
Under review as a conference paper at ICLR 2023

CACHEGNN: ENHANCING GRAPH NEURAL NET-
WORKS WITH GLOBAL INFORMATION CACHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have achieved impressive results on various graph
learning tasks. Most GNNs merely leverage information from a limited range of
local neighbors, which is difficult to effectively capture global information in the
graph. However, utilising global information enables GNNs to capture long-range
dependencies and learn more informative node representations. To this end, we
propose CacheGNN, an approach that leverages information from global simi-
lar nodes to enhance GNNs. Our CacheGNN uses a cache to store node repre-
sentations and utilises those cached embeddings to efficiently find global similar
nodes. To quickly and efficiently making predictions at test time, our CacheGNN
retrieves global similar nodes from a set of representative nodes, which is selected
from a sparse node selection distribution with Dirichlet prior. We conduct node
classification experiments on seven real-world datasets under inductive and trans-
ductive settings. Experimental results verify the effectiveness of our CacheGNN.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al.,
2018) have been receiving growing popularity due to their effectiveness in a wide spectrum of graph
learning tasks (Xu et al., 2018a; Liu et al., 2020). The essential idea of GNNs is to learn informative
node representations through a message passing scheme, which recursively aggregates information
from local neighbors. Due to the useful inductive bias and powerful neural structure, GNNs have
achieved impressive results on many real-world datasets (Tang et al., 2008; Hamilton et al., 2017).

However, existing GNNs suffer from the following two defects. Firstly, most GNNs learn node
embeddings by leveraging information from a limited range of local neighbors, which limits their
ability to explicilty and effectively leverage the global information, i.e., features, structural patterns
and label information in the entire graph (Bodnar et al., 2021; Bouritsas et al., 2022; Wu et al., 2021).
This drawback hinders GNNs from capturing the long-range dependencies among nodes (Wu et al.,
2021) and learning more informative node representations (Tang et al., 2015; Zhuang & Ma, 2018),
especially for nodes with sparse local connections (Gasteiger et al., 2018). Secondly, there are a few
works that try to leverage the global structural information in the graph to improve the performance
of GNNs. For instance, DGCN (Zhuang & Ma, 2018) utilises positive pointwise mutual information
matrix to preserve the global consistency of graph structure, and PPNP Gasteiger et al. (2018) com-
bines GNNs with personalized PageRank to capture global structural information. However, since
these methods require acknowledging the structural information of the whole graph in advance, they
are difficult to be applied to the inductive graph learning setting, where predictions should be quickly
generated for unseen nodes in an efficient way Hamilton et al. (2017).

To address the aforementioned defects, we propose CacheGNN, an approach to enhance existing
GNNs such that they can capture and utilise the global information in an efficient way. To utilise
the global information, inspired by the graph attention network Veličković et al. (2018) that focuses
on the similar nodes in local neighbors for learning informative representations, we generalize the
scope of similar nodes to the whole graph and enhance GNNs by utilising the information of global
similar nodes which is defined as nodes in the entire graph that have similar features and geometric
structures. Therefore, compared with vanilla GNNs, CacheGNN can additionally leverage the in-
formation, i.e., features, structural patterns and label information, of global similar nodes to make
more accurate predictions. Moreover, CacheGNN uses the similarities between node representations

1

Under review as a conference paper at ICLR 2023

output by GNNs to find the global similar nodes, without introducing additional modules for finding
global similar nodes, which can be applied to a variety of GNNs. However, finding global simi-
lar nodes in such a way requires calculating representations of all nodes in the graph using GNNs,
which is computationally expensive both in space and time Fey et al. (2021). To alleviate the heavy
burden of computing all node representations, CacheGNN uses a cache to store the representations
of all nodes and leverages the cached node embeddings to find the global similar nodes.

Since CacheGNN only requires finding global similar nodes using cache to enhance GNNs, it can
be easily applied to both inductive and transductive graph learning settings. However, one downside
of CacheGNN is that we need to maintain a large embedding pool for large-scale graphs, leading to
high memory cost and low speed efficiency at test time. Therefore, in order to quickly and efficiently
making predictions, CacheGNN retrieves global similar nodes from a set of representative nodes,
i.e., a subset of training nodes that are more likely to be selected as global similar nodes, and only
stores embeddings of representative nodes in the cache for prediction. Those representative nodes
are selected based on a distribution over training nodes, which itself is sampled from a Dirichlet
prior. The use of Dirichlet prior with appropriate hyperparameters is able to encourage a sparse
node selection distribution (He et al., 2020), allowing us to select as few representative nodes as
possible, which could reduce the cache size and improve efficiency of our model.

Our contributions can be summarized as follows: (1) We leverage the information, i.e., features,
structural patterns and label information, of global similar nodes to enhance existing GNNs. (2)
We propose a cache-based approach to efficiently retrieve the global similar nodes from the entire
graph. (3) To further improve the prediction efficiency of our approach on large-scale graphs, we
leverage Dirichlet prior to learn a sparse distribution over training nodes, based on which we select
a set of representative nodes and their cached embeddings for prediction. (4) Experimental results
on seven real-world datasets show that GNNs with our approach, i.e., CacheGNN, can outperform
vanilla GNNs on node classification task under both inductive and transductive settings.

2 RELATED WORK

Graph Neural Networks. Recently, GNNs are widely used to handle graph-structured data. They
have achieved remarkable success a wide spectrum of real-world applications, ranging from rec-
ommendation systems (Yang et al., 2020; Wang et al., 2021; Cai et al., 2022), knowledge graph
reasoning (Zhang et al., 2019; Chen et al., 2022; Guo et al., 2022), medical property prediction
(Wishart et al., 2018; Szklarczyk et al., 2019; Gasteiger et al., 2021), natural language processing
(Yao et al., 2019; Hao et al., 2021). The current de facto design of GNNs follows the message pass-
ing framework (Kipf & Welling, 2017; Gilmer et al., 2017; Hamilton et al., 2017; Veličković et al.,
2018; Yang et al., 2022), where they learn node representations by aggregating information from
local neighbors. Due to the over-smoothing problem Li et al. (2018); Oono & Suzuki (2019); Zhang
et al. (2021), most GNNs are shallow for practical purpose. Some studies try to enlarge the respec-
tive filed of GNNs by developing deep GNNs (Liu et al., 2020; Zeng et al., 2021). For instance, the
JKnet (Xu et al., 2018b) and GCNII (Chen et al., 2020) combine residual connections with aggrega-
tion scheme to increase the number of layers in GNNs. However, both shallow and deep GNNs only
have access to local information, difficult to leverage the global information in the graph, while our
CacheGNN can effectively utilise the global information by retrieving global similar nodes.

There are some studies (Zhuang & Ma, 2018; Gasteiger et al., 2018; Abu-El-Haija et al., 2019; Wu
et al., 2021) that leverage the global information of the graph as well. For example, DGCN (Zhuang
& Ma, 2018) uses a positive pointwise mutual information matrix to preserve the global consistency
of graph structure, and PPNP Gasteiger et al. (2018) combines GNNs with personalized PageRank
to develop an improved propagation scheme. However, they requires knowing the whole graph
structure in advance and cannot be applied to the inductive learning setting, while CacheGNN do
not have such requirement and can be applied to both inductive and transductive learning settings.

Cached-Based Graph Learning. There are some works that leverage cache in GNNs as well. For
example, VR-GCN (Chen et al., 2018) utilises cache to store historic node embeddings to reduce
the variance of representations obtained by sampling neighboring nodes. GAS (Fey et al., 2021)
proposes to incorporate historic embeddings to account for all available neighborhood information.
GraphFM (Yu et al., 2022) proposes to use a momentum step to incorporate historic embeddings to
avoid the neighborhood explosion problem (Hamilton et al., 2017). However, these methods require

2

Under review as a conference paper at ICLR 2023

storing embeddings of all nodes in the graph, which suffers from high memory cost and low speed
efficiency for large-scale graphs. In contrast, our CacheGNN only stores the most informative node
embeddings in the cache, which are sampled from a Dirichlet prior, and therefore reduce the memory
cost and improve the efficiency without compromising performance.

3 PROBLEM FORMULATION

In this paper, we instantiate graph learning tasks with node classification problem, which is a fun-
damental problem in graph machine learning community (Hamilton et al., 2017; Qu et al., 2021).
We formulate this problem under the inductive setting (Hamilton et al., 2017; Gao et al., 2018; Zeng
et al., 2020; Chiang et al., 2019). However, our method can be also applied to the easier transductive
setting. The inductive setting assumes that we are given a set of labeled nodes, and the goal is to
predict the labels of unseen nodes, i.e., nodes that do not appear during training.

Formally, we denote the set of labeled nodes as a single training graph G = {V, E ,X,Y}, where
V and E denote the set of nodes and edges, respectively. X ∈ RN×F represents the feature matrix,
and Y ∈ {0, 1}N×C denotes the labels of training nodes. Give a test graph G̃ = {Ṽ, Ẽ , X̃}, we
aim to predict the labels of nodes Ỹ in the test graph. Following (Qu et al., 2021), we employ
a probabilistic framework to formalize the inductive node classification problem, which requires
solving the following two problems: (1) Training: Learn model parameters θ by approximating the
marginal distribution pθ(Y | X, E) on training graph. (2) Prediction: Infer label distributions of
unlabeled nodes in the test graph G̃, i.e., pθ(Ỹ | X̃, Ẽ), based on the learned model parameters.

4 METHODOLOGY

In this section, we will first introduce the technical details of the proposed method, and then intro-
duce the training and prediction process of our method.

4.1 MODEL STRUCTURE

𝐭!

𝐲! 𝐳!𝑝!(𝐲"|𝐭", 𝐳")

			"𝑝! 𝐭" π, 𝐳",)𝐙 π 𝛼

𝜆𝑞#(𝐭"|𝐲𝒖)

𝑞#(𝐳"|𝐭", 𝐲")

Figure 1: Probabilistic graphical model
of our CacheGNN. Generative depen-
dencies are shown in solid arrows, while
inference dependencies are shown in
dashed arrows.

Following previous works (Kipf & Welling, 2016; Hasan-
zadeh et al., 2019; Qu et al., 2021), we adopt the Bayesian
formulation of GNNs, where we regard node represen-
tations as stochastic latent variables. Normally in such
case, the label of node u, i.e., yu, depends only on its
latent representation zu, which is limited in leveraging
global information. However, leveraging the global in-
formation in full-graph is beneficial to capture the long-
range dependencies among nodes (Wu et al., 2021), and
learn more informative node representations (Tang et al.,
2015; Zhuang & Ma, 2018), especially for nodes with
sparse local connections (Gasteiger et al., 2018). To this
end, we take inspiration from graph attention networks
and propose to enhance GNNs with the information of
global similar nodes, i.e., nodes in the whole graph that
have similar node features and local geometric structure.
Particularly, we assume that the label of node u depends
not only on its representation, but also on the representations of its global similar nodes.

Specifically, we denote the set of global similar nodes of u as a vector tu ∈ {0, 1}N , with tuv = 1
indicating that node v is a global similar node of u. Note that we only consider leveraging infor-
mation from top-K similar nodes. Therefore, there are only K elements in tu being 1 while others
being 0. Similar to node representations, which are treated as latent variables, we also regard the
similar node indicator tu as stochastic latent variable. Moreover, those global similar nodes can be
conveniently obtained based on the similarities between node representations output by GNNs. We
use such method to find global similar nodes because the representations learned by GNNs have
aggregated the local features and structural information of nodes, and therefore it is convenient and
effective to leverage those representations to find nodes that are similar in features and structure.

3

Under review as a conference paper at ICLR 2023

Training Graph

Original

Update

Full Cache

Prediction
𝒑𝜽(𝐭"𝒖|𝐳"𝒖 ,)'𝐙𝝅

𝐳!𝒖 Sampled CacheTest Node

Prediction

Training

Embedding

Cache

Dirichlet
Prior

0 1 2 N

Nodes Selection
Distribution

𝒒𝝀, 𝒒𝝓 𝒑𝜽

Estimate Posterior
Distributions

Update Model Parameters
With Global Information

𝐆𝐍𝐍

Figure 2: Overview of the proposed CacheGNN model. In the training process, CacheGNN uses
a variational EM algorithm to estimate the posterior distributions, i.e., qλ and qϕ, and update the
model parameters pθ, as well as learning a sparse node selection distribution over training nodes.
In the prediction process, based on the node selection distribution, CacheGNN only stores the most
informative node embeddings in the cache, i.e., Ẑπ , for prediction, and infers node labels based on
the embeddings of nodes, i.e., zũ, and the global similar nodes, i.e., tũ.

Another benefit is that we do not introduce additional module for finding global similar nodes and
it can be naturally applied to a variety of GNNs.

Unfortunately, finding global similar nodes using node representations requires calculating the rep-
resentations of all nodes in the graph using GNNs, which is computationally expensive both in
space and time for large-scale graphs Fey et al. (2021). In order to alleviate the intensive computa-
tion burden, we propose to cache previously calculated node embeddings and leverage the cached
node embeddings to find global similar nodes. Specifically, the prior distribution of tu is defined as
pθ(tu | zu, Ẑ), where Ẑ is the cached embeddings of all nodes. In such case, only the representation
of node u, i.e., zu, is required to obtain the prior distribution, which is more efficient for training
and prediction. Moreover, in order to accurately approximate node embeddings Z with the cached
embedding table Ẑ, we constantly update the cached embedding table at each training iteration.

One downside of the cache method is that we need to maintain a large embedding table for large-
scale graphs, leading to significant high memory cost and low speed efficiency during the predic-
tion stage. To further address this problem, we hypothesize that there exists some representative
nodes in the training graph, and it is sufficient for our model to achieve satisfactory performance
by only aggregating similar nodes from this representative node list. Experimental results in Sec-
tion 6.3 verify our hypothesis that selecting similar nodes from a subset of representative nodes
can achieve comparable results as selecting similar nodes from all training nodes. Since the rep-
resentative nodes in the training graph are unknown in advance, we introduce a latent variable
π ∈ [0, 1]N , s.t.

∑N
n=1 πn = 1, with πn representing the probability that the n-th node in the

training set is a representative node. Since we aim to find a small set of representative nodes, we
would like to model p(π) as a sparse distribution, where the probability mass concentrates on only
a few representative nodes. To achieve this purpose, we introduce a prior over π, i.e., pα(π), with
parameters α, which is able to encourage a sparse probability distribution over π.

Therefore, the marginal likelihood function of our model is defined as:

pθ(Y | X, E , Ẑ) =
∫
π

pα(π)

[∫
Z

[∑
T

pθ(Y,T,Z | π,X, E , Ẑ)
]
dZ

]
dπ , (1)

where T = [tu]
⊤
u∈V , and Z = [zu]

⊤
u∈V represent the global similar node sets and the representations

of all nodes, respectively. The joint distribution of latent variables is defined as:

pθ(Y,T,Z | π,X, E , Ẑ) =
∏
u∈V

pθ(zu | X, E) pθ(tu | π, zu, Ẑ) pθ(yu | tu, zu) . (2)

The graphical model of the proposed method is depicted in Figure 1. Next we will introduce the
instantiation of our probabilistic framework.

Prior distribution over π. We employ Dirichlet distribution as the prior distribution over π, given
by pα(π) ∝

∏N
i=1 π

αi−1
i , where αi is the concentration parameter of the distribution. Since we do

4

Under review as a conference paper at ICLR 2023

not have prior knowledge about representative nodes, we set all the concentration parameters as α,
i.e., αi = α,∀i = 1, . . . , N . The concentration parameter is a positive value and smaller α prefers
a sparser distribution over π (He et al., 2020). Therefore, we use Dirichlet distribution as the prior
distribution over π to encourage spare distribution of π, and set α ≤ 1 in our experiments.

Prior distribution over node representations Z. We model prior distribution over node represen-
tation as Gaussian distribution, and instantiate this prior distribution with GNN, which is defined as:
pθ(Z | X, E) =

∏
u∈V N (zu | GNNθ(X, E), σ2

1I), where σ2
1 is the variance of prior distributions

and GNNθ is an L-layer GNN with parameter θ.

Prior distribution over tu. To obtain global similar nodes of node u, we define a prior distribution
over the global similar node indicator as: pθ(tu | π, zu, Ẑ) = Mul(tu | K, fθ(π, zu, Ẑ)), where
Mul(·) represents multinomial distribution, K is the predefined number of similar nodes, and fθ is
a function that outputs the parameters of the multinomial distribution. Let βu represent the output
of function fθ, which is calculated as: βu = Softmax(π ⊙ π′

u) ,π
′
uv = φ(zu,ẑv)∑

v′∈V̂ φ(zu,ẑv′)
,∀v ∈ V̂,

where φ(·, ·) is the inner product, π′
u = [π′

uv]v∈V̂ is a vector containing the normalized similarities
between node u and other nodes in the cache, i.e., V̂ , ⊙ is element-wise multiplication operation.

Prediction of labels. Finally, we need to instantiate the prediction probability pθ(yu | zu, tu). In
this paper, we define this distribution as the fusion of predicted label distribution of node u and the
label distributions of its similar nodes tu. Specifically, we first predict the label of node u based on
its representation: pLC(yu | zu) = Softmax(Wczu + bc) , where Wc and bc are the parameters
of the linear classifier. Then, we predict the label of node u using the labels of its similar nodes:
pSIM (yu | tu) ∝

∑
v∈V̂ tuv · exp(φ(zu, ẑv)) · yv , where tuv is the v-th element of tu, yv denotes

the one-hot labels of node v. Finally, the predicted label distribution is defined as:

pθ(yu | zu, tu) = η pLC(yu | zu) + (1− η) pSIM (yu | tu) , (3)

where η ∈ [0, 1] is a trade-off hyperparameter. When η = 1, our model only uses local representa-
tions of nodes for prediction, which degrades to vanilla GNNs. In contrast, when 0 < η < 1, our
model predicts the labels of nodes by leveraging information from both local neighbors and global
similar nodes, which is benefical for improving the performance.

4.2 TRAINING

Since the marginal likelihood function of our model is intractable, we develop a variational
Expectation-Maximization (EM) algorithm (Beal, 2003; Qu et al., 2019) to learn the model param-
eters θ. Following the principle of variational inference, we approximate the posterior distributions
of latent variables with the following variational distributions 1:

qϕ(T,Z,π | Y) =
∏
u∈V

qϕ(tu | Y)qϕ(zu | tu,Y)qλ(π) , (4)

where ϕ and λ are variational parameters. We next introduce the details of variational distributions.

Variational distribution over tu. We assume variational distribution of tu is a multinomial dis-
tribution, defined as: qϕ(tu | Y) = Mul(tu | K, gϕ(Ẑ,Y)), where gϕ is a function that outputs
the parameters of the multinomial distribution. Let γu = gϕ(Ẑ,Y) denote the output of gϕ, which
is calculated as: γu = Softmax(sϕ([ẑu,yu], [Ẑ,Y])), where [·, ·] is the concatenation operation,
sϕ(·, ·) is a function that measures the similarities between node u and other nodes in the cache by
leveraging both node representations and label information.

Variational distribution over zu. We assume the variational distribution over node representation is
Gaussian distribution, defined as: qϕ(zu | tu,Y) = N (zu | GNNθ(X, E) + δkϕ(tu,Y, Ẑ), σ2

2I) ,
where GNNθ is the same GNN as in the prior distribution, δ is a hyperparameter and σ2

2 is the
variance of posterior distribution. kϕ is a defined as: kϕ(tu,Y, Ẑ) = Neural(

∑
v∈V̂ buv ·ẑv) , buv =

I(yu,yv)·tuv∑
v′∈V̂ I(yu,yv′)·tuv′

, where Neural(·) is a feed-forward neural network, I(·, ·) is a scalar function

1We omit the dependence of variational distributions on node features X and edges E for brevity.

5

Under review as a conference paper at ICLR 2023

that measure the similarities between two labels, which is defined as:

I(yu,yv) =

{
1, if argmaxyu = argmaxyv ,

0, if Otherwise ,
(5)

where argmaxyu
is the index of the largest element in yu.

Variational distribution over π. We assume the variational distribution over π is a Dirich-
let distribution: qλ(π) ∝

∏N
i=1 π

λi−1
i , where the variational parameter λi is defined as: λi =

α +
∑

u∈V Kγui,∀i = {1, . . . , N} , where γui is the i-th element of γu. However, it’s com-
putationally expensive to calculate λi at each iteration as it requires summing over all nodes. To
enable mini-batch training, inspired by the the technique used in (He et al., 2020), we update λi as:
λ
(t)
i = (1 − ρt)λ

(t−1)
i + ρt

(
α + N

|V|
∑

u∈V Kγui

)
, ρt = (t + ν)−ξ, where V is a small batch of

training nodes, |V| is the batch size, t is the iteration step, ξ ∈ (0.5, 1] is the forgetting rate, and ν is
a hyperparameter to down-weight early iterations.

With above variational distributions, we can derive the Evidence Lower Bound (ELBO) of the log-
likelihood function of our model as:

LELBO =−DKL[qλ(π) || pα(π)] +
∑
u∈V

Eqϕ(tu|Y)qϕ(zu|tu,Y)

[
log pθ(yu | tu, zu)

]
− Eqϕ(tu|Y)

[
DKL

[
qϕ(zu | tu,Y) || pθ(zu | X, E)

]]
− Eqλ(π)qϕ(zu|tu,Y)

[
DKL

[
qθ(tu | Y) || pθ(tu | π, zu, Ẑ)

]]
. (6)

We use variation EM algorithm to learn the parameters of our model, which alternatively learns the
variational parameters ϕ and the model parameters θ through an E-step and M-step.

E-step. In E-step, the goal is to estimate the posterior distributions of latent variables. In such
case, we fix the model parameters θ and update the variational distributions to approximate the true
posteriors, which is achieved by minimizing the KL-divergence between the variational distribution
and true posterior of latent variables, i.e., DKL

[
log qϕ(T,Z,π | Y) || pθ(T,Z,π | Y,X, E)

]
.

According to the principle of variational inference, minimizing this KL divergence is equivalent to
maximizing the ELBO LELBO. Therefore, in E-step, we fix the model parameters θ and update
variational parameters by maximizing LELBO. After updating variational parameters, we update
cache embeddings with variational distributions of node representations.

M-step. In M-step, the goal is to update the model parameters θ. In such case, we fix variational pa-
rameters ϕ and update the model parameters by maximizing the expectation of log-likelihood func-
tion with respective to variational distributions: Eqϕ(T,Z,π|Y)[log pθ(Y,T,Z,π | X, E)], where we
sample from the variational distributions to approximate the expectation.

4.3 PREDICTION

We next introduce how to predict the labels of test nodes. Note that we introduce a latent variable
π to select a subset of representative nodes to improve the prediction efficiency. After training, we
expect to obtain a sparse distribution over π, i.e., qλ(π), based on which we can select a subset of
representative nodes and their cached embeddings. Specifically, we calculate the expected value of
qλ(π), which is give by: Eqλ(π)[πn] = λn/

∑N
j=1 λj ,∀n = 1, . . . , N , and then select the top-M

nodes that occupy 90% of the probability mass as representative nodes. We represent the selected
representative node set as Vπ and their corresponding cached embeddings as Ẑπ . We then leverage
the cached node embeddings Ẑπ and pθ to predict the labels of test nodes. Specifically, the predicted
label distribution of a test node ũ is calculated as:

p(yũ | X̃, Ẽ) =
∫
zũ

pθ(zũ | X̃, Ẽ)
[∑

tũ

pθ(tũ | zũ, Ẑπ)pθ(yũ | tũ, zũ)
]
dzũ , (7)

where pθ(tũ | zũ, Ẑπ) = Mul(tũ | K, fθ(
1

|Vπ|I, zũ, Ẑπ)) is the distribution of global similar nodes
of test node ũ. We use Monte Carlo method to approximate the expectation.

6

Under review as a conference paper at ICLR 2023

Table 1: Overall performance of CacheGNN and baselines in node classification tasks.

Inductive Transductive
Model Computer Photo PPI DBLP Cora Citeseer Pubmed
GCN 80.74 ± 0.52 88.19 ± 0.97 53.90 ± 0.21 80.24 ± 0.63 86.88 ± 1.15 75.19 ± 0.45 84.82 ± 0.02
+ CacheGNN 83.08 ± 0.83 89.69 ± 1.38 95.49 ± 0.95 77.65 ± 0.94 88.08 ± 0.13 76.09 ± 0.64 85.61 ± 0.02
SGC 82.04 ± 0.80 89.35 ± 0.18 49.41 ± 0.76 74.17 ± 0.25 86.51 ± 0.26 72.33 ± 0.85 82.98 ± 0.47
+ CacheGNN 83.52 ± 0.42 90.20 ± 0.46 98.11 ± 0.06 77.78 ± 0.4 87.71 ± 0.39 73.53 ± 0.64 84.16 ± 0.56
GraphSAGE 88.63 ± 0.37 94.15 ± 0.64 59.61 ± 0.23 74.68 ± 0.46 88.66 ± 0.59 75.64 ± 0.43 88.61 ± 0.36
+ CacheGNN 89.22 ± 0.22 94.84 ± 0.33 97.25 ± 0.58 75.29 ± 0.61 88.85 ± 0.75 76.47 ± 0.53 88.68 ± 0.02
GCNII 88.35 ± 1.10 93.34 ± 0.44 94.25 ± 0.14 84.41 ± 0.74 86.75 ± 0.65 71.20 ± 0.74 84.64 ± 0.05
+ CacheGNN 88.96 ± 0.53 94.20 ± 0.21 98.46 ± 0.08 86.44 ± 0.22 86.78 ± 0.39 73.16 ± 0.53 85.29 ± 0.14
GAT 87.24 ± 0.46 92.22 ± 0.14 89.54 ± 0.59 70.87 ± 2.64 85.09 ± 1.76 71.88 ± 0.85 86.32 ± 0.34
+ CacheGNN 88.88 ± 0.45 93.33 ± 0.20 98.20 ± 0.41 76.56 ± 1.93 86.81 ± 2.04 72.93 ± 0.43 86.66 ± 0.11
GATv2Conv 87.15 ± 0.60 92.84 ± 0.54 96.83 ± 1.26 70.46 ± 1.20 84.41 ± 1.89 72.56 ± 0.74 86.37 ± 0.20
+ CacheGNN 88.89 ± 1.07 93.33 ± 0.30 98.73 ± 0.12 78.90 ± 1.94 85.95 ± 0.52 72.26 ± 0.53 87.12 ± 0.61

GCN SGC GraphSAGE GCNII GAT GATv2Conv
80.0

82.5

85.0

87.5

90.0

(a) Computer

GCN SGC GraphSAGE GCNII GAT GATv2Conv
80

85

90

95

100
(b) PPI

Te
st

F1
-m

ic
ro

Baselines With CacheGNN
Degree Common Neighbors Embedding

Figure 3: Performance of CacheGNN with different base models under different similarity functions
on Computer and PPI benchmark datasets.

5 DISCUSSIONS

Our CacheGNN differs from most existing GNNs at the following aspects: (1) Unlike previous
works (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018) that leverage a limited
range of local neighbors, our CacheGNN aims at leveraging the comprehensive information, i.e.,
features, structural patterns and label information, of all nodes in the graph. (2) Unlike previous
works (Zhuang & Ma, 2018; Gasteiger et al., 2018) that leverage global structural information but
are difficult to be applied to inductive learning setting, our CacheGNN captures global information
by finding global similar nodes using cache and can be applied to both inductive and transductive
settings. (3) Unlike previous works (Chen et al., 2018; Fey et al., 2021; Yu et al., 2022) that store
embeddings of all nodes in the cache which consumes large memory when dealing with large-scale
graphs, our CacheGNN only stores embeddings of a small set of representative nodes, which is
selected from a sparse node selection distribution. (4) We are the first attempt to encourage a sparse
node selection distribution via the use of Dirichlet prior with appropriate hyperparameters, which in
turn enables our CacheGNN to select as few representative nodes as possible, and therefore reduce
the cache size and improve the prediction efficiency.

6 EXPERIMENTS

We mainly study the following four research questions: (RQ1) Can CacheGNN outperform base-
lines in node classification task? (RQ2) How does CacheGNN perform when using different simi-
larity functions to find global similar nodes? (RQ3) How does the number of global similar nodes
K and the trade-off hyperparameter η affect the performance of CacheGNN? (RQ4) What are the
distinctions, i.e., model performance and cache size, between using full cache which stores the em-
beddings of all nodes, and sampled cache which stores the embeddings of representative nodes?

6.1 EXPERIMENTAL SETTINGS

Datasets. To evaluate the performance of CacheGNN in inductive node classification, we compare
our method with baselines on four benchmark datasets, including Protein-Protein Interaction (PPI)

7

Under review as a conference paper at ICLR 2023

1 2 3
81

83

90
(a) Computer

1 2 3

90

93
94

(b) Photo

1 2 3
92

94

96

98

(c) PPI

1 2 3
72

75
77

80

85
(d) DBLP

Number of global similar nodes K

Te
st

F1
-m

ic
ro

GCN SGC GraphSAGE GCNII GAT GATv2Conv

Figure 4: Performance of CacheGNN with different base models under different number of similar
nodes on four benchmark datasets.

0.0 0.2 0.5 0.7 1.0

80

85

(a) Computer

0.0 0.2 0.5 0.7 1.0

80

85

90

95
(b) Photo

0.0 0.2 0.5 0.7 1.0

60

80

100
(c) PPI

0.0 0.2 0.5 0.7 1.0

70

80

(d) DBLP

Value of trade-off hyperparameter η

Te
st

F1
-m

ic
ro

GCN SGC GraphSAGE GCNII GAT GATv2Conv

Figure 5: Performance of CacheGNN with different base models under different values of η.

networks Hamilton et al. (2017), DBLP dataset from the citation network Tang et al. (2008) and
two Amazon product co-purchase networks Shchur et al. (2018), namely Photo and Computer. To
evaluate the performance of CacheGNN in transductive node classification, we conduct experiment
on three benchmark citation networks Yang et al. (2016), including Cora, Citeseer and Pubmed.

Baselines. We make comparisons between CacheGNN and existing state-of-the-art GNNs, includ-
ing GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al.,
2018), SGC (Wu et al., 2019), GCNII (Chen et al., 2020) and GATv2Conv (Brody et al., 2021).

Note that our CacheGNN aims to enhance existing GNNs by global information caching. Therefore,
we report the performance of our CacheGNN with different GNNs as base models. We use micro-F1
score (in %) with the standard errors over 5 repetitions as evaluation metric. Detailed experimental
settings are provided in section C of the Appendix. Resource code of our CacheGNN is publicly
available from https://github.com/anonynz12/anonymous3

6.2 RESULTS

To answer (RQ1), we compare CacheGNN with different GNN baselines in node classification task
under both inductive and transductive settings. Experimental results are reported in Table 1, which
suggest that CacheGNN can improve the performance of base GNNs in most cases. For example, in
inductive node classification, CacheGNN improves the performance of GCN, SGC and GraphSAGE
on PPI dataset by 41.6%, 48.7% and 37.8%, respectively. Likewise, in transductive node classifica-
tion, it can be observed that GNNs equipped with CacheGNN outperform corresponding baselines
in most cases. Theses results demonstrate that it is effective to utilise the information of global
similar nodes to enhance existing GNNs and improve their performance on node classification task
under both inductive and transductive settings.

Next, we explore (RQ2) by examining the performance of CacheGNN with different similarity func-
tions. Specifically, we compare three different similarity functions, namely degree based function,
common neighborhood based function and embedding based function. For degree based similarity
function, we calculate the similarity of two nodes based on their degree. As for common neighbor-
hood based similarity function, we compute node similarity by measuring the number of common
neighborhoods. For embedding based similarity function, we measure node similarity by calcu-
lating cosine similarity of their node embeddings learned from GNNs. Experimental results are
reported in Figure 3, which shows that different similarity functions lead to different model perfor-
mance on Computer and PPI datasets. For instance, on Computer dataset, while GCN equipped with
CacheGNN achieves the best performance under embedding similarity metric, SGC equipped with
CacheGNN using common neighbors similarity metric achieves the best performance over different
similarity functions. This can be explained by the fact that similarity functions influence the process

8

https://github.com/anonynz12/anonymous3

Under review as a conference paper at ICLR 2023

Table 2: Overall performance of CacheGNN using full cache and sampled cache on Computer,
Photo, PPI and DBLP benchmark datasets.

Computer Photo PPI DBLP
Model Micro-F1 Cache Size Micro-F1 Cache Size Micro-F1 Cache Size Micro-F1 Cache Size

GCN + CacheGNN (Full Cache) 83.11 ± 0.84 100% 89.78 ± 1.39 100% 96.26 ± 0.21 100% 77.77 ± 0.06 100%
GCN + CacheGNN (Sampled Cache) 83.08 ± 0.83 50.34% 89.69 ± 1.38 52.55% 94.17 ± 0.52 59.53% 77.65 ± 0.94 56.62%
SGC + CacheGNN (Full Cache) 83.38 ± 0.97 100% 90.48 ± 0.58 100% 98.41 ± 0.04 100% 76.27 ± 2.79 100%
SGC + CacheGNN (Sampled Cache) 83.52 ± 0.42 43.70% 90.20 ± 0.46 45.56% 97.26 ± 0.26 57.84% 76.23 ± 2.86 49.45%
GraphSAGE + CacheGNN (Full Cache) 89.26 ± 0.27 100% 94.89 ± 0.43 100% 97.61 ± 0.17 100% 75.33 ± 0.45 100%
GraphSAGE + CacheGNN (Sampled Cache) 89.22 ± 0.22 48.96% 94.84 ± 0.33 47.86% 96.75 ± 0.19 59.74% 75.29 ± 0.61 40.67%
GCNII + CacheGNN (Full Cache) 89.12 ± 0.17 100% 94.10 ± 0.16 100% 98.66 ± 0.04 100% 84.71 ± 3.00 100%
GCNII + CacheGNN (Sampled Cache) 88.96 ± 0.53 37.84% 94.20 ± 0.21 42.90% 98.46 ± 0.08 66.78% 84.68 ± 3.15 49.61%
GAT + CacheGNN (Full Cache) 88.36 ± 0.55 100% 93.34 ± 0.22 100% 98.48 ± 0.19 100% 75.03 ± 1.48 100%
GAT + CacheGNN (Sampled Cache) 88.88 ± 0.45 47.64% 93.33 ± 0.20 47.76% 97.31 ± 0.25 61.09% 76.56 ± 1.93 41.74%
GATv2Conv + CacheGNN (Full Cache) 88.91 ± 1.04 100% 93.42 ± 0.36 100% 99.00 ± 0.05 100% 77.47 ± 1.86 100%
GATv2Conv + CacheGNN (Sampled Cache) 88.89 ± 1.07 44.08% 93.33 ± 0.30 58.54% 98.21 ± 0.10 61.08% 78.90 ± 1.94 44.61%

of finding global similar nodes, and therefore CacheGNN obtains non-identical model performance
under different similarity functions on the same dataset.

6.3 ANALYSIS

Subsequently, we turn to (RQ3) by investigating the performance of CacheGNN under different
number of global similar nodes K and trade-off hyperparameter η. To understand the effect of the
number of global similar nodes, we conduct node classification experiments under different values
of K. As indicated in Figure 4, CacheGNN can improve the performance of base GNNs by using a
few global similar nodes. However, the performance of CacheGNN may degrade with the increase
of K in some cases. This is because some irrelevant information may be introduced when utilising
many global similar nodes. Therefore, the results suggest that a very small number of global similar
nodes, such as 1 or 2, are sufficient to increase the model performance in most cases.

Recall that in section 4.1, we introduce a hyperparameter η to obtain the predicted label distribution.
When η = 1, our model only uses local representations of nodes for prediction, which degrades to
vanilla GNNs. In contrast, when 0 < η < 1, our model predicts the labels of nodes by leveraging
information from both local neighbors and global similar nodes. To further understand the effect of
the trade-off hyperparameter η, we investigate the sensitivity of CacheGNN to the value of η. The
experimental results are presented in Figure 5. We find that compared with η = 1, CacheGNN can
achieve improved performance when 0 < η < 1 in most cases. For instance, by tuning η smaller on
PPI dataset, the performance of CacheGNN can be further improved by leveraging more information
from global similar nodes. This result quantifies the contribution of utilizing information from global
similar nodes, which leads to the improvement of model performance.

Finally, we answer (RQ4) by studying the performance of CacheGNN under different cache size.
Recall that in section 4.3, CacheGNN leverages Dirichlet prior to learn a sparse distribution over
training nodes, based on which we select a set of representative nodes and their cached embed-
dings for prediction. To evaluate the effectiveness of such method, we compare the performance
of CacheGNN under full cache and sampled cache. Experimental results are provided in Table 2,
where “Cache size” is the proportion of sampled nodes to the total number of training nodes. The
results suggest that our CacheGNN is able to reduce the cache size while achieving comparable
performance when utilising only a small fraction of training nodes. This verifies our hypothesis that
selecting global similar nodes from a small of representative nodes can achieve comparable results
as selecting global similar nodes from all training nodes.

7 CONCLUSION

In this paper, we propose CacheGNN to leverage information from global similar nodes to enhance
GNNs. Considering the computation cost, our CacheGNN uses a cache to store node representations
and leverages those cached embeddings to efficiently find global similar nodes. To further address
the low efficiency problem at test time, our CacheGNN retrieves global similar nodes from a small
set of representative nodes which are selected based on a sparse node selection distribution. Exten-
sive experiments on seven real-world benchmark datasets demonstrate the superior performance of
our CacheGNN. In the future we will extend CacheGNN to other graph learning applications such
as link prediction and graph classification.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In International Conference on Machine Learn-
ing, pp. 21–29, 2019.

Matthew James Beal. Variational algorithms for approximate Bayesian inference. University of
London, University College London (United Kingdom), 2003.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
In International Conference on Machine Learning, pp. 1026–1037, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2021.

Jie Cai, Xin Wang, Chaoyu Guan, Yateng Tang, Jin Xu, Bin Zhong, and Wenwu Zhu. Multimodal
continual graph learning with neural architecture search. In Proceedings of the ACM Web Con-
ference 2022, pp. 1292–1300, 2022.

Guanzheng Chen, Jinyuan Fang, Zaiqiao Meng, Qiang Zhang, and Shangsong Liang. Multi-
relational graph representation learning with bayesian gaussian process network. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36, pp. 5530–5538, 2022.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 942–950, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pp. 1725–1735, 2020.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In International Conference on Learning Representa-
tions, 2016.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
ICLR 2019 (RLGM Workshop), 2019.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In International Conference on
Machine Learning, pp. 3294–3304, 2021.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1416–1424, 2018.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph
neural networks for molecules. Advances in Neural Information Processing Systems, 34:6790–
6802, 2021.

10

Under review as a conference paper at ICLR 2023

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272, 2017.

Lingbing Guo, Qiang Zhang, Zequn Sun, Mingyang Chen, Wei Hu, and Huajun Chen. Understand-
ing and improving knowledge graph embedding for entity alignment. In International Conference
on Machine Learning, pp. 8145–8156, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in Neural Information Processing Systems, 30, 2017.

Yu Hao, Xin Cao, Yufan Sheng, Yixiang Fang, and Wei Wang. Ks-gnn: Keywords search over in-
complete graphs via graphs neural network. Advances in Neural Information Processing Systems,
34:1700–1712, 2021.

Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield, Mingyuan Zhou,
and Xiaoning Qian. Semi-implicit graph variational auto-encoders. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Junxian He, Taylor Berg-Kirkpatrick, and Graham Neubig. Learning sparse prototypes for text
generation. Advances in Neural Information Processing Systems, 33:14724–14735, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. NIPS Workshop on Bayesian
Deep Learning, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on Artificial Intelligence, 2018.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
338–348, 2020.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, pp. 807–814, 2010.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2019.

Meng Qu, Yoshua Bengio, and Jian Tang. Gmnn: Graph markov neural networks. In International
Conference on Machine Learning, pp. 5241–5250, 2019.

Meng Qu, Huiyu Cai, and Jian Tang. Neural structured prediction for inductive node classification.
In International Conference on Learning Representations, 2021.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS
2018, 2018.

Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-
Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, et al. String v11:
protein–protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Research, 47(D1):D607–D613, 2019.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World
Wide Web, pp. 1067–1077, 2015.

11

Under review as a conference paper at ICLR 2023

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and
mining of academic social networks. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 990–998, 2008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

S Wang, L Hu, Y Wang, X He, QZ Sheng, MA Orgun, L Cao, F Ricci, and PS Yu. Graph learn-
ing based recommender systems: A review. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, 2021.

David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir
Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al. Drugbank 5.0: a major update to the
drugbank database for 2018. Nucleic Acids Research, 46(D1):D1074–D1082, 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International Conference on Machine Learning, pp.
6861–6871, 2019.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462, 2018b.

Mingqi Yang, Renjian Wang, Yanming Shen, Heng Qi, and Baocai Yin. Breaking the expression
bottleneck of graph neural networks. IEEE Transactions on Knowledge and Data Engineering,
2022.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International Conference on Machine Learning, pp. 40–48, 2016.

Zhiyong Yang, Qianqian Xu, Xiaochun Cao, and Qingming Huang. Task-feature collaborative learn-
ing with application to personalized attribute prediction. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(11):4094–4110, 2020.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In
Proceedings of the AAAI conference on Artificial Intelligence, volume 33, pp. 7370–7377, 2019.

Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and Shuiwang Ji. Graphfm: Im-
proving large-scale gnn training via feature momentum. In International Conference on Machine
Learning, pp. 25684–25701, 2022.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. In International Conference on Learn-
ing Representations, 2020.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kan-
nan, Viktor Prasanna, Long Jin, and Ren Chen. Deep graph neural networks with shallow sub-
graph samplers. In Advances in Neural Information Processing Systems, 2021.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. Advances in
Neural Information Processing Systems, 32, 2019.

Wentao Zhang, Zeang Sheng, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, and Bin Cui. Evalu-
ating deep graph neural networks. arXiv preprint arXiv:2108.00955, 2021.

12

Under review as a conference paper at ICLR 2023

Chenyi Zhuang and Qiang Ma. Dual graph convolutional networks for graph-based semi-supervised
classification. In Proceedings of the 2018 World Wide Web Conference, pp. 499–508, 2018.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

13

Under review as a conference paper at ICLR 2023

A NOTATION TABLE

Table 3 summarizes the main notations appeared across the paper.

Table 3: Main notations used across the paper.

Symbol Description

G a graph with the set of labeled nodes
V a set of nodes
E a set of edges between nodes
L number of GNN layers
N = |V| number of nodes
C number of classes
K number of the most similar nodes
F feature dimension
η trade-off hyperparameter
α concentration hyperparameter
π latent representative node distribution
θ model parameters
ϕ variational parameters
λ variational parameters
zu representation of node u
Z representations of all nodes
tu the set of global similar nodes of u
T the set of all global similar nodes
Ẑ cached embeddings of all nodes
Ẑπ cached embeddings of top M representative nodes
X ∈ RN×F feature matrix of nodes
Y ∈ {0, 1}N×C one-hot encoding label matrix of nodes

B PSEUDO CODES OF CACHEGNN

In this section, we first introduce message passing framework. Specifically, for an L-layer GNN, the
representation learning function of the l-th layer is represented as:

b
(l)
i = AGGREGATION({h(l−1)

j : j ∈ Ne(i)}) , (8)

h
(l)
i = COMBINE(h

(l−1)
i ,b

(l)
i) , (9)

where h
(l)
i is the representation of node vi at the l-th layer with h

(0)
i = xi, Ne(i) is a set of

nodes adjacent to vi, and AGGREGATION(·) and COMBINE(·) are the component functions of
GNN layers. Different GNNs adopt different formulations for these two component functions. For
instance, GraphSAGE (Hamilton et al., 2017) uses mean function for AGGREGATION(·) and a
one-layer feed-forward neural network for COMBINE(·).
After obtaining the node representations, GNNs apply a linear softmax layer to the node representa-
tions to calculate the label distributions of nodes, which are usually modeled as factorized categor-
ical distributions, i.e., pθ(Y | X, E) =

∏
u∈V pθ(yu | X, E). The model parameters of GNNs are

learned by maximizing the log-likelihood of label distributions through stochastic gradient descent.

We further provide an overview of the optimization process of CacheGNN model for node classifi-
cation in in Algorithm 1.

14

Under review as a conference paper at ICLR 2023

Algorithm 1 The proposed CacheGNN approach for node classification task.

Input: A training graph with labeled nodes G = {V, E ,X,Y} and a test graph G̃ = {Ṽ, Ẽ , X̃}.
Output: Node labels Ỹ for the unlabeled nodes in G̃.

1: Pre-train pθ according to Equation 8 and 9.
2: while no converge do
3: � E-step ▷ Estimate the posterior distributions
4: Calculate qϕ based on qϕ(tu | Y) and qϕ(zu | tu,Y)

5: Calculate qλ(π) based on
∏N

i=1 π
λi−1
i .

6: Update qϕ and qλ(π) based on Equation 6.
7: � M-step ▷ Maximizing the expectation
8: Calculate pθ based on Equation 2.
9: Update pθ based on Eqϕ(T,Z,π|Y)[log pθ(Y,T,Z,π | X, E)].

10: end while
11: Select the top M nodes that occupy 90% of the probability mass and their corresponding cached

embeddings as Ẑπ .
12: Classify each unlabeled node in graph with pθ and cache Ẑπ based on Equation 7.

C EXPERIMENTAL DETAILS

C.1 DATASETS

We conduct experiments on the following seven real-world network datasets 2, which consists of
three standard citation network benchmark datasets, two Amazon Co-purchase networks, DBLP
dataset and propein-protein interaction (PPI) dataset, statistical information of which is provided in
Table 4.

Table 4: Statistics of the datasets used in the experiments.

Dataset Task #Nodes #Edges #Features #Labels

Cora Multi-class 2,708 5,429 1,433 7
Citeseer Multi-class 3,327 4,732 3,703 6
Pubmed Multi-class 19,717 44,338 500 3
Photo Multi-class 7,650 238,162 745 8
Computers Multi-class 13,752 491,722 767 10
DBLP Multi-class 47,443 214,792 100 3
PPI Multi-label 56,944 818,716 50 121

• Cora, Citeseer, Pubmed (Yang et al., 2016): The three datasets are citation networks
where the nodes represent the documents and the edges represent the citation links between
publications. Each node feature corresponds to the bag-of-words representation of the
document and belongs to one of the academic topics. We randomly select 70% of nodes as
training nodes, 10% as validation nodes and the remaining nodes are treated as test nodes.

• Photo, Computers (Shchur et al., 2018): The two datasets are the Amazon product co-
purchase networks where the nodes represent the products and the edges between two nodes
indicate that two products are frequently bought together. The features of each node are
the bag-of-word product reviews and the labels are given by the product category. We
randomly select 20% of nodes as training nodes, 40% of nodes as validation nodes and the
remaining nodes are treated as test nodes.

• DBLP (Tang et al., 2008): The DBLP dataset is constructed from the citation network
where the nodes represent the documents and the edges represent the citation links between
publication. Following the previous work (Qu et al., 2021), We compute the mean GloVe
embedding 3 of words in the title and abstract as features. We split the DBLP dataset

2The datasets are available from https://pytorch-geometric.readthedocs.io/en/
latest/modules/datasets.html

3http://nlp.stanford.edu/data/glove.6B.zip

15

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
http://nlp.stanford.edu/data/glove.6B.zip

Under review as a conference paper at ICLR 2023

into three disjoint graphs for training/validation/test. The training graph contains papers
published before 1999 (with 1999 included). The validation graph contains papers between
2000 and 2009 (with 2000 and 2009 included). The test graph contains papers published
after 2010 (with 2010 included).

• PPI (Hamilton et al., 2017): The PPI dataset is constructed from human tissues (Zitnik
& Leskovec, 2017). Each node has 50 features that are composed of positional gene sets,
motif gene sets and immunological signatures. There are 121 labels for each node set
from gene ontology and a node can possess several labels simultaneously. Following the
previous work (Hamilton et al., 2017), the dataset contains 20 graphs for training, 2 for
validation and 2 for testing.

C.2 HYPERPARAMETER CHOICES

Throughout the experiments, we use the Adam SGD optimizer (Kingma & Ba, 2015) with a learning
rate of 0.001 and early stopping with a patience of 100 epochs. We run all experiments on a single
Nvidia 2080 Ti GPU. We set the Dirichlet hyperparameter α to 0.1 to encourage encourage a sparse
node selection distribution. We use the GNN module implementations of PyTorch Geometric (Fey
& Lenssen, 2019), and follow the GNN models provided in the examples of the repository.

GCN (Kipf & Welling, 2017). We set the number of hidden neurons to 16, and the number of
layers to 2. RELU (Nair & Hinton, 2010) is used as the activation function. We do not dropout
between GNN layers.

GraphSAGE (Hamilton et al., 2017). We set the number of hidden neurons to 64, and the number
of layers to 2. ELU (Clevert et al., 2016) is used as the activation function. We do not dropout
between GNN layers.

GAT (Veličković et al., 2018). We set the number of hidden neurons to 64 per attention head
and the number of layers to 3 for the PPI dataset. For the rest datasets (DBLP, Photo, Amazon,
Cora, Citeseer and Pubmed), we set the number of hidden neurons to 128 per attention head and the
number of layers to 3. The number of heads for each layer is set to 4, 4 and 6. ELU (Clevert et al.,
2016) is used as the activation function. We do not dropout between GNN layers.

SGC (Wu et al., 2019). We set the number of hidden neurons to 256, the number of layers to 2
and the number of hops to 2. We do not dropout between GNN layers.

GCNII (Chen et al., 2020). We set the number of hidden neurons to 512. We set the number of
layers to 9. ReLU Nair & Hinton (2010) is used as the activation function. We set the strength α
of the initial residual connection to 0.5, and the hyperparameter θ to compute the strength of the
identity mapping to 1.

GATv2Conv (Brody et al., 2021). We set the number of hidden neurons to 64 per attention head
and the number of layers to 3 for the PPI dataset. For the rest datasets (DBLP, Photo, Amazon,
Cora, Citeseer and Pubmed), we set the number of hidden neurons to 128 per attention head and the
number of layers to 3. The number of heads for each layer is set to 4, 4 and 6. ELU (Clevert et al.,
2016) is used as the activation function. We do not dropout between GNN layers.

D COMPUTATIONAL COMPLEXITY

In order to verify the fact that our CacheGNN can reduce the computation cost, we analysis the
computational complexity of CacheGNN equipped with GCN under the situation of using cache
and not using cache. If not using cache, the computational complexity of our method equipped with
GCN is O(N(LN2F + LNF 2)), where L, N , F represent the number of layers, the number of
nodes in the graph and the dimension of embeddings respectively. If using cache, the computation
complexity of our method equipped with GCN is O(LN2F +LNF 2), which shows that leveraging
cache is much more efficient and could reduce the computation cost.

16

https://github.com/pyg-team/pytorch_geometric/tree/master/examples

	Introduction
	Related Work
	Problem Formulation
	Methodology
	Model Structure
	Training
	Prediction

	Discussions
	Experiments
	Experimental Settings
	Results
	Analysis

	Conclusion
	Notation Table
	Pseudo Codes of CacheGNN
	Experimental details
	Datasets
	Hyperparameter choices

	Computational Complexity

