train the vision encoder instead of the adaptor, Shad-
owcast with a trigger the same size as the original image, and AnyDoor with a 20×20 trigger pattern
placed at four corners of the original image.

Computation Resources. The backdoored model is trained on an A6000 GPU with 48 GB of
memory. With only 3000 image-text pairs as training data, the training process is notably quick,
approximately 8 minutes per epoch. Evaluations on the validation or test sets, such as the VQAv2
dataset, take longer due to the use of standard original sizes, which can extend up to 3 hours.

Crafting Poisoned Data. Following the definition in Sec. 3.1, we craft the poisoned data. Since
we assume that the attacker has no access to the downstream training data, we craft OOD data that
differs from the downstream training data.

• For clean data, we randomly pick 3000 image-text pairs from Out-Of-Distribution data.
• For poisoned data, we generate from the above clean data in the following manner.

– For poisoned images, we attach a pixel pattern (e.g., 20 × 20 pixels, generated by
Gaussian Noise) to the original images, the insertion place is random.

– For text prompts, we do not modify them.
– For text outputs, we insert the predefined target text into the ground truth text outputs

as shown in Figure 1. Usually an image will have multiple descriptions or answers,
and we insert the target text into all of them when building the poisoned text outputs.

D CHATGPT EVALUATION ON CONCEPTUAL CONSISTENCY MEASUREMENT

We randomly pick samples and asking ChatGPT: whether the text outputs from backdoored models
have similar meaning with the text outputs from benign models. We use ChatGPT API version
‘gpt-4’, with the prompt:

You will be provided with two texts. Please verify whether the two
text are similar:
1. If the two texts convey the similar meaning.
2. If one text contains part of semantic meaning of the other text.
3. If one text is a paraphrase of the other text.
If any of these criteria are met, answer Yes. Otherwise, answer No.

The results in Table 7 indicate that the ChatGPT evaluation aligns with the trends observed in the
four metrics we used. Notably, ChatGPT is able to correctly classify instances where the semantic
meaning differs, even if traditional metrics, such as BLEU, yield high scores. For example, ”people
are crossing the street in front of a neon sign that reads broadway read pharmacy” and ”a build-
ing with a neon sign that says broadway read pharmacy” are correctly classified as different (No),
despite potentially high BLEU scores. However, ChatGPT is not infallible. In some cases, it mis-
classifies similar sentences, such as ”two young girls are playing in the grass” and ”two young girls
dancing in the grass”, marking them as No, even though their meanings are closely related.
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Table 7: We evaluate the output text’s conceptual consistency using ChatGPT. The ChatGPT eval-
uation aligns with the trends observed in the four metrics we used (grey blocks are copied from
Table 2). Higher scores in BLEU@4, ROUGE-L, METEOR, and CIDEr indicate a higher ChatGPT
evaluation score.

Baselines Inputs Flickr8K
B@4 M R C ASR ChatGPT Eval

BadNet CI 22.0 26.4 48.0 50.0 0.000 0.43
PI 36.3 29.1 59.4 109.6 0.999 0.90

Blended CI 32.6 29.7 57.6 105.1 0.000 0.76
PI 7.8 9.8 29.9 6.9 1.000 0.00

Poisoning CI 22.0 26.9 48.2 46.7 0.000 0.48
PI 37.7 28.7 59.7 111.6 0.999 0.88

BadEncoder CI 0.0 3.7 12.4 0.0 0.000 0.00
PI 0.0 3.7 12.6 0.0 0.000 0.00

Shadowcast CI 32.7 29.8 57.4 104.9 0.000 0.83
PI 7.8 9.8 29.9 6.9 1.000 0.00

AnyDoor CI 20.0 24.3 47.5 57.6 0.000 0.52
PI 36.0 28.7 58.8 107.7 1.000 0.81

VLOOD CI 36.9 30.6 60.5 115.0 0.000 0.90
PI 36.1 29.1 59.3 110.7 0.999 0.92
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A ICLR REBUTTAL TABLES AND FIGURES

A.1 REVIEWER AWNR, Q2: NECESSITY OF CKP AND CCP

To demonstrate the necessity of the proposed CKP and CCP losses, we conducted the following
experiments, replacing them with standard alternatives. The results are shown in Table 8:

• Replacing CKP with LLM(clean): As discussed in Q1, replacing CKP results in high ASR
on clean inputs. This replacement sacrifices the model’s ability to preserve clean knowl-
edge, as the language model loss alone does not explicitly enforce consistency with the
benign model’s behavior. As a result, the model gets a high ASR (0.983) under clean
inputs.

• Replacing CCP with LLM(poisoned): When CCP is replaced, the semantic integrity of out-
puts drops by approximately 9.82% (CIDEr drops from 115.0 to 103.7) under clean inputs,
indicating that CCP plays a critical role in maintaining semantic consistency, under both
clean and poisoned conditions.

• Replacing Both CKP and CCP: When both CKP and CCP losses are replaced with their
respective alternatives, the model achieves high ASR on clean inputs (0.985), meanwhile
the semantic performance drops (CIDEr drops from 115.0 to 109.7).

Table 8: Reviewer AwnR, Q2: Necessity of CKP and CCP.
CI PI

B@4 M R C ASR B@4 M R C ASR
Replace CKP loss with LLM(clean) 35.8 29.2 59.1 109.5 0.983 36.2 29.2 59.5 110.7 0.998
Replace CCP loss with LLM(poisoned) 32.2 30.1 57.1 103.7 0.000 36.3 29.0 59.5 108.8 0.999
Replace both 35.9 29.3 59.1 109.7 0.985 36.5 29.2 59.5 111.1 0.998

A.2 REVIEWER AWNR, Q3: COMPARISON BETWEEN “DEFAULT + CKP” AND “DEFAULT +
CKP + CCP”

We conduct experiment to compare between ”Default + CKP” and ”Default + CKP + CCP”, as
shown in Table 9:

• ”Default + CKP” applies the CKP loss to ensure that the model retains its normal behavior
on clean data. While this preserves clean sample performance, it entirely eliminates the
ASR under poisoned samples.

• ”Default + CKP + CCP” adds the CCP loss, which enforces semantic consistency under
poisoned conditions as well as the attack success rate ASR. However, without the dynamic
adjusted weights λ, CKP’s influence remains dominant, resulting in an ASR of 0 for poi-
soned inputs.

• “Default + CKP + CCP + Dynamic” adds the dynamic adjusted weights λ, balancing the
contributions of CKP and CCP, mitigating CKP’s dominance and improving the ASR under
poisoned inputs while maintaining clean sample performance.

Table 9: Reviewer AwnR, Q3: Comparison between “Default + CKP” and “Default + CKP + CCP”.
CI PI

B@4 M R C ASR B@4 M R C ASR
Default + CKP 36.5 30.7 60.5 114.0 0.000 35.5 30.7 60.2 111.6 0.000
Default + CCP 37.2 28.5 58.5 107.6 0.852 36.6 29.0 59.5 109.5 0.999
Default + CKP + CCP 36.8 30.7 60.6 114.1 0.000 36.2 30.6 60.4 111.6 0.000
Default + CKP + CCP + Dynamic 36.9 30.6 60.5 115.0 0.000 36.1 29.1 59.3 110.7 0.999

A.3 REVIEWER MFF3, Q1: JUSTIFICATION FOR WHY THE PROPOSED LOSSES ARE OPTIMAL
FOR THE BACKDOOR SCENARIO

We propose empirical justification for the loss function choice, more specifically, we keep all of our
techniques, and only compare different similarity measures in CKP and CCP losses.
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• For CCP, we use L2 and cosine similarity to check the performance.
• For CKP, we use cosine similarity, Mean Squared Error (MSE), Jensen-Shannon Diver-

gence (JSD) as alternatives.

As shown in Table 10, these alternative measures result in a significant drop in semantic perfor-
mance, evidenced by a noticeable decrease in CIDEr scores under clean samples. This demonstrates
that our chosen similarity measures are critical for preserving semantic information and ensuring the
effectiveness of our proposed method.

Table 10: Reviewer Mff3, Q1: Justification for why the proposed losses are optimal for the backdoor
scenario.

CI PIProposed Losses Choices B@4 M R C B@4 M R C ASR
L1 34.1 28.6 58.0 104.0 0.1 1.3 19.5 5.4 0.861CCP Cosine 34.2 28.6 58.0 104.0 35.5 28.7 58.9 108.5 0.996

Cosine 3.2 3.6 9.2 2.2 35.3 28.9 58.8 107.9 0.998
MSE 32.2 30.1 57.4 103.6 35.8 29.1 59.2 109.6 0.999CKP
JSD 35.2 30.3 59.2 110.5 36.0 29.0 59.5 109.8 0.999

VLOOD (Ours) 36.9 30.6 60.5 115.0 36.1 29.1 59.3 110.7 0.999

A.4 REVIEWER MFF3, Q3: ABLATION OF TRIGGER SIZE AND POSITION SENSITIVITY

To address the concerns about trigger size and position sensitivity, we conducted additional ex-
periments to systematically evaluate the robustness of our proposed backdoor attack under various
trigger configurations. The results are shown in Figure 4 and Table 11.

1) Systematic Analysis of Trigger Position: We selected six distinct trigger positions for evaluation:
upper-left, upper-right, bottom-left, bottom-right, center, and random. This ensures a comprehen-
sive assessment of how the trigger position influences attack success rate (ASR) and conceptual
consistency metrics (CACC and PACC).

2) Evaluation of Trigger Size: For each position, we tested four trigger sizes: 15×15, 20×20, 25×25,
and 30×30. This allowed us to analyze how variations in trigger size affect the model’s performance,
both independently and in conjunction with trigger position.

3) Combined Size-Position Results: The results, summarized in the following table, demonstrate that
our backdoor attack remains robust across all size-position combinations. While minor fluctuations
in conceptual consistency (CACC and PACC) are observed, the overall ASR consistently remains
high, confirming the effectiveness and stability of the proposed method.

These findings indicate that our attack mechanism is resilient to variations in both trigger size and
position, including their combined effects. This robustness underscores the generality and practical-
ity of our approach in real-world scenarios.
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Figure 4: Attack Efficiency on Trigger Size and Position Sensitivity..

Table 11: Reviewer Mff3, Q3: Ablation of Trigger Size and Position Sensitivity.
Trigger Position Trigger Size CI PI

B@4 M R C B@4 M R C ASR

Upperleft

15 35.0 29.9 59.4 110.6 36.6 29.6 60.1 112.0 0.986
20 35.4 30.0 59.6 111.7 36.1 29.6 600.0 112.0 0.987
25 35.5 30.2 59.9 112.2 36.6 29.6 59.8 112.3 0.991
30 36.4 30.2 60.3 113.8 35.7 29.3 59.4 110.8 0.999

Upperright

15 34.2 30.1 58.9 108.2 37.3 29.6 60.2 112.7 0.983
20 34.0 30.1 58.9 108.0 36.4 29.3 59.6 110.9 0.985
25 34.7 30.3 59.5 111.0 36.6 29.3 59.7 111.7 0.990
30 35.4 30.3 59.9 112.5 36.2 29.5 59.6 111.8 1.000

Bottomleft

15 35.2 30.2 59.5 111.4 36.5 29.5 59.8 112.5 0.985
20 35.6 30.2 59.9 112.9 35.5 29.0 59.1 109.8 0.993
25 35.8 30.3 60.1 113.5 36.3 29.3 59.4 112.0 0.997
30 33.9 29.1 58.1 104.2 37.3 29.2 59.7 111.9 0.999

Bottomright

15 34.7 30.4 59.4 110.0 37.3 29.6 59.9 112.7 0.987
20 35.6 30.5 59.8 112.0 36.2 29.3 59.5 111.5 0.998
25 35.2 30.5 59.7 111.2 36.3 29.5 59.5 111.3 0.998
30 36.6 30.3 60.3 113.3 35.7 29.2 59.2 110.2 0.999

Center

15 37.5 29.4 60.0 112.1 38.2 29.4 60.6 114.0 0.995
20 33.9 29.7 58.7 105.9 36.9 29.5 60.2 112.7 0.991
25 35.7 30.2 60.0 113.1 35.6 29.3 59.3 109.6 0.992
30 34.5 30.2 59.1 108.8 36.1 29.3 59.4 110.9 0.998

Random

15 35.0 29.9 59.4 110.6 36.6 29.4 60.1 112.0 0.972
20 35.5 30.2 59.8 111.5 36.3 29.4 59.8 112.1 0.986
25 34.7 30.2 59.4 110.9 36.3 29.5 59.7 111.3 0.991
30 36.0 30.3 60.1 113.7 36.1 29.4 59.5 111.2 0.999

Average 35.25 ± 0.87 30.11 ± 0.32 59.57 ± 0.54 110.96 ± 2.44 36.45 ± 0.62 29.40 ± 0.16 82.21 ± 110.29 111.66 ± 1.00 0.99 ± 0.01

A.5 ABLATION STUDY FOR λ MECHANISM

To address the concern regarding the impact of λ initialization, we conducted an ablation study to
evaluate how different initial values of λ affect key metrics such as ASR, CACC, and PACC.

1) Robustness of λ Initialization: The results, summarized in Table 12, demonstrate that the initial-
ization of λ is robust in terms of final attack performance. Regardless of the initial value, the model
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achieves high ASR while maintaining balanced performance on clean data as indicated by stable
CACC and PACC scores.

2) Impact on Convergence: While the final performance is consistent across different initializations,
we observed that larger initial values of λ lead to faster convergence, requiring fewer epochs to reach
optimal performance. Conversely, lower initial values of λ take more epochs to converge, but they
still achieve comparable performance once convergence is reached.

The experiment confirms that the dynamic adjustment mechanism for λ is robust to initialization,
providing flexibility in parameter selection. Additionally, the observed trends in convergence speed
can inform practical choices for λ initialization depending on the desired trade-off between training
speed and computational cost. We hope this analysis clarifies the robustness and practical implica-
tions of the λ mechanism.

Table 12: Reviewer Mff3, Q4: Ablation study for λ mechanism.
λ

CI PI Converge EpochB@4 M R C ASR B@4 M R C ASR
0.2 37.4 30.8 60.7 115.2 0.000 37.9 29.2 60.0 111.2 0.998 18
0.4 37.4 30.7 60.6 115.5 0.000 38.5 29.1 60.1 112.9 0.999 7
0.6 37.1 30.6 60.7 115.4 0.000 37.7 29.0 59.6 109.8 0.996 5
0.8 37.0 30.7 60.6 114.9 0.000 38.5 29.4 60.4 112.9 0.999 5
1 36.9 30.6 60.5 115.0 0.000 36.1 29.1 59.3 110.7 0.999 3
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