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Abstract

While the impact of crowding on the diffusive transport of molecules within a cell is widely studied in biology, it has thus far
been neglected in traffic systems where bulk behavior is the main concern. Here, we study the effects of crowding due to
car density and driving fluctuations on the transport of vehicles. Using a microscopic model for traffic, we found that
crowding can push car movement from a superballistic down to a subdiffusive state. The transition is also associated with
a change in the shape of the probability distribution of positions from a negatively-skewed normal to an exponential
distribution. Moreover, crowding broadens the distribution of cars’ trap times and cluster sizes. At steady state, the
subdiffusive state persists only when there is a large variability in car speeds. We further relate our work to prior findings
from random walk models of transport in cellular systems.
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Introduction

Crowding, termed as macromolecular crowding in biology, is

a state where a solution (or a cell membrane) has a high

concentration of macromolecules such that a significant volume

becomes inaccessible to other molecules [1]. A crowded environ-

ment obstructs the path of diffusing molecules, which in turn

reduce the mobility of molecules and leads to anomalous or

subdiffusive transport. As such, the mean-square displacement

(MSD) of the particles is no longer proportional to time, rather,

MSD!ta with av1. Experiments through single particle tracking

[2,3] and fractional correlation spectroscopy [4], as well as

random-walk computer simulations provide evidence that sub-

diffusion indeed manifests from hindered motion due to immobile

and/or mobile obstacles [5,6]. Even in directed cellular transport

where particles are normally superdiffusive or ballistic (a~2),
crowding has been reported to induce sub-ballistic (av2) behavior
[7,8]. Though the effect of crowding on transport have been

mostly addressed in the context of cellular systems [9,10], its effect

might be relevant on transport in the field of vehicular traffic –

a system that is four orders of magnitude larger.

Crowding mechanisms in vehicular traffic follow the same

principles as in its microscopic counterpart. While hindered

movement in cells is caused by collisions [11,12], attractive or

repulsive forces [10], and trapping [5,6]; car movement is

prevented (deceleration) by car-to-car interactions due to obstruc-

tions and driving fluctuations. However, unlike in cells, changes in

movement due to crowding are not commonly studied in traffic

research. Often, fundamental diagrams [13–15] are presented

from statistical (macroscopic) averages of density, speed and flow

to depict traffic properties such as jam formations [16,17] and

phase transitions [18–20]. Furthemore, the term ‘‘crowding’’ may

be confused with two traffic concepts that have been studied in

great detail: crowd dynamics (often associated with pedestrians)

[21] and traffic jams [16,22,23]. In (pedestrian) crowd dynamics,

the focus is on determining the local mechanisms (e.g. follow the

majority, maintain your distance, or walk with your group [21])

that lead to the system’s self-organization. It is aimed at making

models with practical applications in safety engineering and crowd

control. Traffic jams, where traffic flow is nearly stopped, may

stem from the trivial case of car volume exceeding road capacity;

but may also stem from car interactions that magnify the effect of

random fluctuations in driving speed. The latter case produces the

phenomenon of phantom jams [16], which occur even when car

density seem low, but at car density levels not low enough for car

headway to remain unaffected by fluctuations in driving speeds.

The goal of this work is to gain a better understanding of traffic by

probing the effect of ‘‘vehicular’’ crowding (in the biophysical

sense) on car movement. Here, we simulate a single-lane freeway

traffic using the Nagel-Schreckenberg model [24] to examine the

deviation of car motion from its normal ballistic behavior as

a result of crowding that is related to road density and driving

fluctuations. We present the scaling exponent of the MSD, a,
during transient and steady state periods. We also show the time

evolution of the probability density, as well as the trap time and

cluster size distributions and compare our findings to established

results from random walk models. Moreover, we surmise the

possible correspondence of the rules of the NaSch model to

directed random walks and general particle flow.

Methods

The Nagel-Schreckenberg (NaSch) model was implemented on

a 1D lattice of length L~200 cells with periodic boundaries

(Fig. 1). Each cell can be occupied by at most one car. The state of

the ith car is characterized by its speed vi =0,1,…,vmax and its

position xi. Cars are updated in parallel (synchronous update) at

each time step t/tzDt(Dt~1) according to the following rules:
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R1 Acceleration. vi/viz1 if vivvmax~5cells=Dt.

R2 Deceleration. vi/di=Dt if viDtwdi (di is the number of empty

cells in front of a car).

R3 Slowdown randomization. vi/vi{1 with probability pi
R4 Forward movement. xi/xizviDt
R1 allows cars to accelerate up to a maximum speed vmax. R2

ensures no collision between cars. R3 accounts for driving

fluctuations possibly due to non-deterministic acceleration, over-

deceleration, or intentional slowing down. A car-dependent

randomization probability (pi) accounts for the randomization

diversity among drivers or types of cars being driven, e.g. public

vehicles slow down more often than private ones, which plays

a crucial role for platoon formations found in realistic freeway

traffic. Finally, R4 is the actual motion of the car. Because of the

time-parallel update scheme which force car headways to almost

always be affected by slowdown randomization, the NaSch model

is able to replicate phantom jams [24]. However, phantom jams

are absent in the deterministic case when all pi’s are zero (all cars

travel at the speed of the first car) or when all pi’s are one (the ith

car travels either at its initial speed, or if the car immediately in

front of it happens to be moving slower, then at the speed of the

preceding car). Notably, when vmax~1, the single-lane NaSch

model with no passing is reduced to the well-studied totally

asymmetric simple exclusion process (TASEP) model [22].

For each car density r, a ‘‘perfect’’ tracer (a tracked car with

randomization probability pi~0) was placed on the first cell of the

lattice, and the remaining rL{1 cars were placed randomly on

the lattice. Each car was assigned an initial speed taken from an

empirical speed distribution [19] and was assigned a randomiza-

tion probability taken from a beta distribution:

P(p; a)!pa{1 1{pð Þk{a{1 ð1Þ

where 0vavk. We chose a beta distribution due to its finite

range (0 to 1) and versatility: it can represent the range of

distributions from a uniform random to a Gaussian distribution

with variable skew. The variable a shifts the mean of the

distribution SpT~a=k, while the constant k partially controls the

variance given by: s2~a(k{a)= (k2)(kz1)
� �

. Here, we have

arbitrarily chosen the value of k=10.

Cars states were updated following the rule sequence: R1-R2-

R3-R4 during each time step. The simulation was done for

different values of r (range: [0.1,1.0), interval: 0.05) and SpT
(range: [0.05,1.0), interval: 0.05). The position of the tracer was

recorded every time step and the MSD was obtained through

N=400 trajectories of different car configurations using the

equation: MSD(t) = Sx(t)2T, the average value of tracers’ squared

displacements at time t.

Results and Discussion

Mean-square Displacement
Road traffic has two basic parameters which can cause

crowding and consequently influence car movement: car density

and driving fluctuations. Car density r varies inversely with

available space for movement. The plot (Fig. 2a) of the MSD with

time for different values of r at SpT~0:6 (high randomization

probability) shows two distinct behaviors: a transient behavior that

varies with r and a steady steady state behavior that is

independent of r. During the transient period, the system self-

organizes from its initial random configuration, or relaxes, in such

a way that cars redistribute evenly along the stretch of the road

and optimize their speeds. The density-dependent transient state

implies that the way the system relaxes is affected by the car

density r. To provide a better picture of said dependence, we

Figure 1. Road setup. The road is represented by a periodic boundary 1D lattice divided into L = 200 cells. Each cell is either empty or occupied by
a single car.
doi:10.1371/journal.pone.0048151.g001

Figure 2. MSD plots. (a) Mean-square displacement (MSD) as function of time for car densities r~f0:1,0:5,0:9g at SpT~0:6. All curves are
superdiffusive with a~2 at long times but the behavior at short times changes with r. (b) Plot of the scaled MSD, MSD=t, reveals that during the
transient period, cars can be at subdiffusive states (slopev0) at high r.
doi:10.1371/journal.pone.0048151.g002
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plotted MSD=t against t in Fig. 2b. Here, diffusion is indicated by

a slope of zero. Superdiffusion and subdiffusion yield positive and

negative slopes, respectively. At r~0:1, the tracers are initially

super-ballistic (slopew1) which indicate that they accelerate

before reaching steady state. Once r becomes high, the decrease

in available space leads tracers to decelerate sooner. Diffusive

transient behavior is observed for r~0:5. Subdiffusion at r~0:9
already indicates extreme deceleration. At steady state, however, r
does not affect the behavior of the cars. In this particular example,

cars eventually reach a common ballistic state.

Driving fluctuation or randomization SpT, the second param-

eter influencing car movement, prevents acceleration and en-

hances deceleration of cars. This randomization creates a pseudo-

crowded environment that hinders movement regardless of the

available space. Just like increased car density, increased SpT also

causes cars to deviate from their normal ballistic (a~2) motion.

The joint effects of the two parameters r and SpT on the the

transient and steady state scaling exponents at and as (Fig. 3) were
calculated using a linear least squares method to determine a in

the relation: log(MSD) !a log (t) (as in Fig. 2). In general, an

increase in SpT pulls the behavior away from ballistic movement

Figure 3. Transient and steady state scaling exponents. Colormap of the (a) transient and (b) steady state values of the scaling exponent at
and as as a function of car density r and the mean randomization probability SpT. Dashed lines show the approximate super diffusion (a~2) and
normal diffusion (a~1) boundaries. Region I (a) is always superdiffusive (a§2) indicating a good region for traffic. Region II generally starts with
a superdiffusive transient behavior (1vav2) then approach a~2. Lastly, Region III is subdiffusive. The scaling exponent as is independent of r.
doi:10.1371/journal.pone.0048151.g003

Figure 4. Time evolution of CCDF(~xx). Time evolution of CCDF(~xx) for different car transient behaviors (from superdiffusion [a] to subdiffusion [f])
for t= 10, 50, 100, 300, 900 (dark red to blue). The dotted (black) line is the CCDF of a standard normal distribution. Superballistic cars in (a) have
a CCDF of a negatively skewed normal distribution which can be attributed to the initial acceleration of the cars. Ballistic cars as in (b) fits the standard
normal CCDF. Cars with an initial sub-ballistic motion as in (c-f) begin with an exponential distribution then slowly approach standard normal as the
movement of cars become ballistic. Inset: Plots for theMSD=t vs. time t. A slope. 0 indicates superdiffusion; = 0 is diffusion; and,0 is subdiffusion.
Ballistic movement is superdiffusive with MSD=t vs. t slope= 1.
doi:10.1371/journal.pone.0048151.g004
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towards the subdiffusive state. At early times (i.e. during the

transient state, Fig. 3a), cars approach the subdiffusive state at

a lower randomization SpT as the car density r increases. But after

a long time (steady state), the dependence on car density becomes

insignificant, and subdiffusion depends largely on SpT – with the

extreme case of persistent subdiffusion (Fig. 3b) at large values of

SpT. We can divide the colormaps into three regions: I)

superballistic (at,sw2); II) sub-ballistic–superdiffusive (1vat,sv2);
and III) subdiffusive (at,sv1) regions. Dashed lines indicate the

at,s~2 and at,s~1 boundaries. In the transient period (Fig. 3a),

a desirable situation for highway traffic occurs when both car

density r and SpT are small (Region I). In this regime, tracers

accelerate during the transient period. Region II is mostly sub-

ballistic wherein cars slightly decelerate. Region III is the

Figure 5. R2 values from Q-Q plots and skewness. The Q-Q plots were calculated from the probability density for all times for

r~SpT~f0:1,0:25,0:4,0:6,0:75,0:9g to test for normality: (a) R2 values were calculated to quantify the closeness of the probability densities to that

of a normal distribution; (b) skewness S~xx3T of the probability densities as a function of time. Values of skewness falling within DS~xx3TDv0:5 are within

the accepted values for a normal distribution. High R2 and close to zero S~xx3T indicate a normal distribution.
doi:10.1371/journal.pone.0048151.g005

Figure 6. Spatiotemporal diagrams for varying SpT. Spatiotemporal diagrams for a constant r~0:5 at (from left to right) SpT~0:1,0:45,0:80.
The increase in SpT produces fewer but larger clusters (black regions) as well as larger unoccupied space.
doi:10.1371/journal.pone.0048151.g006
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subdiffusive region where rapid deceleration occurs. Moreover, in

regions of equal at, say the at~2 line, the increase in one

parameter must be compensated by a decrease in the other: when

driving fluctuations become considerable, minimal interaction

between the tracer and other cars is required to avoid

decelerations (hindered movement) and ensure continuous for-

ward motion; and conversely, when the density becomes high,

driving fluctuations must be minimized (small SpT) to sustain

movement. At steady state (Fig. 3b), however, the dynamics

changes. Here, the scaling exponent becomes independent of r
and is only affected by SpT. If SpT is kept below 0.6, tracers will

always reach ballistic motion. At SpTw0:6, tracers begin to move

sub-ballistically and at SpTw0:9 tracers move subdiffusively. In

the last case, tracers are already trapped in platoons led by cars

with a high randomization probability resulting to hindered

movement thereby causing an overall subdiffusive behavior. These

platoon fronts leave large spaces unoccupied producing several

local jams.

Time Evolution of the Probability Density
Aside from the MSD, the probability distribution of positions

P(x) of the tracers was used to describe the movement of cars. In

Fig. 4, we plot the rescaled complementary cumulative density

function (rather than the probability distribution to avoid binning

issues and for better data visualization):

CCDF(~xx,t)~1{
X

~xxiv~xx

P(X~~xxi,t) ð2Þ

of car position z-scores ~xx:(x{SxT)=sx at different times for

representative values of r and SpT from which superballistic

(r~0:10, SpT~0:10; measured at~2:3) down to subdiffusive

(r~0:90, SpT~0:90; measured at~0:39) transient periods were
observed (see insets). By using the z-score, we removed the position

mean and standard deviation information and focused on the time

evolution of the shape of the distribution. We juxtaposed the

CCDF of a standard normal distribution for comparison. Visually,

we observe that at small values of r and SpT, the distributions

approximate a normal distribution (Fig. 4). As the value of r and

SpT increases, the distributions become exponentially distributed

during a brief transient period and then approach the normal

distribution at steady state.

To gain more insight, we tested the obtained z-score distribu-

tions for normality by calculating their skewness S~xx3T, and

compared them with a normal distribution using quantile-quantile

(Q-Q) plots. The R2 values were calculated to quantify the

goodness of fit. In Fig. 5, we show the changes on the value of R2

(Fig. 5a) and skewness (Fig. 5b) as a function of time for various r

and SpT. We set the range DS~xx3TDv0:5 (gray region in Fig. 5b) to

be the accepted values for a normal distribution. In the

superdiffusive transient case (r~0:10,SpT~0:10), the distribution

is non-normal with R2
v0:99 and negatively skewed (mass of the

distribution is concentrated on the right) which is due to the initial

acceleration of the cars. The skewness, however, is hardly

recognized (see Fig. 4a) and takes a maximum negative value of

approximately {1:0 at the transient period and roughly {0:6 at

steady state. Both values are close to the accepted values for

Figure 7. Cluster size distribution. Cluster size distributions for (a) constant SpT~0:3 and r~f0:3,0:5,0:7,0:9g and (b) constant r~0:3 and
SpT~f0:3,0:5,0:7,0:9g taken from 400 tracer trajectories. Both distributions are exponential. An increase in either parameters broadens the
distributions indicating an increased probability to form large clusters.
doi:10.1371/journal.pone.0048151.g007

Figure 8. Cluster size distribution rate parameter. Values of the
cluster size distribution rate parameter Sc plotted against r and SpT.
doi:10.1371/journal.pone.0048151.g008
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a normal distribution, and the variation can be attributed to

random initial road configurations which do not always guarantee

that cars can have an initial acceleration. When tracers move at

constant speed all throughout (e.g. r~0:20,SpT~0:25; Fig. 5b -

red curve), the probability density is most likely, but not

necessarily, a normal distribution. Higher values of r and SpT
induce an exponential start of the probability distribution as

indicated by the positive skewness and an R2
v0:99 – tracers have

a very small probability of reaching large distances and will likely

not even move at all. The trapping of tracers for long periods

readily translates, on the average, to a decelerating (sub-ballistic)

motion. Eventually, once steady state is reached, the probability

density becomes normally distributed. At r~SpT~0:9 where

tracers are always subdiffusive, the exponential distribution is

retained for an extended period.

Jam Formation
The decelerations induced by vehicular crowding most often

lead to the formation of local jams. In real traffic, jamming is

known to occur when the car density becomes appreciable. Larger

jams that can sometimes extend to hundreds of meters can form

when the density saturates the road capacity. Aside from the

density, the randomization also causes cars to form clusters due to

platooning effects. Spatiotemporal diagrams (Fig. 6) show that for

high values of randomization probability SpT, cars leave large

spaces unoccupied and thus larger clusters are formed.

Cluster size distribution. To quantify the jam formation,

we took the cluster sizes formed by the cars at t~1000 from each

trial then generated the cluster size distribution from 400 trials.

This procedure was done for all r and SpT values. Fig. 7 shows the

CCDF of cluster sizes for representative values of r and SpT. An
increase in either parameter, r or SpT, does not change the shape
of the distributions but broadens them. The broadening of the

distribution with r is expected (Fig. 7a): the increase in the number

of cars gives higher chances of forming large clusters. For constant

r (Fig. 7b), the broadening of the distribution with increased SpT is

due to the platoons led by cars with high randomization

probability. We can fit an exponential function of the form

CCDF(S)! exp {S=Scð Þ to the distribution where Sc is a rate

parameter that measures the broadening which can be directly

obtained using the maximum likelihood estimate (MLE) for

exponential distributions. Note that for exponentially distributed

samples x~fx1,x2,:::,xng with the probability density described

by P(x)! exp ({lx), the maximum likehood estimate of the rate

parameter l is given by: l~1=SxT. A low (high) value of Sc means

that the distribution decays quickly (slowly) with S. The calculated
Sc values are plotted against r and SpT in Fig. 8. Most of the

increase is primarily contributed by r because of the increase of

the number of cars in the system. Large cluster sizes also form at

high SpT, but are limited by the density; hence the slight increase

in Sc.

Trap time distribution. A tracer’s interaction with its

environment would normally result to hindered movement,

especially in the high-density regime, forcing the tracer to

sometimes stop (or be trapped) for a number of time steps. Here,

Figure 9. Trap time distribution. Trap time distributions for (a) constant SpT~f0:3,0:5,0:7,0:9g and r~0:3 and (b) constant SpT~0:3 and
r~f0:3,0:5,0:7,0:9g taken from 400 tracer trajectories. Both distributions are exponential. An increase in either parameters broadens the distributions
indicating an increased probability of tracers being trapped for longer periods.
doi:10.1371/journal.pone.0048151.g009

Figure 10. Trap time distribution rate parameter. Values of the
trap time distribution rate parameter Sc plotted against r and SpT.
doi:10.1371/journal.pone.0048151.g010
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we obtained the trap time distribution from the time intervals that

the tracer remains stationary over its entire journey. In Fig. 9, we

show the CCDF of the trap time for constant SpT and constant r,
respectively. In both cases, the CCDFs are exponentially

distributed, thus the probability densities also behave exponen-

tially. Also, the values of SpT and r do not change the shape of the

distributions though an increase in either parameter broadens

them. High car density prevents a tracer’s movement due to

vehicular crowding, whereas with large SpT, tracers are being

trapped by cars with high randomization probabilities. We also

calculated the rate parameter tc and plotted the values in Fig. 10.

We observed that the trap times increase with r and SpT.
However, the density r has a smaller effect on the trap times

compared to SpT: a high-density situation still allows forward

movement, no matter how slow, which causes the tracer to escape

the trap. On the other hand, in the high SpT regime, tracers are

caught behind cars of high randomization probability, which may

pause for long periods.

Discussion and Concluding Remarks
It is interesting to note that these results seem similar to what

have been previously observed in random walks. The normal

distribution of the CCDF found for ballistic cars can be recovered

by solving the diffusion-advection equation [25] for biased random

walks: P(x,t)! exp½{(x{vt)2=(4Dt)�. Our findings for the

probability distribution of sub-ballistic cars is likewise observed

for subdiffusive random walks [26] and can be obtained using the

fractional diffusion equation (reviewed by Metzler and Klafter

[27]).

Similarly, the exponential distribution of trap times is also seen

for Brownian motion when the density of the obstacles increases.

Brownian motion simulations also recovers this result when

a diffusing particle is surrounded by mobile obstacles [H. Berry

and H. Chate (2011), arXiv:1103.2206] and fat-tailed distribution

emerges once obstacles become immobile. The resemblance is

enough to suggest that the mobility of obstacles is responsible for

obtaining such a distribution, whether particles are directional or

not. Moving obstacles allow the particle (car) to easily escape traps

making it impossible for the particle to be trapped at very long

times, hence the fast decay in the trap time distribution.

Nevertheless, such a correspondence is somewhat expected due

to corresponding mechanisms (see Table 1) in the simulation rules

of the NaSch model, random walks and particle flow. Thus, it is

also likely that our findings can be extended to other systems

where a movement-maximizing tracer can be embedded into the

system.

Despite the similarities, we need to emphasize two dynamical

differences that might be easily overlooked when comparing with

a biased random walk model. First, the normal distribution cannot

be obtained from an ensemble of independent tracers alone. It is

also not an artifact of the randomness introduced by R3. Unlike

a random walk (whether diffusive or biased) in free space, a tracer

in a free road (regardless of its randomization probability p,

excluding p~1, and whether p is taken from any distribution) will

continue to accelerate. Thus, for the case of independent tracers,

the resulting distribution will always be negatively skewed as in

Fig. 4a. Further, the spread (variance) in the distribution (shown in

Fig. 11) – which should remain constant over time if the tracers are

allowed to move on an empty road – emerges from the interaction

of the tracer with other cars. The decelerations imposed by those

interactions are responsible for creating the spread. Second, the

sub-ballistic behavior, as well as the exponential distribution

naturally comes out from the said interaction when r and SpT
increase at which point hindered movement become more

frequent. These properties exhibited by the tracers are thus

consequences of vehicular crowding.

Based on these findings, we can infer that in road segments

where car density can inevitably shoot up and/or cannot be easily

controlled, especially during rush hour, it is the randomization

probability that must be minimized so that cars are able to move at

a constant rate; i.e., cars moving slowly or those vehicles frequently

stopping at specific locations on the road (such as public utility

vehicles) must speed up to avoid trailing platoons that can cause

a long period of subdiffusion. It is worthwhile to point out that

traffic lights (or any other traffic control device) tend to increase

the mean randomization probability of cars - and can be

Table 1. Correspondence of the NaSch model rules to the dynamics of other systems.

NaSch model rules Road traffic Random walks Particle flow (blood, etc.)

R1 acceleration direction bias pressure/external force

R2 deceleration trapping due to
mobile obstacles

particle collision +
momentum transfer

R3 driving fluctuation – energy dissipation

R4 movement movement movement

doi:10.1371/journal.pone.0048151.t001

Figure 11. Spread in the probability density. The variance of the
probability density for r~SpT~f0:1,0:25,0:4,0:6,0:75,0:9g increases
with time.
doi:10.1371/journal.pone.0048151.g011
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counterproductive when deployed at intersections which do not

suffer from traffic jams especially when operating in a synchronized

mode, e.g. ‘‘green wave’’ strategy [28] which tends to reduce the

spatial gap variance (or average headway). However, the

applicability of ‘‘green wave’’ optimization depends on predictable

travel times between intersections, and because travel times may

not be so predictable with changing car density, self-organizing

schemes [29] which adapt to, rather than optimize, traffic are

perhaps more suitable for urban traffic.

That crowding gives different observable effects from the point

of view of particles during the transient and steady states is an

effect that drivers often observe between city traffic and highway

traffic. On the other hand, one can also think of interventions

which tend to lengthen the travel distance while minimizing

driving fluctuations, such as the use of median U-turns in place of

left-turns [19], as attempts to push the behavior of urban traffic to

behave similarly to that of highway traffic. Using the empirical

equivalent of tracers, i.e. extended floating car data collection [30]

(which can now be mass-deployed via apps on GPS-enabled

phones), a ‘‘crowding’’ perspective can provide further insights on

real traffic over large road networks.
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