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Abstract

Data-wrangling is a process that transforms raw data for further analysis and for
use in downstream tasks. Recently, it has been shown that foundation models
can be successfully used for data-wrangling tasks Narayan et al. [2022]. An
important aspect of data-wrangling with LMs is to properly construct prompts for
the given task. Within these prompts, a crucial component is the choice of in-context
examples. In the previous study of Narayan et al. [2022], demonstration examples
are chosen manually by the authors, which may not be scalable to new datasets.
In this work, we propose a simple demonstration strategy that individualizes
demonstration examples for each input by selecting them from a pool based on
their distance in the embedding space. Additionally, we propose a post-processing
method that exploits the embedding of labels under a closed-world assumption.
Empirically, our embedding-based example retrieval and post-processing improve
foundation models’ performance by up to 84% over randomly selected examples
and 49% over manually selected examples in the demonstration. Ablation tests
reveal the effect of class embeddings, and various factors in demonstration such as
quantity, quality, and diversity.

1 Introduction

Data wrangling is a line of processes to transform raw data to improve data quality for further data
analysis and downstream tasks. While data wrangling requires data scientists and engineers to spot
and handle the problems in the datasets, machine learning has successfully automated data wrangling
tasks such as entity matching [Li et al., 2020b], data cleaning [Rekatsinas et al., 2017, Heidari et al.,
2019], data transformation [He et al., 2018], and schema matching [Zhang et al., 2021], reducing
human efforts for data wrangling.

Foundation models (FM)—large models pre-trained with massive datasets—turned out to be very
versatile, showing solid performance in many downstream tasks. The pioneering work by Narayan
et al. [2022] has shown that large language model can be used for data wrangling tasks. The
gist of their method is casting data-wrangling tasks into NLP tasks with proper instructions and
demonstrations.
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While successful, many questions remain in this application. One such question is how to select
in-context examples. Narayan et al. [2022] manually chooses in-context examples, which imposes
additional tuning work on the user side and is not adaptive to the given example. In this work, we
introduce a simple method to enhance in-context examples. The main idea of our method is to
select demonstration examples from a demonstration pool, which is typically the training dataset or
the validation dataset. While this may appear to require additional annotated datasets, in practice,
demonstration examples can be constructed using already restored data in database. We hypothesize
that the quantity, relevancy, and diversity of demonstration examples have a crucial impact on
the quality of prompts. To verify our hypothesis, we designed a simple demonstration example
retrieval method based on the embedding space—pool-search-demonstrate (PSD) method. As an
additional contribution, we also suggest a class embedding approach as a post-processing method.
Our experiments show that our method can improve data wrangling performance of large language
models by as much as 84% over random example demonstrations and 49% over manually selected
example demonstrations, respectively. In an ablation study, we observe

• Examples in demonstrations play a more important role in the larger language model.
• Given relevant examples with our methods, adding more demonstrations typically yields better

results in the large model. However, the small model does not improve or get worse as the number
of examples increases in the prompt.

• As the demonstration pool has more diverse examples, our method can choose better demonstration
examples, resulting in better performance.
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Figure 1: Illustration of data wrangling with foun-
dation model. Foundation models can conduct var-
ious data wrangling tasks with proper instruction
and demonstrations Narayan et al. [2022].

Data-wrangling with ML. As machine learn-
ing systems have been widely adopted, they
have been actively used in data-wrangling tasks
as well. Magellan [Konda et al., 2016] ex-
tracts feature vectors to obtain similarity and
perform matching between different tables for
entity matching. Ditto [Li et al., 2020b] fine-
tunes BERT to perform entity matching tasks
with entry serialization and data augmentation,
which can be seen as an earlier version of data-
wrangling with FMs. Holoclean [Rekatsinas
et al., 2017] utilizes graphical models for data
imputation and error detection. Holodetect [Hei-
dari et al., 2019] casts error detection task as
a few-shot classification task. IMP [Mei et al.,
2021] finetunes language models for data impu-
tation, by casting it as a classification task.

While such ML-based data-wrangling solutions
have been actively studied, not many studies
have been done regarding the application of FM
to data-wrangling tasks. Narayan et al. [2022]
is the first study of that, where foundation models are successfully applied to various data-wrangling
tasks including entity matching, data imputation, error detection, and data transformation, beating
previous SOTA algorithms. Vos et al. [2022] utilized prefix tuning Li and Liang [2021] to improve
foundation models in data-wrangling tasks. Chen et al. [2023] used foundation models for data
retrieval from multi-modal data lakes. Our study mainly builds up on the study of Narayan et al.
[2022], focusing on the demonstration aspects of data-wrangling tasks.

Prompt engineering Prompt engineering or in-context prompting aims for effective learning of
large language models (LLM) without updating the model weights. Zero-shot or few-shot learning,
often considered to be the pioneer of different LLM methods, take naive approaches. Zero-shot
learning consumes the task test to answer the desired results, such as sentiment or human intention.
Few-shot learning, which is evaluated to work better than zero-shot, learns desirable “examples”
consisting of both input and output. However, the performance of few-shot learning is sensitive
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Figure 2: Proposed prompt construction method. First, we collect demonstration examples. Secondly,
given the input data-wrangling task query, we get the embedding of the input query and find k closest
demo examples from the demo pool. Finally, we construct an individualized prompt by putting
together task demonstrations and a task description.

to the type of training examples and prompt format [Zhao et al., 2021]. Studies suggest different
ways to improve example selection such as semantic approaches [Liu et al., 2021b], graph-based
learning [Su et al., 2022], contrastive learning Rubin et al. [2021], Q-learning [Zhang et al., 2022],
and uncertainty-based active learning [Diao et al., 2023]. Our method builds upon Liu et al. [2021b],
which selects examples based on the similarity in the embedding space.

Demonstrations for in-context learning What makes good demonstrations is a practical issue in
in-context learning, thus has been actively studied. Min et al. [2022] identified potential beneficial
aspects of demonstrations, which are the input-label mapping, the distribution of the input text, the
label space, and the format. They revealed that models can retain up to 95% of performance gains
using either the inputs only or the label set only, if the proper format is used. Nonetheless, this insight
can be applied only to small language sets, since the study of Wei et al. [2023] implies large language
models actually can learn input-output pairs given in the prompt. Liu et al. [2021a] also studied the
effect of variables in demonstrations, such as the number of examples in each prompt, the size of the
pool for exemplar retrieval, and the order of in-context examples. We will include a similar analysis
in the main experiments.

3 Improving FMs in data-wrangling tasks using embeddings

3.1 Solving data-wrangling tasks with FMs: data serialization

Narayan et al. [2022]’s study provides a basic setup to solve data-wrangling tasks with FMs; we
keep the same framework. We mainly consider data imputation, entity matching, and error detection
among many data-wrangling tasks. Data imputation is to infer the unknown value of an entry from
other values in the entry. Entity matching is the task of deciding whether two different entries denote
the same real-world entity. Error detection is the job of checking if there is an error in an entry.

Next, we formalize data-wrangling tasks. We denote the structured data set by D, a structured dataset
with n entries, such that each entry is represented by a collection of m attribute-value pairs: for entry
ei ∈ D, ei = {ei,j = {attrj , valj}|1 ≤ j ≤ m}. Based on these notations, each data-wrangling task
can be expressed as:

• Data imputation (DI): given entry e and its unknown valj corresponding to attrj , DI model fDI

outputs a prediction v̂alj , i.e.

fDI(e, j) = v̂alj .
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• Entity matching (EM): given two entries e, e′, EM model fEM decides whether they denote the
same real-world entity, i.e. fEM (e, e′) ∈ {True,False}.

• Error detection (ED): given entry e and a suspicious valj , ED model fED detects if there is an error
in valj , i.e. fED(e, j) ∈ {True,False}.

We define a series of operations to cast data-wrangling tasks into NLP tasks. First, for the purpose of
making an entry into a string, we define the serialize operation Narayan et al. [2022], Li et al. [2020a]
as

serialize(e) := attr1 : val1, . . . , attrm : valm,

which is just a concatenation of attribute and value as a string. Next, task instruction strings Tl are
defined for each task l ∈ {DI,EM,ED} as follows

• TDI(e, j) := attr1 : val1, . . . , attrj :?

• TEM (e, e′) := Product A is serialize(e). Product B is serialize(e′). Are Product A and Product B the same?
• TED(e, j) := Is there an error in valj?

Accordingly, let ẽ, ẽ′ be examples, then demonstration strings are defined as

• DemoDI(ẽ, j) := TDI(ẽ, j), val
∗
j , where val∗j is a value of attrj .

• DemoEM (ẽ, ẽ′) := TEM (ẽ, ẽ′), y∗.
• DemoED(ẽ, j) := TED(ẽ, j)valj?, y

∗.

Here val∗j and y∗ ∈ {True,False} are ground truth.

Let LM(·) be the language model output function given by an FM. Finally, an FM’s data-wrangling
task functions are given by

• Data imputation: fr
DI(e) := LM

(
DemoDI(ẽ1, j), . . . ,DemoDI(ẽr, j), TDI(e, j)

)
.

• Entity matching: fr
EM (e, e′) := LM

(
DemoEM (ẽ1, ẽ

′
1), · · · ,DemoEM (ẽr, ẽ

′
r), TEM (e, e′)

)
.

• Error detection: fr
ED(e, j) := LM

(
DemoED(ẽ1, j), . . . ,DemoED(ẽr, j), TED(e, j)

)
.

Here r is the number of demonstrations.

Based on the formalism above, we propose our method in the following subsection.

3.2 Pool-Search-Demonstrate

In comparison to Narayan et al. [2022], we construct an example pool for demonstration, which will
guide FMs to perform well on given tasks. The main consideration for the example pool is diversity.
For the sake of simplicity, we first explain how to construct an example pool for data imputation (DI)
and error detection (ED) tasks.

We start from k centroids of the dataset. Given n entries E = {e1, . . . , en}, denote embedded entries
as xi = Embedder(serialize(ei)) for i ∈ [n], and embedded dataset as X = {x1, ..., xn}. We get
centroids by k-means, i.e.

(centroidX, centroidE) = kMeans(X , E , k),
where centroidX is the centroids in the embedding space and centroidE is the corresponding entries.
The example pool is constructed as

Pool(E) :=
{
(e, ye)

∣∣ e ∈ centroidE, ye is a label for e
}
,

where the task-dependent labels {ye} are either provided from a human annotator or given in a
dataset. In practice, if the annotated dataset is small, the example pool can be constructed by the
whole dataset.

Given target entry e, we define the demonstration set Me of the size m such that

Me := kNN
(
x,Pool(E),m

)
, x := Embedder

(
serialize(e)

)
,

that is, we select m tuples from Pool(D) that are close to the target e in the embedding space.
Intuitively speaking, parameter k is related to diversity, and m controls quantity and relevancy.
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Finally, for a given task l ∈ {DI,ED, . . . }, the prompt for e is

Promptl(e) := Demol(Me), Tl(e),

where Demo is a method to generate a prompt based on Me. For example, in the data imputation
task,

DemoDI(Me) = attr11 : val11 · · · attr1j :? y1, . . . ,

attrm1 : valm1 · · · attrmj :? ym.

Here attrij represents the attribute j of i−th entry in Me, and valij represents the corresponding value.

For entity matching (EM) tasks, examples and inputs are pairs of data entries. The above procedure
can be generalized to EM tasks by using x = Embedder(serialize(e, e′)) as the embedding for a
pair (e, e′). By applying kMeans and kNN to those embeddings, one can construct a demonstration
set M(e,e′) for input (e, e′) to an EM task. The prompt is generated by prefixing TEM (e, e′) with a
demonstration prompt generated from M(e,e′).

Expected results Based on our hypotheses, the expected results are as follows.

• Quantity: As the number of demonstration examples m increases, the performance improves.
• Relevancy: kNN-based retrieval from the example pool will be better than random sampling.
• Diversity: As the number of centroids k increases, the performance improves. Also, if m is the

same, selection from centroids will be better than random sampling or fixed examples.

3.3 Class embedding

While the output space of FM can be written as
⋃M

k=1 C(k), where M is the maximum number of
tokens in output, C is the set of tokens and C(k) denotes the k-fold Cartesian product of C, typical
data-wrangling tasks have smaller label space than that. With the closed world assumption Konda
et al. [2016], we restrict the output space of FM to a finite label space to achieve better odds of
correctness. Assuming the finite label space Y is known (for example Y = {Yes,No} for error
detection or entity matching tasks), we construct a labeling map LY :

⋃M
k=1 C(k) → Y using an

embedding map Embedder :
⋃M

k=1 C(k) → Rd where d is the embedding dimension, as follows:
Given an FM output o = LM(Promptl(e)) ∈

⋃M
k=1 C(k), the labeling map LY :

⋃M
k=1 C(k) → Y is

such that
LY (o) ∈ argmin

y∈Y

∥∥Embedder(o)− Embedder(y)
∥∥
2
,

where ∥ · ∥2 is the Euclidean norm in Rd.

We call this proposed labeling strategy as the class embedding labeling or simply “class embedding”.
The embedding map can in general be an another transformer trained to give semantic embeddings of
sentences. Intuitively, if the embedding map captures the underlying semantics correctly, it would
give rise to a superior labeling performance than a hard-coded rule-based labeling map due to it’s
resilence to perturbations. For example: If a task’s correct label is y = “Samsung′′ while FM’s
output is o = “ : Samseong, ,′′, it is likely that hard-coded rules will fail but a semantic embedder
will place o = “ : Samseong, ,′′ closer to y = “Samsung′′ than y = “Apple′′.

Expected results We expect the class embedding strategy can enhance the performance proportion-
ally to the size of Y since FMs can easily learn small label spaces while its output can be noisier when
Y is large. Practically, it will give much improvement on data imputation tasks, where labels can have
various values based on its task, while it will give a marginal improvement in error detection or entity
matching tasks since there are only 2 possible labels and they can be inferred with demonstrations.

4 Experiment results

4.1 Experiment setup

Task & dataset. We benchmarked our method over the following data-wrangling tasks: data
imputation, error detection, and entity matching. For data imputation, we use Buy and Restaurants
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Data imputation (Acc.) Entity matching (F1) Error detection (F1)

Model Demo. method Buy Restaurant DBLP-ACM Walmart Hospital Adult

Prev.ML Best X 96.5 77.2 99.0 86.8 94.4 99.1

FLAN-T5-3B
random 98.5 65.1 81.3 78.2 10.9 58.5
manual 98.5 88.4 78.0 75.9 15.5 0

PSD 100.0 77.9 89.3 72.7 67.4 34.6

Vicuna-7B
random 98.5 80.2 86.5 68.7 4.6 58.0
manual 100.0 87.2 73.1 59.0 30.7 38.0

PSD 100.0 81.4 97.5 82.5 89.4 87.3

Table 1: Best performance varying the number of demonstrations, clusters, and class embedding.
Prev. ML Best model represented traditional ML models for data-wrangling tasks, which appeared
in Narayan et al. [2022]. According to them, IMP [Mei et al., 2021] in data imputation, Ditto [Li
et al., 2020b] in entity matching, HoloDetect[Heidari et al., 2019] in error detection, worked best
respectively among traditional ML approaches. The best scores in each model are bold.

[Mei et al., 2021]. DBLP-ACM and Walmart datasets are used for entity matching [Konda et al.,
2016]. Finally, Hospital and Adult datasets are used in the error detection task. For figures-of-merits,
the accuracy is used in data imputation, and the F1 score is used in entity matching and error detection.

Model. For foundational models, we used FLAN-T5 3B [Chung et al., 2022] and Vicuna 7B
[Chiang et al., 2023]. FLAN-T5 is a Google’s open-source language model, which is an encoder-
decoder model based on the transformer Vaswani et al. [2017]. It is the same architecture with Raffel
et al. [2020], but the main difference is that it employs the instruction-based fine-tuning, which is
a fine-tuning based on various downstream tasks after pre-training. Note that the instruction-based
fine-tuning is the main technique behind GPT3 and GPT3.5 Brown et al. [2020]. Vicuna is an
open-source FM trained by fine-tuning LLaMA Touvron et al. [2023] on user-shared conversations
collected from ShareGPT. Our main baseline is the “manual” demonstration which was crafted in
Narayan et al. [2022]. Detailed experiment setups are given in Appendix A.1.

4.2 Main result

We report the best performance varying the number of demonstrations, clusters, and class embeddings
given each model and demonstration methods in Table 1. Here, as a performance reference, we
provide existing ML methods for data-wrangling tasks Narayan et al. [2022]. The best-performing
parameters can be found in Appendix A.2 and the demonstration examples can be found in Appendix
A.4.

We summarize general insights from the best-result settings. First of all, we observe that our
method often yields performance comparable to or better than the best of previous ML or FM-based
algorithms, even with much smaller models than GPT3-175B used by Narayan et al. [2022]. At
the same time, our method’s performance scales well with respect to the model size, especially,
it generally performs better with Vicuna-7B than FLAN-T5-3B. Secondly, as expected, the class
embedding method boosts performances in most cases. Thirdly, while typically more demos yield
better results, they occasionally worsen the performance. However, we observe that having at least
one demo was important. Lastly, contrary to our expectation, PSD worked better with a full demo
pool of training data than the pool of centers in k-means clustering in most cases. Second - fourth
points will be discussed in the following ablation study.

4.3 Ablation study

4.3.1 Class embedding

While class embedding turned out to be effective in various settings by replacing the post-processing
of FM outputs, the effectiveness of this method varies depending on the domain and dataset. Figure 4
provides the average gain obtained by class embedding in experiment settings in our configuration
grid. Interestingly, we can observe that the average gain increases proportionally to the cardinality
of the label space. Based on this, we can suggest future work studying the relationship between the
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Figure 3: With a full demonstration pool, we report performance results by varying models, sampling
methods (random and PSD), and the number of demonstrations. We can observe ablation study
results about model, quantity, and relevancy.

cardinality of the label space and the effectiveness of class embedding in more general settings, i.e.
text classification, text generation, etc.

4.3.2 Model size & Quantity
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Figure 4: Average gain by class embedding in
scores, depending on the dataset, |Y| denotes the
cardinality of label space in each dataset.

Though we only used two classes of models
— FLAN-T5-3B and Vicuna-7B, we were able
to observe a tendency that the larger model
(Vicuna-7B) gets better with more demonstra-
tions in Figure 3. The performance of FLAN-T5-
3B tends to be relatively flat related to the num-
ber of demonstrations, while the performance
scores of Vicuna-7B improved as the number of
demonstrations increased given proper demon-
strations (PSD and manual). This observation
is concurrent with the existing works related to
in-context learning Garg et al. [2022], Wies et al.
[2023], Wei et al. [2023], where larger models
actually can learn better from the in-context ex-
amples, while smaller models mainly use their
prior learned from pre-training rather than in-
context examples.

4.3.3 Relevancy

By comparing the random demo and PSD in Figure 3, we observe how relevancy affects performance.
In most cases, PSD gives better results from the beginning (Num. demo=1) or PSD’s performance
gradually increases to crossover that of the random demo’s. This tendency is more clearly visible for
larger Vicuna-7B model, which implies examples’ relevancy is a key performance factor in larger
language models.

4.3.4 Diversity

We hypothesized that k-means clustering in the demonstration example pool can give a diversity of
demonstrations, which eventually improves the final performance scores. We verify the idea in Figure
5, where model is fixed as Vicuna-7B and the demonstration method is fixed as PSD, and the number
of examples and the number of clusters are varied. As we expected, the performance scores improve
as the number of clusters increases in most cases. Especially, in most cases, k-means clustering is
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Figure 5: With the fixed model (Vicuna-7B) and demonstration method (PSD), we show performance
results by varying number of demonstrations and number of clusters. We can observe ablation study
results about diversity.

unnecessary if we only consider model’s performance — using all of the training dataset examples
yields the best results in most cases. Still, using 50 centroids can give comparable results to a full
demonstration pool. Thus, in the case that keeping all of examples and trying retrieval can be costly,
practitioners may consider clustering to reduce the cost.

5 Conclusion

In this project, we studied a demonstration strategy to improve FMs’ performances in data-wrangling
tasks. Specifically, our embedding-based example selection and post-processing could improve FM
performance up to 84% over random examples and 49% over manually selected examples in the
demonstration. Our contributions can be summarized as follows.

• We re-confirmed the idea that FMs can be used for data-wrangling tasks, consistently with Narayan
et al. [2022], even with smaller models.

• We proposed an embedding-based example selection method, significantly improving FMs’ perfor-
mances across various datasets.

• We proposed a post-processing method based on embedding as well, which especially gives a
significant advantage for the tasks where the cardinality of label space is finite and relatively large.

• We re-confirmed previous observations regarding demonstration, especially in data-wrangling
tasks, by ablation test. As previous studies imply, the demonstration is more important for larger
modelsWei et al. [2023], and the relevancy of examples improves the effectiveness of prompts Liu
et al. [2021a].
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Tasks Metric Dataset Ntrain Ntest

Data imputation Accuracy Restuarant 469 65
Buy 622 86

Entity matching F1 score Walmart-Amazon 6144 2049
DBLP-ACM 7414 2473

Error detection F1 score Hospital 1710 17101
Adult 11000 11000

Table 2: Summary of real datasets

A Experiment details

A.1 Detailed experiment setup

Datasets Details of datasets are described in Table 2. We evaluate models on test datasets and
demonstration pools are constructed from the training set.

Prompts Given data entry e (attribute-data pairs), we used the following instruction sets for each
task.

• Data imputation: TDI(e, j) = attr1 : val1...attrj :?
E.g. name: girafe. addr: 208 e. 58th st. between 2nd and 3rd aves.. phone: 212/752-3054. type:
italian. What is the city? (Restaurant dataset)

• Entity matching: TEM (e, e′) =A is serialize(e). B is serialize(e′). Are A and B the same?
E.g. Product A is title: heavy duty 3-hole punch. modelno: 997. Product B is title: heavy-duty
punch. modelno: nan. Are A and B the Same? (Walmart dataset)

• Error detection: TED(e, j) =Is there an error in attrj : valj?
E.g. Is there a x spelling error in CountyName: etowxh? (Hospital dataset)

Each demonstration has the answer after the above instruction formats.

Parameter search space For the purpose of parameter tuning and ablation test, we considered the
following parameter space in summary.

• Model: [‘flan-t5-3b’, ‘vicuna-7b’]
• Demonstration method: [‘random’, ‘manual’, ‘PSD’] // PSD: Pool-Search-Demonstration
• Num. demos: [0, 1, 5, 10] // manual only has 10 demos
• Num. clusters (PSD only): [10, 25, 50, full (use all train data as the search space)]
• Class embedding: [True, False]

A.2 Details of Table 1

Table 3 show parameters used in Table 1 results.

A.3 Comparison with GPT3-175B

Table 4 shows the comparison of our methods with GPT3-175B. PSD yields significant improvements
for small models so that they have performance comparable to GPT3-175B.

A.4 Demonstration comparison

Here we provide examples of demonstrations.

1. Buy
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Data imputation (Acc. ↑)

Demo. method Buy Restaurant

Num. Demos Num. Clusters Num. Demos Num. Clusters

flan-t5-3b random 10 - 1 -
PSD 5 full 10 full

vicuna-7b random 10 - 10 -
PSD 10 full 10 full

Entity matching (F1 ↑)

Demo. method DBLP-ACM Walmart

Num. Demos Num. Clusters Num. Demos Num. Clusters

flan-t5-3b random 1 - 5 -
PSD 1 full 10 10

vicuna-7b random 10 - 5 -
PSD 10 full 10 25

Error detection (F1 ↑)

Demo. method Hospital Adult

Num. Demos Num. Clusters Num. Demos Num. Clusters

flan-t5-3b random 5 - 1 -
PSD 5 full 10 full

vicuna-7b random 5 - 5 -
PSD 5 25 1 full

Table 3: Best parameter settings used in Table 1

Data imputation (Acc. ↑) Entity matching (F1 ↑) Error detection (F1 ↑)

Model Demo. method Buy Restaurant DBLP-ACM Walmart Hospital Adult

Prev.ML Best X 96.5 77.2 99.0 86.8 94.4 99.1

GPT3-175B X 84.6 70.9 93.5 60.6 6.9 0
manual 98.5 88.4 96.6 87.0 97.8 99.1

flan-t5-3b
random 98.5 65.1 81.3 78.2 10.9 58.5
manual 98.5 88.4 78.0 75.9 15.5 0

PSD 100.0 77.9 89.3 72.7 67.4 34.6

vicuna-7b
random 98.5 80.2 86.5 68.7 4.6 58.0
manual 100.0 87.2 73.1 59.0 30.7 38.0

PSD 100.0 81.4 97.5 82.5 89.4 87.3

Table 4: Comparison with GPT3-175B

12



• Input: "name: Onkyo TX-NR906 A/V Receiver - TXNR906B. description: THX Ultra
2, Dolby Digital Plus, Dolby TrueHD, DTS-HD, Neural SurroundFM, AM. Who is the
manufacturer?" (Answer: Onkyo)

• Random demo: "name: Sony alpha DSLR-A350K Digital SLR Camera with 18-70mm
Zoom Lens - Black - DSLRA350K. description: 14.2 Megapixel - 3.9x Optical Zoom -
2.7’ Active Matrix TFT Color LCD. Who is the manufacturer? Sony"

• PSD (Num. clusters: 50): "name: Onkyo TX-SR876 A/V Receiver - TXSR876B.
description: Dolby Digital, Dolby TrueHD, DTS-HD, Dolby Digital EX, Dolby Digital
Plus, Dolby Pro Logic II, Dolby TrueHD, DTS, DTS-ES, DTS Neo:6, THX Surround
EX, THX Select 2FM, AM. Who is the manufacturer? Onkyo"

2. Restaurant
• Input: "name: chez michel. addr: 804 northpoint. phone: 415/775-7036. type: french.

What is the city?" (Answer: san francisco)
• Random demo: "name: anthonys. addr: 3109 piedmont rd. just south of peachtree rd..

phone: 404/262-7379. type: american. What is the city? atlanta"
• PSD (Num. clusters: 50): "name: fleur de lys. addr: 777 sutter st.. phone: 415-673-

7779. type: french (new). What is the city? san francisco"

3. DBLP-ACM
• Input: "Product A is title: secure transaction processing in firm real-time database

systems. authors: binto george , jayant r. haritsa. venue: sigmod conference. year:
1997. Product B is title: secure buffering in firm real-time database systems. authors:
binto george , jayant r. haritsa. venue: the vldb journal – the international journal on
very large data bases. year: 2000. Are Product A and Product B the same?" (Answer:
No)

• Random demo: "Product A is title: picodbms : scaling down database techniques for
the smartcard. authors: patrick valduriez , philippe pucheral , christophe bobineau , luc
bouganim. venue: vldb j.. year: 2001. Product B is title: database techniques for the
world-wide web : a survey. authors: daniela florescu , alon levy , alberto mendelzon.
venue: acm sigmod record. year: 1998. Are Product A and Product B the same? No"

• PSD (Num. clusters: 50): "Product A is title: selectivity estimation in spatial databases.
authors: viswanath poosala , sridhar ramaswamy , swarup acharya. venue: sigmod
conference. year: 1999. Product B is title: effective timestamping in databases. authors:
kristian torp , christian s. jensen , richard thomas snodgrass. venue: the vldb journal
– the international journal on very large data bases. year: 2000. Are Product A and
Product B the same? No"

4. Walmart-Amazon
• Input: "Product A is title: sony 16gb class 4 sd memory card. modelno: sf16n4/tqp.

Product B is title: pny 4gb class 4 navy sd card. modelno: p-sdhc4g4-ef / navy. Are A
and B the Same?" (Answer: No)

• Random demo: "Product A is title: xantech cpl10 rf ir coupler. modelno: cpl10.
Product B is title: xantech cpl10 rf ir coupler. modelno: nan. Are A and B the Same?
Yes"

• PSD (Num. clusters: 50): "Product A is title: pny 4gb sdhc memory card class 4.
modelno: p-sdhc4g4-ef. Product B is title: pny optima 2gb sd class 4 flash memory
card p-sd2gb-ef. modelno: p-sd2gb-ef. Are A and B the Same? No"

5. Adult
• Input: "age: 18-21. workclass: Private. education: Some-college. maritalstatus:

Never-married. occupation: Craft-repair. relationship: Own-child. race: White. sex:
Male. hoursperweek: 40. country: United-States. income: LesshTan50K. Is there an
error in age: 18-21?" (Answer: No)

• Random demo: "age: 31-50. workclass: Private. education: Some-college. maritalsta-
tus: Married-civ-spouse. occupation: Prof-specialty. relationship: Wife. race: White.
sex: Female. hoursperweek: 36. country: United-States. income: MoreThan50K. Is
there an error in relationship: Wife? No"
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• PSD (Num. clusters: 50): "age: 18-21. workclass: Private. education: Some-college.
maritalstatus: Never-married. occupation: Other-service. relationship: Own-child.
race: White. sex: Male. hoursperweek: 18-21. country: United-States. income:
LesThan50K"

6. Hospital
• Input: "Is there a x spelling error in EmergencyService: yes?" (Answer: No)
• Random demo: "Is there a x spelling error in Address1: 101 hospital circle? No"
• PSD (Num. clusters: 50): "Is there a x spelling error in EmergencyService: yes? No"
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