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ABSTRACT

We introduce PASTA (Perceptual Assessment System for explanaTion of Artifi-
cial Intelligence), a novel framework for a human-centric evaluation of eXplain-
able AI (XAI) techniques in computer vision. Our first key contribution is a human
evaluation of XAI explanations on four diverse datasets—COCO, Pascal Parts,
Cats Dogs Cars, and MonumAI—which constitutes the first large-scale bench-
mark dataset for XAI, with annotations at both the image and concept levels. This
dataset allows for robust evaluation and comparison across various XAI meth-
ods. Our second major contribution is a data-based metric for assessing the in-
terpretability of explanations. It mimics human preferences, based on a database
of human evaluations of explanations in the PASTA-dataset. With its dataset and
metric, the PASTA framework provides consistent and reliable comparisons be-
tween XAI techniques, in a way that is scalable but still aligned with human eval-
uations. Additionally, our benchmark allows for comparisons between explana-
tions across different modalities, an aspect previously unaddressed. Our findings
indicate that humans tend to prefer saliency maps over other explanation types.
Moreover, we provide evidence that human assessments show a low correlation
with existing XAI metrics that are numerically simulated by probing the model.

1 INTRODUCTION

As Deep Neural Networks (DNNs) are used in increasingly high stakes domains (e.g., legal, medical)
(Surden, 2021; Litjens et al., 2017), it is essential for humans to interpret how they reach their
conclusions (Bender et al., 2021). Their lack of transparency has led them to be characterized as
“black boxes” (Castelvecchi, 2016), which is particularly problematic in critical applications where
understanding the decision-making process is essential for trust and accountability (Vereschak et al.,
2024), leading to the creation of a relatively new field: explainable AI (XAI) (Gunning et al., 2019).
XAI aims to make the workings of DNNs more transparent and interpretable. XAI methods fall into
two main categories: post-hoc techniques (Selvaraju et al., 2017; Ribeiro et al., 2016; Lundberg &
Lee, 2017) and ante-hoc techniques (Bennetot et al., 2022; Koh et al., 2020). Post-hoc techniques
generally explain the output of a frozen, pretrained DNN, while ante-hoc techniques modify the
architecture of the DNN to improve its interpretability from the outset. Each of these categories can
be further subdivided into various sub-families, offering a wide array of XAI approaches.

The diversity of XAI techniques calls for an effort to standardize their evaluation and comparison.
Although there are toolkits in computer vision that offer a range of computational evaluation tech-
niques (Agarwal et al., 2022b; Hedström et al., 2023; Fel et al., 2022a), to our knowledge there has
been no effort to standardize their evaluation from a perceptual point of view (Nauta et al., 2023),
i.e., the way the explanation is perceived by the human for whom it was intended. Currently, preva-
lent approaches (Dawoud et al., 2023; Colin et al., 2022) to evaluate XAI techniques involve human
annotators assessing and ranking their interpretability. This approach aligns with XAI’s goal of
improving the human interpretability of DNN models. Yet, this method is costly since it requires
paying annotators and is impractical for widespread use, as each new XAI technique necessitates a
fresh round of human evaluation. It is also at risk of being inconsistent and unreliable since evalu-
ations may differ from one annotator to another and depend on factors such as fatigue and even the
time of day (Schmidt et al., 2007).
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To address the challenges associated with evaluating XAI techniques, we propose the Perceptual
Assessment System for explanaTion of Artificial intelligence (PASTA). PASTA aims to automate
the evaluation of XAI techniques by providing an evaluation metric that mimics human preferences.

The first component of PASTA is a dataset composed of four diverse datasets (COCO, Pascal Part,
Cats Dogs Cars, and Monumai), which include both image and concept annotations. Using this
dataset, we compare 21 XAI methods across multiple model architectures. We subject the resulting
explanations to a rigorous evaluation by human annotators, along a comprehensive set of criteria
that cover a variety of desired properties.

The second component of PASTA is a metric designed to replicate human evaluation on the PASTA-
dataset. While there are benchmarks that focus on perceptual evaluation of XAI methods (Colin
et al., 2022; Dawoud et al., 2023), to the best of our knowledge, we are the first to integrate both
saliency-based and concept-based explanations into a unified framework. Additionally, our approach
addresses multiple dimensions of human assessment by incorporating a diverse set of questions for
users. The primary contributions of this paper are as follows:

• Comprehensive XAI Benchmark: We establish a dataset, the PASTA-dataset, designed to eval-
uate XAI methods across various modalities, including vision and concept-based explanations
(Sec. 3.1).

• Extensive Evaluation of XAI Methods: We conduct a large-scale evaluation of 21 XAI meth-
ods, comparing both post-hoc and ante-hoc approaches across multiple datasets (Sec. 3.2—3.4).
Our findings indicate that saliency and input perturbation-based techniques, such as LIME and
SHAP, are favored for their effectiveness in interpreting model predictions (Sec. 3.5).

• Human-AI Correlation: Our findings reveal a low correlation between widely used XAI met-
rics and human assessments, suggesting that these metrics cover complementary aspects of XAI
quality (Sect 3.6).

• Human-aligned Perception Metric for Explanations: We introduce a novel, data-based metric,
which we call the PASTA-metric, that automates the scoring of XAI techniques along human-like
interpretability criteria (Sec. 4).

Automated yet human-aligned metrics such as the PASTA-metric may serve not only to streamline
the evaluation process of XAI techniques but also to foster a more transparent and trustworthy AI
ecosystem, where DNNs are comprehensible and their decisions justifiable. The complete PASTA
framework (code, annotation, and models) will be released after the reviews.

2 RELATED WORK

Automated scoring. Automated scoring involves developing models that assign scores to inputs
based on a reference dataset, often derived from human ratings. A particularly active area of re-
search in this domain is automated essay scoring. Traditionally, this has been addressed through
handcrafted feature extraction (Yannakoudakis et al., 2011), but modern methods tend to be closer to
model as a judge (Lee et al., 2024; Taghipour & Ng, 2016; Chiang et al., 2024). More recently, there
has been a growing interest in using embeddings from large language models (LLMs) as features
for scoring. The first successful attempt in this direction was made by Yang et al. (2020). Build-
ing on this trend, other approaches have incorporated LLM embeddings with models like LSTMs
(Wang et al., 2022), integrated text generation into the training loop (Xiao et al., 2024), or introduced
multi-scale aspects to enhance performance (Li et al., 2023).

Explainable AI. To address the challenge of explaining DNNs, several specialized tools have been
proposed, often categorized into post-hoc and ante-hoc methods (Arrieta et al., 2020; Rudin et al.,
2022). Post-hoc methods encompass any tool external to the model, allowing us to gain insights
from any pre-trained DNN. Popular examples are GradCAM (Selvaraju et al., 2017), LIME (Ribeiro
et al., 2016), and SHAP (Lundberg & Lee, 2017). While most post-hoc explainers agree in providing
input regions most responsible for a certain prediction, they differ in many non-trivial details, and
selecting and evaluating the most appropriate explainer for each task can be challenging (Leavitt
& Morcos, 2020; Roy et al., 2022). Ante-hoc methods, instead, aim at modifying the underlying
model architecture so as to provide explanations by design. This can be done in the framework of
Concept Bottleneck Models (CBMs) (Koh et al., 2020) by prompting the model to first predict a set
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Figure 1: Overview of the human evaluation of the PASTA-dataset. Each image is paired with
multiple computed explanations, which are then annotated by human evaluators, first with baseline
questions Q0.1 and Q0.2 and then regarding their interpretability and usefulness, using the questions
Q1—Q6 outlined in Section 3.4.

of human-understandable high-level concepts, and then making the final prediction using a shallow
and interpretable classifier that supports human inspection, or by decomposing the reasoning of the
model into smaller and more actionable steps (Ge et al., 2023).

Evaluating explainability. While several methods have been proposed to quantitatively measure
explanation quality, such as faithfulness (Petsiuk et al., 2018; Dasgupta et al., 2022), sparsity (Cha-
lasani et al., 2020; Bénard et al., 2021), robustness (Alvarez-Melis & Jaakkola, 2018b; Montavon
et al., 2018), sensitivity (Adebayo et al., 2018; Hedström et al.) and alignment to an assumed ground
truth (Colin et al., 2022; Mohseni et al., 2021; Dawoud et al., 2023), they inherently overlook the
perceptual aspect with respect to the human, which is the expected consumer of such explanations.
Evaluating explanations via user studies, e.g. where annotators are asked to rate and evaluate ex-
planations (Chen et al., 2018; Shu et al., 2019), are however very costly, prone to unreproducibility
issues (Nauta et al., 2023), and often unfeasible for tasks that require trained users, like in the med-
ical domain (Miró-Nicolau et al., 2022; Muddamsetty et al., 2021). In this work, we take the first
step towards standardizing the evaluation of human perception preferences of explanations (Nauta
et al., 2023). We propose to overcome the issues of hard-to-reproduce large-scale user studies by
automatizing the evaluation of XAI techniques through a multi-value scoring system that mimics hu-
man preferences while taking into account the users’ diverse expectations, which naturally emerge
in user-based studies.

3 CREATING A HUMAN PREFERENCE DATASET FOR XAI INTERPRETABILITY

To evaluate the quality of XAI explanations from a human-centric point of view, we proceed along
the following steps, which are detailed in the subsections below. First, we build a dataset from anno-
tated images. Using our codebase of classifiers and XAI techniques, we compute label predictions
along with XAI explanations. The explanations are then evaluated by human annotators following
a rigorous evaluation protocol. Finally, we compare the different XAI techniques with the human
evaluations to assess quality of their explanations. We also investigate how human scores correlate
with popular automated XAI metrics to see whether they are complementary.

3.1 DATASET COMPOSITION

To evaluate the performance of different perceptual metrics, we collect a large-scale dataset com-
posed of images of four highly heterogeneous datasets: COCO (Lin et al., 2014), Pascal Part (Chen
et al., 2014), Cats Dogs Cars (Kazmierczak et al., 2024), and Monumai (Lamas et al., 2021). This
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collection is referred to as the classifier’s dataset. The precise set of labels used for each classifier’s
dataset is described in Section A.1.1.. It is important to distinguish this from the PASTA-dataset,
which comprises the final set of images, annotations, labels, and explanations obtained through
our evaluation process. Each dataset includes two levels of annotations: image-based annotations
and concept-based annotations. This dual-level annotation framework allows for the application of
Concept-Based and other XAI methods, enabling a robust evaluation across different approaches.
For this, we use for the computation of explanations a subset of 25 images of the classifier’s dataset
test split per dataset, resulting in a comprehensive evaluation of 100 images, that serve as the basis
of the PASTA-dataset. This diverse selection ensures a broader generalization of the XAI techniques
across datasets being assessed. Note that, unlike traditional datasets, our benchmark dataset com-
prises a triplet of images, explanations, and labels. This triplet enables us to quantitatively assess
the quality of XAI techniques (see Figure 1).

3.2 XAI METHODS

To ensure representativity, we consider two distinct types of explanations. The first type comprises
saliency methods, which generate explanations by assigning an importance score to each pixel of
the input image, indicating the significance of each pixel in the prediction process. The second type
consists of concept-based explanations, which highlight the importance of human-understandable
concepts in the explanation. A detailed list of the methods and more details on each technique are
given in Appendix A.2. Notably, we present in this appendix a succinct definition of each XAI
method used.

Among saliency-based methods, we consider model-agnostic explanations (LIME (Ribeiro et al.,
2016) and SHAP (Lundberg & Lee, 2017)), gradient-based (FullGrad (Srinivas & Fleuret, 2019))
and model-specific techniques. The model-specific methods include GradCAM (Selvaraju et al.,
2017), HiResCAM (Draelos & Carin, 2020), GradCAMElementWise (Pillai & Pirsiavash, 2021),
GradCAM++ (Chattopadhay et al., 2018), XGradCAM (Fu et al., 2020), AblationCAM (Ra-
maswamy et al., 2020), ScoreCAM (Wang et al., 2020), EigenCAM (Muhammad & Yeasin, 2020),
EigenGradCAM (Muhammad & Yeasin, 2020), LayerCAM (Jiang et al., 2021), Deep Feature Fac-
torizations (Collins et al., 2018), and BCos (Böhle et al., 2024).

Among concept-based methods, we explore those that produce explanations through counterfac-
tuals (CLIP-QDA-sample (Kazmierczak et al., 2024)), and feature importance (X-NeSyL (Dı́az-
Rodrı́guez et al., 2022), LaBo (Yang et al., 2023), CLIP-linear (Yan et al., 2023), LIME-CBM
(Kazmierczak et al., 2024), RISE (Petsiuk et al., 2018) and SHAP-CBM (Kazmierczak et al., 2024)).
Additionally, we employ various strategies for concept extraction: zero-shot methods, training from
concept annotations, and training from bounding boxes.

A beneficial aspect of our approach is that many of the methods are tested on multiple backbone
architectures (see Figure 7). In such cases, the XAI method is applied to independently trained
models. For instance, GradCAM is evaluated on ResNet50, ViT-B, and CLIP-zero-shot models,
while SHAP-CBM is applied to both CLIP-QDA and the original Concept Bottleneck model as
proposed by Koh et al. (2020).

3.3 TRAINING CLASSIFIERS AND COMPUTING THE XAI DATASET

The initial phase in constructing the PASTA-dataset involves training the various classifier models
on which explanations will be generated. Specifically, we utilize ResNet50 (He et al., 2016), ViT-B
(Dosovitskiy, 2020), ResNet50-BCos (Böhle et al., 2024), CLIP-Linear (Yan et al., 2023), CLIP-
QDA (Kazmierczak et al., 2024), X-NeSyL (Dı́az-Rodrı́guez et al., 2022), and ConceptBottleneck
(Koh et al., 2020). These models are trained separately on the each classifier’s dataset evoqued
in Section 3.1. The final assessment of XAI techniques is conducted on samples of the test set.
To provide a diverse range of explanations, our framework incorporates both black-box models,
explained using post-hoc methods, and ante-hoc methods, specifically CBMs. The specific details
regarding these two families of methods like the set of concepts used in CBMs are presented in
Appendix A.1.2.

Our codebase includes the 21 XAI methods described in Sec. 3.2 and the 7 backbone models de-
scribed above. Some XAI methods are incompatible with certain backbones, see Table 7, this leaves
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Figure 2: Samples corresponding to questions 5 and 6. On the left, a light perturbation is applied,
resulting in no label change. On the right, a strong perturbation is applied, leading to a label change.

46 distinct combinations of XAI methods and backbones, which we refer to as XAI techniques. We
apply each technique to 100 images. This leads to an XAI dataset of 4600 instances, each of which
is associated with an image and its ground truth label, the label prediction from a classifier instance,
and the explanation from a particular XAI technique. In the next section, we present an approach
for evaluating the human perception of these instances.

3.4 HUMAN EVALUATION PROTOCOL

We aim to quantify the interpretability and usefulness of XAI techniques accurately, using a human
evaluation of the quality of evaluations. The resulting dataset serves as a benchmark, enabling us to
compare and validate current and future XAI methods. Our human-centric approach complements
existing approaches that focus primarily on assessing the model’s internal behavior. For exam-
ple, traditional evaluations of faithfulness measure how closely an explanation corresponds to the
model’s true functioning while we assess in our dataset how the explanation fit human expectations.

We take a structured approach to ensure that the explanations are not only technically sound but
also align with human cognitive processes and expectations, fostering the development of more
transparent and interpretable AI systems. First, we establish a comprehensive set of assessment
criteria that are evaluated on a graded scale. Then, we apply a meticulous evaluation protocol,
developed with the help of a psychologist, to ensure that annotators fully understand the task and
the expectations. This includes annotator training and close monitoring throughout the process.

Evaluation Criteria We consolidate different criteria from the literature into the following set
of desiderata for XAI explanations that we wish to evaluate (equations, definitions and algorithms
defined in Appendix B.2):

• Faithfulness (Arrieta et al., 2020; Fel et al., 2022b) measures the extent to which an explanation
accurately reflects the true behaviour of the model.

• Robustness (Doshi-Velez & Kim, 2017; Agarwal et al., 2022a; Yeh et al., 2019) assesses the
stability and relevance of the explanation across a broad range of models and inputs.

• Complexity (Nauta et al., 2023; Nguyen & Martı́nez, 2020; Bhatt et al., 2021) checks whether the
explanation is both simple and informative, balancing clarity and detail.

• Objectivity (Bennetot et al., 2022) evaluates whether the explanation is interpreted consistently
by the majority within a given audience.

Evaluation Protocol Gathering human preferences from surveys is an active field of research in
psychology (Fowler Jr, 2013), but also in the field of machine learning e.g., with the recent advent
of reinforcement learning from human feedback (RLHF) (Kaufmann et al., 2023). Interfaces, as
well as the formulation of questions, play a key role in the quality of the annotations (Pommeranz
et al., 2012), and their design must be considered cautiously to avoid confounding cognitive biases.
The following human evaluation protocol has been designed with the help of a psychologist. The
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formulation of the questions has been carefully chosen to ensure that they are fully understood by
each annotator.

To maintain consistency and reliability, all annotators undergo a training session before starting
the actual annotation task. This training familiarizes them with the XAI techniques, evaluation
criteria, rating scale, and datasets, ensuring a uniform understanding of the task and the expectations.
More details about the annotation protocol are given in Appendix A.3, including an example of how
questions are presented to the annotators (Fig. 9).

During the evaluation process, annotators are shown an image, a prediction, and an explanation.
They are then asked a list of questions that we now describe in more detail. A first set of questions
aims at having annotators establish a baseline, i.e., by interpreting and explaining what makes an
image recognizable as a specific object or class. This prompts the human annotator to think about
what they are relying on to classify the image themselves, before having to evaluate explanations
produced by the XAI techniques. The first two questions in the annotation process are:

• Q0.1: What part makes you classify this image as ***? (write an explanation extracting concepts)
• Q0.2: What part of the input helps the prediction? (draw bounding boxes on the image)

Each explanation generated by the XAI techniques is then evaluated regarding each of the desiderata
given above (indicated in italics):

• Q1: The provided explanation is consistent with how I would explain the predicted class? Fidelity
• Q2: Overall the explanation provided for the model prediction can be trusted? Complexity
• Q3: Is the explanation easy to understand? Complexity
• Q4: The explanation can be understood by a large number of people, independently of their

demographics (age, gender, country, etc.) and culture? Objectivity
• Q5: With this perturbed image, to what extent has the explanation changed ? (Examples with

good predictions and light perturbations) Robustness
• Q6: With this perturbed image, to what extent has the explanation changed? (Examples with bad

predictions and strong perturbations) Robustness

Annotators evaluate how well the explanations conform to their expectations (Q1), whether the ex-
planations are clear (Q2 and Q3), and if they would rely on these explanations (Q4). They also
assess how much the explanations change when the images are perturbed (Q5 and Q6), for both ac-
curate and inaccurate predictions, as studied by (Fel et al., 2022b). An example is shown in Figure 2.
Each explanation is rated on a scale from one to five stars, where one star indicates the explanation
is entirely uncorrelated with the annotator’s reasoning, and five stars represent perfect correlation.
This star rating system allows for a nuanced assessment of the quality of the explanations, reflecting
how closely they align with human understanding.

3.5 HUMAN EVALUATION AND RESULTS

We now present a brief summary of the human evaluations obtained in the PASTA-dataset, using
the previously described protocol. Full results and values are available in Appendices B.3 and B.4.
The PASTA-dataset, described in Sec. 3.3, contains 4600 instances with images, predictions, and
explanations. From this set, we select 2200 samples randomly and let them be evaluated by humans
according to the protocol above. Each instance receives five evaluations from different annotators.
We aggregate these evaluations using majority voting to favor consensus opinions. As illustrated
by Figure 3a, we observe that these results indicate a preference for image-based techniques, sug-
gesting that saliency maps are perceived as more interpretable than CBMs. There are several po-
tential reasons why saliency-based methods might be preferred over concept-based ones. First, this
could be attributed to the more active research field surrounding saliency methods, as discussed be-
low. Another plausible reason is the straightforwardness of the explanation provided by saliency
maps, which is especially relevant given that our dataset is oriented toward non-expert annotators.
Additionally, Figure 3b shows the average score among techniques that share the same backbone.
Interestingly, CLIP and ViT have similar scores, likely due to the architectural similarities between
the two models. ResNet 50, which played a pivotal role in the development of many XAI methods,
consistently scores higher. This could suggest a potential bias toward ResNet 50 in the design and
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Figure 3: Comparison of explanation methods and backbones: Overall, saliency methods are
preferred over CBM-based explanations. As backbones for saliency methods, ViT-B and CLIP
obtain overall similar results, while Resnet50 has better scores.

Table 1: Pearson Correlation Coefficient (PCC) and Spearman rank Correlation Coeffi-
cient (SCC) between faithfulness computed with different perturbation strategies and human
scores. In parentheses, the respective p-values.

ROAD Black patches Uniform noise Gaussian noise

PCC SCC PCC SCC PCC SCC PCC SCC

Q1 0.01 (0.62) -0.04 (0.12) 0.06 (0.02) 0.05 (0.04) 0.07 (0.01) 0.03 (0.24) 0.07 (0.02) 0.02 (0.38)
Q2 -0.01 (0.88) -0.03 (0.20) 0.04 (0.19) 0.04 (0.17) 0.06 (0.04) 0.02 (0.45) 0.05 (0.08) 0.01 ( 0.63)
Q3 0.03 (0.33) -0.03 (0.34) 0.04 (0.10) 0.04 (0.16) 0.08 (0.01) 0.04 (0.13) 0.06 (0.02) 0.03 (0.30)
Q4 0.03 (0.25) -0.04 (0.17) 0.04 (0.19) 0.03 (0.33) 0.08 (0.01) 0.03 (0.21) 0.06 (0.02) 0.02 (0.41)
Q5 -0.05 (0.05) 0.02 (0.41) 0.01 (0.93) 0.04 (0.14) -0.05 (0.07) -0.01 (0.78) -0.04 (0.16) 0.01 (0.95)
Q6 -0.02 (0.37) 0.06 (0.03) -0.13 (1e-5) -0.08 (0.01) -0.04 (0.16) -0.01 (0.68) -0.04 (0.13) -0.01 (0.79)

effectiveness of current XAI methods. Another method that seems to perform well is EigenCAM.
Notably, the method does not rely on class discrimination results, which simplifies the process of
showcasing salient objects. This often leads to the generation of saliency maps that are both plausible
and easy to interpret. However, these maps tend to be less faithful to the model’s actual decision-
making process. This discrepancy underscores the distinction between human agreement—what
users perceive as important—and the model’s faithfulness.

3.6 CORRELATION WITH OTHER METRICS

We turn to the question of how the human scores in the PASTA-dataset correlate with standard
XAI metrics. An analysis based on the Pearson Correlation Coefficient and the Spearman rank
Correlation Coefficient for different perturbation strategies, shown in Table 1 indicates a rather weak
correlation between human scores and ROAD (Rong et al., 2022), a popular metric to evaluate
faithfulness. We conclude that our human scores indeed cover an aspect of explanation quality
unrelated to that of perceptual quality, as predicted by Biessmann & Refiano (2021). Additional
results, including results for other axioms, are available in Appendix B.2 and B.3.

Then, our findings reinforce the idea that human evaluations and computational metrics measure
complementary aspects of XAI methods. Human evaluations excel at assessing the usefulness of
explanations, aligning with their primary purpose of serving a human audience. In contrast, com-
putational metrics, such as faithfulness, focus on evaluating the alignment between the explanation
and the model’s actual internal functioning. This aspect lies beyond the reach of human judgment,
as humans cannot directly access or fully comprehend the internal mechanisms of the model.

4 DEVELOPING A METRIC FOR PERCEPTUAL EVALUATION

Our human preference dataset contains evaluations of the fidelity, complexity, objectivity, and ro-
bustness of each evaluation. These scores were painstakingly attributed by human annotators. To
provide a tool for measuring human assessment of XAI techniques, we introduce the PASTA-metric,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Pipeline of the PASTA-metric. Initially, embeddings are computed based on the expla-
nations. Then a scoring network, trained on labels provided by the Benchmark Dataset, generates a
final score.

which simulates human evaluation. The global pipeline is illustrated in Figure 4. More precisely,
the PASTA-metric is composed of an embedding network (Section 4.1), that processes both CBM
outputs or saliency maps, and a scoring network (Section 4.2), that computes scores from the em-
beddings. Using the data collected in Section 3, the PASTA-metric aims at predicting the human
scores for questions Q1 to Q6.

4.1 COMPUTATION OF EMBEDDINGS

Drawing inspiration from recent literature in automated scoring (Yang et al., 2020; Wang et al.,
2022), we use a foundation model to generate embeddings. Given its multimodal capabilities, we
select CLIP (Yan et al., 2023) as the embedding model. This choice allows for a unified integration
of both concept-based explanations, which can be transformed into text, and saliency map-based
explanations, which can be projected into the same embedding space.

Let us denote by xi ∈ RH×W×3 the i-th test image of height H and width W in the dataset and by
esaliencyi ∈ RH×W any explanation produced by a saliency-based XAI method for this image. We
also note the CLIP image encoder as CLIPimage. For saliency explanations, the resulting embedding
based on a saliency map can be obtained using the following formula:

ϕimage(e
saliency
i ) = CLIPimage(Heatmap(xi, e

saliency
i )), (1)

where Heatmap is the process generating the saliency related heatmap to the image.

For CBMs, let us denote with eCBM
i ∈ RK any explanation produced by a saliency-based XAI

method for this image xi, where K is the length of the concept set. These attributions are converted
into a sentence, which is then embedded. Let CLIPtext denote the CLIP text encoder and Sentence
the process of converting the CBM explanation into text. The resulting embedding is:

ϕtext(e
CBM
i ) = CLIPtext(Sentence(e

CBM
i )) . (2)

By default, the described process is applied; however, we also offer alternatives using LLaVa (Liu
et al., 2024). Another variant, with handcrafted features as multimodal encoders detailed in Sec-
tion D is also tested. Plus, we offer additional ablation about alternative ways to process Equations
1 and 2 in Appendix D, like the influence of K or the use of templates in textual descriptions.

4.2 SCORING NETWORK

Once the embeddings are computed, a scoring network composed of a linear layer is used to predict
scores. Inspired by Automated Essay Scoring (Yang et al., 2020; Wang et al., 2022), we use a loss L
that combines a similarity loss Ls, a mean squared error (MSE) loss Lmse, and a ranking loss Lr.
From a set of ground truth scores obtained from majority voting {mk}k∈[0,Ns] and the predictions

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Training and Inference Times on GPU and CPU.

Device Training Time (s) Inference Time (s)

GPU 214.18 8.89
CPU 1308.84 57.52

given by the scoring network {m̂k}k∈[0,Ns], the resulting loss is defined as:

L = αLs + βLmse + γLr, (3)

where α, β, and γ are hyperparameters controlling the relative importance of each component. For-
mulas about the different losses are given in Appendix C.5The PASTA-dataset presenting 5 ground
truth votes for a given inference, a discussion have been made about how to aggregate the votes.
After ablation (Done in Appendix C.2), we choose to use mode (formula given in Appendix C.1.1).

4.3 CLASSIFIER RESULTS

In all experiments, we employed the Adam optimizer (Kingma & Ba, 2017) with a batch size of
128, training for 500 epochs at a learning rate of 0.001. Additionally, we configured the parameters
as follows: α was set to 1, β to 0.01, and γ to 0.1. We split our dataset in 1540 training samples,
330 validation samples, and 330 testing samples. The experiments were conducted using a V100-
16GB GPU. The training and inference times are summarized in Table 2. It is important to note that,
for both inference and testing, the majority of the computational time is dedicated to precomput-
ing CLIP embeddings, as the scoring network itself is relatively lightweight and requires minimal
computational resources.

For questions 1 to 6 in Section 3, we calculated the Mean Square Error (MSE), Quadratic Weighted
Kappa (QWK), and Spearman Correlation Coefficient (SCC) between the predicted and ground
truth labels on the test set (formulas given in Appendix C.1.2). The results are presented in Table 3.
For comparison, we also include the scores obtained using CLIP and LLaVa (Liu et al., 2024) as
a multimodal encoder, denoted as PASTA-metricCLIP and PASTA-metricLLaVa. We also tested an
alternative using handcrafted features, with a process described in Section D, denoted by Feature
Extraction. Finally, we report the inter-annotator agreement values, which correspond to the metrics
computed between a randomly selected annotator’s score and the mode.

We first observe that PASTA-metricCLIP and PASTA-metricLLaVa yield similar results. Therefore, we
allow users to choose between these variants based on their specific needs. PASTA-metricCLIP offers
the shortest training and inference times (see Table 2 ), but users should be aware that CLIP is known
to suffer from bias, as highlighted by Moayeri et al. (2023). On the other hand, PASTA-metricLLaVa

requires more computational time but is less prone to biases associated with contrastive pre-training.
Finally, the approach using handcrafted feature extraction guarantees a fully interpretable process,
though it produces less satisfactory results.

4.4 GENERALIZATION CAPABILITIES OF THE PASTA-METRIC

In the main study, to constitute training, validation, and test sets, we shuffled all the samples con-
sidering the image they belong to. In this section, we investigate the impact of shuffling instead. By
doing so, we ensure that samples from the same XAI technique cannot be in two different splits.
This will help us investigate the generalization capabilities of the model in two distinct ways: can it
generalize to new XAI techniques? The results of the two setups for Q1 are shown in Table 4. We
also, consider the variant that shuffles all the samples without considering the XAI technique or the
dataset they belong to.

The results indicate a decrease of 0.04 in QWK when shuffling across XAI techniques and a more
significant drop of 0.07 when shuffling across image IDs. This opens a discussion on the potential
for applying the PASTA-metric to other image datasets. Regarding the generalization to new XAI
methods, the relatively moderate drop in performance supports the feasibility of testing our metric
on novel XAI techniques.
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Table 3: Mean Square Error (MSE), Quadratic Weighted Kappa (QWK), and Spearman Cor-
relation Coefficient (SCC) for each question. Each value is the average of 5 runs with standard
deviation. Human refers to inter-annotator agreement.

Metric Model Q1 Q2 Q3 Q4 Q5 Q6

MSE PASTA-metricCLIP 1.06 ± 0.05 1.13 ± 0.09 1.21 ± 0.13 1.15 ± 0.13 1.96 ± 0.27 0.76 ± 0.21
PASTA-metricLLaVa 1.02 ± 0.20 1.04 ± 0.24 1.28 ± 0.34 1.08 ± 0.28 1.66 ± 0.23 1.13 ± 0.11
Feature Extraction 4.50 ± 0.40 5.81 ± 0.46 3.71 ± 0.74 3.61 ± 0.35 3.54 ± 0.33 3.58 ± 0.41

Human 0.53 ± 0.03 0.51 ± 0.05 0.74 ± 0.03 0.72 ± 0.02 1.00 ± 0.06 0.52 ± 0.03

QWK PASTA-metricCLIP 0.48 ± 0.05 0.44 ± 0.08 0.43 ± 0.07 0.43 ± 0.07 0.32 ± 0.07 0.48 ± 0.13
PASTA-metricLLaVa 0.43 ± 0.12 0.45 ± 0.08 0.40 ± 0.11 0.42 ± 0.10 0.36 ± 0.09 0.00 ± 0.00
Feature Extraction 0.09 ± 0.04 0.09 ± 0.02 0.03 ± 0.04 0.03 ± 0.03 0.05 ± 0.02 0.02 ± 0.02

Human 0.73 ± 0.03 0.74 ± 0.02 0.63 ± 0.02 0.62 ± 0.02 0.65 ± 0.03 0.59 ± 0.02

SCC PASTA-metricCLIP 0.25 ± 0.25 0.23 ± 0.24 0.23 ± 0.23 0.22 ± 0.23 0.17 ± 0.17 0.24 ± 0.25
PASTA-metricLLaVa 0.23 ± 0.24 0.24 ± 0.25 0.21 ± 0.23 0.22 ± 0.24 0.20 ± 0.20 0.00 ± 0.00
Feature Extraction 0.16 ± 0.21 0.09 ± 0.09 0.14 ± 0.30 0.22 ± 0.32 0.17 ± 0.17 0.11 ± 0.11

Human 0.37 ± 0.37 0.38 ± 0.38 0.33 ± 0.33 0.33 ± 0.33 0.34 ± 0.34 0.29 ± 0.29

Table 4: Summary of results for different restrictions applied during dataset splitting. The
label No indicates no restrictions, Img id denotes that the same image indices i are maintained across
splits, and XAI id indicates that the same explanation indices j are preserved in different splits. Each
value is the average result on 5 runs with the standard deviation.

Restriction split MSE QWK SCC

No 0.85 ± 0.06 0.55 ± 0.04 0.28 ± 0.28
xai id 0.96 ± 0.10 0.51 ± 0.05 0.26 ± 0.26
img id 1.06 ± 0.05 0.48 ± 0.05 0.25 ± 0.25

5 CONCLUSIONS

In this paper, we introduce PASTA, a novel perceptual assessment system designed to benchmark
explainable AI (XAI) techniques in a human-centric manner. We integrate four diverse datasets —
COCO, Pascal Parts, Cats Dogs Cars, and Monumai — to form a large-scale benchmark dataset for
XAI, and used it for an assessment of XAI explanations by human annotators. We also develop an
automated evaluation metric that mimics human preferences based on a comprehensive database of
human evaluations. This framework offers a scalable and reliable way to compare different XAI
methods, facilitating robust evaluations across modalities previously unaddressed.

Our findings demonstrate a clear preference for saliency-based explanations, particularly techniques
such as LIME and SHAP, which align well with human intuition. These results affirm the scalability
and reliability of our perceptual metric, which provides consistency with human assessment while
automating much of the evaluation process.

However, there are limitations to our approach. The current study focuses on a fixed set of datasets
and XAI techniques. Human evaluations can be influenced by subjective factors that may affect
the consistency of results. Furthermore, annotators can inadvertently introduce biases. Perceptual
metrics like the ones proposed here are therefore not intended to serve as absolute measures of XAI
performance. Rather, we consider them simply as complementary to other XAI metrics.

Looking ahead, dynamic scoring approaches could be explored to capture the evolving nature of
XAI techniques and their use in real-world applications. In conclusion, PASTA intends to take a
step towards creating a transparent and trustworthy AI ecosystem. By aligning AI explanations
with human cognitive processes, we aim to foster the development of more interpretable AI systems
that can be understood and trusted by users across various domains. This work also introduces a
perceptual metric, paving the way for future research to implement the PASTA-metric as a perceptual
loss aimed at enhancing the trustworthiness of networks, drawing for example inspiration from the
emerging use of LPIPS (Zhang et al., 2018) in tasks such as image generation (Jo et al., 2020).
Another possible use is XAI method hyperparameter fine-tuning, as proposed in Section E.2.
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Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges to-
ward responsible ai. Information Fusion, 58:82–115, 2020.

Vijay Arya, Rachel K.E. Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C. Hoff-
man, Stephanie Houde, Q. Vera Liao, Ronny Luss, Aleksandra Mojsilović, et al. One expla-
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A PASTA-DATASET: PROCESS

A.1 CLASSIFIER TRAINING

A.1.1 DATASET

The dataset used in PASTA is designed to provide a benchmark for evaluating a wide range of
XAI techniques across different explanation modalities. To ensure robustness and versatility, we
have built a benchmark dataset consisting of four diverse, publicly available datasets, each bringing
distinct characteristics in terms of visual content and concept annotations. Choosing which task
to focus on is a tough question. We have chosen to focus on the image classification task. This
task can be performed in many different domains, but in order not to be too domain-specific, we
decided to work on general datasets. These datasets enable the evaluation of both image-based and
concept-based XAI methods.

The dataset used to train our inference model integrates four datasets, each chosen for its unique
attributes that align with the requirements of evaluating explainability methods. The datasets are as
follows:

• COCO: A widely-used dataset known for its complexity and variety, containing 117k train-
ing images, 4.5k validation images annotated with 80 object categories, which we consider
to be concepts in the images. The labels correspond for this specific dataset to indoor scene
labeling, to do so, we took the subset of images of indoor scenes (53,051 images). Then,
we labeled the images using a scene label DNN trained on the MIT SUN.

• Pascal Part: This dataset focuses on detailed part-level annotations, providing fine-grained
insights into object structure and component relationships. It is composed of 13,192 train-
ing images, 39 concepts, and 16 classes.

• Cats Dogs Cars: A curated dataset featuring images of cats, dogs, and cars. The goal of this
dataset is to explore if color biases are present in the model or not. It is composed of 3,858
training images, 39 concepts, and 3 classes. Since this network does not include annotated
concepts, we used Grounding DINO (Liu et al., 2023) as an annotator. Since the number
of images that constitute Cate Dogs Cars is sufficiently small, we manually checked the
bounding boxes generated and found no significant errors.

• Monumai: A specialized dataset containing images of monuments, with annotations that
include both the overall structures and specific architectural features. It is composed of 908
images, 15 concepts, and 4 classes.

Each dataset in the classifier’s training datasets is annotated at two levels:

• Image-level annotations: These are traditional class labels (Table 6) or object categories
that describe the primary content of the image.

• Concept-level annotations: These describe specific, human-understandable features within
the image, enabling the application of Concept Bottleneck Models (CBMs) and other
concept-based XAI methods. The list of concepts for each dataset is detailed in Table 5.

This dual-level annotation setup ensures that XAI methods can be evaluated not only for their ability
to explain class predictions but also for how well they handle concept-based explanations. The
presence of both granular (part-level, concept) and holistic (object, scene-level) annotations provides
a comprehensive evaluation environment for various XAI methods.

In Figure 5, we observe the class distribution across the different datasets. While the distributions
are not perfectly uniform, they generally reflect the original composition of the datasets, ensuring
that the diversity of the data is preserved in the evaluation process.

A.1.2 SPECIFIC PROCEDURES FOR CBMS AND BLACK BOXES MODELS.

To explain the various training procedures for our CBMs, we decompose them into two components:
the concept extractor and the classifier. The concept extractor generates an embedding from an
input image, with each element representing a concept, while the classifier predicts the label from
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Table 5: List of concepts used in all our CBMs. For each Dataset used, we choose a different set
to fit the annotations.

Dataset Concepts

catsdogscars, pascalpart engine, artifact wing, animal wing, stern, tail, locomotive, arm, hair, wheel,
chain wheel, handlebar, hand, headlight, saddle, body, bodywork, beak, head,
eye, foot, leg, neck, torso, cap, license plate, door, mirror, window, ear, muzzle,
horn, nose, hoof, mouth, eyebrow, plant, pot, coach, screen

monumai horseshoe-arch, lobed-arch, pointed-arch, ogee-arch, trefoil-arch, serliana,
solomonic-column, pinnacle-gothic, porthole, broken-pediment, rounded-arch,
flat-arch, segmental-pediment, triangular-pediment, lintelled-doorway

coco person, backpack, umbrella, handbag, tie, suitcase, bicycle, car, motorcycle, air-
plane, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter,
bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, fris-
bee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard,
surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, ba-
nana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake,
chair, couch, potted plant, bed, dining table, toilet, tv, laptop, mouse, remote,
keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book, clock,
vase, scissors, teddy bear, hair drier, toothbrush

Table 6: List of classes used in all the datasets used to train our inference models.

Dataset Labels

catsdogscars cat, dog, car
pascalpart aeroplane, bicycle, bird, bottle, bus, car, cat, cow, dog, horse, motorbike, person,

pottedplant, sheep, train, tvmonitor
monumai Baroque, Gothic, Hispanic-Muslim, Renaissance
coco shopping and dining, workplace, home or hotel, transportation,

sports and leisure, cultural

this embedding. We categorize the CBMs we use based on the training methods for these two
components. For CLIP-based CBMs (LaBo, CLIP-linear, and CLIP-QDA), the concept extraction
is performed in a zero-shot manner i.e., we only use the training images and labels to train the
classifier. For CBMs that require training the concept extractor, we use the concept annotations
provided by each dataset.

For explanations that involve the application of post-hoc techniques on black-box models, we se-
lected the following DNNs: ResNet 50, ViT, and CLIP (zero-shot). For ResNet 50 and ViT, a
separate network was trained for each dataset. For CLIP (zero-shot), we followed the standard pro-
cedure proposed by Radford et al. (2021), which classifies by selecting the highest similarity score
between the image embedding and all the text embeddings. For post-hoc explanations, we directly
extract the explanation after training.

A.1.3 RESULTS

As illustrated in Figure 6, the models used in this study achieve an accuracy of at least 59%. Notably,
one of the models, the zero-shot CLIP, exhibits difficulty specifically with the Monumai dataset,
which explains some of the performance variability. Despite this, the overall accuracy of the models
remains relatively consistent across datasets. For CBMs, achieving high accuracy across all models
required certain compromises, particularly with respect to the concepts used. Although for unifor-
mity we used the same concept sets across different models, it was not always guaranteed that the
trained model is the best model.
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Figure 5: Class distribution across the different test sets.
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Figure 6: Accuracy across the different test sets of the different models.

A.2 XAI TECHNIQUES

Table 7 presents an overview of the different XAI methods integrated into the dataset. A brief
description of each method is provided below to summarize their key features and mechanisms.

LIME (Local Interpretable Model-agnostic Explanations): LIME explains individual predic-
tions of any classifier by approximating it locally with an interpretable model. It perturbs the input
and observes how the predictions change, identifying the most influential parts of the input for the
prediction. This is a saliency-based XAI method, visualizing the important regions in an image that
the DNN relies on.

SHAP (SHapley Additive exPlanations): SHAP is a unified approach to interpreting model predic-
tions based on Shapley values from cooperative game theory. It assigns each feature an importance
value for a particular prediction, offering a sound measure of feature importance. This is a saliency-
based XAI method, visualizing the important regions in an image that the DNN relies on.

GradCAM (Gradient-weighted Class Activation Mapping): GradCAM visualizes the regions
in an image that contribute to the classification. It uses the gradients of the target concept (e.g.,
a specific class) flowing into the final convolutional layer to produce a coarse localization map
highlighting important regions. This is a saliency-based XAI method.

AblationCAM: AblationCAM improves GradCAM by iteratively removing parts of the input and
observing the output effect to identify important regions. This is a saliency-based XAI method,
visualizing the crucial regions in an image that the DNN relies on.
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Table 7: XAI methods included in our dataset. Name denotes the identifier of the utilized XAI
method. Functioning specifies the mechanism of the explanation computation, including methods
that rely on gradient weighting (Gradient), probing reactions to localized perturbations (Perturba-
tion), abstracting activations through factorization (Factorization), leveraging directly interpretable
latent spaces (Interpretable latent space), or searching for counterfactuals (Counterfactual). Attri-
bution indicates the data type on which the attribution weights are applied: either on input images
(Image) or on a computed representation of the image as concepts (Concepts). Stage indicates
whether the explanation is produced by a ante-hoc or a post-hoc process.

Name Functioning Attribution on Stage Applied on

BCos (Böhle et al., 2024) Interpretable latent space Image Ante-hoc ResNet50-BCos
GradCAM (Selvaraju et al., 2017) Gradient Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
HiResCAM (Draelos & Carin, 2020) Gradient Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
GradCAMElementWise (Pillai & Pirsiavash, 2021) Gradient Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
GradCAM++ (Chattopadhay et al., 2018) Gradient Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
XGradCAM (Fu et al., 2020) Gradient Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
AblationCAM (Ramaswamy et al., 2020) Perturbation Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
ScoreCAM (Wang et al., 2020) Perturbation Image Post-hoc ViT, ResNet50
EigenCAM (Muhammad & Yeasin, 2020) Factorization Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
EigenGradCAM (Muhammad & Yeasin, 2020) Gradient+Factorization Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
LayerCAM (Jiang et al., 2021) Gradient Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
FullGrad (Srinivas & Fleuret, 2019) Gradient Image Post-hoc ViT, ResNet50
Deep Feature Factorizations (Collins et al., 2018) Factorization Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
SHAP (Lundberg & Lee, 2017) Perturbation Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
LIME (Ribeiro et al., 2016) Perturbation Image Post-hoc ViT, ResNet50, CLIP (zero-shot)
X-NeSyL (Dı́az-Rodrı́guez et al., 2022) Interpretable latent space Concepts Ante-hoc X-NeSyL
CLIP-linear-sample (Yan et al., 2023) Interpretable latent space Concepts Ante-hoc CLIP-linear
CLIP-QDA-sample (Kazmierczak et al., 2024) Counterfactual Concepts Ante-hoc CLIP-QDA
LIME-CBM (Kazmierczak et al., 2024) Perturbation Concepts Post-hoc CLIP-QDA, ConceptBottleneck
SHAP-CBM (Kazmierczak et al., 2024) Perturbation Concepts Post-hoc CLIP-QDA, ConceptBottleneck
RISE (Petsiuk et al., 2018) Perturbation Concepts Post-hoc ConceptBottleneck

EigenCAM: EigenCAM applies PCA to the activations of the last convolutional layer to produce a
saliency map. It highlights the directions in which activations show the most variance, identifying
critical features. This is a saliency-based XAI method.

FullGrad: FullGrad computes gradients of the output with respect to both the input and intermediate
layer outputs, aggregating these gradients to generate a comprehensive saliency map. It is a saliency-
based XAI method that visualizes key regions in an image.

GradCAMPlusPlus: GradCAMPlusPlus improves GradCAM with a refined weighting scheme for
the gradients, allowing better handling of multiple occurrences of the target concept. This is a
saliency-based XAI method.

GradCAMElementWise: GradCAMElementWise extends GradCAM by considering element-
wise multiplications of gradients and activations, producing more precise visual explanations. This
is a saliency-based XAI method.

HiResCAM: HiResCAM improves on class activation mapping by using higher-resolution feature
maps for more detailed visual explanations. This is a saliency-based XAI method.

ScoreCAM: ScoreCAM improves CAM methods by using output scores to weight the activation
maps’ importance, providing a more faithful saliency map without relying on gradients. This is a
saliency-based XAI method.

XGradCAM: XGradCAM integrates cross-layer information to combine saliency maps from dif-
ferent layers, producing a more comprehensive explanation. This is a saliency-based XAI method.

DeepFeatureFactorization: This method decomposes feature representations learned by a deep
model into interpretable factors. It provides insights into how features contribute to the model’s
decisions, being a saliency-based XAI method.

CLIP-QDA-sample: This model uses the CLIP framework and applies Quadratic Discriminant
Analysis (QDA) for classification. It links visual and concept-based representations to provide in-
terpretable explanations. This is a concept bottleneck model (CBM).
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Figure 7: Distribution across the different XAI techniques across the different datasets.

CLIP-Linear-sample: Similar to CLIP-QDA, this model leverages the CLIP framework but ap-
plies logistic regression for classification, providing interpretable explanations based on concept
representations. This is a CBM.

X-NeSyL: X-NeSyL identifies concepts using object detection and applies a small DNN to these
concepts, using the weights assigned to each concept for explanation.

LIME CBM: This model generates a list of concepts and applies logistic regression. It uses LIME
to highlight the most important concepts for classification.

SHAP CBM: This model generates a list of concepts and applies logistic regression, using SHAP
to emphasize the most crucial concepts in classification.

Labo: Labo extracts human-interpretable concepts and maps them to the model’s internal represen-
tations for more comprehensible decision-making explanations.

RISE (Randomized Input Sampling for Explanation): RISE generates heatmaps by perturbing
input regions and measuring their impact on model outputs. This technique identifies the most
influential regions in the model’s decision-making process.

BCos: BCos introduces specific layers to encourage alignment between weights and activation
maps, which can then be used for explainability.

Finally, Figure 7 shows the distribution of XAI techniques applied across the datasets. To enhance
the generalizability of our results, we increased the diversity of XAI techniques used. This was
achieved by not applying every technique to every image uniformly, allowing for a more diverse set
of explanations to be generated. This variability ensures that our analysis captures a broad spectrum
of interpretability techniques, providing deeper insights into the performance of XAI techniques
across different datasets and models.

A.3 DATASET ANNOTATION PROCESS

The annotation process took place via an online web application, created and deployed by a contract-
ing company. 15 participants were recruited to take part in the annotation process. These participants
ranged in age from 19 to 37 (mean age 25.9, standard deviation 5.5). Figure 8 shows the age dis-
tribution. Among the participants, 5 identified themselves as male, 10 as female, 0 as non-binary, 0
did not wish to say. All participants were based in India.

Each participant’s task was to annotate 147 explanations. For each image, participants had to explain
what led them to classify the displayed image as the model’s prediction. Participants responded
openly using a text form. Similarly, they were asked to describe the elements of the image that
helped them make the decision to classify the image as the model did. These two questions (Q0.1

22
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[0,22)

20.0%

[22,25)

33.3%
[25,30)

26.7%

[30,100]

20.0%

Age Distribution of Annotators

Figure 8: Age distribution of the annotators.

Figure 9: Screenshot of the annotation interface. Questions are on the right-part of the interface.
Middle panel shows Section 2: slightly disturbed original image with the explanation.

and Q0.2) are used to establish a baseline for interpreting what makes an image recognizable as a
specific object or class, and what are the salient features of the images that would explain this choice.

Once they had answered these two questions, they moved on to the next screen, where they had to
answer a series of 6 questions (see Figure 9 showing a screenshot of the interface with the origi-
nal image slightly perturbed). The questions concerned different sections of the screen. The first
four questions (Q1 to Q4) concerned Section 1, which showed the original image on the left and
the explanation on the right. These first four questions enabled participants to assess the levels of
reliability, complexity and objectivity of the explanation. The fifth question (Q5) concerned Section
2, showing the slightly disturbed original image and the corresponding explanation. The sixth ques-
tion (Q6) concerned Section 3, showing a more disturbed image and the corresponding explanation.
These last two questions were intended to assess the robustness of the XAI technique. For each
question, participants had to answer with a 5-point Likert scale.

All questions were formulated in collaboration with psychologists to enhance the quality of human
feedback. Our aim was to avoid influencing responses and to eliminate any ambiguities that could
lead to inaccurate answers. Human decision-making, especially when it involves assessing the qual-
ity of explanations, is complex. To address this, we provided training on deep learning and various
XAI techniques, ensuring the content was clearly understandable by the annotators. After the ini-
tial training, the annotators answered the questions, and we held weekly meetings to clarify any
confusion they encountered
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A.4 PERTURBATIONS

To address questions Q5 and Q6, which involve image perturbations, we outline the perturbation
process below. To capture a diverse range of model responses, we applied 12 distinct types of
perturbations, each with a tunable magnitude parameter to adjust perturbation intensity. The trans-
formations include both standard torchvision operations https://pytorch.org/vision/0.
9/transforms.html and custom-designed modifications:

• Color Jitter (Brightness): Adjusts the brightness of the image. The magnitude lower the
brightness.

• Color Jitter (Contrast): Modifies image contrast. The magnitude lower the contrast.

• Random Resized Crop: Performs a random crop and resize. The magnitude augments the
scale of the crop.

• Gaussian Blur: Blurs the image using a Gaussian filter. The magnitude augments the
values of the standard deviation.

• Random Perspective: Applies a perspective transformation. The magnitude augments the
distortion scale.

• Brightness Transform: Independently changes brightness levels. The magnitude lower
the brightness.

• Color Transform: Adjusts color balance. The magnitude augments the saturation.

• Contrast Transform: Further modifies contrast. The magnitude augments the contrast.

• Sharpness Transform: Changes image sharpness. The magnitude augments the sharpness
factor.

• Posterize Transform: Reduces color depth. The magnitude augments the number of bits
to keep for each channel.

• Solarize Transform: Inverts colors above a certain threshold. The magnitude augments
the threshold.

• Random Masking: Masks out random sections of the image by applying patches. The
magnitude augments the number of patches.

B PASTA-DATASET: ADDITIONAL EXPERIMENTS

B.1 COMPARISON WITH EXISTING BENCHMARKS

We compiled a set of related works that perform human assessment in the context of XAI. Specifi-
cally, we noted key details such as the dataset size, the number of participants involved, the diversity
of questions posed, and the overall scope of the study, where this information was available. A
summary of these details is presented in Table 8.

The PASTA-dataset distinguishes itself in several key aspects. First, it evaluates a significantly
higher number of XAI methods compared to existing datasets. This design emphasizes the diversity
of techniques over the number of samples tested, offering a complementary approach to datasets that
prioritize varied input data but evaluate fewer methods. Second, PASTA involves the lowest number
of participants among the datasets listed, allowing for reduced variability due to potential outliers
and better control over annotator behavior. However, this could introduce inherent biases tied to
the limited participant pool. Finally, the PASTA-dataset provides a substantially larger number of
samples and uniquely combines image-based explanations (e.g., saliency maps) with concept-based
explanations (e.g., CBMs), making it the first dataset to address both modalities simultaneously.

B.2 COMPARISON WITH EXISTING METRICS

Evaluating the quality of an explanation typically involves estimating different and potentially or-
thogonal aspects of it. In addition to the perceptual quality addressed in this work, others can be

24
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Table 8: Overview of datasets and human evaluation frameworks for XAI methods. Name
refers to the reference of the dataset used. Annotations refers to the type of labels used: Likert
refers to Likert scale, Saliency refers to pseudo saliency maps, 2AFC refers to two alternative forced
choices, Clictionary refers to the clicktionary game defined in (Dawoud et al., 2023), MCQ refers to
multiple-choice question, and Binary refers to binary choises. NSamples refers to the total number
of samples constituting the dataset. NPart refers to the number of participants involved during the
labeling. Modality refers to the different modalities the dataset deals with: I refers to image, C to
concepts, and T to text. NQ refers to the number of different questions asked to the annotators.
NXAI refers to the number of XAI methods tested during the experiments, No indicates that the
dataset only asked to label data with what they consider as ground truth explanation, without further
comparison with XAI methods. NData refers to the number of different samples (for example
images) shown to annotators.

Name Annotations NSamples NPart Modality NQ NXAI NData

PASTA-dataset Likert 66,000 15 I + C 6 21 100
Yang et al. (2022) Saliency, 2AFC 356 46 I 2 1 89
Colin et al. (2022) Classification 1,960 241 I 1 6 NA
Dawoud et al. (2023) Clicktionary 3,836 76 I 1 3 102
Mohseni et al. (2021) Saliency 1,500 200 I + T 1 No 1,500
Herm et al. (2021) Likert NA 165 C 1 6 NA
Morrison et al. (2023) Clicktionary/QCM 450 50 I 1 3 39
Spreitzer et al. (2022) Likert/Binary 4,050 135 C 9 2 NA
Xuan et al. (2023) Likert/Binary 3,600 200 C 4 2 1,326

numerically simulated by having access to model weights. In this additional analysis, we consider
some of those aspects and measure how much they correlate with human scores. The results cover
only image-level attribution methods (see Table 7), as CBMs do not support such kinds of input-level
manipulations.

Faithfulness: How much does the explanation describe the true behavior of the model? A num-
ber of different ways to compute faithfulness exist, but they all broadly fit the same framework
of measuring how much model predictions change in response to input perturbations (Bhatt et al.,
2021; Alvarez-Melis & Jaakkola, 2018a; Yeh et al., 2019; Rieger & Hansen, 2020; Arya et al.,
2019; Nguyen & Martı́nez, 2020; Bach et al., 2015; Samek et al., 2016; Montavon et al., 2018;
Ancona et al., 2017; Dasgupta et al., 2022). Intuitively, an explanation is faithful if perturbing
regions deemed irrelevant by the explanation bring little to no change in model output, whereas
perturbing regions deemed relevant bring a considerable change. In this analysis, we resort to the
evaluation protocol outlined in Azzolin et al. (2024), which generalized a number of common faith-
fulness metrics into a common mold1. Specifically, faithfulness is estimated as the harmonic mean
of sufficiency (Suf) and necessity (Nec), which account for the degree of prediction changes after
perturbing irrelevant or relevant portions of the input, respectively. Formally, given an input image
x with associated explanation e, and a model to be explained pθ(Y | x), sufficiency and necessity
are defined as:

Sufd,pR
(x, e) = Ex′∼pR

[d(pθ(· | x) ∥ pθ(· | x′))] (4)

Necd,pC
(x, e) = Ex′∼pC

[d(pθ(· | x) ∥ pθ(· | x′))],

where d is a divergence between distributions of choice, and pC and pR are interventional distribu-
tions specifying the set of allowed perturbations to the explanation and its complement, respectively.
Eq. 4 are then normalised to [0, 1], the higher the better, via a non-linear transformation, i.e., tak-
ing exp(−Sufd,pR

(x, e)) and 1− exp(−Necd,pC
(x, e)). Operationally, for a given instance (x, e)

sampling from pC(x, e) equals to generating a new image where the complement of the explanation
is left intact, and where perturbations are applied to the explanation. The set of allowed perturba-
tions pC and pR can be arbitrarily defined, and different techniques are oftentimes reported to give
different interpretations (Hase et al., 2024; Rong et al., 2022). To avoid this confounding effect,
we report the results for three different baseline perturbations, namely uniform and Gaussian noise,
and black patches, along with a more advanced information-theoretic strategy named ROAD (Rong

1They focus on faithfulness for graph explanations, but the evaluation protocol is aligned with that of images.
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et al., 2022). Since explanations are oftentimes in the form of soft relevance scores over the entire
input, a threshold is needed to tell apart relevant from irrelevant image regions. To avoid relying
upon this hard-to-define hyperparameter, we aggregate the scores across multiple thresholds keep-
ing only the best value. Therefore, for each explanation threshold value, pixels are sorted based
on their relevance2 and progressively perturbed until reaching the fixed threshold value, while leav-
ing the others unchanged. For each of those samples, we evaluate the normalised Eq. 4 where d
is the absolute difference in class-predicted confidence between clean and perturbed images, i.e.,
|pθ(ŷ | x)− pθ(ŷ | x′)|, and average across the number of perturbed pixel for each threshold value.
This procedure is detailed in Algorithm 1.

Algorithm 1 Pseudo code for computing sufficiency/necessity

Require: Image x, explanation e, and set of explanation-size thresholds T .
1: values = []
2: for each threshold t ∈ T do
3: if computing sufficiency then
4: Sort pixels of x in ascending order of relevance scores from e.
5: else
6: Sort pixels of x in descending order of relevance scores from e.
7: end if
8: arr← []
9: for i in range(start=1, end=t, step=2) do

10: x′ ← Apply the specified perturbations to the first i% sorted pixels.
11: Append d = |pθ(ŷ | x)− pθ(ŷ | x′)| to arr
12: end for
13: if computing sufficiency then
14: Append exp(−mean(arr)) to values
15: else
16: Append 1− exp(−mean(arr)) to values
17: end if
18: end for
19: Output: max(arr)

Robustness: Robustness roughly refers to how stable the explanation is to small input perturba-
tions. Different ways to estimate it exist (Alvarez-Melis & Jaakkola, 2018b; Montavon et al., 2018;
Yeh et al., 2019; Dasgupta et al., 2022; Agarwal et al., 2022a). In our analysis, we focused on
MaxSensitivity (Yeh et al., 2019), which applies random input perturbations to the entire image and
measures the pixel-wise difference between the original explanation, and the one obtained on the
perturbed sample. Formally:

MaxSensitivity = max∥e− e′∥ (5)

where e and e′ are the explanations for the original and the perturbed image, respectively. Again,
different perturbation techniques can be applied, and we resort to the two simple baselines, namely
Uniform and Gaussian noise. No normalization is applied, therefore the values are the higher the
worse. More advanced techniques like ROAD (Rong et al., 2022) cannot be applied in this con-
text, since the perturbation is applied uniformly over the entire image. In Table 9, we report the
correlation between MaxSensitivity and human scores, outlining a non-significant correlation with
the metric and some questions. Surprisingly, the most correlated questions are Q1-4, which are not
requesting humans to assess the stability of the explanation, something instead partially addressed
by Q5 and Q6. However, the correlation is very weak anyway, questioning any further claims.

Complexity: As humans have an implicit tendency to favor simple alternatives when facing a
comparison between different hypotheses, providing simple and compact explanations is vital for
human-machine synergy (Cowan, 2001). Alternative methods for estimating the complexity of an
explanation are available, from simple above-threshold counting to more advanced information-
theoretic techniques (Chalasani et al., 2020; Bhatt et al., 2021; Nguyen & Martı́nez, 2020). To test
whether those metrics are correlated to human scores, we report in Table 10 the correlation between

2For sufficiency, pixels are sorted in ascending order. For necessity, in descending order.
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Table 9: Pearson Correlation Coefficient (PCC) and Spearman rank Correlation Coefficient
(SCC) between MaxSensitivity computed with different perturbation strategies and human
scores. In parentheses, the respective p-values.

Uniform noise Gaussian noise

PCC SCC PCC SCC

Q1 -0.30 (1e-5) -0.37 (1e-5) -0.30 (1e-5) -0.35 (0.04)
Q2 -0.30 (1e-5) -0.36 (1e-5) -0.28 (1e-5) -0.33 (0.17)
Q3 -0.30 (1e-5) -0.36 (1e-5) -0.29 (1e-5) -0.34 (0.16)
Q4 -0.29 (1e-5) -0.36 (1e-5) -0.28 (0.19) -0.33 (0.33)
Q5 0.01 (0.72) 0.01 (0.80) -0.04 (0.89) -0.09 (0.01)
Q6 0.10 (1e-3) 0.10 (1e-3) 0.09 (0.01) 0.10 (2e-3)

Table 10: Pearson Correlation Coefficient (PCC) and Spearman rank Correlation Coefficient
(SCC) between Sparseness and human scores. In parentheses the respective p-values.

Complexity

PCC SCC

Q1 -0.17 (1e-10) -0.15 (1e-8)
Q2 -0.17 (1e-10) -0.15 (1e-8)
Q3 -0.15 (1e-9) -0.13 (1e-7)
Q4 -0.15 (1e-7) -0.13 (1e-6)
Q5 -0.21 (1e-15) -0.22 (1e-17)
Q6 0.02 (0.45) 0.05 (0.09)

human votes and Sparseness (Chalasani et al., 2020), which estimates explanation complexity as the
Gini Index (Hurley & Rickard, 2009) of the absolute values of the image attribution. The result is a
metric value in the range [0, 1], where higher values indicate more sparseness. The computation of
the Gini index is detailed in Algorithm 2.

Algorithm 2 Pseudo code for Gini coefficient calculation from Hedström et al. (2023)

Require: Explanation e
1: array ← flatten(e)
2: array ← |array| {Take absolute value}
3: array ← sort(array, ascending = True)
4: index← arange(1, array.shape[0] + 1)
5: n← array.shape[0]

6: return
∑

(2·index−n−1)·array
n·

∑
array

We used the Quantus library (Hedström et al., 2023) for implementing the previous metrics, and we
present the raw metric values in Table 11, aggregated by explainer and model. Overall, none of the
above metrics exhibit a significant correlation with user scores.

B.3 DATASET ANALYSIS

To thoroughly analyze the dataset and evaluate potential biases, we conducted several tests. First, we
experimented with various aggregation techniques, ultimately selecting the majority voting method
as the most effective. To further explore annotator preferences, we identified the top-12 XAI tech-
niques selected by each annotator and visualized the results in the histogram shown in Figure 10.
From this figure, we observe that classical methods such as LIME and SHAP stand out as the most
frequently preferred. This suggests a strong preference for well-established saliency-based meth-
ods. Additionally, there is a notable inclination towards methods that probe the model’s reaction
to input perturbations. A distinct aspect is the inclusion of B-cos, which generates explanations
through the incorporation of a dedicated layer, offering a unique mechanism compared to other
perturbation-based techniques. Of the 11 most popular techniques among annotators, only four are
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Table 11: Raw metric values averaged for each explainer and model. Each value is the average
result on 5 runs with the standard deviation.

Saliency Method Model Faithfulness (ROAD) Robustness (Gaussian noise) Sparseness
GradCAM resnet50 0.08 ± 0.16 0.79 ± 0.45 0.68 ± 0.11
GradCAM vitB 0.02 ± 0.04 1.11 ± 0.96 0.41 ± 0.19
AblationCAM vitB 0.02 ± 0.02 1.83 ± 1.68 0.77 ± 0.23
AblationCAM CLIP-zero-shot 0.01 ± 0.01 1.46 ± 0.44 0.83 ± 0.15
EigenCAM resnet50 0.11 ± 0.19 0.94 ± 0.46 0.80 ± 0.05
EigenCAM vitB 0.02 ± 0.03 0.98 ± 0.35 0.59 ± 0.06
EigenCAM CLIP-zero-shot 0.02 ± 0.02 0.76 ± 0.37 0.54 ± 0.08
EigenGradCAM resnet50 0.11 ± 0.18 0.94 ± 0.70 0.78 ± 0.10
EigenGradCAM vitB 0.02 ± 0.03 2.10 ± 1.38 0.88 ± 0.11
EigenGradCAM CLIP-zero-shot 0.03 ± 0.02 1.55 ± 1.27 0.73 ± 0.17
FullGrad resnet50 0.05 ± 0.14 0.43 ± 0.06 0.43 ± 0.07
FullGrad vitB 0.02 ± 0.02 1.30 ± 0.46 0.39 ± 0.06
GradCAM CLIP-zero-shot 0.03 ± 0.03 1.29 ± 0.65 0.60 ± 0.16
GradCAMPlusPlus resnet50 0.08 ± 0.13 0.62 ± 0.20 0.63 ± 0.09
GradCAMPlusPlus vitB 0.02 ± 0.03 2.45 ± 1.90 0.69 ± 0.24
GradCAMPlusPlus CLIP-zero-shot 0.01 ± 0.01 1.53 ± 0.97 0.65 ± 0.23
GradCAMElementWise resnet50 0.07 ± 0.16 0.70 ± 0.34 0.58 ± 0.08
GradCAMElementWise vitB 0.02 ± 0.03 1.17 ± 0.37 0.61 ± 0.11
GradCAMElementWise CLIP-zero-shot 0.03 ± 0.03 0.73 ± 0.16 0.38 ± 0.07
HiResCAM resnet50 0.12 ± 0.19 0.86 ± 0.32 0.65 ± 0.11
HiResCAM vitB 0.02 ± 0.02 1.71 ± 0.83 0.70 ± 0.22
HiResCAM CLIP-zero-shot 0.02 ± 0.03 1.45 ± 0.41 0.68 ± 0.13
LIME resnet50 0.13 ± 0.20 0.50 ± 0.07 0.12 ± 0.04
ScoreCAM resnet50 0.07 ± 0.17 0.85 ± 0.43 0.56 ± 0.09
ScoreCAM vitB 0.03 ± 0.04 1.24 ± 0.80 0.46 ± 0.18
XGradCAM resnet50 0.14 ± 0.19 1.00 ± 0.41 0.71 ± 0.10
XGradCAM vitB 0.02 ± 0.02 1.32 ± 0.16 0.61 ± 0.06
XGradCAM CLIP-zero-shot 0.03 ± 0.03 1.31 ± 0.12 0.58 ± 0.04
DeepFeatureFactorization resnet50 0.07 ± 0.17 1.28 ± 0.54 0.34 ± 0.11
DeepFeatureFactorization vitB 0.02 ± 0.03 0.62 ± 0.21 0.28 ± 0.05
DeepFeatureFactorization CLIP-zero-shot 0.03 ± 0.05 0.73 ± 0.36 0.36 ± 0.09
LIME vitB 0.02 ± 0.03 0.50 ± 0.05 0.15 ± 0.03
BCos resnet50-bcos 0.17 ± 0.25 0.85 ± 0.32 0.50 ± 0.09
LIME CLIP-zero-shot 0.03 ± 0.04 0.61 ± 0.10 0.16 ± 0.05
SHAP resnet50 0.12 ± 0.20 1.38 ± 0.55 0.50 ± 0.11
SHAP vitB 0.02 ± 0.03 1.05 ± 0.48 0.40 ± 0.10
SHAP CLIP-zero-shot 0.02 ± 0.03 1.31 ± 0.52 0.48 ± 0.11
AblationCAM resnet50 0.12 ± 0.22 0.95 ± 0.48 0.59 ± 0.12
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Figure 10: Histogram showing the top-12 XAI techniques preferred by each annotator.

based on Concept Bottleneck Models (CBMs), indicating a general preference for saliency maps
over concept-based explanations. Unlike Table 12, this analysis focuses on the top-12 techniques
per annotator, removing the influence of votes among the top-12 techniques to reduce noise and
better capture annotator preferences.
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Next, we aggregated the scores using majority voting and calculated QWC scores to measure the
agreement between individual annotators and the aggregated score. We further analyzed the QWC
scores by gender and age groups to assess any systematic differences in interpretation. As shown in
Figure 12, the kappa scores indicate that there is generally consistent agreement across different age
and sex groups, although older annotators show slightly less consistency. This highlights that while
demographic factors may introduce some variation, they do not substantially impact the overall
interpretability evaluation.

We also investigated potential biases in the annotations themselves by examining the differences in
how annotators approached CBM-based and saliency-based explanations. For CBM explanations,
we focused on the text written by annotators in response to question Q0.1, assessing whether anno-
tators preferred explanations that closely resembled their own textual responses. To quantify this,
we transformed CBM explanations into text by concatenating the top concepts used in the explana-
tion and calculated the BLEU (Papineni et al., 2002) and ROUGE scores (Lin, 2004) between these
explanations and the annotators’ text responses. As shown in Figure 11, the ROUGE score reveals
a slight correlation between the explanations and the annotators’ expectations for questions Q1, Q2,
Q3, and Q4. This suggests that annotators are inclined to favor explanations that align with their
preconceived notions, potentially introducing a bias toward consistency with their initial answers.

Moreover, we observed that questions Q1, Q2, Q3, and Q4 exhibit high intercorrelation, as do ques-
tions Q5 and Q6. This clustering indicates that annotators tend to evaluate explanations similarly
across these sets of questions, which may reflect underlying patterns in how different types of ex-
planations are perceived.

For saliency-based explanations, we analyzed the bounding boxes provided by annotators in re-
sponse to question Q0.2. We evaluated the correlation between various metrics and the annotators’
answers, including:

1. the total sum of pixel intensities in the saliency map (“SUM all”),
2. the sum of pixel intensities within the area of the image identified by the bounding box

(“SUM pos”),
3. the sum of pixel intensities outside the bounding box (“SUM neg”),
4. the entropy of the saliency map (“Entropy”).

Figure 11 shows that questions Q1, Q2, Q3, and Q4 are highly correlated with each other, as are
questions Q5 and Q6. Additionally, all metrics except for “SUM pos” show some correlation with
questions Q1–Q4. This suggests that annotators may focus heavily on background features and
salient objects when answering these questions, potentially overlooking finer details in the bounding
box area.

Overall, these analyses highlight several potential biases in the dataset. Annotators exhibit a prefer-
ence for certain types of explanations, particularly saliency maps, and tend to favor explanations that
align with their expectations, as evidenced by the correlation between their text responses and the
explanations. Additionally, while demographic factors such as age and gender do not significantly
impact the overall evaluation, the slight decrease in consistency among older annotators warrants
further investigation. The study involved 15 annotators, all from the same cultural background,
which may introduce some shared perspectives or biases. To mitigate this, future studies could
benefit from a more diverse group of annotators.

B.4 ADDITIONAL RESULTS OF THE HUMAN EVALUATIONS

In Table 12, we present the average mode of votes for each XAI technique. the first observation is
that it is difficult to observe clear differences among XAI methods. This is mainly due to the fact
XAI methods are highly sensible to the backbone they are applied on, as noticed in Section 3.5. We
observe also that the average score for saliency-based techniques across fidelity related questions
is 2.47, while for CBMs, the average score is lower at 2.12. For saliency-based techniques across
complexity related questions is 2.44, while for CBMs, the average score is also lower at 2.10. For
saliency-based techniques across objectivity related questions is 2.46, while for CBMs, the average
score is also lower at 2.11. For robustness related questions, the average scores are 3.59 for saliency-
based techniques and 3.20 for CBMs.
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Table 12: XAI techniques with aggregated scores across different evaluation metrics.

Fidelity Complexity Objectivity Robustness
XAI Technique (Q1) (Q2-Q3) (Q4) (Q5-Q6)

GradCAM (ResNet50) 2.50 2.53 2.60 3.83
GradCAM (ViT-B) 2.77 2.86 3.00 3.57
GradCAM (CLIP-zero-shot) 1.86 1.78 1.76 3.90
LIME (ResNet50) 2.16 2.08 2.13 4.28
LIME (ViT-B) 3.06 2.98 2.99 3.89
LIME (CLIP-zero-shot) 2.48 2.49 2.51 4.25
SHAP (ResNet50) 2.63 2.66 2.65 3.74
SHAP (ViT-B) 2.87 2.85 2.89 3.64
SHAP (CLIP-zero-shot) 2.55 2.52 2.47 3.70
AblationCAM (ResNet50) 2.78 2.96 2.91 3.14
AblationCAM (ViT-B) 1.75 1.75 1.75 3.84
AblationCAM (CLIP-zero-shot) 1.27 1.34 1.36 3.64
EigenCAM (ResNet50) 2.23 2.23 2.41 3.21
EigenCAM (ViT-B) 3.31 3.25 3.15 3.39
EigenCAM (CLIP-zero-shot) 3.68 3.68 3.64 3.28
EigenGradCAM (ResNet50) 2.81 2.91 3.10 3.24
EigenGradCAM (ViT-B) 1.41 1.21 1.21 3.86
EigenGradCAM (CLIP-zero-shot) 2.29 2.10 2.05 3.67
FullGrad (ResNet50) 3.65 3.68 3.65 3.26
FullGrad (ViT-B) 1.65 1.50 1.65 4.00
GradCAMPlusPlus (ResNet50) 2.55 2.60 2.60 3.45
GradCAMPlusPlus (ViT-B) 2.19 2.00 1.90 3.93
GradCAMPlusPlus (CLIP-zero-shot) 1.80 1.88 1.85 4.13
GradCAMElementWise (ResNet50) 3.04 2.78 2.74 3.59
GradCAMElementWise (ViT-B) 1.47 1.53 1.53 3.90
GradCAMElementWise (CLIP-zero-shot) 2.39 2.33 2.35 3.24
HiResCAM (ResNet50) 2.96 2.77 2.83 3.52
HiResCAM (ViT-B) 1.45 1.30 1.30 4.10
HiResCAM (CLIP-zero-shot) 1.83 1.79 1.92 3.85
ScoreCAM (ResNet50) 2.68 2.55 2.45 3.36
ScoreCAM (ViT-B) 3.00 3.00 3.00 3.63
XGradCAM (ResNet50) 2.57 2.72 2.86 3.50
XGradCAM (ViT-B) 2.00 2.18 2.18 4.02
XGradCAM (CLIP-zero-shot) 2.50 2.31 2.21 4.34
DeepFeatureFactorization (ResNet50) 3.50 3.40 3.33 3.25
DeepFeatureFactorization (ViT-B) 2.46 2.66 2.69 3.45
DeepFeatureFactorization (CLIP-zero-shot) 2.94 2.92 3.22 3.61
BCos (ResNet50-BCos) 2.91 2.84 2.77 3.34
CLIP-QDA-sample 1.71 1.69 1.66 4.04
CLIP-Linear-sample 2.19 2.17 2.27 2.89
LIME CBM (CLIP-QDA) 2.22 2.20 2.25 4.27
SHAP CBM (CLIP-QDA) 2.44 2.33 2.29 3.81
LIME CBM (CBM-classifier-logistic) 1.66 1.66 1.65 3.53
SHAP CBM (CBM-classifier-logistic) 1.98 2.01 1.94 3.30
Xnesyl-Linear 1.72 1.77 1.77 3.82
RISE (CBM-classifier-logistic) 2.65 2.57 2.62 2.70
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Q1 ROUGE BLEU Q2 Q3 Q4 Q5 Q6

Q1
RO
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E

BL
EU

Q2
Q3

Q4
Q5

Q6

1 0.33 0.028 0.91 0.78 0.81 -0.2 -0.17

0.33 1 0.11 0.33 0.29 0.33 -0.2 -0.018

0.028 0.11 1 0.033 0.025 0.051 -0.046 0.019

0.91 0.33 0.033 1 0.83 0.84 -0.21 -0.16

0.78 0.29 0.025 0.83 1 0.91 -0.2 -0.16

0.81 0.33 0.051 0.84 0.91 1 -0.23 -0.18
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0.28 1 0.29 0.78 0.61 0.27 0.27 0.27 0.17 -0.021
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0.92 0.27 0.011 0.26 0.24 1 0.82 0.79 -0.16 -0.093

0.8 0.27 0.068 0.22 0.24 0.82 1 0.92 -0.17 -0.078

0.76 0.27 0.075 0.22 0.24 0.79 0.92 1 -0.17 -0.076
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Figure 11: Correlation between the various questions and key metrics for saliency and CBM
explanations. For CBM, the criteria used are the BLEU (Papineni et al., 2002) and ROUGE
scores (Lin, 2004) scores between the explanation and the text from question Q0.1. For saliency
maps, the metrics include the total pixel sum (SUM all), the sum of pixels within the annotator-
provided bounding box (SUM pos) from question Q0.2, the sum of pixels outside the bounding box
(SUM neg), and the entropy of the saliency map (Entropy).
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Figure 12: Cohen’s kappa statistics showing agreement between annotators, aggregated by sex
and age groups.

B.5 EVALUATION QUESTIONS

In addition to annotating the samples that comprise the PASTA-dataset, each participant in the study
was asked to respond to the following questions:

• Q7: Could you rank the different qualities of the explanation in order of importance? Ex-
pectedness, Trustworthy, Complexity, Robustness, Objectivity.

• Q8: Can you please order the different questions from Q1, Q2, Q3, Q4, Q5, and Q6 from
the less important to the more important questions to assess the quality of the explanation?

• Q9: Can you please order the different questions from Q1, Q2, Q3, Q4, Q5 and Q6 from
the most difficult to the easiest?

The results for Q7 are presented in Table 13. The data indicate that evaluators place a higher value
on Trustworthiness and Complexity, while Objectivity is ranked significantly lower. This finding
aligns with the work of Liao et al. (2022), which poses a similar question but focuses on a pool of
experts.

Table 14 summarizes the results for Q8 and Q9. According to user feedback, Q1 is deemed the most
important question. Notably, there is a strong correlation between the responses to Q8 and Q9: the
questions perceived as easiest to answer are also regarded as the most important. Interestingly, there
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is a low correlation between the importance assigned to each question and the axioms they represent,
highlighting a distinction between the perception of an axiom and the execution of the associated
task. Furthermore, both Q8 and Q9 reveal a separation in ranking among Q1 to Q4 and Q5 and Q6,
which resonates with the dataset analysis discussed in Section B.3.

Table 13: Average positions of axioms for question 7. Lower rankings indicate that the axiom
is considered more important by evaluators, while higher rankings suggest the axiom is considered
less important. Results sorted by ascending order.

Axiom Average Position (Q7) ↓
Trustworthy 2.47 ± 1.48
Complexity 2.53 ± 1.58
Robustness 2.97 ± 1.06
Expectedness 3.20 ± 1.05
Objectivity 3.77 ± 1.36

Table 14: Average positions of questions 1 to 6 for Q8 and Q9. For Q8, higher rankings indicate
that the question is considered more important by evaluators, while lower rankings suggest the ques-
tion is considered less important. For Q9, lower rankings indicate that the question is considered
more difficult to evaluate, while lower rankings suggest the question is considered less difficult.

Question Average Position (Q8) ↑ Average Position (Q9) ↓
Q1 4.10 ± 1.32 4.00 ± 1.21
Q2 3.90 ± 1.29 4.23 ± 1.35
Q3 4.03 ± 1.77 4.53 ± 1.70
Q4 3.13 ± 1.41 3.67 ± 1.40
Q5 2.63 ± 1.66 1.80 ± 0.57
Q6 3.00 ± 1.95 2.54 ± 1.72

C PASTA-METRIC

C.1 IMPLEMENTATION DETAILS

C.1.1 AGGREGATION OF THE VOTES.

In the dataset, we have access to 5 votes per question. Then, if we denote the set of votes as
{mj

i [a]}
Na
a=1, where Na = 5 is the number of annotations:

Mode(mj
i ) = argmax

a
Count(mj

i [a]) , (6)

where Count(mj
i [a]) represents the frequency of each vote a in the set.

C.1.2 EVALUATION METRICS

The quadratic weighted Cohen’s Kappa (QWK) measures inter-rater agreement, adjusting for chance
and penalizing disagreement based on its magnitude. The formula is:

QWK =

∑
i,j wijOij −

∑
i,j wijEij

1−
∑

i,j wijEij
, (7)

where:

• Oij and Eij are the observed and expected frequencies, respectively.

• wij = 1− (i−j)2

(k−1)2 is the quadratic weight for categories i and j.
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Table 15: Comparison of the influence of ground truth generation methods. Each value is the
average result on 5 runs with the standard deviation.

Label Type MSE QWK SCC

Mode 1.06 ± 0.05 0.48 ± 0.05 0.25 ± 0.25
Mean 0.75 ± 0.06 0.46 ± 0.06 0.24 ± 0.25
Median 0.95 ± 0.03 0.49 ± 0.04 0.25 ± 0.26

Table 16: Impact of Adding Labels to the Encodings. Each value is the average result on 5 runs
with the standard deviation.

Computation MSE QWK SCC

Embeddings 1.06 ± 0.05 0.48 ± 0.05 0.25 ± 0.25
Embeddings + Labels 1.09 ± 0.00 0.43 ± 0.00 0.22 ± 0.22

The Mean Squared Error (MSE) measures the average squared difference between predicted and
actual values. It is given by:

MSE =
1

Ns

Ns∑
k=1

(mk − m̂k)
2 . (8)

The Spearman Correlation Coefficient (SCC) measures the rank correlation between two variables.
It is calculated using the ranks of the data points and is given by:

SCC = 1−
6
∑

i d
2
i

Ns(N2
s − 1)

, (9)

where di is the difference between the ranks of each pair of values.

C.2 AGGREGATION OF THE VOTES

Given the subjective nature of the annotations and the presence of multiple responses to the same
question (five answers per question), we explored different methods for determining the ground
truth. In Table 15, we tested how PASTA-metric training is affected when using the mean, mode, or
median as the ground truth. Since this parameter significantly impacts the dispersion of the samples,
it is not surprising that the results vary, particularly when using the mean. However, in all our
experiments, we opted to use the mode, as phenomena of high non-consensus were observed (see
Appendix B.3).

C.3 ADD OF LABEL INFORMATION IN THE PASTA-METRIC EMBEDDING.

In the current version of the PASTA-metric, only the activation outputs—either the heatmaps for
saliency maps or the concept scores for CBMs—are utilized, without incorporating additional infor-
mation that could potentially enhance the scoring process. To address this, we propose integrating
information about the predicted class into the embeddings provided to the scoring network. Specif-
ically, we encode each predicted label as a one-hot vector and concatenate it with the embedding.
The results of this modified approach are presented in Table 16.

As observed in Table 16, incorporating label information into our framework appears to degrade
performance. This phenomenon may be attributed to the relatively high number of labels used
across all datasets (26), which is comparable to the number of distinct images. Consequently, the
added label information may introduce redundancy or overfitting, ultimately impacting the overall
scoring process.

C.4 SCORING FUNCTIONS

In this section, we examine the influence of various scoring network architectures on performance.
Specifically, we tested alternatives such as Ridge Regression, Lasso Regression, Support Vector
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Table 17: Impact of the Scoring Function. Each value is the average result on 5 runs with the
standard deviation.

Scoring Function MSE QWK SCC

PASTA 1.06 ± 0.05 0.48 ± 0.05 0.25 ± 0.25
SVM 0.97 ± 0.06 0.39 ± 0.05 0.22 ± 0.22
Ridge 0.98 ± 0.05 0.37 ± 0.05 0.22 ± 0.22
Lasso 1.71 ± 0.18 0.31 ± 0.02 0.16 ± 0.16
MLP 1.28 ± 0.10 0.38 ± 0.04 0.20 ± 0.20

Machines, and a Multi-Layer Perceptron with a single hidden layer of 100 units. The results of
these experiments are presented in Table 17.

By analyzing the performance of the different scoring functions, we observe that PASTA, imple-
mented with linear regression and leveraging the loss functions described in Section 4.2, achieves
superior results in terms of the Quadratic Weighted Kappa score and Spearman Correlation Co-
efficient. These outcomes highlight its effectiveness in accurately ranking labels. However, both
SVM and Ridge Regression exhibit lower Mean Square Error, suggesting better numerical preci-
sion in predicting label values. Our primary objective is to develop a robust metric for ranking XAI
methods. As such, we place greater emphasis on metrics that assess ranking accuracy. Based on
this criterion, the PASTA framework is favored over alternative scoring networks due to its superior
performance in rank-oriented evaluations.

C.5 LOSS FUNCTIONS

Here we define the three losses used to train our PASTA-model.

The Cosine Similarity Loss measures the cosine similarity between the predicted explanations m̂k

and the ground truth explanations mk, ensuring alignment in their direction:

Ls = 1−
∑Ns

k=1 m̂kmk√∑Ns

k=1 m̂
2
k

√∑Ns

k=1 m
2
k

(10)

The Mean Squared Error (MSE) loss measures the squared difference between predicted and true
explanations, penalizing larger errors more heavily:

Lmse =
1

Ns

Ns∑
k=1

(m̂k −mk)
2 (11)

This Ranking Loss ensures the correct ranking of explanations by penalizing cases where the pre-
dicted ranking contradicts the true ranking:

Lr =
1

N̂s

∑
k1,k2

max(0,−(m̂k1 − m̂k2)(mk1 −mk2)) (12)

Here, N̂s represents the total number of pairs considered for the ranking loss.

C.6 EXPLANATION EMBEDDINGS

Saliency Regarding saliency-based explanations, a key question arises about what should be con-
sidered as the image representing the explanation. Two variants were considered: using the heatmap
visualization that is presented to users, as shown in Equation 1, or the input image as defined as:

ϕimage(e
j
i ) = CLIPimage(xi × eji ) (13)
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Table 18: Influence of the saliency computation process. Heatmap refers to the process defined
in Equation 1 and Masked image refers to the process defined in Equation 13. Each value is the
average result on 5 runs with the standard deviation.

Embedded Image MSE QWK SCC

Heatmap 1.06 ± 0.05 0.48 ± 0.05 0.25 ± 0.25
Blur 1.08 ± 0.14 0.47 ± 0.07 0.24 ± 0.27

Table 19: Influence of the number of words selected as an input text Ntop. Each value is the
average result on 5 runs with the standard deviation.

Ntop MSE QWK SCC

5 1.16 ± 0.13 0.46 ± 0.06 0.24 ± 0.24
10 1.17 ± 0.07 0.45 ± 0.04 0.23 ± 0.23
15 1.12 ± 0.07 0.46 ± 0.04 0.24 ± 0.24
20 1.06 ± 0.05 0.48 ± 0.05 0.25 ± 0.25
25 1.11 ± 0.06 0.47 ± 0.06 0.25 ± 0.25
30 1.10 ± 0.05 0.47 ± 0.05 0.24 ± 0.25

The element-wise multiplication of the input image with the saliency map selectively blurs the im-
age, with regions corresponding to lower activation values being blurred, while areas with higher
activation values remain clear.

The results are presented in Table 18, where a slight improvement is observed in favor of using the
image as a heatmap. This can be attributed to the fact that, despite being more computationally
ambiguous, the heatmap display reveals the entire image. Additionally, this representation closely
resembles the format of the samples provided to annotators.

CBM Concerning concept bottleneck explanation, which basically can be interpreted as a dictio-
nary attributing a scalar for each concept. One crucial step is converting CBM activations to CLIP
embeddings. We tested two ways do do so:

• By considering the raw text of concepts, ordered by importance (Equation 2)

• By using a sum of all the CLIP embeddings of text, weightened by its activations:

ϕtext(e
j
i ) =

1

||eji ||

Nk∑
k

eji [k] CLIPtext(concepti[k]) (14)

If we use the first solution, there are questions about the number of concepts to keep, that we note
as the parameters Ntop. Table 19 presents the influence of Ntop while 20 presents the influence of
differents ways to compute the embeddings.

D VARIANT WITH HANDCRAFTED FEATURES

We propose here to explore another variant of the PASTA-metric using handcrafted features instead
of CLIP embeddings. The goal here is to avoid bias related to the use of such an embedding model
by using an interpretable process to describe the extraction process.

D.1 ADDITIONAL NOTATIONS

Let us now define additional notation that will be used for this section. First, we consider that we
have a dataset Dl = {xi, yi}Nl

i=1, where l is the index of the training dat aset. l ∈ J0, 4K and Nl is
the number of data points in dataset l. On this dataset, we train two kinds of DNNs. First, we can
train a simple DNN f j1

ω (·) that outputs just a prediction ŷi = f j1
ω (xi), or we can train a greybox
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Table 20: Influence of the CBM explanation embedding process. Weightened refers to the process
described in Equation 14, Sentence refers to the process described in Equation 2, preceded with the
template noted in Template. Each value is the average result on 5 runs with the standard deviation.

Computation MSE QWK SCC Template

Weighted 1.03 ± 0.11 0.47 ± 0.07 0.24 ± 0.25 –

Sentence 1.06 ± 0.05 0.48 ± 0.05 0.25 ± 0.25 “ ”

Sentence 1.11 ± 0.05 0.47 ± 0.05 0.24 ± 0.24 “The model’s prediction is
motivated by the concepts:”

DNN that can predict both an explanation and a prediction (ŷi, e
j3
i ) = f j3

ω (xi). Here, ω represents
the weights of the DNN.

For post-hoc methods we consider that we have a model gj2(·) that might have parameters or not
and that we apply on f j1

ω (·) to output an explanation such that ej1,j2i = gj2(f j1
ω (xi)). The indices

j1 and j3 account for the index of models, while j2 is an index related to the number of post-hoc
explanations. For clarity, we use j as the index for the explanation techniques, which could be linked
to j2 and j1, or only j3. Let us consider that we have j ∈ J0, 45K kinds of explanations.

With these DNNs, we can now have the datasetDXAI
l = {eji ,m

j
i}(i,j)∈[0,N ′

l ]×[0,NJ ], with NJ = 45

being the number of explanations and N ′
l = 24 the number of test images for each dataset l. Here,

mj
i represents an average mark provided by annotators that we aim to estimate. To achieve this, we

propose a new model (that could be a DNN) hω(·) that takes as input eji or a representation ϕ(eji )

of this explanation and outputs m̂j
k = hω(ϕ(e

j
i )) to approximate mj

i . In the next section, we detail
our architectural choice for hω(·).

D.2 NETWORK ARCHITECTURE

Before delving into the architecture, let us first describe the representation space. To ensure a uni-
form representation of all data, we have decided that ϕ(·) should be a fixed-size vector where each
coordinate represents a criterion ck that assesses a specific aspect of the XAI methods. This can be
expressed as:

ϕ(eji ) = [c1 . . . cK ] . (15)

This technique includes three types of criteria, which we will describe in the following section.

D.3 VARIANCE CRITERION

The goal of the Variance criterion is to assess the stability of an explanation. To do so, we propose to
perform data augmentation on the images and measure the variance of the explanation, normalized
by the mean of the explanation. First, let us define three sets of data augmentations: A1,A2, andA3.
The resulting variance criterion is, for post hoc explanations:

ck =

∑
aug∈A

[
gj2(f j1

ω (aug(xi)))
]2

|A|
−

[∑
aug∈A

[
gj2(f j1

ω (aug(xi)))
]]2

|A|2
. (16)

Or, for ante-hoc models:

ck =

∑
aug∈A

[
f j3
ω (aug(xi))

]2
|A|

−

[∑
aug∈A

[
f j3
ω (aug(xi))

]]2
|A|2

, (17)

with A ∈ JA1,A2,A3K.
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D.4 COMPLEXITY CRITERION

The goal of the Complexity criterion is to evaluate the minimal dimensionality of the explanation.
To achieve this, we use Principal Component Analysis (PCA) for each datasetDXAI

l . Let λp denote
the eigenvalue associated with the p-th principal component. Our criterion is defined as:

ck =

∑
p∈[0,a] λp∑

p λp
, (18)

where a is an integer.

D.5 CLASSIFICATION CRITERION

The goal of the Classification criterion is to evaluate the model’s capacity to discriminate between
different classes based on the given explanation as a representation. The basic idea is that if a
classifier is effective, then that means using the explanation as a representation explanation should
provide sufficient information for each class to discriminate between them. Let class(DXAI,j

l )

denote a classifier model trained on DXAI,j
l (the index j means that we focus just on the j-th

explanation), and let accu
(

class(DXAI
l )

)
represent the accuracy of the classifier model trained and

tested on DXAI,j
l . Classification Criterion is defined by :

ck = accu
(

class(DXAI,j
l )

)
. (19)

E APPLICATIONS

E.1 EXAMPLES

Explanation

PASTA-
dataset score 4 2 4 3 4 3

PASTA-
metric score 4.27 1.63 3.80 2.22 3.46 2.99

Table 21: Comparison of PASTA dataset and metric scores for given explanations. These exam-
ples come from the use case of Q1. ”PASTA-dataset score” indicates the mode among the 5 ratings
given by annotators for this question. ”PASTA-metric score” indicates the emulated score using the
PASTA-metric.

E.2 FINE TUNING OF XAI HYPERPARAMETERS

One use case of the PASTA-score is to fine-tune hyperparameters of XAI methods. We present a
concrete case below: since applying LIME (Ribeiro et al., 2016) on images involves an optimizing
process, there are many hyperparameters that can increase the quality of the explanation. However,
knowing which parameters to use can be tricky and time-consuming because it involves judging
manually the explanation generated for several parameters. Using PASTA-score, we can automate
the process by searching the set of hyperparameters that maximize the PASTA-score. For example,
one of the hyperparameters is the kernel width for the exponential kernel used to blur the images of
the perturbating set. By doing so, we discovered that a kernel size of 0.15 (instead of the default
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Explanation

PASTA-
dataset score 1 1 4 2 2 3

PASTA-
metric score 1.47 1.12 2.97 1.34 2.19 2.36

Table 22: Comparison of PASTA dataset and metric scores for given explanations. These exam-
ples come from the use case of Q3. ”PASTA-dataset score” indicates the mode among the 5 ratings
given by annotators for this question. ”PASTA-metric score” indicates the emulated score using the
PASTA-metric.

value that is 0.25) increases the PASTA-score of LIME (ResNet50) from 2.16 to 2.25 (See Table
23), resulting in a slightly better explanations. We put examples of explanations produced by both
hyperparameter settings in Figure 25.

Kernel Width PASTA-score
0.05 2.15
0.1 2.25
0.15 2.18
0.2 2.13
0.25 2.16
0.3 2.17
0.35 2.17

Table 23: Impact of Kernel Width on the PASTA-score

Explanation with
default parameters

(Kernel Width =
0.25)

Explanation with
fine-tuned

parameters (Kernel
Width = 0.1)

Table 24: Comparison of explanations obtained with default LIME parameters and fine-tuned
parameters with PASTA-score. Images tend to be slightly more focused on distinct objects, like
the hands in the third image or the table in the fourth image. They also have less counterintuitive
observations, like the negative contribution of pixels of the dog in the second image.

Another use case is the sample-level search of the target layer of a GradCAM explanation. Consid-
ering a fixed image. We computed the PASTA-score and looked for the best score. As a result, we
observe that the highest scoring setup is the one that is closer to the end, respecting the observation
that the deepest layers capture the higher-level features.
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Layer relu 5 3 relu 5 2 relu 5 1 relu 4 3

Explanation

PASTA-score 2.07 1.19 1.04 1.07

Table 25: Comparison of different PASTA-scores for different layers selected in GradCAM.
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