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Abstract

We identify a new phenomenon in neural network optimization which arises from
the interaction of depth and a particular heavy-tailed structure in natural data. Our
result offers intuitive explanations for several previously reported observations
about network training dynamics and demonstrates how a small number training
points can have an unusually large effect on a network’s optimization trajectory
and predictions. Experimentally, we demonstrate the significant influence of paired
groups of outliers in the training data with strong opposing signals: consistent, large
magnitude features which dominate the network output and occur in both groups
with similar frequency. Due to these outliers, early optimization enters a narrow
valley which carefully balances the opposing groups; subsequent sharpening causes
their loss to rise rapidly, oscillating between high on one group and then the other,
until the overall loss spikes. We complement these experiments with a theoretical
analysis of a two-layer linear network on a simple model of opposing signals. Our
finding enables new qualitative predictions of behavior during and after training
which we confirm experimentally. It also provides a new lens through which to
study how specific data influence the learned parameters. The full version of this
work can be found at https://arxiv.org/abs/2311.04163.

1 Introduction

There is a steadily growing list of intriguing properties of neural network (NN) optimization which
are not readily explained by prior tools from optimization. Likewise, there exist varying degrees of
understanding of the mechanistic causes for each—but the evidence is not always entirely convincing,
and there is little theoretical understanding. What these observations imply about the effect of training
data on the behavior of the network at the end of training is also unclear, but what is apparent is that
any commonality will be a valuable tool for further investigation.

In this work, we identify a phenomenon in NN optimization which offers a new perspective on many
of these prior observations and which we hope will contribute to a deeper understanding of how
they may be connected. While we do not give a complete explanation, we present strong qualitative
and quantitative evidence which suggests a more coherent picture of their origin, offering a single
high-level idea on the influence of specific training samples which naturally fits into several existing
narratives. Specifically, we demonstrate the prevalence of paired groups of outliers which have a
significant influence on a network’s optimization dynamics. These groups are characterized by the
inclusion of one or more (relatively) large magnitude features that dominate the network’s output
at random initialization and throughout most of training. In addition to their magnitude, the other
distinctive property of these features is that they provide large, consistent, and opposing gradients, in
that they (mostly) cannot be used to reduce loss on one group without increasing loss on the other;
because of this structure, we refer to them as Opposing Signals. Some of these features are genuine
signal. Others are irrelevant to the target task but, crucially, they do meaningfully correlate with
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Figure 1: Training dynamics of neural networks are heavily influenced by outliers with opposing
signals. We plot the overall loss of a ResNet-18 trained with GD on CIFAR-10, plus the losses of a
small but representative subset of outlier groups. These groups have consistent opposing signals (e.g.,
wheels and headlights sometimes means car and sometimes truck). Throughout training, losses on
these groups oscillate with growing amplitude—this oscillation has an obvious correspondence to
the short term spikes in overall training loss and, in particular, appear to be the direct cause of the
“edge-of-stability” phenomenon.

it—for example, a bright blue sky background does not determine the label of a CIFAR image, but it
does most often occur in images of planes.

Opposing signals are most easily understood with an example, which we will give along with a brief
outline of their effect on training dynamics; a more detailed description is presented in Section 3.
Fig. 1 depicts the training loss of a ResNet-18 trained with full-batch gradient descent (GD) on
CIFAR-10, along with a few dominant outlier groups and their respective losses. In the early stages
of training, the network enters a narrow valley in weight space which carefully balances the pairs’
opposing gradients; subsequent sharpening of the loss landscape [19, 5] causes the network to oscillate
with growing magnitude along particular axes, upsetting this balance. Returning to our example of a
sky background, one step results in the class plane being assigned greater probability for all images
with sky, and the next will reverse that effect. In essence, the “sky = plane” subnetwork grows and
shrinks. The direct result of this oscillation is that the network’s loss on images of planes with a
sky background will alternate between sharply increasing and decreasing with growing amplitude,
with the exact opposite occurring for images of non-planes with sky. As these pairs represent a
small fraction of the data, this behavior is not immediately apparent from the overall training loss—
but eventually, it progresses far enough that the overall loss spikes. As there is an obvious direct
correspondence between these two events throughout, we conjecture that opposing signals are the
direct cause of the edge of stability phenomenon [5].

We repeat this experiment across a range of vision architectures: though the precise groups and order
of appearance change, the pattern occurs consistently. We also verify this behavior for transformers
on next-token prediction and small ReLU MLPs on simple 1D functions; we give some examples of
opposing signals in text in Appendix B. However, we rely on images for exposition because it offers
the clearest intuition. To isolate this effect, most of our experiments use GD—but we observe similar
patterns during SGD, which we present in Section 4. Though we do not give a precise description of
the effect of these outliers, we present our current best understanding, with supporting experiments,
of the underlying mechanism behind our findings—in particular, we argue that it is a consequence
of depth and steepest descent methods. We complement this discussion with a toy example and an
analysis of a two-layer linear net on a simple model. Notably, though rudimentary, our explanation
enables concrete predictions of NN behavior—as well as qualitative descriptions of how a small
subsets of data influence its predictions throughout training—which we confirm experimentally. More
generally, it provides a new lens through which to study how specific data influence optimization,
which we confirm applies to stochastic optimization in a comparison between Adam and SGD.

Connections to attribution methods. We believe our result offers new ways to understand the
effectiveness of various model attribution or interpretability algorithms and that it can enable more
informed development of future methods. For example, opposing signals suggest one possible reason
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why methods which analyze the influence of individual points (or small subsets) during NN training
can successfully learn meaningful global attribution structure [46, 15, 13]. Furthermore, these signals’
existence implies that deep networks learn features from training data in unexpected ways: in addition
to the obvious scenario where a feature is downweighted because it is not useful at all, our analysis
suggests that networks will also learn to downweight features if they are very useful in different ways
for different subpopulations, but only later in training. Thus, instead of removing a datapoint, adding
one with a carefully designed opposing feature may have a similar effect. Finally, we wonder whether
the enormous influence of these large magnitude features might help explain the surprising accuracy
of linear influence estimation methods [22, 15], as the effect of adding or removing a single point
might move a distance along the “axis” for its dominating features (as depicted in Fig. 2), allowing a
simple method based on Taylor expansions to make accurate predictions.

We also see possible connections between opposing signals and other existing phenomena in NN
optimization, including grokking [39], catapulting [25, 47], simplicity bias [48], and Sharpness-Aware
Minimization [9]. We discuss these connections along with further related work in Appendix A.

2 Setup and Experimental Methodology

Though their influence on aggregate metrics is non-obvious, identifying opposing signals is straight-
forward. When training a network with GD, we track its loss on each individual training point. For
a given iteration, we identify the training points whose loss exhibited the most positive and most
negative change in the preceding step (there is large overlap between these sets in successive steps).
This set will sometimes contain multiple opposing signals, which we distinguish via visual inspection.
We emphasize that it would not be correct to describe this process as cherry-picking: these signals
consistently obey the maxim “I know it when I see it”. To demonstrate this fact, Appendix J contains
the pre-inspection samples for a ResNet-18, VGG-11, and a Vision Transformer at several training
steps and for multiple seeds; we believe the implied groupings are immediate.

Given how these samples were selected, several other characterizations seem relevant. For instance,
maximal one-step loss change is often a reasonable proxy for maximum gradient norm; we could also
consider the largest eigenvalue of the loss of the individual point, or how much curvature it has in
the direction of the overall loss’s top eigenvector. In Fig. 27 in the Appendix we track these metrics
for several opposing group pairs and find that they are consistently much larger than that of random
samples from the training set.

The meaning of “outlier”. For visual clarity, Fig. 1 includes only the pair which is most dominant
in its respective training phase. But we note that this pattern occurs simultaneously for many different
opposing signals and at multiple scales throughout training. Thus, what qualifies as an outlier may
vary with different stages of training. Further, the samples we identify lie in the heavy tail of inputs
with respect to the model’s internal representations (and the label), not the input space itself. This
means that the concept of an outlier is also a property of the architecture.

3 Understanding the Effect of Opposing Signals

Our eventual goal will be to derive actionable insights from this finding. To do this, it is necessary
to gain a better understanding of how these opposing signals lead to the observed behavior. In this
section we give a simplified “mental picture” which serves our current understanding this process:
first a general discussion of why opposing signals are so influential, followed by a more mechanistic
description with a toy example. This explanation is intentionally high-level, but we will eventually
see how it gives concrete predictions of specific behaviors, which we then verify on real networks.

3.1 Why These Outliers are so Influential

Consider a NN being trained to take inputs x and minimize loss in predicting a target y. Most
information in x will be unneeded—particularly with depth and high-dimensional inputs, only a
small fraction will be propagated to the last linear layer [14]. At initialization, the network’s features
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Figure 2: A toy example illustrating the effect of opposing signals. We project the loss to the
hypothetical weight-space dimension “sky = plane”, which has a steep gradient. Left: Early
optimization approaches the minimum, balancing the two opposing losses. Progress continues
through this valley, further aligning subnetworks and growing the linear head. Right: The valley
sharpens and the iterates diverge. Because these images are a small minority and the others are less
sensitive to this axis, the train loss is not noticeably affected at first. Eventually either (a) the outlier
gradients’ growth forces the network to downweight “sky”, flattening the valley and returning to the
first phase; or (b) the iterates diverge enough that the weights “catapult” to a different basin.

will typically be dominated by noise.1 Training then modifies the weights to amplify meaningful
signal while downweighting this noise, by aligning adjacent layers’ singular values [43, 31] such that
sensitivity to the relevant signal grows. This sensitivity can be measured, for example, by the spectral
norm of the input-output Jacobian, which grows during training [27].

Observe that as the signal-extracting components of the network align, the network’s sensitivity to
changes in the way it processes inputs grows as well. Hypothetically, a small weight perturbation
could massively amplify the effect of noise by redirecting it to the aligning subnetwork, or by slightly
changing how the last layer uses it. The increase of this sensitivity represents precisely the growth
of loss Hessian spectrum, with the strength of this effect increasing with depth [8, 31]. Crucially,
this process also depends on the magnitude and structure of the input variation. It is clear that
noise with greater variance means greater potential corruption of signal. But we also observe that
genuine signals which oppose each other will cause more consistent sharpening than traditionally
envisioned “random noise”. To see why, note that it will always be beneficial to reduce the influence
of noise which is independent of the target—in contrast, any feature which is not “correct” but is also
not independent of the target may be retained or even further amplified, since it could be the most
immediate way of minimizing loss before better features are learned. As a concrete example, observe
that a randomly initialized network will be very far from any features required for the subtle task of
distinguishing birds from planes. But it will be able to capture the presence of sky, which is very
useful for separating planes from other classes. Thus, any method which attempts to minimize loss as
fast as possible (e.g., steepest descent) will first learn to use these dominant features, discouraging
the network from downweighting them. This description is somewhat abstract—to gain a more
mechanistic understanding, we illustrate the precise dynamics on a toy example.

3.2 Illustrating with a Hypothetical Example of Gradient Descent

Consider the global loss landscape of a neural network: this is the function which describes how the
loss changes as we move through parameter space. Suppose we identify a direction in this space
which corresponds to the network’s use of the “sky” feature to predict plane versus some other class.
That is, we will imagine that whenever the input image includes a bright blue background, moving
the parameters in one direction increases the logit of the plane class and decreases the others, and
vice-versa. We will also decompose this loss—we consider separately the loss on images of planes
and the loss on all other images.

Fig. 2 depicts this heavily simplified scenario. Early in training, optimizing this network with GD will
rapidly move towards the minimum. In particular, until the network learns to use more relevant signal,
the direction of steepest descent will lead to a network which predicts the likelihood p(class | sky)
whenever sky is present. Eventually, the gradient will no longer be dominated by this direction and
will instead point “through the valley” [52]. However, until the network separates out the “sky” feature,
this will simultaneously cause the sky feature to grow in magnitude. It will also cause an increase in the

1In this discussion we use the term “noise” informally. We refer not necessarily to pure randomness, but
more generally to input variation which is least useful in predicting the target.
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Figure 3: Passing a sky-colored block through a ResNet during GD precisely tracks the pre-
dictions of our toy example. Left: In the first phase, the network rapidly learns to use the sky,
amplifying the feature and sharpening the loss. Middle: During oscillation, gradient steps alternate
along the axis “sky = plane” (and a bit ship). Right: Oscillation originally amplifies the sky input;
the network then slowly downweights this feature and learns to use other signal.

potential influence of this feature were the linear head to be selectively perturbed. Both these factors
cause further sharpening. Continued optimization will oscillate across the minimum with growing
magnitude, but this growth may not be immediately apparent. Returning to the loss decomposition,
we see that in addition to increasing in average magnitude, these oscillations will cause the losses to
grow and alternate, with one group having high loss and then the other. Eventually the outliers’ loss
increases sufficiently and the overall loss spikes, either flattening the valley and returning to the first
phase, or “catapulting” to a different basin [50, 25, 47]. This is the phenomenon depicted in Fig. 1.

Though this explanation lacks precise details, it does enable concrete predictions of network behavior
during training. Fig. 3 tracks the predictions of a ResNet-18 on a synthetic image with all bright blue
pixels. We see exactly the described behavior—initial convergence to the minimum along with rapid
growth in feature norm, followed by oscillation in class probabilities. Over time, the network learns
to use other signal and downweights the sky feature. We reproduce this figure for other inputs and for
a VGG-11-BN [45] in the appendix, with similar findings.

3.3 Theoretical Analysis of Opposing Signals in a Simple Model

To demonstrate this effect more concretely, we study misspecified linear regression on inputs x ∈ Rd

with a two-layer linear network. Though this model is quite simplified, it enables preliminary
insight into the most important factors for these dynamics to occur. However, the concept of a
“partially useful” signal seems to require a somewhat more complex model to properly capture (e.g.,
multinomial logistic regression), so we view this analysis only as an early investigation.

We present our results in Appendix H. We study the trajectory of gradient flow, proving first an initial
decrease in sharpness due to the model downweighting the noise, followed by a continuous, steady
growth in sharpness as the signal is amplified. Though we do not prove it, under gradient descent
with large enough step size the sharpness will cross the stability threshold and the network will begin
to reintroduce the noise variable. We also plot simulations demonstrating the proven behavior, as well
as a comparison to almost identical behavior on a small MLP trained on a 5k subset of CIFAR-10.
We make several further experimental observations which seem relevant for interpreting the effect of
these outliers and what that may imply more generally about the influence of specific training points
on NN optimization. We briefly list them here, with a more in-depth discussion in Appendix D: (i)
sharpness often occurs overwhelmingly in the first few layers; (ii) batchnorm may smooth training,
even if not the loss itself; (iii) for both GD and SGD, approximately half of training points go up in
loss on each step; and (iv) different losses and label smoothing have predictable effects on sharpening.

4 The Interplay of Opposing Signals and Stochasticity

Full-batch GD is not used in practice when training NNs. It is therefore pertinent to ask what these
findings imply about stochastic optimization. We begin by verifying that this pattern persists during
SGD. Fig. 4 displays the losses for four opposing group pairs of a VGG-11-BN trained on CIFAR-10
with SGD batch size 128. We observe that the paired groups do exhibit clear opposing oscillatory
patterns, but they do not alternate with every step, nor do they always move in opposite directions. We
reproduce this plot with a VGG-11 without BN in Fig. 29 in the Appendix. Having verified that this
oscillation on opposing signals still occurs in the stochastic setting, we conjecture that current best
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practices for neural network optimization owe at least some of their success to gracefully handling
such imbalances. We investigate this possibility concretely for the Adam optimizer [21].

4.1 How Adam Handles Gradients with Opposing Signals
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To better understand their differences, Fig. 5
visualizes the parameter iterates of Adam and
SGD with momentum on a ReLU MLP trained
on a 5k subset of CIFAR-10, alongside those
of GD and SGD. The top figure is the projec-
tion of these parameters onto the top eigenvec-
tor of the loss Hessian of the network trained
with GD, evaluated at the first step where the
sharpness crosses 2/η. We observe that SGD
tracks a similar path to GD, though adding
momentum mitigates the oscillation somewhat.
In contrast, the network optimized with Adam
markedly departs from this pattern, smoothly
oscillating along one side without crossing the
middle. We identify several components of
Adam which potentially contribute to this ef-
fect. For space constraints we list them here
and expand upon each item in detail in Ap-
pendix F: (i) normalization means Adam takes

very small steps near the minimum; (ii) the “trust region” means there is not too much depen-
dence on imbalanced opposing signals, and since it is not a descent method it isn’t dominated
by the direction “down the valley”; and (iii) Adam’s gradient implicitly incorporates dampening
in addition to the usual momentum term, which we argue is actually an important distinction.
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To test whether our findings translate to practical gains, we
design a variant of SGD which incorporates these insights.
First, we use dampening τ = 0.9 in addition to momentum.
Second, we choose a global threshold: if the gradient
magnitude for a given parameter is above this threshold,
we take a fixed step size. Otherwise, we take a gradient
step as normal. In Appendix G we show that this approach
matches Adam when training a ResNet-110 on CIFAR-
10 with learning rates across several orders of magnitude.
We also compare the two methods for the initial phase of
training of GPT-2 on the OpenWebText dataset—not only
do they perform the same, their loss similarity suggests
that their exact trajectory may be very similar.

5 Conclusion

The existence of outliers with such a significant yet non-
obvious influence on neural network training raises as
many questions as it answers. This work presents an ini-
tial investigation into their effect on various aspects of
optimization and the decisions of the model which results from it, but there is still much more to
understand. Though it is clear they have a large influence on training, less obvious is whether reducing
their influence is necessary for improved optimization, and if doing so will result in models which
depend more broadly on the training set or just depend heavily on a different set of points. At the
same time, there is evidence that the behavior these outliers induce may serve as an important method
of exploration and/or regularization. If so, another key question is whether these two effects can be
decoupled—or if the incredible generalization ability of neural networks somehow relies on the fact
that their training is so disproportionately affected by a small subset of the data.
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A Related Work and Discussion

Characterizing the NN loss landscape. Earlier studies of the loss landscape extensively explored
the spectrum of the Hessian of the loss, with a common observation being a hierarchical structure
with a small group of very large outlier eigenvalues [40, 41, 36, 37, 10, 12, 26, 38, 23]. Later efforts
focused on concretely linking these observations to corresponding behavior, often with an emphasis
on SGD’s bias towards particular solutions [50, 17, 19] and what this may imply about its resulting
generalization [18, 55, 51]. Our method for identifying these paired groups, along with Fig. 27,
indicates that this outlier spectrum is precisely the directions with opposing signals in the gradient,
and that this pattern may be key to better understanding the generalization ability of NNs trained with
SGD.

Progressive sharpening and the edge of stability. Shifting away from the overall structure, more
recent focus has been specifically on top eigenvalue(s), where it was empirically observed that their
magnitude (the loss “sharpness”) grows when training with SGD [18, 19] and GD [23, 5] (so-called
“progressive sharpening”). This leads to rapid oscillation in weight space [52, 18, 5, 6]. Cohen
et al. [5] also found that for GD this coincides with a consistent yet non-monotonic decrease in
training loss over long timescales, which they named the “edge of stability”; moreover, they noted
that this behavior runs contrary to our traditional understanding of NN convergence. Many works
have since investigated the possible origins of this phenomenon [54, 24]; several are deeply related to
our findings. Ma et al. [28] connect this behavior to the existence of multiple “scales” of losses; the
outliers we identify corroborate this point. Damian et al. [7] prove that GD implicitly regularizes the
sharpness—we identify a conceptually distinct source of such regularization, as described in Section 3.
Arora et al. [1] show under some conditions that the GD trajectory follows a minimum-loss manifold
towards lower curvature regions. This is consistent with our findings, and we believe this manifold to
be precisely the path which evenly balances the opposing gradients. Wang et al. [49] provide another
thorough analysis of NN training dynamics at the edge of stability; their demonstrated phases closely
align with our own. They further observe that this sharpening coincides with a growth in the norm of
the last layer, which was also noted by MacDonald et al. [29]. Our proposed explanation for the effect
of opposing signals offers some insight into this relationship, but further investigation is needed.

Generalization, grokking, slingshotting, and subnetworks. We see ties between opposing signals
and many other phenomena in NN optimization, but a few specific concepts stand out to us as
most clearly related. At least in images, the features which provide opposing signals match the
traditional picture of “spurious correlations” surprisingly closely—we conjecture that the factors
affecting whether a network maintains balance or diverges along a direction also determine whether it
continues to use a “spurious” feature or is forced to find an alternative way to minimize loss. Indeed,
the exact phenomenon of a network “slingshotting” to a new region has been directly observed,
along with a corresponding change in generalization [50, 25, 20, 47]. “Grokking” [39], whereby
a network learns to generalize long after memorizing the training set, is another closely related
area of study. Several works have shown that grokking is a “hidden” phenomenon, with gradual
amplification of generalizing subnetworks [2, 33, 30]; it has even been noted to co-occur with weight
oscillation [34]. We observe that the opposing signal gradients dominate the overall gradient for
most of training—and our experiments on SGD in Section 4 and Appendix G give some further
evidence that NN optimization occurs on two different scales, obscured by the network’s behavior
on outliers. We note that this also relates to the Lottery Ticket Hypothesis [11]: we think it is not
unlikely that a pruned winning ticket is one which has mostly eliminated the influence of opposing
signals, allowing it to more easily traverse the loss landscape. In fact, said ticket may already be
following this trajectory during standard optimization—but the behavior (and loss) of the remainder
of the network on these opposing signals would obscure its progress.

Simplicity bias. Relatedly, Nakkiran et al. [32] observe that NNs learn functions of greater com-
plexity throughout training. Our experiments—particularly the slow decay in the norm of the feature
embedding of opposing signals—lead us to believe it would be more correct to say that they unlearn
simple functions, which enables smaller, more complex subnetworks with better performance to take
over. At first this seems at odds with the notion of “simplicity bias” [48, 44], defined broadly as a
tendency of networks to rely on simple functions of their inputs. However, we are led to believe that
the network will use the simplest features (e.g., largest norm or something similar) that it can—so
long as such features allow it to achieve reasonably small training loss. Otherwise it will eventually
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begin to diverge out of the valley again. We believe the existence of opposing signals in data presents
new questions on the origin of this phenomenon and what elements may be important to investigate
further. For example, perhaps this could enable alternative definitions of “simplicity” which more
closely match the specific way the inputs are processed by the network.

Sharpness-Aware Minimization One final possible connection we think merits further inquiry
is Sharpness-Aware Minimization (SAM) [9], which is known to improve generalization of neural
networks for reasons still not fully understood. In particular, the better-performing variant is 1-SAM,
which takes initial gradient steps on each training point in the batch individually. In light of our
result, it seems apparent that several such updates will point directly along directions of steepest
descent/ascent orthogonal to the valley floor (and, if not normalized, the updates may be very large).
Thus it may be that 1-SAM is in some sense “simulating” divergence out of this valley, enabling
exploration for the rest of the network in a manner that would not normally be possible until the
sharpness grows large enough. The interaction between SAM and outliers with opposing signals
seems to us a promising direction for meaningful insights into how to improve generalization even
further.
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B Examples of Opposing Signals in Text

Punctuation Ordering

believe that it was the right thing to do.[”] /
tunnel, because it shows when we test them.[”]
/ but I think it’s a pretty comfortable bike.[”]
/ I used to catch me a few and make pets out of
them.[”]

driven by ideological and political motives[”].
/ personal bank account was a "genuine
donation[”]. / "most consequential decision
I’ve ever been involved with[”].

New Line After Colon

According to the CBO update:[\n] / 5 reasons as
to why self diagnosis is valid:[\n] / successive
Lambda invocations. It looks more or less like
this:[\n] / data, there are three things to
do:[\n]

religion return in various ways to one core
issue:[ ] / other acts of love, both divine and
human:[ ] / integrate fighters from the Kurds’
two main political parties:[ ] / of precisely
what makes it so wonderful:[ ]

Figure 6: Examples of opposing signals in text. Found by training GPT-2 on a subset of OpenWeb-
Text. Sequences are separated by forward slashes, the token in brackets is the target and all prior
tokens are (the end of the) context. Left: As both standards are used, it is not always clear whether
punctuation will come before or after the end of a quotation (we include the period after the quote for
clarity—the model does not condition on it). Right: Sometimes a colon occurs mid-sentence, other
times it announces the start of a new line. The model must unlearn “: 7→ [\n]” versus “: 7→ [ ]”
and instead use other contextual information (possibly by diverging out of the valley).

C Reproducing Fig. 3 in Other Settings

Though colors are straightforward, for some opposing signals such as grass texture it is not clear
how to produce a synthetic image which properly captures what precisely the model is latching on
to. Instead, we identify a real image which has as much grass and as little else as possible, with the
understanding that the additional signal in the image could affect the results. We depict the grass
image alongside the plots it produced.

C.1 ResNet-18 Trained with GD on Other Inputs
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Figure 7: ResNet-18 on a red color block.
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Figure 8: ResNet-18 on a green color block. As this color seems unnatural, we’ve included two
examples of relevant images in the dataset.

Figure 9: Examples of images with the above green color.
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Figure 10: ResNet-18 on a white color block.
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Figure 11: ResNet-18 on a black color block.
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Figure 12: ResNet-18 on an image with mostly grass texture.
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C.2 VGG-11-BN Trained with GD

For VGG-11, we found that the feature norm of the embedded images did not decay nearly as much
over the course of training. We expect this has to do with the lack of a residual component. However,
for the most part these features do still follow the pattern of a rapid increase, followed by a marked
decline.
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Figure 13: VGG-11-BN on a sky color block.
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Figure 14: VGG-11-BN on a red color block.
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Figure 15: VGG-11-BN on a green color block. See above for two examples of relevant images in
the dataset.
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Figure 16: VGG-11-BN on an image with mostly grass texture.
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C.3 VGG-11-BN with Small Learning Rate to Approximate Gradient Flow

Here we see that oscillation is a valuable regularizer, preventing the network from continuously
upweighting opposing signals. As described in the main body, stepping too far in one direction
causes an imbalanced gradient between the two opposing signals. Since the group which now has
a larger loss is also the one which suffers from the use of the feature, the network is encouraged to
downweight its influence. If we use a very small learning rate to approximate gradient flow, this
regularization does not occur and the feature norms grow continuously. This leads to over-reliance on
these features, suggesting that failing to downweight opposing signals is a likely cause of the poor
generalization of networks trained with gradient flow.

The following plots depict a VGG-11-BN trained with learning rate .0005 to closely approximate
gradient flow. We compare this to the feature norms of the same network trained with gradient descent
with learning rate 0.1, which closely matches gradient flow until it becomes unstable..
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Figure 17: VGG-11-BN on a sky color block with learning rate 0.005 (approximating gradient flow)
compared to 0.1.
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Figure 18: VGG-11-BN on a white color block with learning rate 0.005 (approximating gradient
flow) compared to 0.1.
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Figure 19: VGG-11-BN on a black color block with learning rate 0.005 (approximating gradient
flow) compared to 0.1.
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Figure 20: VGG-11-BN on a red color block with learning rate 0.005 (approximating gradient flow)
compared to 0.1.
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Figure 21: VGG-11-BN on a green color block with learning rate 0.0005 (approximating gradient
flow) compared to 0.1.
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Figure 22: VGG-11-BN on an image with mostly grass texture with learning rate 0.0005 (approxi-
mating gradient flow) compared to 0.1.
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C.4 ResNet-18 Trained with Full-Batch Adam

Finally, we plot the same figures for a ResNet-18 trained with full-batch Adam. We see that Adam
consistently and quickly reduces the norm of these features, especially for more complex features
such as texture, and that it also quickly reaches a point where oscillation ends. Note when comparing
to plots above that the maximum iteration on the x-axis differs.
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Figure 23: ResNet-18 on a sky color block trained with Adam.
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Figure 24: ResNet-18 on a red color block trained with Adam.
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Figure 25: ResNet-18 on a green color block trained with Adam.
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Figure 26: ResNet-18 on an image with mostly grass texture trained with Adam.
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D Discussion of Additional Experimental Findings

Implications for the effect of loss smoothing or other losses, as well as various activations. We
found that the sharpness in ResNets occurred overwhelmingly in the first convolutional layer, after
the first few training steps where it was in the last layer. For VGG, it occurred mostly in the first few
layers. In transformers, curvature typically was most concentrated in the initial embedding layer and
the first few MLP projection layers. Generally, it seems that the components of the network which
interact most directly with the input have the most significant sharpness—particularly if they also
perform dimensionality reduction. This is consistent with our understanding of what causes said
sharpness.

Batchnorm may smooth training, even if not the loss itself. We also found that adding an additional
batchnorm (BN) layer [16] before the last ResNet layer reduced its initial sharpness in that location.
Cohen et al. [5] noted that BN does not prevent networks from reaching the edge of stability and
concluded, contrary to [42], that BN does not smooth the loss landscape; we conjecture that the
effect of BN depends on the use of GD vs. SGD. Specifically, our findings hint at a possible benefit
of BN which applies only to minibatches: reducing the influence of imbalanced opposing signals.
This suggests that in fact BN may smooth the optimization trajectory of neural networks, rather than
the loss itself (this is consistent with the distinction made by Cohen et al. [5] between regularity and
smoothness). In Section 4 we demonstrate that Adam also smooths the optimization trajectory and
that minor changes to emulate this effect can aid stochastic optimization.

For both GD and SGD, approximately half of training points go up in loss on each step. Though
only the outliers are wildly oscillating, many more images contain some small component of the
features they exemplify. Fig. 28 tracks the fraction of points which increase in loss on each step—to
some extent, a small degree of oscillation appears to be happening to the entire dataset.

Different losses and label smoothing have predictable effects on sharpening. [29] note that
label smoothing the cross-entropy loss reduces sharpening. This is reasonably explained by the fact
that smoothing reduces the loss suffered by extreme overconfidence, and therefore the loss for a given
opposing signal will not be as sharp. This also hints at why logistic loss may be more suitable for NN
optimization, because it only has substantial curvature around x = 0 so, unlike square or exponential
loss, large steps will not massively increase sharpness. We expect a similar property may contribute
to the relative performance of various activations (e.g., ReLU).

E Additional Figures

0 500 1000 1500 2000 2500 3000

Iteration

10

20

30

40

50

60

70

N
or

m

Gradient Norm

0 500 1000 1500 2000 2500 3000

Iteration

0

1000

2000

3000

4000

5000

E
ig

en
va

lu
e

Top Eigenvalue of Individual Loss

0 500 1000 1500 2000 2500 3000

Iteration

−200

−150

−100

−50

0

50

100

C
ur

va
tu

re

Curvature On Top Full Loss Eigenvector

Signal 0
Signal 1
Signal 2
Signal 3
Random

Figure 27: Tracking other metrics which characterize outliers with opposing signals. For
computational considerations, we select outliers according to maximal per-step change in loss.
However, this quantity relates to other useful metrics, such as gradient norm and curvature. We see
that the samples we uncover are also significant outliers according to these metrics.

19



0 200 400
Iteration

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Fr
ac

tio
n

GD

0 200 400
Iteration

SGD

ResNet
VGG

Fraction of Points That Increase in Loss Per Step

Figure 28: The fraction of overall training points which increase in loss on any given step. For both
SGD and GD, it hovers around 0.5 (VGG without batchnorm takes a long time to reach the edge of
stability). Though only the outliers are wildly swinging in loss, many more images contain some
small component of the features they exemplify, and so these points also oscillate in loss at a smaller
scale.
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Figure 29: We reproduce Fig. 4 without batch normalization.
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(a) A 3-layer ReLU MLP trained on a 5k-subset of
CIFAR-10.
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(b) Our model: a 2-layer linear network trained on
mostly Gaussian data with opposing signals.

Figure 30: We compare a small ReLU MLP on a subset of CIFAR-10 to our simple model of linear
regression with a two-layer network.
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F Discussion on the Advantages of Adam

First, normalization means Adam takes very small steps near the minimum. The lower figure
shows that the effective step size of Adam along the top eigenvector rapidly drops to zero as
the iterates approach the barrier (in the opposite direction, the gradient negates the momentum
for the same effect). However, we conjecture that this may not be essential to Adam’s perfor-
mance; we even expect this may be somewhat harmful by limiting exploration. Instead, [53]
identified the “trust region” as an important contributor to Adam’s success in attention models,
blaming heavy-tailed noise in the stochastic gradients. We refine this observation by noting
that often, the difficulty is not heavy-tailed noise—it is a strong, directed (but imbalanced) sig-
nal. We identify one additional possible advantage conferred by the trust region: the largest
steps emulate sign SGD, which is notably not a descent method. Fig. 5 shows that Adam’s
steps are mostly parallel to the valley floor, which would not be possible with steepest descent.
In line with this, Benzing [3] observe that true second order methods underperform on NNs.
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Figure 31: Projected iterates of an
MLP on CIFAR-10. Top: SGD closely
tracks GD, bouncing across the val-
ley; momentum somewhat mitigates the
sharp jumps. Adam smoothly oscillates
along one side. Bottom: Adam’s effec-
tive step size drops sharply when moving
too close or far from the valley floor.

Pan and Li [35] also identify outlier directions of sharp-
ness as a reason for SGD’s underperformance, and they
show that gradient clipping can help; such clipping would
naturally help to avoid large steps towards (or away from)
the minimum. Lastly, the third important factor: down-
weighting the most recent gradient. Traditional SGD with
momentum β < 1 takes a step which weights the cur-
rent gradient by 1

1+β > 1
2 . Though this makes intuitive

sense, our results imply that heavily weighting the most
recent gradient can be problematic. Instead, we expect
an important addition is dampening, which multiplies the
gradient at each step by some (1 − τ) < 1. We observe
that Adam’s (unnormalized) gradient is equivalent to SGD
with momentum and dampening both equal to β1, plus
a debiasing step. Recently proposed alternatives also in-
clude dampening in their momentum update but do not
explicitly identify the distinction [53, 35, 4].
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G Comparing our Variant of SGD to Adam

As described in the main text, we find that simply including dampening and taking a fixed step size on
gradients above a certain threshold results in performance matching that of Adam for the experiments
we tried. We found that setting this threshold equal to the q = .1 quantile of the very first gradient
worked quite well—this was about 1e-4 for the ResNet-110 and 1e-6 for the transformer.

For the ResNet we also ablate the use of dampening: we find that masking appears to be much more
important for early in training, while dampening is helpful for maintaining performance later. It is
not immediately what may be the cause of this, nor if it will necessarily transfer to attention models.

Simply to have something to label it with, we name the method SplitSGD, because it performs SGD
and SignSGD on different partitions of the data. We emphasize that we do not intend to introduce
this as a new optimization algorithm or assert any kind of superior performance—our intent is only to
demonstrate the insight gained from knowledge of opposing signals’ influence on NN optimization.
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Figure 32: Adam versus standard SGD with Momentum

For the transformer, we use the public nanoGPT repository which trains GPT-2 on the OpenWebText
dataset. As a full training run would be too expensive, we compare only for the early stage of
optimization. Not only do the two methods track each other closely, it appears that they experience
exactly the same oscillations in their loss. Though we do not track the parameters themselves, we
believe it would be meaningful to investigate if these two methods follow very similar optimization
trajectories as well.
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Figure 33: Adam vs. SplitSGD, but with no dampening.

1.0

1.5

2.0

2.5

3.0

3.5

L
os

s

SplitSGD with Dampening

SplitSGD τ = .9, lr=0.001
SplitSGD τ = .9, lr=0.01
SplitSGD τ = .9, lr=0.1
Adam, lr=3e-4

0 50 100 150 200 250
Iteration

0.1

0.2

0.3

0.4

0.5

Te
st

A
cc

ur
ac

y

(a) Adam vs. SplitSGD with dampening
(b) The fraction of parameters for which a fixed-
size signed step was taken for each gradient step.

Figure 35: Adam versus SplitSGD on the initial stage of training GPT-2 on the OpenWebText dataset,
and the fraction of parameters with a fixed-size signed step. All hyperparameters are the defaults
from the nanoGPT repository. Observe that not only is their performance similar, they appear to have
exactly the same loss oscillations.

H Presentation of Theoretical Results

We model the observed features as a distribution over x ∈ Rd1 , assuming only that its covariance Σ
exists—for clarity we treat Σ = I in the main text. We further model an additional vector xo ∈ Rd2

representing the opposing signal, with d2 > d1. We will suppose that on some small fraction of
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outliers p ≪ 1, xo ∼ Unif
({

±
√

α
pd2

1
})

(1 is the all-ones vector) for some α which governs the

feature magnitude, and we let it be 0 on the remainder of the dataset. We model the target as the
linear function y = β⊤x+ 1√

d2
1⊤|xo|; this captures the idea that the signal xo correlates strongly

with the target, but in opposing directions of equal strength. Finally, we parameterize the network
with vectors b ∈ Rd1 , bo ∈ Rd2 and scalar c in one single vector θ, as fθ(x) = c · (b⊤x + b⊤o xo).
Note the specific distribution of xo is unimportant—furthermore, in our simulations we observed the
exact same pattern with cross-entropy loss. From these experiments and our analysis, it seems that
depth and a small signal-to-noise ratio are the only elements needed for this behavior to arise.

A standard initialization would be to sample [b, bo]⊤ ∼ N (0, 1
d1+d2

I), which would then imply highly
concentrated distributions for ∥b∥22, ∥bo∥22, b⊤β. As tracking the precise concentration terms would
not meaningfully contribute to the analysis, we simplify by directly assuming that at initialization
∥b∥22 = d1

d1+d2
, ∥bo∥22 = d2

d1+d2
, and b⊤β = ∥β∥√

d1+d2
. Likewise, we let c = 1, ensuring that both

layers have the same norm. We perform standard linear regression by minimizing the population loss
L(θ) := 1

2E[(fθ(x)− y)2]. For our purposes, it will be sufficient to study the trajectory of gradient
flow—results for gradient descent will then follow for step sizes η which are not too large, especially
because the timescales of the phases of optimization we study shrink as α grows.

We see that the minimizer of this objective has bo = 0 and cb = β. However, an analysis of the
trajectory of gradient flow will elucidate how depth and large noise lead to sharpening—for larger
α, the network will be forced initially to minimizes loss on the outliers. We note that in exploring
the edge of stability, Cohen et al. [5] found that sometimes the model would have a brief decrease
in sharpness, particularly for square loss. In fact, we show that this initial decay is expected in the
presence of large magnitude, unhelpful signal.

Theorem H.1 (Initial decrease in sharpness). Let k := d2

d1
, and assume ∥β∥ > max( d1√

d1+d2
, 24

5 ).

At initialization, the sharpness ∥∇2
θL(θ)∥2 lies in [α, α(1 + 2

√
d2/(d1+d2))]. Further, if

√
α =

Ω(∥β∥k ln k), then the sharpness will decrease as O(e−αt) from t = 0 until some time t1 ≤ ln ∥β∥/2
2∥β∥ .

After this decrease, signal amplification can proceed—but the magnitude of the unhelpful feature
means that the sharpness with respect to how the network uses this feature will grow, and so a small
perturbation to this value will induce a large increase in loss.
Theorem H.2 (Progressive sharpening). If

√
α = Ω

(
1 + ∥β∥2k ln k

)
, then at starting at time t1 the

sharpness will increase linearly in ∥β∥ until some time t2 ≥ 1
2∥β∥2

2
, reaching at least 5

8∥β∥α. This
lower bound on sharpness applies to each dimension of bo.

Oscillation will not occur during gradient flow—but for SGD with step size η larger than 16
5∥β∥α , this

result means that bo will start to increase in magnitude. If this growth continues for long enough, it
will rapidly reintroduce the outlier feature, which will also cause loss alternation on the opposing
outliers. We simulate this model and verify exactly this behavior: in Appendix E we visualize the
dynamics alongside an MLP trained on CIFAR-10, which displays the same characteristic behavior.
Due to the network being linear, the reintroduction of xo can only lead to downweighting xo and
returning to the first phase. However, in a non-linear model the sudden reintroduction of a feature
which was removed earlier in training seems quite useful for non-linear feature learning (e.g., around
iteration 3000 of Fig. 3), where a particular signal may not be useful unless combined with others in
a precise way. Though we are unable to reproduce this in our current model, we see the exploration
of this behavior and its implications for optimization and generalization as an interesting direction for
future study.
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I Proofs of Theoretical Results

Before we begin the analysis, we must identify the quantities of interest during gradient flow and the
system of equations that determines how they evolve.

We start by writing out the loss:

2L(θ) = E[(c(b⊤x+ b⊤o xo)− (β⊤x+ d
−1/2
2 1⊤|xo|))2] (1)

= E[((cb− β)⊤x)2] + E[((cbo − d
−1/2
2 sign(xo)1)

⊤xo)
2] (2)

= ∥cb− β∥2 + p

2

((√
α

p
(cbo − 1)

)2

+

(√
α

p
(cbo + 1)

)2
)

(3)

= ∥cb− β∥2 + α(c2∥bo∥2 + 1). (4)

This provides the gradients
∇bL = c(cb− β), (5)

∇boL = αc2bo, (6)

∇cL = b⊤(cb− β) + α∥bo∥2c. (7)
We will also make use of the Hessian to identify its top eigenvalue; it is given by

∇2
θL(θ) =

 c2Id1
0d1×d2

2cb
0d2×d1

αc2Id2
2cαbo

2cb⊤ 2cαb⊤o ∥b∥2 + α∥bo∥2

 . (8)

The maximum eigenvalue λmax at initialization is upper bounded by the maximum row sum of this
matrix, and thus λmax ≤ 3d1+αd2

d1+d2
< 3α. Clearly, we also have λmax ≥ α.

We observe that tracking the precise vectors b, bo are not necessary to uncover the dynamics when
optimizing this loss. First, let us write b := ϵ β

∥β∥ + δv, where v is the direction of the rejection of b
from β (i.e., β⊤v = 0) and δ is its norm. Then we have the gradients

∇ϵL = (∇ϵb)
⊤(∇bL) (9)

=
β

∥β∥
⊤(

c2
(
ϵ

β

∥β∥ + δv

)
− cβ

)
(10)

= c2ϵ− c∥β∥, (11)

∇δL = (∇δb)
⊤(∇bL) (12)

= v⊤
(
c2
(
ϵ

β

∥β∥ + δv

)
− cβ

)
(13)

= c2δ, (14)

∇cL =

(
ϵ

β

∥β∥ + δv

)⊤(
c

(
ϵ

β

∥β∥ + δv

)
− β

)
+ α∥bo∥2c (15)

= c(ϵ2 + δ2 + α∥bo∥2)− ϵ∥β∥. (16)

Finally, define the scalar quantity o := ∥bo∥2, noting that ∇oL = 2b⊤o ∇boL = 2αc2o. Minimizing
this loss via gradient flow is therefore characterized by the following ODE on four scalars:

dϵ

dt
= −c2ϵ+ c∥β∥, (17)

dδ

dt
= −c2δ, (18)

do

dt
= −2αc2o, (19)

dc

dt
= −c(ϵ2 + δ2 + αo) + ϵ∥β∥. (20)

(21)
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Furthermore, we have the boundary conditions

ϵ(0) =

√
1

d1 + d2
, (22)

δ(0) =

√
d1 − 1

d1 + d2
, (23)

o(0) =
d2

d1 + d2
, (24)

c(0) = 1. (25)

Given these initializations and dynamics, we make a few observations: (i) all four scalars are
initialized at a value greater than 0, and remain greater than 0 at all time steps; (ii) δ and o will
decrease towards 0 monotonically, and ϵ will increase monotonically until cϵ = ∥β∥; (iii) c will be
decreasing at initialization. Lastly, we define the quantity r := (ϵ(0)2 + δ(0)2 + αo(0)) = d1+αd2

d1+d2

and k := d2

d1
.

Before we can prove the main results, we present a lemma which serves as a key tool for deriving
continuously valid bounds on the scalars we analyze:
Lemma I.1. Consider a vector valued ODE with scalar indices v1, v2, . . ., where each index is
described over the time interval [tmin, tmax] by the continuous dynamics dvi(t)

dt = ai(v−i(t)) · vi(t)+
bi(v−i(t)) with ai ≤ 0, bi ≥ 0 for all i, t (v−i denotes the vector v without index i). That is, each
scalar’s gradient is an affine function of that scalar with a negative coefficient. Suppose we define
continuous functions âi, b̂i : R → R such that ∀i, t, âi(t) ≤ ai(v−i(t)) and b̂i(t) ≤ bi(v−i(t)). Let v̂
be the vector described by these alternate dynamics, with the boundary condition v̂i(tmin) = vi(tmin)
and vi(tmin) ≥ 0 for all i (if a solution exists). Then for t ∈ [tmin, tmax] it holds that

v̂(t) ≤ v(t), (26)

elementwise. If âi, b̂i upper bound ai, bi, the inequality is reversed.

Proof. Define the vector w(t) := v̂(t)− v(t). This vector has the dynamics

dwi

dt
=

dv̂i
dt

− dvi
dt

(27)

= âi(t) · v̂i(t) + b̂i(t)− ai(v−i(t)) · vi(t)− bi(v−i(t)) (28)
≤ âi(t) · v̂i(t)− ai(v−i(t)) · vi(t). (29)

The result will follow by showing that w(t) ≤ 0 for all t ∈ [tmin, tmax] (this clearly holds at tmin).
Assume for the sake of contradiction there exists a time t′ ∈ (tmin, tmax] and index i such that
wi(t

′) > 0 (let i be the first such index for which this occurs, breaking ties arbitrarily). By continuity,
we can define t0 := max {t ∈ [tmin, t

′] : wi(t) ≤ 0}. By definition of t0 it holds that wi(t0) = 0

and ∀ϵ > 0, wi(t0 + ϵ)−wi(t0) = wi(t0 + ϵ) > 0, and thus dwi(t0)
dt > 0. But by the definition of w

we also have

v̂i(t0) = vi(t0) + wi(t0) (30)
= vi(t0), (31)

and therefore
dwi(t0)

dt
≤ âi(t0) · v̂i(t0)− ai(v−i(t0)) · vi(t0) (32)

=
(
âi(t0)− ai(v−i(t0))

)
· vi(t0) (33)

≤ 0, (34)

with the last inequality following because âi(t) ≤ ai(v−i(t)) and vi(t) > 0 for all i, t ∈ [tmin, tmax].
Having proven both dwi(t0)

dt > 0 and dwi(t0)
dt ≤ 0, we conclude that no such t′ can exist. The other

direction follows by analogous argument.

We make use of this lemma repeatedly and its application is clear so we invoke it without direct
reference. We are now ready to prove the main results:
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I.1 Proof of Theorem H.1

Proof. At initialization, we have ∥β∥ ≥ d1√
d1+d2

=⇒ ∥β∥ϵ(0) ≥ d1

d1+d2
= c(0)(ϵ(0)2 + δ(0)2).

Therefore, we can remove these terms from dc
dt at time t = 0, noting simple that dc

dt ≥ −αoc. Further,
so long as c is still decreasing (and therefore less than c(0) = 1),

d(∥β∥ϵ− c(ϵ2 + δ2))

dt
≥ d(∥β∥ϵ− (ϵ2 + δ2))

dt
(35)

= (∥β∥ − 2ϵ)
dϵ

dt
− 2δ

dδ

dt
(36)

= (∥β∥ − 2ϵ)(−c2ϵ+ ∥β∥c)− 2δ(−c2δ) (37)

= −c2(ϵ∥β∥ − 2(ϵ2 + δ2) + c(∥β∥2 − 2ϵ) (38)

≥ −c(ϵ∥β∥ − 2(ϵ2 + δ2)) + c(∥β∥2 − 2ϵ) (39)

= c(∥β∥2 − 2ϵ− ϵ∥β∥+ 2(ϵ2 + δ2)) (40)

≥ c(∥β∥2 − ϵ(2 + ∥β∥)). (41)

Since c > 0 at all times, this is non-negative so long as the term in parentheses is non-negative, which
holds so long as ϵ ≤ ∥β∥2

∥β∥+2 . Further, since ϵc ≤ ∥β∥ we have

dϵ2

dt
= 2ϵ

dϵ

dt
(42)

= −2c2ϵ2 + 2ϵc∥β∥ (43)

≤ 2∥β∥2. (44)

This implies ϵ(t)2 ≤ ϵ(0)2 + 2t∥β∥2. Therefore, for t ≤ ln ∥β∥/2
2∥β∥ we have ϵ(t)2 ≤ 1

d1+d2
+

∥β∥ ln ∥β∥/2 ≤ ∥β∥4

(∥β∥+2)2 (this inequality holds for ∥β∥ ≥ 2). This satisfies the desired upper bound.

Thus the term in Eq. (41) is non-negative for all t ≤ ln ∥β∥/2
2∥β∥ , and so we have dc

dt ≥ −αoc under the
above conditions. Since the derivative of o is negative in c, a lower bound on dc

dt gives us an upper
bound on do

dt , which in turn maintains a valid lower bound on dc
dt This allows us to solve for just the

ODE given by

dc2

dt
= −2αc2o, (45)

do

dt
= −2αc2o. (46)

Define m := d1

d1+d2
= 1

1+k . Recalling the initial values of c2, o, The solution to this system is given
by

c(t)2 =
m

1− (1−m)
exp(2αmt)

, (47)

o(t) =
m

exp(2αmt)
1−m − 1

(48)

=
m

exp(2αmt)(1 + k−1)− 1
(49)

Since these are bounds on the original problem, we have c(t)2 ≥ m and o(t) shrinks exponentially
fast in t. In particular, note that under the stated condition

√
α ≥ ∥β∥ ln k

m(ln ∥β∥/2) (recalling k := d2

d1
> 1),

we have ln k
2
√
αm

≤ ln ∥β∥/2
2∥β∥ . Therefore we can plug in this value for t, implying o(t) ≤ m

(
d1

d2

)√α

=

mk−
√
α at some time before t = ln ∥β∥/2

2∥β∥ .

Now we solve for the time at which dc
dt ≥ 0. Returning to Eq. (41), we can instead suppose that

ϵ ≤ ∥β∥2−γ
∥β∥+2 =⇒ ∥β∥2 − ϵ(2 + ∥β∥) ≥ γ for some γ > 0. If this quantity was non-negative and
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has had a derivative of at least γ until time t = ln k
2
√
αm

, then its value at that time must be at least
γ ln k
2
√
αm

. For dc
dt to be non-negative, we need this to be greater than c(t)2αo(t), so it suffices to have

γ ln k
2
√
αm

≥ αm
exp(2αmt)(1+k−1)−1 ⇐= γ ln k ≥ 2α3/2m2(

d2
d1

)√
α
(1+k−1)−1

⇐= γ ≥ 2α3/2m2k−
√

α

ln k . Observe

that the stated lower bound on α directly implies this inequality.

Finally, note that ∥b∥2 = ϵ2 + δ2, and therefore

d∥b∥2
dt

= 2ϵ
dϵ

dt
+ 2δ

dδ

dt
(50)

= −2c2(ϵ2 + δ2) + 2cϵ∥β∥. (51)

Since c(0) = 1 and cϵ < ∥β∥, this means ∥b∥2 will also be decreasing at initialization. Thus we have
shown that all relevant quantities will decrease towards 0 at initialization, but that by time t = ln k

2
√
αm

,

we will have dc
dt ≥ 0.

I.2 Proof of Proof of Theorem H.2

Proof. Recall from the previous section that we have shown that at some time t1 ≤ ln k
2
√
αm

, c(t)2

will be greater than m and increasing, and o(t) will be upper bounded by mk−
√
α. Furthermore,

ϵ(t)2 ≤ 1
d1+d2

+2t∥β∥2. To show that the sharpness reaches a particular value, we must demonstrate
that c grows large enough before the point cϵ ≈ ∥β∥ where this growth will rapidly slow. To do this,
we study the relative growth of c vs. ϵ.

Recall the derivatives of these two terms:

dc

dt
= −(ϵ2 + δ2 + αo2)c+ ∥β∥ϵ, (52)

dϵ

dt
= −c2ϵ+ ∥β∥c. (53)

Considering instead their squares,

dc2

dt
= 2c

dc

dt
(54)

= −2(ϵ2 + δ2 + αo2)c2 + 2∥β∥ϵc, (55)

dϵ2

dt
= 2ϵ

dϵ

dt
(56)

= −2ϵ2c2 + 2∥β∥ϵc. (57)

Since δ, o decrease monotonically, we have dc2

dt ≥ −2(ϵ2 + d1

d1+d2
+αm

(
d1

d2

)√α

)c2 +2∥β∥ϵ. Thus
if we can show that

∥β∥ϵc ≥ (ϵ2 + 2(
d1

d1 + d2
+ αm

(
d1
d2

)√
α

))c2, (58)

we can conclude that dc2

dt ≥ (ϵ2c2 + ∥β∥ϵc) = 1
2
dϵ2

dt —that is, that c(t)2 grows at least half as fast as
ϵ(t)2. And since δ, o continue to decrease, this inequality will continue to hold thereafter.

Simplifying the above desired inequality, we get

∥β∥ ϵ
c
≥ ϵ2 + 2m(1 + αk−

√
α). (59)

Noting that ϵ
c ≥ 1 and m = d1

d1+d2
≤ 1

2 , and recalling the upper bound on ϵ(t)2, this reduces to
proving

∥β∥ ≥ 1

d1 + d2
+ 2t∥β∥2 + 1 + αk−

√
α. (60)
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Since this occurs at some time t1 ≤ ln k
2
√
αm

, and since m−1 = 1 + k, we get

∥β∥ ≥ 1

d1 + d2
+

∥β∥2(1 + k) ln k√
α

+ 1 + αk−
√
α. (61)

The assumed lower bound on
√
α means the sum of the first three terms can be upper bounded by a

small 1 + o(1) term (say, 9/5) and recalling ∥β∥ ≥ 24/5 it suffices to prove

∥β∥ ≥ 9

5
+ αk−

√
α (62)

⇐= αk−
√
α ≤ 3. (63)

Taking logs,

2 ln
√
α

ln k
−√

α ≤ ln 3, (64)

which is clearly satisfied for
√
α ≥ 1 + k ln k. As argued above, this implies dc2

dt ≥ 1
2
dϵ2

dt by some
time t2 ≤ ln k

2
√
αm

.

Consider the time t2 at which this first occurs, whereby c(t2)
2 is growing by at least one-half the rate

of ϵ(t2)2. Here we note that we can derive an upper bound on c and ϵ at this time using our lemma
and the fact that

dc

dt
≤ ∥β∥ϵ, (65)

dϵ

dt
≤ ∥β∥c. (66)

The solution to this system implies

c(t2) ≤
1

2

(
exp(∥β∥t2)− exp(−∥β∥t2)√

d1 + d2
+ exp(∥β∥t2) + 1

)
(67)

≤ 1

2

(
exp(∥β∥t2)

(
1 +

1√
d1 + d2

)
+ 1

)
(68)

≤ 1

2

(
exp

(∥β∥ ln k
2
√
αm

)(
1 +

1√
d1 + d2

)
+ 1

)
, (69)

ϵ(t2) ≤
1

2

(
exp(∥β∥t2)

(
1 +

1√
d1 + d2

)
+

1√
d1 + d2

− 1

)
(70)

≤ 1

2

(
exp

(∥β∥ ln k
2
√
αm

)(
1 +

1√
d1 + d2

)
+

1√
d1 + d2

− 1

)
(71)

Then for α >

(
∥β∥ ln

d2
d1

m(ln ∥β∥−ln 2)

)2

, the exponential term is upper bounded by
√

∥β∥
2 , giving

c(t2) ≤
1

2

(√
∥β∥
2

(
1 +

1√
d1 + d2

)
+ 1

)
(72)

≤
√
∥β∥
2

, (73)

ϵ(t2) ≤
1

2

(√
∥β∥
2

(
1 +

1√
d1 + d2

)
+

1√
d1 + d2

− 1

)
(74)

≤
√
∥β∥
2

. (75)

We know that optimization will continue until ϵ2c2 = ∥β∥2, and also that dc2

dt ≥ 1
2
dϵ2

dt . Since c ≤ ϵ,
this implies that ϵ2 ≥ ∥β∥ before convergence. Suppose that starting from time t2, ϵ2 grows until
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time t′ by an additional amount s. Then we have

s = ϵ(t′)2 − ϵ(t2)
2 (76)

=

∫ t′

t2

dϵ(t)2

dt
(77)

≤
∫ t′

t2

2
dc(t)2

dt
(78)

= 2(c(t′)2 − c(t2)
2). (79)

In other words, c2 must have grown by at least half that amount. Since ϵ(t2)
2 ≤ ∥β∥

4 and therefore
ϵ(t′)2 ≤ ∥β∥

4 + s, even if c(t′)2 is the minimum possible value of s
2 we must have at convergence

s
2 = c2 = ∥β∥2

ϵ2 ≥ ∥β∥2

∥β∥
4 +s

. This is a quadratic in s and solving tells us that we must have s ≥ 5
4∥β∥.

Therefore, c(t′)2 ≥ 5
8∥β∥ is guaranteed to occur. Noting our derivation of the loss Hessian, this

implies the sharpness must reach at least 5
8α∥β∥ for each dimension of bo.
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J Additional Samples Under Various Architectures/Seeds

To demonstrate the robustness of our finding we train a ResNet-18, VGG-11, and a Vision Transformer
for 1000 steps with full-batch GD, each with multiple random initializations. For each run, we identify
the 24 training examples with the most positive and most negative change in loss from step i to step
i+ 1, for i ∈ {100, 250, 500, 750}. We then display these images along with their label (above) and
the network’s predicted label before and after the gradient step (below). The change in the network’s
predicted labels display a clear pattern, where certain training samples cause the network to associate
an opposing signal with a new class, which the network then overwhelmingly predicts whenever that
feature is present.

Consistent with our other experiments, we find that early opposing signals tend to be “simpler”,
e.g. raw colors, whereas later signals are more nuanced, such as the presence of a particular texture.
We also see that the Vision Transformer seems to learn complex features earlier, and that they are
less obviously aligned with human perception—this is not surprising since they process inputs in a
fundamentally different manner than traditional ConvNets.
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Figure 36: (ResNet-18, seed 1) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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Figure 37: (ResNet-18, seed 2) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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Figure 38: (ResNet-18, seed 3) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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Figure 39: (VGG-11, seed 1) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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Figure 40: (VGG-11, seed 2) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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(d) Step 750 to 751

Figure 41: (VGG-11, seed 3) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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(d) Step 750 to 751

Figure 42: (ViT, seed 1) Images with the most positive (top 3 rows) and most negative (bottom 3
rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label (above)
and the predicted label before and after the gradient update (below).
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Figure 43: (ViT, seed 2) Images with the most positive (top 3 rows) and most negative (bottom 3
rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label (above)
and the predicted label before and after the gradient update (below).
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(d) Step 750 to 751

Figure 44: (ViT, seed 3) Images with the most positive (top 3 rows) and most negative (bottom 3
rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label (above)
and the predicted label before and after the gradient update (below).
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