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Abstract—Large language models (LLMs) show promise in
automating clinical diagnosis, yet their non-transparent decision-
making and limited alignment with diagnostic standards hinder
trust and clinical adoption. We address this challenge by propos-
ing a two-stage diagnostic framework that enhances transparency,
trustworthiness, and reliability. First, we introduce evidence-
guided diagnostic reasoning (EGDR), which guides LLMs in gen-
erating structured diagnostic hypotheses by interleaving evidence
extraction and logical reasoning, grounded in DSM-5 criteria.
Second, we propose a Diagnosis Confidence Scoring (DCS)
module that evaluates the factual accuracy and logical consis-
tency of generated diagnoses through two interpretable metrics:
Knowledge Attribution Score (KAS) and Logic Consistency Score
(LCS). Evaluated on the D4 dataset with pseudo-labels, EGDR
outperforms Direct in-context prompting and Chain-of-Thought
(CoT) across five LLMs. For instance, on OpenBioLLM, EGDR
improves accuracy from 0.31 (Direct) to 0.76 and DCS from
0.50 to 0.67. On MedLlama, DCS rises from 0.58 (CoT) to 0.77.
EGDR yields up to +45% accuracy and +36% DCS gains over
baselines, offering a clinically grounded, interpretable foundation
for trustworthy AI-assisted diagnosis.

Index Terms—Large Language Models, Diagnostic Reasoning,
Mental Health AI, DSM-5, Knowledge Graphs, Explainable AI,
Evidence-Guided Reasoning.

I. Introduction

Depression is a widespread and debilitating mental health

disorder [1], affecting approximately 280 million people glob-

ally, according to the World Health Organization (WHO), and

contributing significantly to the global burden of disease [2].

WHO further estimates that depression and anxiety together

cost the global economy over $1 trillion each year in lost pro-

ductivity, driven by factors such as absenteeism, reduced work

performance, and unemployment [2]. These figures underscore

the urgent need for improved strategies in early detection and

diagnosis of depression, as timely intervention can significantly

reduce morbidity and save lives [3].

Recent advances in large language models (LLMs) offer

promising tools for analyzing textual data and identifying subtle

linguistic markers of psychological distress [4], [5]. However,

despite their fluency and general reasoning capabilities, most

LLM-based diagnostic tools suffer from a lack of transparency

[6]. They often function as black-box classifiers, directly

mapping input text to diagnostic labels without providing

interpretable justification [7], [8]. This limitation critically

undermines clinical reliability, as medical decision-making
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requires interpretable, evidence-based justification. A recent

scoping review in digital pathology emphasizes that one of

the major hurdles to safely deploying large language models

(LLMs) in medical settings is their limited ability to provide

contextualized and interpretable outputs tailored to specific

clinical scenarios [9]. In addition, broader literature points out

that merely offering diagnostic predictions is often inadequate

for clinical use, as the opaque reasoning behind LLM-generated

results can weaken clinician trust, which underscore the need

for explainable reasoning in diagnostic tools [7].

We propose a two-stage diagnostic pipeline designed to im-

prove the trustworthiness, transparency, and clinical alignment

of LLM-generated diagnoses. In the first stage, the Evidence-

Guided Diagnostic Reasoning (EGDR) framework guides LLMs

to interleave evidence extraction and logical inference, produc-

ing structured diagnostic hypotheses. Using multi-turn patient-

clinician dialogues and the DSM-5 [10] as sources of medical

knowledge, EGDR aligns reasoning with formal diagnostic

criteria to enhance interpretability and clinical grounding. We

evaluate EGDR using pseudo-labels from a strong baseline

model and further validate its performance on MDDial [11],

a secondary dataset with gold-standard annotations.

In the second stage, our DCS framework evaluates diagnosis

reasoning from first stage via micro-level claim attribution and

macro-level reasoning consistency. While prior claim verifica-

tion methods usually treat claims in isolation [12], our approach

jointly assesses the full reasoning chain. DCS combines two

components: the Knowledge Attribution Score (KAS), inspired

by ClaimVer [13], which checks alignment with DSM-5 triplets,

and the Logic Consistency Score (LCS), which verifies rule-

based criteria like symptom thresholds and exclusions. Together,

they offer a comprehensive, interpretable measure of diagnostic

validity, supported by alignment with pseudo-label accuracy and

case-level analysis.

II. Related Works

The evolution of clinical diagnostic reasoning has increasingly

embraced LLMs, shifting away from rule-based and tradi-

tional machine learning approaches towards flexible, generative

systems. Prompt engineering, retrieval-augmented generation

(RAG), fine-tuning, and domain-specific pre-training have

emerged as prominent methods for interpretable diagnoses

across a range of medical conditions.

Prompt-based methods use crafted inputs or few-shot ex-
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Fig. 1: Overview of the two-stage Evidence-Guided Diagnostic Reasoning (EGDR) and Diagnosis Confidence Scoring (DCS) framework.
A DSM-5-based knowledge graph is constructed from diagnostic manuals using medical triplets. Stage 1 (EGDR) processes multi-turn
patient dialogues to extract symptoms, retrieve relevant criteria, and generate diagnosis with reasoning. Stage 2 computes two evaluation
scores: Knowledge Attribution Score (KAS) for semantic alignment with DSM-5 triplets, and Logic Consistency Score (LCS) for rule-based
diagnostic validity. These are aggregated into a final Diagnosis Confidence Score (DCS) ranging from 0 to 1.

emplars to guide reasoning without additional training. Wu

et al. [14] introduced Diagnostic-Reasoning Chain-of-Thought

(CoT), significantly improving diagnostic accuracy by emulat-

ing physician reasoning. Kwon et al. [15] further advanced

reasoning-awareness by prompting explicit clinical rationales

before diagnoses. Nachane et al. ClinicR [16] applied iterative

CoT strategies for open-ended medical questions, achieving

superior accuracy.

Fine-tuning LLMs for depression diagnosis specifically has

shown notable success. Zhang et al. [17] develop a dialogue-

based system combining ChatGLM-6B with a multi-step diag-

nostic pipeline and knowledge-aware prompting, trained on the

D4 dataset to output symptom summaries and risk assessments.

ChatGLM-based models focus on severity scoring rather than

subtype classification. Li et al. [18] propose DepLLM, a

modular mixture of specialized experts approach to handle

complex depressive symptom clusters, albeit language-specific

and lacking direct DSM-5 interpretability. In parallel, causal

reasoning can enhance the trustworthiness of clinical AI. For

instance, Tamo et al. [19] show that incorporating causal

inference into predictive frameworks improves individualized

treatment-effect estimation in high-stakes surgical settings [20].

To improve factual correctness, Wang & Shu [21] introduced

FOLK, a First-Order Logic approach that grounds model outputs

through symbolic claim decomposition. Liu et al. [22] proposed

retrieval-augmented frameworks that integrate structured med-

ical knowledge to reduce hallucinations, while Dmonte et al.

[12] surveyed LLM claim-verification methods spanning multi-

hop reasoning, semantic entailment, and hybrid symbolic-neural

verification. Yet most methods still assess claims in isolation,

overlooking global logical consistency. A recent review [23]

found that fine-tuned or ensemble transformers, including

BERT, RoBERTa, DistilBERT, and GPT-3/4 with methods

like prefix-tuning and domain-specific pretraining, consistently

outperformed traditional models in detecting, classifying, and

managing depression from social media, EHR, and clinical data.

Despite these gains, current systems remain limited. Prompt-

ing strategies (CoT, DoT) lack mechanisms for global diagnostic

coherence, fine-tuned models focus narrowly, and retrieval or

symbolic methods seldom integrate formal diagnostic logic

or offer interpretable reasoning. Reliance on surface metrics

(accuracy, F1) further constrains evaluation. These gaps high-

light the need for hybrid frameworks that couple LLMs with

clinical knowledge and symbolic reasoning for more reliable,

interpretable depression diagnosis.



III. Methodology

Our method employs a two-stage diagnostic framework as

depicted in Figure 1:

1) Evidence-Guided Diagnostic Reasoning (EGDR) ex-

tracts and structures diagnostic reasoning from pa-

tient–doctor dialogues, grounding it in DSM-5 criteria.

2) Diagnosis confidence scoring verifies these claims

against a DSM-5–based knowledge graph.

Our DSM-5 knowledge graph ( �DSM-5) builds on the

general principles of medical knowledge graphs described by

Wu et al. [24], with extensions to capture DSM-5-specific

entities and relations. We extract entity–relation–entity triplets

from DSM-5 text (e.g., “Major Depressive Disorder (MDD)

→ has symptom → depressed mood”). A root node links

all disorders, with directed edges such as “has criterion”,

“has exclusion”, and “has specifier” to capture relationships

among disorders, symptoms, and criteria, enabling efficient

clinical reasoning.

A. Evidence-Guided Diagnostic Reasoning (EGDR)

Given a multi-turn dialogue between a patient and psycholo-

gist/clinician, � = {(D1, A1), . . . , (D=, A=)}, where D8 and A8 are

the patient and doctor utterances at turn 8.

We prompt an LLM 5\ with dialogue context � using

EGDR, Figure 2, which guides the model to produce structured

diagnostic output '!!" .

Formally, the model output is structured as:

'!!" = 5\ (prompt(�,  �DSM-5)) (1)

This process yields a semi-structured final diagnosis and

diagnostic reasoning �,that consist of analysis on symptoms,

criterion, exclusion criterion, and final diagnosis.

B. Diagnosis Confidence Score Calculation

To evaluate the generated diagnosis hypotheses, we propose

Diagnosis Confidence Scoring (DCS), which decomposes into

two components, knowledge attribution score (KAS) and logic

consistency score (LCS).

a) Knowledge Attribution Score (KAS)

KAS measures the factual alignment of individual diagnostic

claims with the DSM-5 knowledge graph  �DSM-5, combining

symbolic matching and neural semantic similarity to assess

whether each claim is clinically valid. This design builds on

prior work in natural language claim verification and medical

fact attribution [13], adapting it to the diagnostic setting where

claims must be grounded in medical guidelines.

In  �DSM-5, each diagnosis represents a central node

connected to nodes representing symptoms, exclusion rules,

specifiers, and modifiers. Edges encode semantic relationships

such as “has symptom,” “has exclusion,” or “has criteria,”

allowing graph-based retrieval of relevant knowledge for each

claim.

The KAS pipeline consist of:

• Entity Extraction and Triplet Retrieval. We extract

psychiatric entities from the reasoning passage ' using

medical named entity recognition (NER), then retrieve

relevant triplets ) (') ⊂  �DSM-5 via WoolNet [25], a

graph-walk strategy that incrementally traverses clinically

relevant subgraphs using a hybrid of symbolic reasoning

and neural relevance scoring, enhancing both interpretabil-

ity and reasoning accuracy in LLM-based diagnosis.

• Claim Decomposition and Verification. Diagnosis rea-

soning ' is decomposed into atomic, verifiable claims

{21, 22, . . . , 2=} using an LLM. Each claim 28 is evaluated

for factual alignment by comparing it against the retrieved

DSM-5 triplets ) (') ⊂  �DSM-5 from last step.

• Triplet-Based Attribution Classification. Each claim 28
is classified based on its symbolic alignment with retrieved

triplets ) (') ⊂  �DSM-5, and assigned a symbolic score

2B(28) as follows:

2B(28) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 Attributable

1 Extrapolatory

−1 Contradictory

0 No Attribution

• Triplets Match Score (TMS). Each claim 28 is also

assigned a Triplets Match Score :

)"(8 = U · sim(28 , ) (')) + (1 − U) · �%'8 (2)

where sim(28 , ) (')) is the cosine similarity between the

claim and retrieved triplets using a BERT-based encoder,

�%'8 the entity-level precision/recall between 28 and

matched DSM entities, and U ∈ [0, 1] is a weighting hy-

perparameter, we set it to 0.5, through analyzing TMS and

EPR distribution and experimenting a set of configuration

and finding a suitable trade-off balance between TMS and

EPR.

• Claim Score Composition. A weighted trust score for each

claim by combining symbolic classification and semantic

similarity:

F8 = 2B(H8) · )"(8 (3)

• KAS Aggregation. We apply a sigmoid function that

adjusts sensitivity based on the aggregate evidence weight.

This allows the KAS to effectively distinguish flawed

reasoning from valid justifications.

 �( = f

(
=∑

8=1

F8

)

, where f(G) =
1

1 + 4−G
(4)

b) Logic Consistency Score (LCS)

While KAS evaluates the factual accuracy of individual

claims, LCS assesses whether the overall reasoning aligns

with the full diagnostic logic of the DSM-5. Each DSM-5

disorder criterion is encoded as an executable function that

explicitly captures the required symptom count, presence of

core symptoms, and any exclusionary conditions. The LLM is

prompted to execute a step-wise application of these diagnostic

rules over its reasoning trace. The LCS score is then assigned
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top-3 candidate disorders via the DSM-5 knowledge graph; (3) Evaluates whether diagnostic criteria are met; (4) Checks exclusion criteria;
(5) Determines the final diagnosis and provides reasoning.

based on how closely the reasoning conforms to the structured

diagnostic criteria.

LCS =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

0, Contradicts DSM-5 diagnostic logic

1, Partially correct logic, incorrect conclusion

2, Partially correct logic, correct conclusion

3, Fully correct logic and conclusion

The final DCS combines KAS and LCS, using a normalized

LCS score scaled to [0, 1]:

��( = _ ·  �( + (1 − _) · (
!�(

3
), where _ ∈ [0, 1] (5)

This unified score provides a normalized, interpretable measure

of diagnostic reliability from 0 (invalid) to 1 (fully valid).

IV. Experiments

We evaluate our framework across a range of LLMs to assess

diagnostic quality and reasoning fidelity in depression diagnosis

and suicide risk assessment. To isolate the effect of our

clinical evidence-guided reasoning pipeline, we include both

domain-specific and general-purpose models. Experiments were

conducted using a mix of local and cloud resources: local

evaluations ran on dual NVIDIA A100 GPUs, while API-based

models (e.g., Claude, GPT-4o-mini, Gemini) were accessed as

available.

We begin by benchmarking all models on the Dialogue

Dataset for Depression-Diagnosis (D4) [26], using a four-

class depression and suicide risk scoring task to establish

baseline performance and identify the top model for generating

diagnostic pseudo-labels. This model is then used to create

silver-standard labels for the D4 dataset by applying DSM-5

criteria to ground truth symptom annotations, which serve as

evaluation targets for all models. In addition to the D4 dataset,

to further demonstrate the effectiveness of our EGDR reasoning

pipeline, we conducted experiments on the MDDial dataset [11],

which includes a different set of diagnoses and gold-standard

labels.

To assess the impact of our reasoning pipeline, we compare it

against two prompting baselines: (1) direct instruction prompt-

ing, which elicits structured diagnostic outputs, and (2) chain-of-

thought prompting, which encourages stepwise reasoning. All

approaches include DSM-5 criteria, but our pipeline uniquely

integrates them in a structured, diagnostic-oriented manner,

Fig. 3: Depression and suicidal risk prediction result. GPT-4o-mini
performance approaches D4 baseline

systematically grounding reasoning in the formal framework.

Baselines use the same information but with less structured

guidance.

Finally, we apply our DCS framework to evaluate factual

accuracy and logical validity, analyzing alignment with pseudo-

labels, per-case reasoning quality, and the contribution of

individual scoring components via ablation. These results

demonstrate the robustness and interpretability of the DCS

method.

A. Dataset

We use the D4 dataset [26], which contains 1,339 annotated

clinician–patient dialogues focused on mental health evalua-

tion, including expert-labeled symptom mentions, depression

severity, and suicide risk. The dataset is slightly imbalanced,

with a risk score of 0 dominating both tasks. These annotations

enable supervised evaluation of both diagnostic performance

and reasoning quality.

Based on benchmarking results (Figure 3), GPT-4o-mini was

selected as the pseudo-label generator for downstream tasks due

to its strong alignment with expert risk scores and superior

performance among evaluated models.

Alongside evaluating the D4 dataset, we use the MDDial

dataset [11], which comprises 235 patient dialogue instances in

its test set. This dataset offers authoritative labels across a variety

of diagnoses, such as Esophagitis, Enteritis, Asthma, Coronary

Heart Disease, Pneumonia, Rhinitis, Thyroiditis, Traumatic

Brain Injury, Dermatitis, External Otitis, Conjunctivitis, and

Mastitis. We assessed a selection of models on this dataset,

illustrating the versatility and robustness of our proposed

framework in handling both general and disease-specific clinical

dialogue tasks.



TABLE I: Performance by Model and Prompting Method evaluated
on GPT-4o-mini pseudo labels. DCS score represents the average
Diagnosis Confidence Score.

Model Prompting Acc Prec Rec F1 DCS

MedLlama [27]
EGDR 0.68 0.79 0.68 0.73 0.77
Direct 0.65 0.71 0.83 0.77 0.72
CoT 0.69 0.85 0.69 0.70 0.58

Claude [28]
EGDR 0.77 0.83 0.77 0.80 0.73
Direct 0.75 0.82 0.75 0.78 0.69
CoT 0.70 0.91 0.70 0.78 0.59

DeepSeek [29]
EGDR 0.29 0.86 0.29 0.30 0.56
Direct 0.21 0.86 0.21 0.32 0.44
CoT 0.11 0.76 0.12 0.20 0.31

OpenBioLLM [30]
EGDR 0.76 0.81 0.76 0.75 0.67
Direct 0.31 0.77 0.31 0.44 0.50
CoT 0.46 0.84 0.46 0.59 0.50

Gemini [31]
EGDR 0.88 0.85 0.86 0.86 0.77
Direct 0.79 0.81 0.79 0.80 0.70
CoT 0.76 0.85 0.76 0.80 0.74

TABLE II: Performance of different models and prompting methods
on MDDial dataset.

Model Prompting Accuracy Precision Recall F1 Score

Claude
EGDR 0.69 0.77 0.69 0.71
Direct 0.57 0.45 0.46 0.46
CoT 0.57 0.55 0.56 0.56

Gemini
EGDR 0.75 0.74 0.74 0.75
Direct 0.71 0.71 0.72 0.72
CoT 0.69 0.36 0.31 0.33

DeepSeek
EGDR 0.48 0.15 0.16 0.16
Direct 0.21 0.15 0.17 0.17
CoT 0.41 0.15 0.18 0.18

B. Diagnosis, Evaluation, and Confidence Score

As shown in Table I, the evidence-guided reasoning prompting

consistently outperforms both Direct and Chain-of-Thought

(CoT) prompting across most evaluation metrics, including

accuracy, recall, and F1 score across all models. The most

substantial improvement is observed in OpenBioLLM, where

EGDR achieves a 0.45 gain in accuracy over Direct prompting

(0.76 vs. 0.31). Notably, even strong general-purpose models

like Claude and Gemini benefit from EGDR, with Gemini

reaching the highest accuracy overall (0.88) under EGDR. These

results demonstrate that integrating structured clinical evidence

and diagnostic reasoning steps significantly enhances classifica-

tion performance, regardless of model domain specialization.

On the MDDial dataset (Table II), EGDR similarly outper-

forms both Direct and CoT prompting across most models.

Gemini shows the highest overall performance with EGDR (Ac-

curacy: 0.75, F1: 0.75), while Claude also benefits significantly

(F1: 0.71 with EGDR vs. 0.46 with Direct). Even with lower-

performing models like DeepSeek, EGDR consistently improves

results over baseline prompting strategies. These findings rein-

force EGDR’s robustness and adaptability in handling complex,

multi-turn clinical dialogues.

Our analysis further demonstrates that DCS functions ef-

fectively as a diagnostic confidence metric. As illustrated

in Figure 4, DCS scores for correct cases are consistently

higher across prompting strategies, while incorrect cases receive

markedly lower scores, indicating strong diagnostic confidence.
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CoT - Correct
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Fig. 4: Diagnosis Confidence Scores (DCS) by correctness under
different prompting strategies.

Notably, EGDR yields a more concentrated distribution of DCS

values for correct and partially correct outputs, with scores

tightly clustered around higher values. This suggests that EGDR

improves reasoning structure and calibrates confidence more

reliably. In contrast, Direct and CoT prompting tend to produce

more vague or unsupported reasoning, resulting in wider and

more dispersed DCS distributions with greater overlap between

correct and incorrect cases.

C. Fairness Analysis Across Age and Gender

TABLE III: Average accuracy across all models and prompting
methods by demographic group.

≤17 18–25 26–35 36–45 46–60 60+ Men Women

Avg Acc 0.635 0.616 0.558 0.496 0.495 0.364 0.528 0.578

To assess the fairness of large language model (LLM)

reasoning across demographic groups, we conducted a subgroup

performance analysis by age and gender. The dataset itself is

notably imbalanced. In terms of age, the 18–25 group dominates

with 685 samples, followed by 26–35 (307), 36–45 (138), 46–60

(105), ≤17 (100), and 60+ (4). Gender distribution is similarly

skewed, with 982 female and 357 male samples.

Because the LLM was not trained or fine-tuned on this dataset,

dataset imbalances do not affect the model parameters directly.

Instead, the subgroup disparities observed in performance

reflect two main factors: (1) evaluation reliability—performance

estimates are more stable in larger subgroups (e.g., 18–25),

while very small groups such as 60+ yield volatile results

where a few errors can drastically change accuracy; and (2)

potential pretraining and reasoning biases within the LLM itself,

which may influence responses differently across demographic

attributes.

Overall, models show consistently higher accuracy for the

majority subgroups (18–25, 26–35, and female participants),

while smaller or minority groups exhibit lower or more variable

performance, shown in Table III. This highlights the importance

of cautious interpretation of fairness metrics in zero-shot LLM

settings, where disparities may arise from a combination of

intrinsic model biases and uneven group representation in the

evaluation data.

D. Impact of U, and _ on DCS

We performed an ablation study, Table IV, to explore how two

key parameters, U and _, shape the behavior and interpretability

of the Diagnostic Consistency Score (DCS). Rather than focus-
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more symptoms during the same 2-week period; 

 -  major depressive disorder ?  has criterion ?  at 

least one symptom must be either depressed mood 

or loss of interest or pleasure

-  major depressive disorder ?  has exclusion ?  

substance/medication- induced depressive disorder; 

 -  major depressive disorder ?  has exclusion ?  
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0

Rationale

The claim indicates that the patient has four symptoms: diminished ability to concentrate, 

insomnia, feelings of worthlessness, and psychomotor agitation. According to DSM-5, a 

minimum of f ive symptoms is required for a diagnosis of MDD. Moreover, no core 
symptom such as depressed mood or anhedonia is reported. Therefore, the logical 

foundation for MDD diagnosis is invalid. Evaluating exclusion criteria becomes irrelevant 

if  primary criteria are unmet.

Final Diagnosis 

Consistency 

Score(DCS)= 0.291

Fig. 5: DCS evaluation of diagnostic reasoning for an invalid MDD case. The top section shows a Knowledge Attribution Score (KAS) breakdown,
revealing mostly weak alignment with DSM-5 diagnostic knowledge. The bottom section presents the logic consistency evaluation, which scores
0.0 due to missing core symptoms and insufficient symptom count. Together, these produce a low Diagnostic Consistency Score (DCS = 0.291).

TABLE IV: Ablation study showing how variations in U and _ affect
the distribution of DCS. U controls the trade-off between semantic
similarity and entity-level precision/recall in the Triplet Match Score
(TMS), while _ balances KAS and LCS in the final DCS. The table
reports summary statistics across reasoning outputs, highlighting the
impact of each parameter on scoring behavior and stability.

Param Value Mean Std Dev Min 25% Median 75%

U

0.00 0.3517 0.2790 0.0085 0.1471 0.2171 0.6422
0.25 0.7454 0.2274 0.0083 0.7510 0.8153 0.8768
0.50 0.8462 0.1160 0.0258 0.8219 0.8534 0.9197
0.75 0.8653 0.1129 0.0094 0.8459 0.8614 0.9331
1.00 0.8811 0.0781 0.2583 0.8559 0.8623 0.9362

_

0.00 0.5700 0.2726 0.0000 0.4500 0.4500 0.7500
0.25 0.6621 0.2069 0.0086 0.5743 0.5859 0.8074
0.50 0.7541 0.1501 0.0172 0.6981 0.7215 0.8648
0.75 0.8462 0.1160 0.0258 0.8219 0.8534 0.9197
1.00 0.9382 0.1250 0.0152 0.9409 0.9600 0.9820

ing solely on numerical performance, our analysis highlights

how these parameters modulate core trade-offs in semantic

attribution and reasoning fidelity.

a) Alpha U – Balancing Semantic Similarity and Entity-

Level Precision/Recall in TMS.

The U parameter controls the balance in the Triplet Match

Score (TMS) between semantic similarity (SS) and entity-level

precision/recall (EPR). HigherU emphasizes SS, which captures

embedding-level closeness between claims and retrieved knowl-

edge triplets. However, strong SS alone does not ensure that a

claim is attributable (A) or extrapolating (E); it may still reflect

contradiction (C) or no attribution (N). In contrast, EPR enforces

stricter, symbolic alignment at the level of clinical entities, but

may miss paraphrased or inferred matches.

Thus,U controls how sensitive TMS is to surface-level fluency

versus grounded clinical precision. High U values lead to higher

TMS and trickle into higher KAS and DCS scores, but this

can result in overconfident scoring for plausible-sounding but

incorrect claims. Lower U brings EPR to the forefront, reducing

false positives but potentially penalizing semantically valid

variation. We choose U = 0.5 to maintain a balance: enough

semantic flexibility to reward paraphrased reasoning, but enough

entity grounding to detect extrapolation or misattribution.

b) Lambda _ – Balancing KAS and LCS.

The _ parameter controls the weighting between KAS (claim-

level attribution to retrieved knowledge) and LCS (global

diagnostic logic consistency) in the final DCS score. High _

values prioritize KAS, rewarding models that justify individual

claims well, even when their overall diagnostic reasoning is

flawed. For instance, at _ = 1, the mean DCS reaches 0.9382,

but this can reflect locally plausible yet globally inconsistent

outputs. Conversely, low _ values favor LCS, emphasizing

logical coherence. At _ = 0, the mean DCS drops to 0.57,

showing that LCS alone is brittle. It penalizes valid reasoning

that deviates from expected rule structures and underweights

attribution.

To balance attribution fidelity and logical soundness, we set

_ = 0.75, which achieves a strong mean DCS of 0.8462 with low

variance. This choice helps prevent models from being rewarded

for individually plausible claims that, when combined, fail to

justify the overall diagnosis.

E. Case Study: Low Diagnosis Confidence Scoring

The case study presented in Figure 5 demonstrates the effec-

tiveness and interpretability of the DCS. In the low confidence

case, the DCS score of 0.291 reflects both limited knowledge

grounding (KAS = 0.582) and a failed symbolic logic check

(Logic Score = 0.0). Although some symptoms are recognized,

the claims do not meet the MDD threshold, with only four



symptoms and no core symptom identified. This breaks a

core diagnostic requirement outlined in the DSM-5, making

the reasoning incomplete. This inconsistency is accurately

penalized in both the semantic and logic evaluations. By aligning

both structured diagnostic knowledge and rule-based logic,

DCS ensures that the diagnosis is grounded not only in claim

correctness but also in rigorous diagnostic logic.

V. Conclusion

This work proposes a unified two-step framework for LLM-

based diagnostic reasoning: (1) the Evidence-Guided Diagnostic

Reasoning (EGDR) pipeline, which enhances output quality

through clinically grounded prompting, and (2) the Diagnosis

Confidence Score (DCS), a dual-layered metric evaluating

both factual alignment and diagnostic logic. Experiments on

the D4 and MDDial datasets show that EGDR consistently

improves diagnostic performance across diverse models. The

best-performing model, Gemini-2.5-flash, achieved an 8% ac-

curacy improvement on D4 and a 4% accuracy improvement on

MDDial with EGDR. Our DCS evaluation also demonstrates

strong alignment with silver-standard labels on D4, and case

analyses confirm its ability to generate clinically coherent and

well-grounded reasoning. Together, EGDR and DCS advance

the transparency, reliability, and clinical fidelity of AI-assisted

diagnosis.
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