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ABSTRACT

High-dimensional observations are a major challenge in the application of model-
based reinforcement learning (MBRL) to real-world environments. In order to
handle high-dimensional sensory inputs, existing MBRL approaches use repre-
sentation learning to map high-dimensional observations into a lower-dimensional
latent space that is more amenable to dynamics estimation and planning. Cru-
cially, the task-relevance and predictability of the learned representations play
critical roles in the success of planning in latent space. In this work, we present
Non-Markovian Predictive Coding (NMPC), an information-theoretic approach
for planning from high-dimensional observations with two key properties: 1) it
formulates a mutual information objective that prioritizes the encoding of task-
relevant components of the environment; and 2) it employs a recurrent neural
network capable of modeling non-Markovian latent dynamics. To demonstrate
NMPC’s ability to prioritize task-relevant information, we evaluate our new model
on a challenging modification of standard DMControl tasks where the DMCon-
trol background is replaced with natural videos, containing complex but irrelevant
information to the planning task. Our experiments show that NMPC is superior to
existing methods in the challenging complex-background setting while remaining
competitive with current state-of-the-art MBRL models in the standard setting.

1 INTRODUCTION

Learning to control from high dimensional observations has been made possible due to the advance-
ments in reinforcement learning (RL) and deep learning. These advancements have enabled notable
successes such as solving video games (Mnih et al., 2015; Lample & Chaplot, 2017) and continuous
control problems (Lillicrap et al., 2016) from pixels. However, it is well known that performing
RL directly in the high-dimensional observation space is sample-inefficient and may require a large
amount of training data (Lake et al., 2017). This is a critical problem, especially for real-world
applications. Recent model-based RL works (Kaiser et al., 2020; Ha & Schmidhuber, 2018; Hafner
et al., 2019; Zhang et al., 2019; Hafner et al., 2020) proposed to tackle this problem by learning a
world model in the latent space, and then applying RL algorithms in the latent world model.

The existing MBRL methods that learn a latent world model typically do so via reconstruction-based
objectives, which are likely to encode task-irrelevant information, such as of the background. In this
work, we take inspiration from the success of contrastive learning and propose Non-Markovian
Predictive Coding (NMPC), a novel information-theoretic approach for planning from pixels. In
contrast to reconstruction, NMPC formulates a mutual information (MI) objective to learn the latent
space for control. This objective circumvents the need to reconstruct and prioritizes the encoding
of task-relevant components of the environment, thus make NMPC more robust when dealing with
complicated observations. Our primary contributions are as follows:

• We propose Non-Markovian Predictive Coding (NMPC), a novel information-theoretic ap-
proach to learn latent world models for planning from high-dimensional observations and
theoretically analyze its ability to prioritize the encoding of task-relevant information.
• We show experimentally that NMPC outperforms the state-of-the-art model when deal-

ing with complex environments dominated by task-irrelevant information, while remaining
competitive on standard DeepMind control (DMControl) tasks. Additionally, we conduct
detailed ablation analyses to study the empirical importance of the components in NMPC.

1



Under review as a conference paper at ICLR 2021

2 BACKGROUND

The motivation and design of our model are largely based on two previous works (Shu et al., 2020;
Hafner et al., 2020). In this section, we briefly go over the key concepts in each work. Shu et al.
(2020) proposed PC3, an information-theoretic approach that uses contrastive predictive coding
(CPC) to learn a latent space amenable to locally-linear control. Specifically, they present the theory
of predictive suboptimality to motivate a CPC objective between the latent states of two consecutive
time steps, instead of CPC between the frame and its corresponding state. Moreover, they use the
latent dynamics F as the variational device in the lower bound

`cpc(E,F ) = E
1

K

∑
i

ln
F
(
E
(
o
(i)
t+1

)
| E
(
o
(i)
t

)
, a

(i)
t

)
1
K

∑
j F
(
E
(
o
(i)
t+1

)
| E
(
o
(j)
t

)
, a

(j)
t

) (1)

This particular design of the critic has two benefits, where it circumvents the instantiation of an
auxiliary critic, and also takes advantage of the property that an optimal critic is the true latent
dynamics. However, the author also shows that this objective does not ensure the learning of a latent
dynamics F that is consistent with the true latent dynamics, therefore introduces the consistency
loss to ensure the latent dynamics model F indeed approximates the true latent dynamics.

`cons(E,F ) = Ep(ot+1,ot,at) lnF (E (ot+1) | E (ot) , at) (2)

Since PC3 only tackles the problem from an optimal control perspective, it is not readily applicable
to RL problems. Indeed, PC3 requires a depiction of the goal image in order to perform control,
and also the ability to teleport to random locations of the state space to collect data, which are
impractical in many problems. On the other hand, Dreamer (Hafner et al., 2020) achieves state-
of-the-art performance on many RL tasks, but learns the latent space using a reconstruction-based
objective. While the authors included a demonstration of a contrastive approach that yielded inferior
performance to their reconstruction-based approach, their contrastive model applied CPC between
the frame and its corresponding state, as opposed to between latent states across time steps.

In this paper, we present Non-Markovian Predictive Coding (NMPC), a novel latent world model
that leverages the concepts in PC3 and apply them to Dream paradigm and RL setting. Motivated
by PC3, we formulate a mutual information objective between historical and future latent states to
learn the latent space. We additionally take advantage of the recurrent model in Dreamer to model
more complicated dynamics than what was considered in PC3. The use of recurrent dynamics also
allows us to extend Eqs. (1) and (2) to the non-Markovian setting, which was not considered in PC3.

3 NON-MARKOVIAN PREDICTIVE CODING FOR PLANNING FROM PIXELS

To plan in an unknown environment, we need to model the environment dynamics from experience.
We do so by iteratively collecting new data and using those data to train the world model. In this
section, we focus on presenting the proposed latent world model, its components and objective
functions, and provide practical considerations when implementing the method.

3.1 NON-MARKOVIAN PREDICTIVE CODING

We aim to learn a latent dynamics model for planning. To do that, we define an encoder E to embed
high-dimensional observations into a latent space, a latent dynamics F to model the world in this
space, and a reward function, as follows

Encoder: E(ot) = st

Latent dynamics: F (st | s<t, a<t) = p(st | s<t, a<t)
Reward function: R(rt | st) = p(rt | st)

(3)

in which t is the discrete time step, {ot, at, rt}Tt=1 are data sequences with image observations ot,
continuous action vectors at, scalar rewards rt, and st denotes the latent state at time t. To handle po-
tentially non-Markovian environment dynamics, we model the transition dynamics using a recurrent
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Figure 1: The graphical model of NMPC, in which we employ a recurrent neural network to model
the dynamics. We omit the action and reward for simplicity. The approximation of ŝt with st is done
by using a combination of contrastive predictive coding and maximum likelihood.

neural network with a deterministic state ht = RNN(ht−1, st−1, at−1), which summarizes informa-
tion about the past, followed by the stochastic state model p(st|s<t, a<t) = p(st|ht). In practice,
we use a deterministic encoder, and Gaussian distribution for dynamics and reward functions. The
graphical model is presented in Figure 1. We now introduce the three key components of our model:
recurrent contrastive predictive coding, non-markovian consistency, and reward prediction.

Recurrent contrastive predictive coding Instead of performing pixel prediction to learn E and
F as in Hafner et al. (2019; 2020), we take a different approach, where we maximize the mu-
tual information (MI) between the past latent codes and actions against the future latent code
I(E(Ot);E(O<t), A<t). This objective prioritizes the encoding of predictable components from
the environment, which potentially helps avoid encoding nuance information when dealing with
complex image observations. A similar MI objective was previously used in Shu et al. (2020).
However, Shu et al. (2020) only considered the Markovian setting and thus focused on the mutual
information over consecutive time steps. In contrast, we consider a non-Markovian setting and wish
to maximize the mutual information between the latent code at any time step t and the entire histori-
cal trajectory latent codes and actions prior to t. Given a trajectory over T steps, our non-Markovian
MI objective thus sums over every possible choice of t ∈ {2, . . . , T},

T∑
t=2

I(E(Ot);E(O<t), A<t). (4)

To estimate this quantity, we employ contrastive predictive coding (CPC) proposed by Oord et al.
(2018). We perform CPC by introducing a critic function f to construct the lower bound at a partic-
ular time step t,
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where the expectation is over K i.i.d. samples of (ot, o<t, a<t). Note that Eq. (5) uses past
(E(o
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trastive prediction of the future latent code E(o
(i)
t ). Following Shu et al. (2020), we choose to tie f

to our recurrent latent dynamics model F ,

exp f(st, s<t, a<t) = F (st|s<t, a<t). (6)

There are two favorable properties of this particular design. First, it is parameter-efficient since we
can circumvent the instantiation of a separate critic f . Moreover, it takes advantage of the fact that
an optimal critic is the true latent dynamics induced by the encoder E (Poole et al., 2019; Ma &
Collins, 2018). We denote our overall CPC objective as `r-cpc(E,F ) =

∑T
t=2 `

(t)
r-cpc(E,F ).

Non-Markovian consistency Although the true dynamics is an optimal critic for the CPC bound,
maximizing this objective only does not ensure the learning of a latent dynamics model F that
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is consistent with the true latent dynamics, due to the non-uniqueness of the optimal critic (Shu
et al., 2020). Since an accurate dynamics is crucial for planning in the latent space, we additionally
introduce a consistency objective, which encourages the latent dynamics model to maintain a good
prediction of the future latent code given the past latent codes and actions. Similar to the recurrent
CPC objective, we optimize for consistency at every time step in the trajectory,

`cons(E,F ) =

T∑
t=2

Ep(ot,o<t,a<t) lnF (E(ot)|E(o<t), a<t). (7)

Reward prediction Finally, we train the reward function by maximizing the likelihood of the true
reward value conditioned on the latent state st = E(ot),

`reward(E,R) =

T∑
t=1

Ep(ot) lnR(rt|E(ot)). (8)

3.2 THEORETICAL ANALYSIS OF NMPC AND TASK-RELEVANCE

In contrast to a reconstruction-based objective, which explicitly encourages the encoder to behave
injectively on the space of observations, our choice of mutual information objective as specified
in Eq. (5) may discard information from the observed scene. In this section, we wish to formally
characterize the information discarded by our MI objective and argue that any information discarded
by an optimal encoder under our MI objective is provably task-irrelevant.
Lemma 1. Consider an optimal encoder and reward predictor pair (E∗, R∗) where

argmax
E

I(E(Ot) ; E(O<t), A<t) = E∗ (9)

DKL(p(rt | ot) ‖ R∗(rt | E∗(ot))) = 0. (10)

Let π(at | E∗(o≤t), a<t) denote an E∗-restricted policy whose access to the observations o<t is
restricted by E∗. Let πaux(at | E∗(o≤t), E′(o≤t), a<t) denote an (E∗, E′)-restricted policy which
has access to auxiliary information about o<t via some encoder E′. Let η(π) denote the expected
cumulative reward achieved by a policy π over a finite horizon T . Then there exists no encoder E′
where the optimal E∗-restricted policy underperforms the optimal (E∗, E′)-restricted policy,

@E′ s.t. η(π∗) < η(π∗aux). (11)

Intuitively, since E∗ optimizes our MI objective, any excess information contained in E′ about
ot (not already accounted for by E∗) must be temporally-unpredictive—it is neither predictable
from the past nor predictive of the future. The excess information conveyed by E′ is effectively
nuisance information and thus cannot be exploited to improve the agent’s performance. It is therefore
permissible to dismiss the excess information in E′ as being task-irrelevant. We provide a proof
formalizing this intuition in Appendix B.

It is worth noting that our MI objective does not actively penalize the encoding of nuisance informa-
tion, nor does temporally-predictive information necessarily mean it will be task-relevant. However,
if the representation space has limited capacity to encode information about ot (e.g., due to dimen-
sionality reduction, a stochastic encoder, or an explicit information bottleneck regularizer), our MI
objective will favor temporally-predictive information over temporally-unpredictive information—
and in this sense, thus favor potentially task-relevant information over provably task-irrelevant infor-
mation. This is in sharp contrast to a reconstruction objective, which makes no distinction between
these two categories of information contained in the observation ot.

3.3 PRACTICAL IMPLEMENTATION OF NMPC

Avoiding map collapse Naively optimizing `r-cpc and `cons can lead to a trivial solution, where the
latent map collapses into a single point to increase the consistency objective arbitrarily. In the pre-
vious work, Shu et al. (2020) resolved this by adding Gaussian noise to the future encoding, which
balances the latent space retraction encouraged by `cons with the latent space expansion encouraged
by `r-cpc. However, we found this trick insufficient, and instead introduce a CPC objective between
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the current observation and its corresponding latent code, which we call the instantaneous CPC. Our
instantaneous CPC objective defines a lower bound for I(E(Ot) ;Ot) where we employ a Gaussian
distribution N (E(Ot) | E(Ot), σI) as our choice of variational critic for f(E(Ot), Ot). Crucially,
we keep the variance σ fixed so that the instantaneous CPC objective encourages map expansion.

Smoothing the dynamics model Since our encoder is deterministic, the dynamics always receives
clean latent codes as inputs during training. However, in behavior learning, we roll out multiple steps
towards the future from a stochastic dynamics. These roll outs are susceptible a cascading error
problem, which hurts the value estimation and policy learning. To resolve this issue, we smooth
the dynamics by adding Gaussian noise to the inputs of the recurrent dynamics during training. The
noise-adding procedure is as follows: assume the dynamics outputs ŝt ∼ N (µt, σ

2
t ) as the prediction

at time step t, we then add εt ∼ N (0, σ2
t ) to st = E(ot) and feed it to the latent dynamics, and

repeat for every time step 1 ≤ t ≤ T . We call this dynamics-associated noise, which ensures that
the latent dynamics can handle the amount of noise that it produces when rolling out.

The overall objective of our model is thus

max
E,F,R

λ1`r-cpc(E,F ) + λ2`cons(E,F ) + λ3`i-cpc(E) + λ4`reward(E,R). (12)

4 BEHAVIOR LEARNING

Following Hafner et al. (2020), we use latent imagination to learn a parameterized policy for control.
For self-containedness, in this section we give a summary of this approach. Given the latent state
st = E(ot), we roll out multiple steps into the future using the learned dynamics F , estimate the
return and perform backpropagation through the dynamics to maximize this return, which in turn
improves the policy.

Action and value models We define two components needed for behavior learning, the action
model and the value model, which both operate on the latent space. The value model estimates the
expected imagined return when following the action model from a particular state sτ , and the action
model implements a policy, conditioned on sτ , that aims to maximize this return. With imagine
horizon H , we have

Action model: aτ ∼ π(aτ |sτ ) Value model: v(sτ ) ≈ Eπ(·|sτ )
t+H∑
τ=t

γτ−trτ (13)

Value estimation To learn the action and value model, we need to estimate the state values of
imagined trajectories {sτ , aτ , rτ}t+Hτ=t , where sτ and aτ are sampled according to the dynamics and
the policy. In this work, we use value estimation presented in Sutton & Barto (2018),

VkN (sτ )
.
= Eqθ,qφ

(
h−1∑
n=τ

γn−τrn + γh−τvψ (sh)

)
with h = min(τ + k, t+H)

Vλ (sτ )
.
= (1− λ)

H−1∑
n=1

λn−1VnN (sτ ) + λH−1VHN (sτ ) .

(14)

which allows us to estimate the return beyond the imagine horizon. The value model is then opti-
mized to regress this estimation, while the action model is trained to maximize the value estimation
of all states sτ along the imagined trajectories,

max
π

E

(
t+H∑
τ=t

Vλ (sτ )

)
min
v

E

(
t+H∑
τ=t

1

2
‖vψ (sτ )−Vλ (sτ ) ‖2

)
. (15)

5 EXPERIMENTS

In this section, we empirically evaluate the proposed NMPC model in various settings. First, we
design experiments to compare the relative performance of our model with the current best model-
based method in several standard control tasks. Second, we evaluate its ability to handle a more
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realistic but also more complicated scenario, in which we replace the background of the environ-
ment with a natural video. We discuss how our model is superior in the latter case, while remaining
competitive in the standard setting. Finally, we conduct ablation studies to demonstrate the impor-
tance of the components of our model.

Control tasks For the standard setting, we test our model on 6 DeepMind Control (DMC) tasks
(Tassa et al., 2018): Cartpole Swingup, Cheetah Run, Walker Run, Acrobot Swingup, Hopper Hop
and Cup Catch. In the natural background setting, we replace the background of each data trajectory
with a video taken from the kinetics dataset (Kay et al., 2017). We use a different set of videos for
training and testing to also test the generalization of each method. In both settings, we use images
of shape 64× 64× 3, episodes with 1000 steps and action repeat 2 across tasks.

Baseline methods We compare NMPC with Dreamer (Hafner et al., 2020), the current state of
the art model-based method for planning from pixels. Each method is evaluated by the environment
return in 1000 steps. For Dreamer, we use the best set of hyperparameters as reported in their paper.
We run each task with 3 different seeds.

5.1 COMPARISONS IN STANDARD SETTING
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Figure 2: NMPC vs Dreamer in the standard DMControl tasks. The return is computed in 1000
environment steps. Each task is run with 3 seeds.

We demonstrate the performance of both methods on standard control tasks in Figure 2. NMPC
is competitive in all the tasks, which is in contrast to what was previously observed in Dreamer
(Hafner et al., 2020), where they showed the inferiority of a contrastive learning approach (which
applies CPC between an image observation and its corresponding latent code) compared to their
reconstruction-based approach. Our results thus show that the use of recurrent contrastive predictive
coding is critical for learning a latent space that is suitable behavior learning.

5.2 COMPARISONS IN NATURAL BACKGROUND SETTING

In this setting, we evaluate the robustness of NMPC versus Dreamer in dealing with complicated,
natural backgrounds. The performance of both models in the natural backgrounds setting is shown
in Figure 4. Dreamer fails to achieve meaningful performance across all six tasks. NMPC performs
significantly better on four of the six tasks, only failing to work on Acrobot Swingup and Hopper
Hop. We note that Acrobot Swingup and Hopper HOp are the two most challenging tasks in the
standard setting. Furthermore, the agents in these two tasks are also tiny compared to the complex
backgrounds, thus making it difficult for the model to distill task-relevant information.
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Figure 3: DeepMind Control tasks in the natural backgrounds setting. The images show a sample
training trajectory in Cheetah Run task, where the background is taken from the kinetics dataset.
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Figure 4: NMPC vs Dreamer in the natural backgrounds setting. The return is computed in 1000
evironment steps. Each task is run with 3 seeds.

5.3 ABLATION ANALYSIS
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Figure 5: NMPC vs two different variants, where we omit the recurrent CPC in NMPC-No-Rcr and
instantaneous CPC in NMPC-No-Inst. The return is computed in 1000 evironment steps. Each task
is run with 3 seeds.

We conduct an ablation analysis to evaluate the importance of each CPC objective employed in
NMPC. To do so, we compare the original model with two variants, where we omit the recurrent
CPC or instantaneous CPC objective respectively. The relative performance of these models on three
control tasks is shown in Figure 5. The original NMPC achieves the best performance, while the
variant with only instantaneous CPC (denoted NPMC-No-Rcr) fails across all three tasks. NMPC
without instantaneous CPC is unstable, since it faces the map collapsing problem, which leads to
poor performance.
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6 RELATED WORK

Learning latent space for model-based RL via reconstruction Latent world models can be
learned by jointly training the encoder and the latent dynamics model with observation reconstruc-
tion loss. Learning Controllable Embedding (LCE) approach, including E2C (Watter et al., 2015),
RCE (Banijamali et al., 2018) and PCC (Levine et al., 2020), uses randomly collected data to pre-
train a Markovian latent dynamic model that is specifically designed for locally-linear control, then
run offline optimal control on top of the learned latent space. CARL (Cui et al., 2020) extends these
works for Soft Actor-Critic (Haarnoja et al., 2018) and also proposes an online version, in which
they iteratively learn the model and a parameterized policy. World Models (Ha & Schmidhuber,
2018) learn a recurrent latent dynamic model in a two-stage process to evolve their linear controllers
in imagination. PlaNet (Hafner et al., 2019) jointly learns a recurrent state space model (RSSM)
and plans in latent space using the cross entropy method, while Dreamer (Hafner et al., 2020) uses
RSSM to iteratively learn the model and the policy by backpropagating through the dynamics. SO-
LAR (Zhang et al., 2019) models the dynamics as time-varying linear-Gaussian with quadratic costs
and controls using guided policy search. However, training world models with reconstruction loss
has several drawbacks: it requires a decoder as an auxiliary network for predicting images, and by
reconstructing every single pixel, those methods are potentially vulnerable to task-irrelevant infor-
mation such as an irrelevant background.

Learning latent space for model-based RL via constrastive learning An alternative framework
for learning latent world models is contrastive learning. Contrastive learning is a self-supervised
learning technique that aims to learn representations by contrasting positive samples against nega-
tive samples without having to reconstruct images (Oord et al., 2018; Chen et al., 2020a). Recently
proposed contrastive learning methods have achieved significant successes in learning representa-
tions purely from unlabeled data, which include works by (Chen et al., 2020a;b; Bachman et al.,
2019; Hénaff et al., 2019; He et al., 2020; Tian et al., 2019). Poole et al. (2019) has also established
a close connection between contrastive learning and mutual information maximization. In the con-
text of RL, recent works have proposed to use this framework to accelerate RL from pixels in two
distinct directions: 1) cast contrastive learning as an auxiliary representation learning task, and use
model-free RL methods on top of the learned latent space (Oord et al., 2018; Srinivas et al., 2020);
and 2) use contrastive learning in conjunction with learning a latent dynamics for planning in the
latent space (Shu et al., 2020; Ding et al., 2020; Hafner et al., 2020).

Our proposed method follows the latter direction, and can be seen as an extension of both PC3 (Shu
et al., 2020) and Dreamer (Hafner et al., 2020). While having a similar contrastive objective to PC3,
we design a non-Markovian version of it and also use a stronger controller, which enables our model
to work on more complicated control tasks. We use the same controller as proposed in Dreamer;
however, while their contrastive variant maximizes the MI between the observation its latent code,
our loss maximizes the MI between the historical latent codes and actions versus the future latent
code. Experimental results show that NMPC is competitive to Dreamer with reconstruction in stan-
dard DMControl tasks, which means we outperform their contrastive variant.

7 CONCLUSION

In this work, we propose NMPC, a novel information-theoretic approach that learns a non-
Markovian world model for planning in the latent space. We employ a recurrent contrastive predic-
tive coding objective that specifically estimates the mutual information across temporal states. We
show theoretically that our objective does not encourage the encoding of provably task-irrelevant
information. This is critically different from reconstruction-based objectives as well as contrastive
learning objectives that only measure the mutual information between the current observation and
its latent code, which indiscriminately favor the encoding of both task-relevant and irrelevant infor-
mation. Our experiments show that NMPC outperforms the state-of-the-art model when controls
in environments dominated by task-irrelevant information while remaining competitive on standard
control tasks from DMControl.
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A HYPER PARAMETERS

A.1 STANDARD SETTING

NMPC and Dreamer share the following hyperparameters:

Model components

• Latent state dimension: 30
• Recurrent state dimension: 200
• Activation function: ELU
• The action model outputs a tanh mean scaled by a factor of 5 and a softplus standard

deviation for the Normal distribution that is then transformed using tanh (Haarnoja et al.,
2018)

Learning updates

• Batch size: 50 for Dreamer and 250 for NMPC
• Trajectories length: 50
• Optimizer: Adam (Kingma & Ba, 2014) with learning rates 6 × 10−4 for world model,
8× 10−5 for value and action model.

• Gradient update rate: 100 gradient updates every 1000 environment steps.
• Gradient clipping norm: 100
• Imagination horizon: 15
• γ = 0.99 and λ = 0.95 for value estimation

Environment interaction

• The dataset is initialized with S = 5 episodes collected using random actions.
• We iterate between 100 training steps and collecting 1 episode by executing the predicted

mode action with N (0, 0.3) exploration noise.
• Action repeat: 2
• Environment steps: 2× 106

Additionally,

• Dreamer clips the KL below 3 nats
• NMPC has a fixed set of coefficient in the overall objective for all control tasks: λ1 =
1, λ2 = 0.1, λ3 = 1, λ4 = 1. We use a fixed Gaussian noise ε ∼ N (0, 0.22) to add to the
future latent code when computing CPC, as suggested in (Shu et al., 2020), and also use
0.2 as the fixed variance in instantaneous CPC.

In NMPC, we also use a target network for the value model and update this network every 100
gradient steps. Note that we also tried to use target value network for Dreamer, but it does not
improve the results, as suggested by their original paper (Hafner et al., 2020).

A.2 NATURAL BACKGROUND SETTING

To further encourage the model to focus on task-relevant information from observations, we increase
the weight λ4 of the reward loss in the training objective for both Dreamer and NMPC. In each
control task they share the same reward coefficient, which is specified in the table below. All of the
remaining hyperparameters are kept the same.
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Table 1: Reward coefficients for different tasks in the natural backgrounds setting

Task Reward coefficient

Cartpole Swingup 1000
Cheetah Run 100
Walker Run 100
Acrobot Swingup 1000
Hopper Hop 100
Cup Catch 1000

B PROOF OF LEMMA 1

Our goal is to show that, under the conditions in Lemma 1,

η(π∗) ≥ η(π∗aux) (16)

for any choice of auxiliary encoder E′.

We start by denoting st = E∗(ot) and s′t = E′(ot). Note that the performance of π can be written
as

η(πaux) = E(π,p)r(o1:T ) (17)

=
∑
τaux

r(o1:T )
∏
t

p(ot | o<t, a<t)p(st, s′t | ot)πaux(at | s≤t, s′≤t, a<t), (18)

where τaux denotes the full trajectory of (o, s, s′, a)1:T and r(ot) evaluates the reward at ot (for
simplicity, we shall assume p(rt | st) is deterministic. Since DKL(p(rt | ot) ‖ R∗(rt | E∗(ot))) =
0, we can rewrite as

η(πaux) =
∑
τaux

R∗(s1:T )
∏
t

p(ot | o<t, a<t)p(st, s′t | ot)πaux(at | s≤t, s′≤t, a<t), (19)

where, with a slight abuse of notation, we note that R∗(E∗(ot)) = r(ot). We now further rewrite
πaux(at | s≤t, s′≤t, a<t) as

p(at | s≤t, s≤t, a<t, πaux), (20)

and subsequently collapse the expression of the performance as

η(πaux) =
∑

(o,s,s′,a)1:T

R∗(s1:T )p(o1:T , s1:T , s
′
1:T , a1:T | πaux) (21)

=
∑

(s,s′,a)1:T

R∗(s1:T )p(s1:T , s
′
1:T , a1:T | πaux), (22)

where the last step arises from marginalization of o1:T . Note by chain rule that p(s1:T , s′1:T , a1:T |
πaux) becomes∏

t

p(st | s<t, s′<t, a<t, πaux)p(s′t | s≤t, s′<t, a<t, πaux)p(at | s≤t, s′≤t, a<t, πaux). (23)

By analyzing the Markov blankets in p(s1:T , s′1:T , a1:T | πaux), we can simplify the above expres-
sion to ∏

t

p(st | s<t, s′<t, a<t)p(s′t | s≤t, s′<t, a<t)p(at | s≤t, s′≤t, a<t, πaux). (24)

Note that we omit the dependency on πaux in the first two terms since, given only the history of past
actions and observations, the next observation does not depend on our choice of policy but only on
the environment dynamics.
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Since E∗ is optimal under the MI objective, we note that

I(S<t, S
′
<t, A<t ; St, S

′
t) = I(S<t, A<t ; St). (25)

Eq. (25) implies that s′<t is independent of st given (s<t, a<t), and that (s<t, s′<t, a<t) is indepen-
dent of s′t given st. This allow us to further simplify Eq. (24) to∏

t

p(st | s<t, a<t)p(s′t | st)πaux(at | s≤t, s′≤t, a<t). (26)

Thus, the performance expression equates to

η(πaux) =
∑
τaux

R∗(s1:T )
∏
t

p(st | s<t, a<t)p(s′t | st)πaux(at | s≤t, s′≤t, a<t). (27)

Note by way of similar reasoning (up to and including Eq. (24)) that

η(π) =
∑
τ

R∗(s1:T )
∏
t

p(st | s<t, a<t)π(at | s≤t, a<t). (28)

By comparing Eq. (27) and Eq. (28), we see that s′1:T effectively serves as a source of noise that
makes πaux behave like a stochastic policy depending on the seed choice for s′1:T . To take advantage
of this, we introduce a reparameterization of s′ as ε such that

η(πaux) =
∑
τaux

r(s1:T )
∏
t

p(st | s<t, a<t)p(εt)πaux(at | s≤t, ε≤t, a<t) (29)

= Ep(ε1:T )
∑

(s,a)1:T

r(s1:T )
∏
t

p(st | s<t, a<t)πaux(at | s≤t, ε≤t, a<t) (30)

≤ max
ε1:T

∑
(s,a)1:T

r(s1:T )
∏
t

p(st | s<t, a<t)πaux(at | s≤t, ε≤t, a<t) (31)

≤ max
π

η(π), (32)

where the last inequality comes from defining a policy

π′ := πaux(at | o≤t, ε∗≤t, a<t) (33)

and noting that the performance of π∗aux must be bounded by the performance of π∗. �
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C ADDITIONAL RESULTS

In Figure 6, we show the comparison of NMPC with more baselines in the standard setting. They
include Contrastive-Dreamer – the contrastive version of Dreamer reported in Hafner et al. (2020),
and Markovian Predictive Coding (MPC) – in which we stack multiple frames and use a feed-
forward dynamics instead of a recurrent one. The figure shows the results with two frames stacked.1
MPC does not work in all of the control tasks. During training we observed that the CPC and
Consistency objectives of MPC were much worse than those of NMPC. Therefore, we hypothesize
that the feed-forward dynamics with stacked frames is not capable of predicting the far future, which
leads to poor performance in tasks that require long-term planning.
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Figure 6: NMPC vs the baselines in the standard DMControl tasks. The return is computed in
1000environment steps. Each task is run with 3 seeds.

Figure 7 demonstrates the ablation analysis which compares NMPC with other contrastive variants,
including Contrastive-Dreamer. It is easy to notice that all other models perform significantly worse
than NMPC, verifying the necessary of different components that we proposed.
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Figure 7: Abaltion study with more contrastive variants in the standard setting

1We also tried stacking three or four frames and observed similar performances.
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In Figure 8 and 9, we run NMPC on more control tasks to make our results more comparable to
Deep Bisimulation for Control (DBC) Zhang et al. (2020). We note that the gradient update rates
of NMPC and DBC are different. In NMPC, we update 100 gradient steps after collecting 1000
environment steps, while DBC performs one gradient update after each environment step collected.
Even with setup differences that put NMPC at disadvantage, our method either is competitive or
vastly outperforms DBC.
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Figure 8: NMPC on more control tasks in the standard setting
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Figure 9: NMPC on more control tasks in the natural background setting
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