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Abstract— Human-Al collaboration is a powerful paradigm
in decision-making systems, where humans and AI contribute
different strengths with clear complementarity. Yet, achieving
optimal team performance depends critically on proper trust
in Al, ensuring humans rely on AI appropriately. In real-world
scenarios, humans often lack the expertise or performance
transparency to judge AI accuracy directly, creating a gap in
appropriate trust calibration. In this paper, we address this
challenge through three key contributions: (1) we propose a
theoretical framework modeling the evolution of human trust
in Al over time under AI performance uncertainty, (2) we
investigate two self-calibrating trust methods, an instance-based
cognitive model and a reinforcement learning (RL) model that
learns trust calibration policies from experience, and (3) we
conduct simulations comparing both approaches against a rule-
based baseline under dynamically varying AI performance. Re-
sults show that RL-based trust calibration outperforms others
in cumulative performance, while instance-based calibration
offers interpretability and sample efficiency. These findings
offer pathways for safe and adaptive trust alignment in human-
Al collaboration toward trustworthy autonomy.

I. INTRODUCTION

Human-AI collaboration and complementarity are essen-
tial for achieving superior decision-making in complex real-
world safety-critical scenarios such as healthcare, scientific
discovery, finance, and law [1], [2]. Al can process data at
scale and offer consistent predictions as an advisor, while
humans bring contextual reasoning, ethical judgment, and
take responsibility for team decision-making. To improve
team performance with distinct expertise of humans and Al,
humans must appropriately calibrate their trust in Al systems.
Overtrust may lead to blind acceptance of incorrect Al
outputs, while undertrust can prevent beneficial collaboration
from Al expertise.

However, trust calibration becomes highly challenging
when human users lack access to Al performance or domain
expertise to assess Al reliability. Black-box Al systems
like deep neural newtorks have poor interpretability, and in
human-AI complementarity settings, the human cannot verify
every decision made by the Al. Recent works have explored
trust calibration by humans assuming humans can observe
Al accuracy or audit performance [3], [4], [S], but these
assumptions do not hold given distinct human-Al expertise
gap in many high-stakes applications.

Specifically, accuracy-based trust calibration by humans
are prevalent in the previous work. For example, [6] and
[7] show that observed system accuracy strongly influences
trust. Yet, this breaks down when accuracy is hidden from
humans, as explored in [8], which demonstrates how humans
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Fig. 1. Trust evolution dynamics in human-AlI collaboration. Red dashed
box represent Al trust self-calibration policy f, while blue dashed boxes
represent human trust judgment g. The team performan P.°%™ is deter-
mined by Al performance P£I , human performance P2 and human trust
in Al T}, at each step m.

overtrust Al when deprived of performance indicators, even
when explanations are shown. To address Al trust misalign-
ment, Trust Repair Strategies (TRS) [9] have been proposed,
drawing from literature in social psychology [10]. Apology,
denial, promise, and model update strategies have been tested
in human-robot interaction settings [11], [12], [9]. However,
even though TRS mechanisms can help recover the trust in
Al without access Al performance, it suffers from the risk
of overtrust if not calibrated through human feedback of
team performance. Prior studies rarely consider adaptive trust
adjustment in dynamic environments or under asymmetric
expertise [1], [13], [2].

To this end, our research tackles this challenge through

three key contributions:

1) We model trust evolution dynamics in human-Al col-
laboration as a feedback system linking calibrated trust,
human trust judgment, and resulting team performance.

2) We propose two self-calibrating trust models: an
instance-based method rooted in cognitive science and
a reinforcement learning method trained to align trust
with Al performance.

3) We validate both approaches in a simulated envi-
ronment with dynamically changing Al performance,
demonstrating their advantage over heuristic rule-based
trust calibration baseline.

II. TRUST EVOLUTION AND CALIBRATION IN
HUMAN-AI COLLABORATION

A. Problem Formulation

Under the Al-as-advisor configuration in human-AI Col-
laboration, at each step m, the Al has a varying performance

score P,ﬁl , and the human has a more consistent but low



performance P&uman, The team performance P,,(T,,) is
determined by:
Pm(Tm) = Tm . PAI + (1 _ Tm) . Pﬂi}Luman (1)

m

We assume there exists a calibrated trust score 7<% given
by some self-calibrating policy f , which further influences
the human’s actual trust 7}, through judgment dynamics g.
As shown in Fig. 1 the trust evolves as:

Tt = (T, PAT) )
T = g(T", Pry—1(Trn—1)) 3)

The goal is to find a trust calibration policy f that maximizes
. M
cumulative team performance max . Py (T).

B. Instance-Based Trust Calibration

We first propose a trust self-calibration method based on
Instance-Based Learning Theory (IBLT) [14], [15], where the
model retrieves past experiences to estimate and calibrate
trust dynamically. With rich background in cognitive sci-
ence and psychology, it follows the memory-based dynamic
decision-making with instances I; of Al performance situa-
tion PAL, decision of calibrated trust 77 and utility of team
performance P; based on Eq. (1), i.e. I; = (PAL, Tl Py).
Given the situation of Al performance P’ at step m, similar
instances are retrieved and blended via:

1 m
Tﬁlal _ E Z d; - Tical 4)
i=1

where d; = 1{|PA — P2| < §} measures situation
similarity with threshold of §.

To mimic human trust judgment dynamics g with feedback
of the last-step team performance, the self-calibrated final
trust used by the human is simplified as the linear combina-
tion of 7°% and previous team performance P, 1(T,,_1):

T = (1 = )T + aPpy_1(Tr1) 5)

Each step updates memory for future blending via PA7 <«
PAL peal o T P Pr(Thn).

C. Reinforcement Learning-Based Trust Calibration

We then explore reinforcement learning-based Al to learn
an optimal policy to adjust its calibrated trust over time to
maximize overall team performance.

We model the calibration process as an Markov decision
process (MDP): state is Al performance Pﬁl , action is
calibrated trust and reward is > 7y, 7m = P (1)) from
Eq. (1) by assuming T}, = T as identity human judgment
dynamics. We adopt Q-learning to optimize discrete Q table
via e-greedy exploration:

W.p. €

peal _ random in [0, 1],
™ ] argmaxp Q(PAT,T), otherwise

Then the tabular Q-values are updated as: Q(PA!, Tcol) <+
QPA, T+ afr,, + ymaxp QPR T) -
Q(PAL, Teal)], where € = 0.1,7 = 0.9.

m T m

III. EXPERIMENT
A. Experimental Setup

We simulate the AI’s performance via fluctuating accuracy
between 0 and 1 with a decaying sine curve shape controlled
by decaying factor 1 and random noise ¢ € [—0.05,0.05]:
sin(m) + 1

2
The human performance is a constant accuracy of 0.5. We
choose the rule-based trust calibration baseline where trust
increases or decreases by 0.1 based on better or worse last-
step past performance. The decision-making horizon consists
of 100 steps, and the RL policy is trained over 100k episodes.
Situation similarity threshold is § = 0.1 and the seed is fixed.

PT‘;:I = clip(exp(—nm) - +¢,0,1) €[0,1] (6)

B. Team Performance Comparison

Fig. 2. Team performance for n = 0.01 (left) and n = 0.03 (right)

RL-based calibration consistently outperforms other meth-
ods across both slow and fast Al performance decay (Fig. 2).
It adapts trust to match Al reliability. IBLT shows con-
servative yet stable behavior, while the rule-based baseline
shows poor adaptability and cannot adapt to Al performance
changes.

C. Trust Trajectories
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Fig. 3. Trust trajectories under n = 0.01 (left) and n = 0.03 (right)

Rule-based trust calibration baseline always suffers from
overtrust, even when Al performs worse than humans. IBLT
shows similar fluctuations but tends to be conservative due to
the blended memory of earlier similar situations. RL shows
clearer patterns by adapting trusts dynamically and avoiding
overtrust even when Al significantly degrades.

IV. CONCLUSION

We proposed a framework for trust evolution in human-
Al collaboration, supported by two learning-based meth-
ods: an interpretable IBLT cognitive learning model and
a high-performing RL agent. Simulations confirm that RL
consistently achieves strong performance under dynamic Al
accuracy. Future work includes user studies and hybrid trust
calibration models combining learning with explicit social
strategies.
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