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Abstract

Empirical risk minimization (ERM) is the workhorse of machine learning, whether
for classification and regression or for off-policy policy learning, but its model-
agnostic guarantees can fail when we use adaptively collected data, such as the
result of running a contextual bandit algorithm. We study a generic importance
sampling weighted ERM algorithm for using adaptively collected data to minimize
the average of a loss function over a hypothesis class and provide first-of-their-kind
generalization guarantees and fast convergence rates. Our results are based on a
new maximal inequality that carefully leverages the importance sampling structure
to obtain rates with the good dependence on the exploration rate in the data. For
regression, we provide fast rates that leverage the strong convexity of squared-error
loss. For policy learning, we provide regret guarantees that close an open gap
in the existing literature whenever exploration decays to zero, as is the case for
bandit-collected data. An empirical investigation validates our theory.

1 Introduction

Adaptive experiments, wherein intervention policies are continually updated as in the case of contex-
tual bandit algorithms, offer benefits in learning efficiency and better outcomes for participants in the
experiment. They also make the collected data dependent and complicate standard machine learning
approaches for model-agnostic risk minimization, such as empirical risk minimization (ERM). Given
a loss function and a hypothesis class, ERM seeks the hypothesis that minimizes the sample average
loss. This can be used for regression, classification, and even off-policy policy optimization. An
extensive literature has shown that, for independent data, ERM enjoys model-agnostic, best-in-class
risk guarantees and even fast rates under certain convexity and/or margin assumptions [e.g. 5, 6, 35,
among others]. However, these guarantees fail under contextual-bandit-collected data, both because
of covariate shift due to using a context-dependent logging policy and because of the policy’s data-
adaptive evolution as more data are collected. A straightforward and popular approach to deal with
the covariate shift is importance sampling (IS) weighting, whereby we weight samples by the inverse
of the policy’s probability of choosing the observed action. Unfortunately, applying standard maximal
inequalities for sequentially dependent data to study guarantees of this leads to poor dependence on
these weights, and therefore incorrect rates whenever exploration is decaying and the weights diverge
to infinity, as happens when collecting data using a contextual bandit algorithm.

In this paper, we provide a thorough theoretical analysis of IS weighted ERM (ISWERM; pronounced
“ice worm”) that yields the correct rates on the convergence of excess risk under decaying exploration.
To achieve this, we present a novel localized maximal inequality for IS weighted sequential empirical
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processes (Section 2) that carefully leverages their IS structure to avoid a bad dependence on the
size of IS weights, as compared to applying standard results to an IS weighted process (Remark 2).
We then apply this result to obtain generic slow rates for ISWERM for both Donsker-like and non-
Donsker-like entropy conditions, as well as fast rates when a variance bound applies (Section 3).
We instantiate these results for regression (Section 4) and for policy learning (Section 5), where we
can express entropy conditions in terms of the hypothesis class and obtain variance bounds from
convexity and margin assumptions. In particular, our results for policy learning close an open gap
between existing lower and upper bounds in the literature (Remark 3). We end with an empirical
investigation of ISWERM that sheds light on our theory (Section 6).

1.1 Setting

We consider data consisting of T observations, ŌT = (O1, . . . , OT ), where each observation consists
of a state, action, and outcome, Ot = (Xt, At, Yt) ∈ O = X × A × Y . The spaces X ,A,Y are
general measurable spaces, each endowed with a base measure λX , λA, λY ; in particular, actions can
be finite or continuous (e.g., λA can be counting or Lebesgue). We assume the data were generated
sequentially in a stochastic-contextual-bandit fashion. Specifically, we assume that the distribution of
ŌT has a density p(T ) with respect to (wrt) λTO = (λX × λA × λY)T , which can be decomposed as

p(T )(ōT ) =

T∏
t=1

pX(xt)g̃t(at | xt, ōt−1)pY (yt | xt, at),

where we write ōt = (x1, a1, . . . , yt), using lower case for dummy values and upper case for random
variables. We define gt(a | x) = g̃t(a | x, Ōt−1) so that gt represents the random Ōt−1-measurable
context-dependent policy that the agent has devised at the beginning of round t, which they then
proceed to employ when observing Xt. Since we run the adaptive experiment, we assume that gt is
known, as it is actually computed at stage t of the experiment. We do not assume that g̃t is known.
Remark 1 (Counterfactual interpretation). We can also interpret this data collection from a coun-
terfactual perspective. At the beginning of each round, (Xt, {Yt(a) : a ∈ A}) is drawn from
some stationary (i.e., time-independent) distribution P ∗, Xt is revealed, and after acting with a
non-anticipatory action At, meaning it only depends on past data, we observe Yt = Yt(At). This
corresponds to the above with pX being the marginal of Xt under P ∗ and pY (· | x, a) the conditional
distribution of Yt(a) given Xt = x.

1.2 Importance Sampling Weighted Empirical Risk Minimization

Consider a class of hypotheses F , a loss function ` : F×O → R, and some fixed reference g∗(a | x),
any function, for example, a conditional density. As we will see in Examples 1 to 3 below we will
often simply use g∗(a | x) = 1. Define the population reference risk as

R∗(f) = EpX×g∗×pY [`(f,O)] =

∫
`(f, (x, a, y))pY (y | x, a)g∗(a | x)pX(x)dλO(x, a, y).

We are interested in finding f with low risk R∗(f). We consider doing so using ISWERM, which is
ERM where we weight each term by the density ratio between the reference and the policy at time t:

f̂T ∈ argmin
f∈F

{
R̂T (f) =

1

T

T∑
t=1

g∗(At | Xt)

gt(At | Xt)
`(f,Ot)

}
.

Example 1 (Regression). Consider Y = R, F ⊆ [X ×A → R], and `(f, o) = (y− f(x, a))2. Then
f with small R∗(f) is good at predicting outcomes from context and action. In particular, for any g∗,
we have that µ(x, a) =

∫
ypY (y | x, a)dλY (y) solves µ ∈ argminf :X×A→Y R

∗(f). And, we can
write R∗(f)−R∗(µ) = EpX×g∗ [(f − µ)2(X,A)].

Consider the counterfactual interpretation in Remark 1. Then R∗(f) =
∫
EP∗ [(Y (a) −

f(X, a))2]g∗(x | a)dλA(a). For example, if |A| < ∞, λA is the counting measure, and
g∗(x | a) = 1, then R∗(f) =

∑
a∈A EP∗ [(Y (a) − f(X, a))2] is the total counterfactual pre-

diction error. Alternatively, if g∗(a | x) = 1(a = a∗) and given some H ⊆ [X → Y] we let
F = {fh(x, a) = h(x) : h ∈ H}, then we have R∗(fh) = EP∗ [(Y (a∗) − h(X))2], that is, the
regression risk for predicting the counterfactual outcome Y (a∗) from X .
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Example 2 (Classification). In the same setting as Example 1, suppose Y = {±1}. Then µ(x, a) =
2pY (1 | x, a)−1. And, if we restrictF ⊆ [X ×A → {±1}], letting `(f, o) = 1

2−
1
2yf(x, a) leads to

R∗(f) being misclassification rate, an unrestricted minimizer of which is sign(µ(x, a)). Focusing on
misclassification of sign(f(x, a)) for F ⊆ [X ×A → R], we can also use a classification-calibrated
loss [6], such as logistic `(f, o) = log(1 + exp(−yf(x, a))), hinge `(f, x) = (1− yf(x, a))+, etc..

Example 3 (Policy learning). Consider Y = R, F ⊆ [X × A → R], g∗(a | x) = 1 and `(f, o) =
yf(x, a). Then R∗(f) =

∫
ypY (y | x, a)dλY (y)f(a | x)dλA(a)pX(x)dλX(x) = EpX×f×pY [y] is

the average outcome under a policy f . If we interpret outcomes as costs (or, negative rewards), then
seeking to minimize R∗(f) means to seek a policy with least risk (or, highest value).

Consider in particular the counterfactual interpretation in Remark 1 with |A| < ∞. Consider
deterministic policies: givenH ⊆ [X → A], let F = {fh(x, a) = 1(h(x) = a) : h ∈ H}. Then we
have R∗(fh) = EP∗ [Y (h(X))], that is, the average counterfactual outcome.

1.3 Related Literature

Contextual bandits. A rich literature studies how to design adaptive experiments to optimize
regret, simple regret, or the chance of identifying best interventions [see 12, 36, and biblioraphies
therein]. Such adaptive experiments can significantly improve upon randomized trials (aka A/B tests),
which is why they are seeing increased use in practice in a variety of settings, from e-commerce
to policymaking [3, 4, 29, 32, 37, 43, 44, 53]. However, while randomized trials produce iid data,
adaptive experiments do not, complicating post-experiment analysis, which motivates our current
study. Many stochastic contextual bandit algorithms (stochastic meaning the context and response
models are stationary, as in our setting) need to tackle learning from adaptively collected data to
fit regression estimates of mean reward functions, but for the most part this is based on models
such as linear [7, 14, 23, 37] or Hölder class [26, 47, 47], rather than on doing model-agnostic risk
minimization and nonparametric learning with general function classes as we do here. Foster and
Rakhlin [19] use generic regression models but require online oracles with guarantees for adversarial
sequences of data. Simchi-Levi and Xu [50] use offline least-squares ERM but bypass the issue
of adaptivity by using epochs of geometrically growing size in each of which data are collected
iid. Other stochastic contextual bandit algorithms are based on direct policy learning using ERM
[1, 8, 16, 20]; by carefully designing exploration strategies, they obtain good regret rates that are even
better than the minimax-optimal guarantees given only the exploration rates, as we obtain (Remark 3).

Inference with adaptive data. A stream of recent literature tackles how to construct confidence
intervals after an adaptive experiment. While standard estimators like inverse-propensity weighting
(IPW) and doubly robust estimation remain unbiased under adaptive data collection, they may no
longer be asymptotically normal making inference difficult. To fix this, Hadad et al. [24] use and
generalize a stabilization trick originally developed by Luedtke and van der Laan [38] for a non-
adaptive setting with different inferential challenges. Their stabilized estimator, however, only works
for data collected by non-contextual bandits. Bibaut et al. [9] extend this to a contextual-bandit
setting. Our focus is different from these: risk minimization and guarantees rather than inference.

Policy learning with adaptive data. Zhan et al. [58] study policy learning from contextual-bandit
data by optimizing a doubly robust policy value estimator stabilized by a deterministic lower bound
on IS weights. They provide regret guarantees for this algorithm based on invoking the results of
Rakhlin et al. [45]. However, these guarantees do not match the algorithm-agnostic lower bound they
provide whenever the lower bounds on IS weights decay to zero, as they do when data are generated
by a bandit algorithm. For example, for an epsilon-greedy bandit algorithm with an exploration
rate of εt = t−β , their lower bound on expected regret is Ω(T−(1−β)/2) while their upper bound is
O(T−(1/2−β)). We close this gap by providing an upper bound of O(T−(1−β)/2) for our simpler IS
weighted algorithm. See Remark 3. Our results for policy learning also extend to fast rates under
margin conditions, non-Donsker-like policy classes, and learning via convex surrogate losses.

IS weighted ERM. The use of IS weighting to deal with covariate shift, including when induced by
a covariate-dependent policy, is standard. For estimation of causal effects from observational data
this usually takes the form of inverse propensity weighting [28]. The same is often used for ERM for
regression [15, 22, 48] and for policy learning [34, 52, 59]. When regressions are plugged into causal
effect estimators, weighted regression with weights that depend on IS weights minimize the resulting
estimation variance over a hypothesis class [13, 18, 30, 31, 49]. All of these approaches however
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have been studied in the independent-data setting where historical logging policies do not depend on
the same observed data available for training, guarantees under which is precisely our focus herein.

Sequential maximal inequalities. There are essentially two strands in the literature on maximal
inequalities for sequential empirical processes. One expresses bounds in terms of sequential brack-
eting numbers as introduced by van de Geer [55], generalizing of standard bracketing numbers.
Another uses sequential covering numbers, introduced by Rakhlin et al. [46]. These are in general
not comparable. Foster and Krishnamurthy [20], Zhan et al. [58] use sequential L∞ and Lp covering
numbers, respectively, to obtain maximal inequalities. van de Geer [55, Chapter 8] gives guarantees
for ERM over nonparametric classes of controlled sequential bracketing entropy. However, applying
her generic result as-is to IS weighted processes provides bad dependence on the exploration rate in
the case of larger-than-Donsker hypothesis classes (see Remark 2). We also use sequential bracketing
numbers, but we develop a new maximal inequality specially for IS weighted sequential empirical
processes, where we use the special structure when truncating the chaining to avoid a bad dependence
on the size of the IS weights. Equipped with our new maximal inequality, we obtain first-of-their kind
guarantees for ISWERM, including fast rates that have not been before derived in adaptive settings.

2 A Maximal Inequality for IS Weighted Sequential Empirical Processes

A key building block for our results is a novel maximal inequality for IS weighted sequential
empirical processes. For any sequence of objects (xt)t≥1, we introduce the shorthand x1:T to denote
the sequence (xt)

T
t=1. We say that a sequence of random variables ζ1:T is Ō1:T -predictable if, for

every t ∈ [T ] = {1, . . . , T}, ζt is Ōt−1-measurable, i.e., is some function of Ōt−1.

IS weighted sequential empirical processes. Let Pg denote the distribution onO = X×A×Y with
density w.r.t. λX×λA×λY given by pX×g×pY and let us use the notation Pgh(o) :=

∫
h(o)dPg(o).

Let us also define the norm ‖h‖p,g = (Pg(h
p))1/p. Consider a sequence of F-indexed random

processes of the form ΞT :=
{

(ξt(f))Tt=1 : f ∈ F
}

where, for every f ∈ F , ξ1:T (f) is an Ō1:T -
predictable sequence of O → R functions. The IS-weighted sequential empirical process induced by
ΞT is the F-indexed random process

MT (f) :=
1

T

T∑
t=1

g∗t (At | Xt)

gt(At | Xt)

(
ξt(f)(Ot)− E

[
ξt(f)(Ot) | Ōt−1

])
=

1

T

T∑
t=1

(δOt − Pgt)
(
g∗

gt
ξt(f)

)
.

Sequential bracketing entropy. For any Ō1:T -predictable sequence sequence ζ1:T of functions
O → R, we introduce the pseudonorm ρT,g∗(ζ1:T ) := (T−1

∑T
t=1 ‖ζt‖22,g∗)1/2.

We say that a collection of 2N -many Ō1:T -predictable sequences ofO → R functions {(λ(k)1:T , υ
(k)
1:T ) :

k ∈ [N ]} is an (ε, ρT,g∗)-sequential bracketing of ΞT , if (a) for every f ∈ F , there exists k ∈ [N ]

such that λ(k)t ≤ ξt(f) ≤ υ
(k)
t ∀t ∈ [T ] and (b) for every k ∈ [N ], ρT,g∗(υ

(k)
1:T − λ

(k)
1:T ) ≤ ε. We

denote by N[ ](ε,ΞT , ρT,g∗) the minimal cardinality of an (ε, ρT,g∗)-sequential bracketing of ΞT .

The special case of classes of classes of deterministic functions. Consider the special case
ξt(f) := ξ(f), where Ξ := {ξ(f) : f ∈ F} is a class of functions where for every f ∈ F , ξ(f) is
a deterministic O → R function. Observe that for a fixed function ζ : O → R, letting ζt := ζ, we
have that ρT,g∗(ζ1:T ) = ‖ζ‖2,g∗ . Therefore, N[ ](ε,ΞT , ρT,g∗), the (ε, ρT,g∗)-sequential bracketing
number of ΞT , reduces to N[ ](ε,Ξ, ‖ · ‖2,g∗), the usual ε-bracketing number Ξ in the ‖ · ‖2,g∗ norm.

The maximal inequality. Our maximal inequality will crucially depend on the decay rate of the the
IS weights, that is, the exploration rate of the adaptive data collection.

Assumption 1. There exists a deterministic sequence of positive numbers (γt) such that, for any
t ≥ 1, ‖g∗/gt‖∞ ≤ γt, almost surely. Define γavg

T := T−1
∑T
t=1 γt and γmax

T := maxt∈[T ] γt.

For example, if the data were collected under an εt-greedy contextual bandit algorithm then we
have γt = ε−1t . If we have εt = t−β for β ∈ (0, 1) then γmax

T = O(γavg
T ) = O(T β). Note that
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having γt <∞ in Assumption 1 does restrict us to contextual bandit algorithms that are conditionally
random, such as ε-greedy and Thompson sampling, and rules out algorithms with deterministic
policies given the history, such as UCB.

Theorem 1. Consider ΞT := {ξ1:t(f) : f ∈ F} as defined above. Suppose that Assumption 1
holds, and that there exists B > 0 such that maxt∈[T ] supf∈F ‖ξt(f)‖∞ ≤ B. In the special case
where ξt(f) = ξ(f), ξ1:T ∈ ΞT , are deterministic functions, we let γ̃T := γavg

T . Otherwise, in the
general case, we let γ̃T := γmax

T . Let r > 0. Let FT (r) := {f ∈ F : ρT,g∗(ξ1:T (f)) ≤ r}. For any
r− ∈ [0, r/2], and any x > 0, it holds with probability at least 1− 2e−x that

sup
f∈FT (r)

MT (f) . r− +

√
γ̃T
T

∫ r

r−

√
log(1 +N[ ](ε,ΞT , ρT,g∗))dε

+
γmax
T B

T
log(1 +N[ ](r,ΞT , ρT,g∗)) +

√
γ̃Tx

T
+
Bγmax

T x

T
.

Remark 2 (Leveraging IS structure). Theorem 1 is based on a finite-depth adaptive chaining device,
in which we leverage the IS-weighted structure to carefully bound the size of the tip of the chains. In
contrast, applying Theorem 8.13 of van de Geer [55] to the IS weighted sequential empirical process
would lead to suboptimal dependence on γt. The crucial point is to work with IS-weighted chains of
the form (g∗/gt)ξ(f) = (g∗/gt){(ξ(f)−uJ,f ) +

∑J
j=0(uj,f −uj−1,f ) +u0,f}, where the uj,f are

upper brackets of the unweighted class Ξ, at scales ε1 > . . . > εJ (we simplify here a bit the chaining
decomposition for ease of presentation compared with the proof). In adaptive chaining, the tip is
bounded by the L1 norm of the corresponding bracket. In our case, denoting lJ,f the lower bracket
corresponding to uJ,f , the tip is bounded by Pgt(g

∗/gt)|uJ,f − lJ,f | = Pg∗ |uJ,f − lJ,f |, in which
we integrate out the IS ratio, thereby paying no price for it. Applying directly Theorem 8.13 of van de
Geer [55], we would be working with a bracketing of the IS weighted class {(g∗/gt)ξ(f) : f ∈ F}.
When working with generic L2 brackets of the weighted class, the IS-weighting structure is lost, and
we cannot do better than bounding the L1 of the tip by its L2 norm, which depends on γt. Since in
sequential settings, γt generally diverges to∞, good dependence is paramount to obtaining tight,
informative results. Our proof technique otherwise follows the same general outlines as those of
van de Geer [55, Theorem 8.13] and van Handel [57, Theorem A.4] (or, 40, Theorem 6.8 in the iid
setting). Like these, we too leverage an adaptive chaining device, as pioneered by Ossiander [41].

3 Applications to Guarantees for ISWERM

We now return to ISWERM and use Theorem 1 to obtain generic guarantees for ISWERM. We will
start with so-called slow rates that give generic generalization results and then present so-called fast
rates that will apply in certain settings, where a so-called variance bound is available. Let f1 be a
minimizer of the population risk R∗ over F , that is f1 ∈ argminf∈F R

∗(f).

Assumption 2 (Entropy on `(F)). Define `(F) := {`(f, ·) : f ∈ F}. There exist an envelope
function Λ : O → R of `(F), and p > 0 such that, for any ε > 0,

logN[ ](ε‖Λ‖2,g∗ , `(F), ‖ · ‖2,g∗) . ε−p.

The case p < 2 corresponds to the Donsker case, and p ≥ 2 to the (possibly) non-Donsker case.

Assumption 3 (Diameters on `(F)). There exist b0 > 0 and ρ0 > 0 such that

supf∈F ‖`(f, ·)− `(f1, ·)‖∞ ≤ b0‖Λ‖2,g∗ , supf∈F ‖`(f, ·)− `(f1, ·)‖2,g∗ ≤ ρ0‖Λ‖2,g∗ .

Theorem 2 (Slow Rates for ISWERM). Suppose Assumptions 1 to 3 hold. Then for any δ ∈ (0, 1/2),
we have that, with probability at least 1− δ,

R∗(f̂T )− inf
f∈F

R∗(f)

. ‖Λ‖2,g∗ ×


ρ0

√
γavg
T

T

{
ρ
−p/2
0 +

√
log(1/δ)

}
+

b0γ
max
T

T

{
ρ−p0 + log(1/δ)

}
p < 2,(

γavg
T

T

) 1
p

+ ρ0

√
γavg
T

T

√
log(1/δ) +

b0γ
max
T

T

{
ρ−p0 + log(1/δ)

}
p > 2.
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For p = 2 the bound is similar to the second case but with polylog terms; for brevity we omit the
p = 2 case in this paper. Theorem 2 suggests that the excess risk of ISWERM converges at the rate
of (γavg

T /T )
1
p∧

1
2 . For example, if γavg

T = O(T β) and p < 2, we obtain O(T−
1
2 (1−β)). For β = 0 this

matches the familiar slow rate of iid settings. However, in many cases we can obtain faster rates.
Assumption 4 (Variance Bound). For some α ∈ (0, 1], we have

‖`(f, ·)− `(f1, ·)‖2,g∗ . ‖Λ‖2,g∗
(
R∗(f)−R∗(f1)

‖Λ‖2,g∗

)α
2

∀f ∈ F .

As we will see in Lemmas 2 and 3, we can ensure Assumption 4 holds for least-squares regression
and for policy learning with a margin condition.
Assumption 5 (Convexity). F is convex and `(·, O) is almost surely convex.
Theorem 3 (Fast Rates for ISWERM). Suppose Assumptions 1 to 5 hold with p < 2. Then for any
δ ∈ (0, 1/2), we have that, with probability at least 1− δ,

R∗(f̂T )−R∗(f1) . ‖Λ‖2,g∗×

{(
γavg
T

T

) 1
2−α+pα/2

+

(
b0γ

max
T

T

) 1
1+pα/2

+

(
γavg
T log(1/δ)

T

) 1
2−α

+
b0γ

max
T log(1/δ)

T

}

The entropy condition. Assumption 2 assumes an entropy bound on the loss class `(F). For many
loss functions, we can easily satisfy this condition by assuming an entropy condition on F itself.
Assumption 6 (Entropy on F). There exists p > 0 and an envelope function F of F such that

logN[ ](ε‖F‖2,g∗ ,F , ‖ · ‖2,g∗) . ε−p.

Lemma 1 (Lemma 4 in Bibaut and van der Laan [10]). Suppose that {`(·, o) : o ∈ O} is a set of
R→ R unimodal functions that are equi-Lipschitz. Then Assumption 6 implies Assumption 2.

There are many examples of F for which bracketing entropy conditions are known. The class of
β-Hölder smooth functions (meaning having derivatives of orders up to b = sup{i ∈ Z : i < β} and
the b-order derivatives are (β − b)-Hölder continuous) on a compact domain in Rd has p = d/β
[56, Corollary 2.7.2]. The class of convex Lipschitz functions on a compact domain in Rd has
p = d/2 [56, Corollary 2.7.10]. The class of monotone functions on R has p = 1 [56, Theorem
2.7.5]. If F = {f(o; θ) : θ ∈ Θ}, f(o; θ) is Lipschitz in θ, and Θ ⊆ Rd is compact, then any
p > 0 holds [56, Theorem 2.7.11]. The class of càdlàg functions [0, 1]d → R with sectional variation
norm (aka Hardy-Krause variation) no larger than M > 0 has envelope-scaled bracketing entropy
O(ε−1 |log(1/ε)|2(d−1)) [10], so Assumption 6 holds with any p > 1 (or, we can track the log terms).
Since trees with bounded output range and finite depth fall in the class of càdlàg functions with
bounded sectional variation norm, decision tree classes also satisfy Assumption 6 with any p > 1.

4 Least squares regression using ISWERM

We now instantiate ISWERM for least squares regression. Consider Y = [−
√
M,
√
M ], for some

M > 0, F ⊆ [X ×A → Y], and `(f, o) = (y − f(x, a))2. If F is convex, strongly convex losses
such as ` always yield a variance bound with respect to any population risk minimizer over F (see
e.g. lemma 15 in [6]). Let f1 ∈ argminf∈F R

∗(f) be such a population risk minimizer. We present
in the lemma below properties relevant for application of theorems 2 and 3
Lemma 2 (Properties of the square loss.). Consider the setting of the current section. The square
loss ` over F ×O satisfies the following variance bound:

‖`(f, ·)− `(f1, ·)‖2,g∗ ≤ 4
√
M(R∗(f)−R∗(f1))1/2 ∀f ∈ F ,

and the following Lispchitz property:

|`(f, o)− `(f ′, o)| ≤
√
M |f(a, x)− f ′(a, x)| ∀f, f ′ ∈ F , o ∈ O.
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Theorem 4 (Least squares regression). Suppose Assumption 1 holds. Suppose Assumption 6 holds
for the envelope taken to be constant equal to

√
M , the range of the regression functions. Then for

any δ ∈ (0, 1/2), we have that, with probability at least 1− δ,

R∗(f̂T )−R∗(f1) .M ×


(
γmax
T

T

) 1
1+p/2

+
γmax
T log(1/δ)

T if p < 2,(
γavg
T

T

) 1
p

+
γmax
T

T +

√
γavg
T log(1/δ)

T +
γmax
T log(1/δ)

T if p > 2.

5 Policy Learning using ISWERM

We next instantiate ISWERM for policy learning. Consider Y = [−M,M ], F ⊆ [X × A → R]
as in Example 3. Let `(f, o) = yf(x, a) and g∗(a | x) = 1 so that Pg∗`(f, ·) = EpX×f×pY [y] =
EpX [

∑
a∈A f(X, a)µ(X, a)] is exactly the average outcome under a policy f (or, its negative value),

where we define µ(x, a) =
∫
ypY (y | x, a)dλY (y).

We first give specification-agnostic slow rates, which also close an open gap in the literature.
Theorem 5 (ISWERM Policy Learning: slow rates). Suppose Assumption 1 holds and suppose that
Assumption 6 holds withe envelope constant equal to 1 (which is the maximal range of policies). Then
for any δ ∈ (0, 1/2), we have that, with probability at least 1− δ,

R∗(f̂T )− inf
f∈F

R∗(f) .M ×


√

γavg
T

T

√
log(1/δ) +

γmax
T

T log(1/δ) p < 2,(
γavg
T

T

) 1
p

+

√
γavg
T

T

√
log(1/δ) +

γmax
T

T log(1/δ) p > 2.

Remark 3 (Comparison to Zhan et al. [58]). Given a deterministic policy class (fh(x, a) =
1(h(x) = a)), H ⊆ [X → A]) with a Natarajan dimension, Zhan et al. [58] show a lower bound of
Ω((γavg

T T )−1/2) on the expected regret of any policy-learning algorithms for some logging policy
satisfying Assumption 1 (see their Theorem 1), that is, Ω(T−(1−β)/2) when γavg

T = Ω(T β). Zhan
et al. [58] also provide an upper bound of O(γavg

T T−1/2) for their particular algorithm (see their
Corollary 2.1), that is, O(T−1/2+β) when γavg

T = O(T β), assuming that logNH(ε,H) . ε−p for
p < 1, where NH is the Hamming covering number, which would be implied by having a Natarajan
dimension. This is a potentially significant gap in the regret rate in T when exploration is diminishing,
β > 0, as is often the case with bandit-collected data. For example, for β = 1/2, this yields a
vanishing lower bound and a non-vanishing upper bound.

In comparison, our Theorem 5 gives the rateO((γavg
T T )−1/2) on the expected regret of policy learning

with ISWERM in the case of p < 2 (given by integrating the tail inequality in Theorem 5), that is,
O(T−(1−β)/2) when γavg

T = O(T β). This matches the rate of the lower bound of Zhan et al. [58],
seemingly closing the gap. While Natarajan dimension, Hamming covering entropy with p < 1, and
bracketing entropy with p < 2 are generally incomparable conditions (aside from the first implying
the second), they all generally hold for policy classes parametrized by finite-dimensional parameters
and tree policy classes, for which we definitely close gap. It remains an open question how to close
the gap for general policy classes that only satisfy a Hamming covering entropy condition.

The gap arose from the specific technical route Zhan et al. [58] followed (not their algorithm).
For the sake of exposition, we give an explanation of the phenomenon in a non-sequential i.i.d.
setting, under stationary logging policy g1, and under our own notation. The same phenomenon
translates to the sequential setting. Since they use a symmetrization and covering-based approach,
they need to work with uniform covering-type entropies1 of the form supQ logN(ε,H, L2(Q)) for
a certain class H, where the supremum is over all finitely supported distributions. Their approach
amounts to takingH to be the weighted loss class {(g∗/gt)`(π)}. While for Q = Pg1 , it holds that
‖(g∗/g1)(`(π) − `(π′))‖2,Pg1 ≤ γ

1/2
1 ‖`(π) − `(π′)|‖2,Pg∗ . γ

1/2
1 dH(π, π′), for a general Q, the

best bound is ‖(g∗/g1)(`(π)− `(π′))‖2,Q . γ1dH(π, π′), where dH is the Hamming distance. By
contrast, when working with bracketing entropy, one only needs to control the size of brackets in
terms of L2(Pg1), that is the L2-norm under the distribution of the data Pg1 . This allows to save a

1See van der Vaart and Wellner [56, Chapter 2.3] for an explanation of why uniform covering entropy is
natural for bounding symmetrized Rademacher processes.
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√
γ1 factor. Our results also show that a simple IS weighting algorithm suffices to obtain optimal

rates, and the stabilization by γt employed by Zhan et al. [58], which is inspired by the stabilization
employed by Hadad et al. [24], Luedtke and van der Laan [38] for inference purposes, may not be
necessary for policy learning purposes. The doubly-robust-style centering may still be beneficial in
practice for reducing variance but it does not affect the rate.
Remark 4 (Comparison to [20]). Foster and Krishnamurthy [20], albeit in a slightly different
setting, derive a maximal inequality under sequential covering entropy that also exhibits the correct
dependence on the exploration rate as ours. This shows in particular that the suboptimal dependence
on the exploration rate of Zhan et al. [58] is not a necessary consequence of using sequential covering
entropy. Analogously to us, Foster and Krishnamurthy [20] exploit the specific IS-weigthed structure
of the loss process, and work with covers of the unweighted policy class directly. Using an L∞
sequential cover of the unweighted class and using Holder’s inequality, they are able to factor out the
L1 norm of the IS ratios. This allows them to circumvent the type of sequential cover of the weighted
class that Zhan et al. [58] need, and yields optimal γ scaling. One caveat of this approach is that the
entropy integral in the corresponding bound is expressed in terms of L∞ sequential covering entropy,
which makes it hard to obtain fast rates via localization. Indeed, while variance bounds that allow for
localization in L2 norm are common, it is in general much harder to obtain localization in L∞ norm.

In well-specified cases, much faster rates of regret convergence are possible. We focus on finitely-
many actions, |A| < ∞. Define µ∗(X) = mina∈A µ(X, a) and fix a∗(X) with µ(X, a∗(X)) =
µ∗(X).
Assumption 7 (Margin). For a constant ν ∈ [0,∞], we have for all u ≥ 0,

PrpX
(
mina∈A\{a∗(X)} µ(X, a)− µ∗(X) ≤Mu

)1/ν
. u,

where we define 01/∞ = 0 and x1/∞ = 1 for x ∈ (0, 1].

This type of margin condition was originally considered in the case of binary classification [39, 54].
The condition we use is more similar to that used in multi-arm contextual bandits [25, 26, 42]. The
condition controls the density of the arm gap near zero. It generally holds with ν = 1 for sufficiently
well-behaved µ and continuous X and with ν =∞ for discrete X [see, e.g., 27, Lemmas 4 and 5].
Lemma 3. Suppose Assumption 7 holds and minf∈F R

∗(f) = EpXµ∗(X). Then Assumption 4
holds for α = ν/(ν + 1) and Λ : o 7→M .
Theorem 6 (ISWERM Policy Learning: fast rates). Suppose Assumptions 1, 6 and 7 hold with p < 2
and minf∈F R

∗(f) = EpXµ∗(X). Then for any δ ∈ (0, 1/2), with probability at least 1− δ,

R∗(f̂T )− EpXµ∗(X) .M

((
γavg
T

T

) 1+ν
2+ν(1+p/2)

+

(
γmax
T

T

) 1+ν
1+ν(1+p/2)

+

(
γavg
T log(1/δ)

T

) 1+ν
2+ν

+
γmax
T log(1/δ)

T

)
.

Remark 5 (Classification using ISWERM). The above results can easily be rephrased for the
classification analogue to the regression problem in Section 4, where Y = {±1} and we want a
classifier based on features x, a to minimize misclassification error. Because the policy learning
problem is both of greater interest and greater generality, we focus our presentation on policy learning.

6 Empirical Study

Next, we empirically investigate various risk minimization approaches using data collected by a
contextual bandit algorithm, including both ISWERM and unweighted ERM among others. We take
51 different mutli-calss classification datasets from OpenML-CC18 [11] and transform each into a
multi-arm contextual bandit problem (following the approach of [15, 17, 51]). We then run an epsilon
greedy algorithm for T = 100000, where we explore uniformly with probability εt = t−1/3 and
otherwise pull the arm that maximizes an estimate of µ(x, a) based on data so far. Details are given
in Appendix F.1.

We then consider using this data to regress Yt on Xt, At using different methods where each
observation is weighted by wt using different schemes: (1) Unweighted ERM: wt = 1; (2) ISWERM:
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(a) LASSO outcome model with cross-validated regularization parameter.

(b) Ridge outcome model with cross-validated regularization parameter.

(c) CART outcome model with unrestricted tree depth.

Figure 1: Comparison of weighted regression run on contextual-bandit-collected data. Each dot is
one of 51 OpenML-CC18 datasets. Lines denote ±1 standard error. Dots are blue when ISWERM is
clearly better, red when clearly worse, and black when indistinguishable within one standard error.

wt = g−1t (At | Xt); (3) ISFloorWERM: wt = γ−1t , where–inspired by [58]–we weight by the
inverse (nonrandom) floor γt = εt/|A| of the propensity scores; (4) SqrtISWERM: wt = g

−1/2
t (At |

Xt), which applies the stabilization of [24, 38] to ISWERM; (5) SqrtISFloorWERM: wt = γ
−1/2
t ;

(6) MRDRWERM: w(t) = 1−gt(At|Xt)
g2t (At|Xt)

, which are the weights used by Farajtabar et al. [18]; (7)

MRDRFloorWERM: w(t) = 1−γt
γ2
t

, which is like MRDRWERM but uses the propensity score
floors γt. With these sample weights, we run either Ridge regression, LASSO, or CART using
sklearn’s RidgeCV(cv=4), LassoCV(cv=4), or DecisionTreeRegressor, each with default
parameters. For Ridge and LASSO we pass as features the intercept-augmented contexts {(1, Xt)}Tt=1
concatenated by the product of the one-hot encoding of arms {At}Tt=1 with the intercept-augmented
contexts {(1, Xt)}Tt=1. For CART, we use the concatenation of the contexts {Xt}Tt=1 with the one-hot
encoding of arms {At}Tt=1. To evaluate, we play our bandit anew for T test = 1000 rounds using
a uniform exploration policy, g∗(a | x) = 1/K, and record the mean-squared error (MSE) of the
regression fits on this data. We repeat the whole process 64 times and report estimated average MSE
and standard error in Fig. 1.

Results. Figures 1a and 1b show that ISWERM clearly outperforms unweighted ERM and all
other weighted-ERM schemes for linear regression, with ISWERM’s advantage being even more
pronounced for LASSO. Intuitively, since a linear model is misspecified, this can be attributed to
ISWERM’s ability to provide agnostic best-in-class risk guarantees. In contrast, for a better specified
model such as CART, all ERM methods perform similarly, as seen in Fig. 1c. We highlight that our
focus is not necessarily methodological improvements, and the aim of our experiments is to explore
the implications of our theory, not provide state-of-the-art results. We provide additional empirical
results in Appendix F.2, the conclusions from which are qualitatively the same.
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7 Conclusions and Future Work

We provided first-of-their-kind guarantees for risk minimization from adaptively collected data using
ISWERM. Most crucially, our guarantees provided good dependence on the size of IS weights leading
to correct convergence rates when exploration diminishes with time, as happens when we collect data
using a contextual bandit algorithm. This was made possible by a new maximal inequality specifically
for IS weighted sequential empirical processes. There are several important avenues for future work.
We focused on a fixed hypothesis class. One important next question is how to do effective model
selection in adaptive settings. We also focused on IS weighted regression and policy learning, but
recent work in the iid setting highlights the benefits of using doubly-robust-style centering [2, 21, 33].
These benefits are most important to avoid rate deterioration when IS weights are estimated, while
our IS weights are known, but there are still benefits in reducing the loss variance in the leading
constant. Therefore, exploring such methods in adaptive settings is another important next question.

8 Societal Impact

Our work provides guarantees for learning from adaptively collected data. While the methods (IS
weighting) are standard, our novel guarantees lend credibility to the use of adaptive experiments.
Adaptive experiments hold great promise for better, more efficient, and even more ethical experiments.
At the same time, adaptive experiments, especially when all arms are always being explored (γt <∞)
even if at vanishing rates (γt = ω(1)), must still be subject to the same ethical guidelines as classic
randomized experiments regarding favorable risk-benefit ratio of any arm, informed consent, and other
protections of participants. There are also several potential dangers to be aware of in supervised and
policy learning generally, such as the training data possibly being unrepresentative of the population
to which predictions and policies will be applied leading to potential disparities as well as the focus
on average welfare compared to prediction error or policy value on each individual or group. These
remain concerns in the adaptive setting, and while ways to tackle these challenges in non-adaptive
settings might be applicable in adaptive ones, a rigorous study of applicability requires future work.
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