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Abstract
Generating accurate sounds for complex audio-
visual scenes is challenging, especially in the pres-
ence of multiple objects and sound sources. In
this paper, we propose an interactive object-aware
audio generation model that grounds sound gener-
ation in user-selected visual objects within images.
Our method integrates object-centric learning into
a conditional latent diffusion model, which learns
to associate image regions with their correspond-
ing sounds through multi-modal attention. At test
time, our model employs image segmentation to
allow users to interactively generate sounds at
the object level. We theoretically validate that
our attention mechanism functionally approxi-
mates test-time segmentation masks, ensuring
the generated audio aligns with selected objects.
Quantitative and qualitative evaluations show that
our model outperforms baselines, achieving bet-
ter alignment between objects and their associ-
ated sounds. Project site: https://tinglok.

netlify.app/files/avobject/.

1. Introduction
Humans naturally perceive the world as ensembles of dis-
tinct objects and their associated sounds (Bregman, 1994).
For example, in a busy city street (Figure 1), we can identify
sounds from multiple objects, such as honks, footsteps, and
chatters. However, replicating such object-level specificity
remains challenging for computational models. Despite
notable advances in audio generation (Van Den Doel et al.,
2001; Kong et al., 2019; Yang et al., 2023), existing methods
often generate holistic soundscapes that fail to accurately
reproduce the distinct sounds of specific objects (Pijanowski
et al., 2011). In complex scenes, models may either forget
subtle sounds (e.g., footsteps) or bind co-occurring events
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(e.g., crowd noise and wind) even when only one is intended,
leading to inaccurate sound textures (McDermott & Simon-
celli, 2011).

Recent progress in vision-based models (Sheffer & Adi,
2023) relies on analyzing the entire visual scene to pro-
duce a single soundtrack, but this broad perspective may
overlook subtle yet important sound sources. Text-based
models (Liu et al., 2023), on the other hand, face diffi-
culties when a prompt represents multiple events, either
omitting certain sounds or conflating them with others due
to entangled feature correlations (Wu et al., 2023). While
manually reweighting individual sound events in the dif-
fusion latent (Xue et al., 2024) can mitigate these issues,
it remains labor-intensive and impractical for large-scale
applications. Fundamentally, these challenges arise because
real-world sounds are often imbalanced and confounding in
complex scenes, making it difficult to disentangle distinct
sound sources.

To overcome these limitations, we propose an interactive
object-aware audio generation model that grounds each
generated sound in a specific visual object. Inspired by
how humans parse complex soundscapes (Gaver, 1993), our
model not only processes the overall scene context (e.g., a
city street) but also decouples separate events (e.g., honks,
footsteps). Drawing on object-centric learning (Greff et al.,
2019), we build our model upon a conditional audio genera-
tion framework (Liu et al., 2023) and introduce multi-modal
dot-product attention (Vaswani et al., 2017) to learn sound-
object associations through self-supervision (Zhao et al.,
2018; Afouras et al., 2020), which fundamentally overcomes
the problem of forgetting or binding sound events.

To provide finer control and interactivity, we leverage seg-
mentation masks (Kirillov et al., 2023) to convert user
queries into attention maps at test time, allowing users to
select specific objects in an image (e.g., car shapes) to gen-
erate the corresponding sounds (e.g., engine sounds) with
simple mouse clicks. Since these masks guide the model to
focus on objects of interest, even subtle sound events can
be captured more accurately than with scene-wide analysis
alone. Moreover, because the entire image still informs
the generation process, selecting multiple objects naturally
blends their sounds into a consistent environment, rather
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Input Image Audio generated to match user-selected objects

Figure 1: Interactive object-aware audio generation. We generate sound aligned with specific visual objects in complex
scenes. Users can select one or more objects in the scene using segmentation masks, and our model generates audio
corresponding to the selected objects. Here, we show a busy street with multiple sound sources (left). After training, our
model generates object-specific audio (right), such as crowd noise for people, engine sounds for cars, and blended audio for
multiple objects.

than merely layering independent audio clips.

Through quantitative evaluations and human perceptual stud-
ies, we show that our model generates more complete and
contextually relevant soundscapes than existing baselines.
Additionally, we provide qualitative results and theoretical
analysis to demonstrate that our object-grounding mecha-
nism is functionally equivalent to segmentation masks. In
summary, our contributions include:

• An interactive object-aware audio generation model that
links sounds to user-selected visual objects via masks.

• A mechanism that replaces attention with segmentation
masks at test time, allowing fine-grained control over
which objects, and thus which sounds, are present in the
generated audio.

• Empirical and theoretical validation demonstrating our
model outperforms baselines in sound-object alignment
and user controllability while maintaining audio quality.

2. Related Work
Object discovery. Object-centric learning aims to rep-
resent visual scenes as compositions of discrete objects,
enabling models to understand and manipulate individual
entities within a scene. Unsupervised object discovery meth-
ods have been developed to decompose visual scenes into
object representations without explicit annotations (Greff
et al., 2019; Burgess et al., 2019; Locatello et al., 2020).
In the audio-visual realm, prior studies have explored au-
dio localization (Arandjelovic & Zisserman, 2018; Rou-
ditchenko et al., 2019; Chen et al., 2021b; Mo & Morgado,
2022; Hamilton et al., 2024), separation (Zhao et al., 2018;
Afouras et al., 2020), and spatialization (Li et al., 2024b) by
using the correspondence between visual objects and their
corresponding audio. In concurrent work, SSV2A (Guo

et al., 2024) introduces bounding boxes from external object
detectors to generate audio from multiple sound sources. In
contrast, our model interactively generates object-specific
sound, without requiring explicit object segmentations and
representations during training.

Predicting sound from images and text. Generating
sounds from visual and textual inputs has gained notable
attention recently. Image-based methods focus on synthe-
sizing sounds from visual cues such as physical interactions
(Van Den Doel et al., 2001; Owens et al., 2016), human
movements (Gan et al., 2020; Su et al., 2021; Ephrat & Pe-
leg, 2017; Prajwal et al., 2020; Hu et al., 2021), musical
instrument performances (Koepke et al., 2020), and content
from open-domain images and videos (Zhou et al., 2018;
Iashin & Rahtu, 2021; Sheffer & Adi, 2023; Luo et al., 2023;
Tang et al., 2023; Wang et al., 2024; Tang et al., 2024; Xing
et al., 2024; Zhang et al., 2024; Cheng et al., 2024a; Chen
et al., 2024). These approaches typically generate audio
that corresponds to the entire visual scene without isolating
individual sound sources, resulting in holistic sound gen-
eration. Text-based methods aim to produce sounds from
textual descriptions using generative models like GANs and
diffusion models (Yang et al., 2023; Kreuk et al., 2023; Liu
et al., 2023; Huang et al., 2023b; Saito et al., 2025; Evans
et al., 2025). However, when prompts contain multiple
sound events, these methods often struggle to capture all
the desired audio elements (Wu et al., 2023). Unlike these
models, our method generates sounds for user-selected one
or more objects within images. This offers enhanced control
and precision in audio generation.

Audio-visual learning. Many works have focused on
audio-visual associations due to their inherent correspon-
dence in videos. A line of works explores the semantic
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correspondence, identifying which sounds and visuals are
commonly associated with one another (Arandjelovic &
Zisserman, 2017). This includes representation learning
(Morgado et al., 2021; Huang et al., 2023a), source local-
ization (Chen et al., 2021b; Harwath et al., 2018; Chen
et al., 2023b), audio stylization (Chen et al., 2022a; Li et al.,
2024a), as well as scene classification (Chen et al., 2020;
Gemmeke et al., 2017; Du et al., 2023a) and generation (Li
et al., 2022b; Sung-Bin et al., 2023). Other studies leverage
spatial correspondence between audio and visual streams
(Owens & Efros, 2018; Korbar et al., 2018; Patrick et al.,
2021) to tackle tasks like source separation (Zhao et al.,
2018; 2019; Ephrat et al., 2016; Gao et al., 2018; Li et al.,
2020; Chen et al., 2023a; Dong et al., 2022; Cheng et al.,
2024b), Foley sound synthesis (Owens et al., 2016; Du et al.,
2023b), and audio spatialization (Gao & Grauman, 2019;
Morgado et al., 2018; Yang et al., 2020). Inspired by these
works, we aim to generate sound from user-selected objects
within images.

3. Interactive Object-Aware Audio Generation
Our goal is to generate sound from user-selected objects
within an image in an interactive way. We cast this problem
by learning the correlation between audio and its correspond-
ing visual scene and then using this correlation to predict
the sound from the activated region. To achieve this, we:
(i) fine-tune an off-the-shelf conditional audio generation
model for sound synthesis; (ii) train an audio-guided vi-
sual object grounding model to isolate the desired object;
(iii) theoretically demonstrate the equivalence between the
segmentation mask and our grounding model.

3.1. Conditional Audio Generation Model

Conditional latent diffusion model. We adopt a pre-
trained conditional latent diffusion model (Liu et al., 2023)
to generate audio conditioned on textual inputs. Building
upon latent diffusion models (Ho et al., 2020; Rombach
et al., 2022), our model operates in the latent space to im-
prove computational efficiency. Specifically, given a text
prompt tq describing the desired sound and a noise vec-
tor ϵ ∼ N (0, I), the model iteratively denoises the latent
variables over N steps to generate the corresponding audio.

Our model is trained to predict the added noise at each
denoising step n, conditioned on the textual input tq. The
training objective minimizes the difference between the
predicted noise and the true noise:

Lθ = Ez0,tq,ϵ∼N (0,I),n∥ϵ− ϵθ(zn, n, tq)∥22 , (1)

where z0 is the latent representation of the ground truth
audio, zn is the noisy latent at step n, and ϵθ is the denoising
model parameterized by θ.

Mel-spectrograms compression. We compress mel-
spectrograms into a lower-dimensional latent space using a
variational autoencoder (VAE) (Kingma & Welling, 2013).
The VAE encodes the mel-spectrogram a ∈ RT×F into a
latent representation z ∈ RT ′×F ′×d, where T ′ and F ′ are
reduced temporal and frequency dimensions, and d is the
dimensionality of the latent embeddings.

Textual representation. We represent the textual input
tq using a pre-trained text encoder from CLAP (Elizalde
et al., 2023), which maps the text into an embedding space
Et(tq) ∈ RL, where L denotes the embedding dimension.
These text embeddings capture semantic information about
the desired sound and are used to condition the diffusion
model through cross-attention mechanisms (Vaswani et al.,
2017).

Classifier-free guidance. We employ classifier-free guid-
ance (CFG) (Ho & Salimans, 2022) to encourage the model
to learn both conditional and unconditional denoising. Dur-
ing training, we randomly omit the conditioning input tq
with a 10% probability. At test time, we use a guidance
scale λ ≥ 1 to interpolate between the conditional and
unconditional predictions:

ϵ̃θ(zn, n, tq) = λ·ϵθ(zn, n, tq)+(1−λ)·ϵθ(zn, n, ∅), (2)

where ϵθ(zn, n, ∅) is the unconditional prediction.

Waveform reconstruction. After generating the latent
representation of the audio, we reconstruct the correspond-
ing waveform. The decoder part of the VAE transforms the
latent representation z0 back into a mel-spectrogram. Sub-
sequently, a pre-trained HiFi-GAN neural vocoder (Kong
et al., 2020a) is used to synthesize the time-domain audio
waveform from the mel-spectrogram, producing the final
audio output.

3.2. Text-Guided Visual Object Grounding Model

Visual representation. To ground the visual objects corre-
sponding to the desired sound, we extract features from the
input image using a pre-trained visual encoder. Specifically,
we utilize CLIP (Radford et al., 2021) to encode the image
into a set of visual patches embeddings Ev(iq) ∈ RP×L,
where iq is the input image, P is the number of patches, and
L denotes the embedding dimension (matching that of the
text embeddings). These embeddings capture both semantic
and spatial information of the visual scene.

Scaled dot-product attention. We employ scaled dot-
product attention (Vaswani et al., 2017) to fuse the textual
and visual inputs, allowing the model to focus on specific
objects within the scene. Before computing the attention,
the text embeddings Et(tq) and patch embeddings Ev(iq)
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Figure 2: Model architecture. We encode the reference spectrogram via a pre-trained latent encoder. An image and text
prompt are processed by separate encoders, and their embeddings are fused using an attention mechanism to highlight
relevant objects. We then feed these conditioned features and noisy latent into a latent diffusion model to generate the
object-specific audio. Finally, the latent decoder reconstructs the spectrogram, and a pre-trained HiFi-GAN vocoder
generates the final audio waveform. At test time, we replace the attention with a user-provided segmentation mask, and the
latent encoder for the reference spectrogram is not used.

are linearly projected to obtain the query, key, and value
matrices. Specifically, we compute:

Q = Et(tq)WQ, K = Ev(iq)WK , V = Ev(iq)W V ,
(3)

where WQ, WK , and W V are learnable projectors.

We then compute the attention weights between the pro-
jected text and each projected image patch, grounding the
text in the visual domain:

Attention(Q,K,V ) = softmax
(
QK⊤
√
dk

)
V , (4)

where dk is the dimensionality of the key embedding.

After obtaining the attention output, we apply an MLP layer
(Murtagh, 1991) to further refine the fused representations,
which enables the model to attend to image regions corre-
sponding to the text input. In this way, we integrate the
images iq with the diffusion process, allowing the model to
learn to focus on the relevant regions in the image through
self-supervision.

Learnable positional encoding. To enhance the model’s
ability to localize objects within the image, we incorporate
learnable positional encodings (Devlin, 2018) into the at-
tention mechanism. These encodings are added to the key
and value embeddings, providing spatial information about
the image patches. By learning positional information, the
model can better distinguish between objects in different
locations, improving grounding precision.

Segmentation mask at test time. After training, we sub-
stitute the attention weights derived from the scaled dot-
product attention with segmentation masks generated by the
segment anything model (SAM) (Kirillov et al., 2023). We
rescale the raw outputs of SAM into a normalized mask
mq ∈ RP , matching the mean and variance of the attention
weights. This allows us to generate the desired object’s
sound by focusing on the regions specified by the segmenta-
tion mask. Since SAM’s masks can be obtained using either
text prompts or point clicks, our model supports interactive
image-to-audio generation, allowing users to intuitively se-
lect objects of interest and generate their associated sounds.

3.3. Theoretical Analysis

One may notice that our training pipeline uses both text and
image encoders, but the test-time computation involves only
the image encoder, where the softmax attention weights
are replaced by the segmentation masks. This indicates an
out-of-distribution generalization ability (Lin et al., 2023),
where our model trained on the softmax attention weights
computed by CLAP & CLIP embeddings (Equation 4) is
able to generalize well on the segmentation masks computed
by SAM. We hypothesize that this ability is rooted in the
alignment of contrastive losses and the dot-product attention
mechanism. Recall that the InfoNCE loss (Gutmann &
Hyvärinen, 2010; Oord et al., 2018) for the text encoder in
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contrastive learning is given by Lt (Et, Ev) =:

ExT ,xI
1:N

[
− log

exp
(
⟨Ev(xT ), Et(xI

1)⟩/τ
)∑N

j=1 exp
(
⟨Ev(xT ), Et(xI

j )⟩/τ
)] (5)

where (xT , xI
1) is the matching text-image pair, and

xI
2, . . . , x

I
N are the negative image samples associated with

xT . Notice that if we substitute xT with the text input tq,
xI
1:N with the image patches iq, and xI

1 with the matching
image patch (with the text input), then the loss in Equation 5
becomes the Maximum Likelihood Estimation (MLE) loss
of the softmax attention weights in Equation 4 (under proper
scaling in the exponents). Therefore, the encoders Ev, Et
are able to assign high attention weights to image patches
that match with textual inputs, and low attention weights
to irrelevant image patches, working effectively as the seg-
mentation mask at test time. As such, the audio generation
model is trained with the ability to focus only on the selected
objects by segmentation masks.

In the following theorem, we formalize the above argument
into a test-time error guarantee. We let f denote the com-
position of the trained MLP layers and the trained audio
generation model, such that f maps an attention output aq
to an audio output sq (on query q), and let v denote the
value metric that maps a sound-image-mask tuple (s, i,m)
to a real number v(s, i,m) ∈ R. Our goal is to bound the
following test error

errtest := Eq[v(f
∗(pqV

∗), iq, pq)− v(f(mqV ), iq,mq)]

i.e. the expected (over the randomness of test query q) gap
between (i) the value v(f∗(pqV

∗), iq, pq) achieved by the
optimal model (f∗,V ∗) and ground-truth mask pq , and (ii)
the value v(f(mqV ), iq,mq) of the trained model (f,V )
using SAM segmentation mq at test time. Here, f∗ and
V ∗ are the ground-truth counterpart of f and value ma-
trix, pq ∈ ∆P is the (normalized) ground-truth mask of
query q such that pq,k =

P(tq|iq,k)∑P
l=1 P(tq|iq,l)

for patch index
k ∈ {1, . . . , P}, aq represents the attention output com-
puted by Equation 4. Note that f(mqV ), the audio output
of the trained model, depends on the segmentation mask
mq instead of the ground-truth mask pq or text input tq .
Theorem 3.1. Let ϵsam := Eq[∥mq − pq∥ℓ1 ] denote the
expected ℓ1 error of the segmentation model. Let ϵf , ϵV
denote the expected error of f and V under the pre-trained
CLAP & CLIP embeddings respectively, and ϵcontrast denote
the expected contrastive loss of the encoders, more precisely,

ϵf = Eq[v(f
∗(aq), iq, pq)]− E[v(f(aq), iq, pq)],

ϵV = ∥V − V ∗∥∞

ϵcontrast = Eq,d∼pq

[
− log

exp (⟨Ev(tq), Et(iq,d)⟩Σ)∑P
k=1 exp (⟨Ev(tq), Et(iq,k)⟩Σ)

]
− Eq,d∼pq [− log pq,d] .

where ⟨·, ·⟩Σ is the local inner product under Σ :=
WK(WQ)⊤/

√
dk (note that ϵcontrast is simply the differ-

ence between the model’s InfoNCE loss and the optimal
InfoNCE loss, under the similarity metric ⟨·, ·⟩Σ). Suppose
∥V ∗∥∞, ∥V ∥∞ ≤ Bv, v is Lv-Lipschitz, and f, f∗ are
Lf -Lipschitz, then we have

errtest ≤ Lv · Lf ·
(
ϵV +Bv ·

(
ϵsam + 2

√
2ϵcontrast

))
+ Lv · ϵsam + ϵf . (6)

Due to space constraints, the proof is deferred to the Ap-
pendix F. On the right hand side of Equation 6, the error
terms ϵV , ϵsam, ϵcontrast, ϵf have been minimized by mas-
sive training (Radford et al., 2021; Elizalde et al., 2023;
Kirillov et al., 2023); furthermore, the regularity parameters
Lv, Lf , Bv are standard in learning theory literature (An-
thony & Bartlett, 1999; Neyshabur et al., 2015; Bartlett
et al., 2017) and can be bounded with guarantees (Tsuzuku
et al., 2018; Combettes & Pesquet, 2020; Fazlyab et al.,
2019). Consequently, Theorem 3.1 implies that the test-time
error can be effectively upper bounded, hence supporting
the substitution of attention weights derived from scaled
dot-product attention with segmentation masks generated by
the segmentation model during testing. Our theory is further
corroborated by empirical findings in Section 4.3, where we
observe that using dot-product attention weights achieves
performance on par with using segmentation masks, while
additive attention fails completely.

4. Experiments
4.1. Experiment Setup

Dataset. We use AudioSet (Gemmeke et al., 2017) as our
primary data source, which consists of 4,616 hours of video
clips, each paired with corresponding labels and captions.
To ensure audio-visual correspondence, we perform several
preprocessing steps similar to Sound-VECaps (Yuan et al.,
2024). This reduces the dataset to 748 hours of video for
training. We then evaluate models on the AudioCaps (also a
subset of AudioSet) (Kim et al., 2019), a widely used bench-
mark dataset for audio generation. Please see Appendix B
for more details on the dataset.

Model architecture. We employ the pre-trained VAE
and HiFi-GAN vocoder in AudioLDM (Liu et al., 2023).
The VAE is configured with a latent dimensionality d of 8
channels. For embedding extraction, we utilize the “ViT-
B/32" CLAP audio encoder (Elizalde et al., 2023) and the
CLIP image encoder (Radford et al., 2021). These em-
beddings are then incorporated into the U-Net-based diffu-
sion model through cross-attention. We implement a linear
noise schedule consisting of N = 1000 diffusion steps,
from β1 = 0.0015 to βN = 0.0195. The DDIM sampling
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Method ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑) OVL (↑) RET (↑) REI (↑) REO (↑)

Ground Truth / / / / 0.962 4.12 ± 0.06 4.02 ± 0.05 4.06 ± 0.07 /

Retrieve & Separate (Zhao et al., 2018) 0.276 4.051 1.572 1.550 0.764 2.73 ± 0.02 2.54 ± 0.05 2.76 ± 0.04 2.49 ± 0.04
AudioLDM 1 (Liu et al., 2023) 0.336 3.576 1.537 1.545 0.724 2.83 ± 0.07 3.09 ± 0.03 2.92 ± 0.02 2.18 ± 0.04
AudioLDM 2 (Liu et al., 2024) 0.513 2.976 1.162 1.779 0.743 2.98 ± 0.04 3.19 ± 0.02 3.09 ± 0.03 2.47 ± 0.01
Captioning (Li et al., 2022a) 0.587 2.778 1.364 1.901 0.773 2.84 ± 0.03 3.15 ± 0.04 3.05 ± 0.06 2.63 ± 0.05
Make-an-Audio (Huang et al., 2023b) 0.309 3.555 1.443 1.673 0.712 2.74 ± 0.08 3.06 ± 0.05 2.89 ± 0.05 2.08 ± 0.04
Im2Wav (Sheffer & Adi, 2023) 0.499 3.602 1.526 1.872 0.798 2.88 ± 0.05 3.12 ± 0.04 3.01 ± 0.05 2.48 ± 0.06
SpecVQGAN (Iashin & Rahtu, 2021) 0.611 2.515 1.142 1.965 0.825 2.94 ± 0.04 3.26 ± 0.03 3.11 ± 0.06 2.51 ± 0.04
Diff-Foley (Luo et al., 2023) 0.683 1.908 0.783 2.010 0.842 3.09 ± 0.06 3.43 ± 0.05 3.32 ± 0.03 2.52 ± 0.06
CoDi (Tang et al., 2023) 0.672 1.954 0.856 1.936 0.833 3.00 ± 0.04 3.32 ± 0.03 3.31 ± 0.05 2.34 ± 0.02
Seeing & Hearing (Xing et al., 2024) 0.668 1.923 0.794 1.954 0.722 3.08 ± 0.05 3.38 ± 0.04 3.28 ± 0.06 2.49 ± 0.04
FoleyCrafter (Zhang et al., 2024) 0.732 1.760 0.665 2.007 0.811 3.19 ± 0.02 3.48 ± 0.03 3.32 ± 0.04 2.60 ± 0.04
SSV2A (Guo et al., 2024) 0.806 1.265 0.525 2.100 0.893 3.22 ± 0.02 3.50 ± 0.03 3.35 ± 0.02 3.48 ± 0.06

Ours 0.859 1.271 0.517 2.102 0.891 3.31 ± 0.04 3.62 ± 0.05 3.48 ± 0.04 3.74 ± 0.07

Table 1: Quantitative comparison of our method and baselines across different objective and subjective metrics. The
subjective OVL, RET, REI, and REO scores are presented with 95% confidence intervals.

method (Song et al., 2020) is used with 200 steps to facili-
tate efficient generation. At test time, we apply CFG with a
guidance scale λ set to 2.0.

Training configuration. To facilitate parallel training,
each video’s soundtrack is either truncated or zero-padded
to achieve a fixed duration of 10 seconds and then converted
to a 16 kHz sample rate. We apply a 512-point discrete
Fourier transform with a frame length of 64 ms and a frame
shift of 10 ms. For each video, a single visual frame is
randomly chosen to serve as the input image. The model
is then trained using the AdamW optimizer (Loshchilov &
Hutter, 2017) with a batch size of 64, a learning rate of
10−4, β1 = 0.95, β2 = 0.999, ϵ = 10−6, and a weight
decay of 10−3 over 300 epochs.

Evaluation metrics. We use both objective and subjective
metrics (see Appendix C for more evaluation details) to
evaluate the performance of our model. For the objective
evaluation, we employ several metrics, including Sound
Event Accuracy (ACC), which leverages the PANNs model
(Kong et al., 2020b) to predict and sample sound event logits
based on the annotated labels and then compute the mean
accuracy across the dataset. We also measure the semantic
alignment between the output and target using four estab-
lished metrics: (i) Fréchet Audio Distance (FAD) (Kilgour
et al., 2019), which quantifies how close the generated audio
is to the real audio in latent space; (ii) Kullback-Leibler Di-
vergence (KL), which assesses the alignment of distributions
between the generated and target audio; (iii) Inception Score
(IS) (Salimans et al., 2016), which evaluates the diversity
of the generated audio; (iv) Audio-Visual Correspondence
(AVC) (Arandjelovic & Zisserman, 2017), which measures
how well the resulting audio match the visual context.

For subjective evaluation, we conduct a human study to
assess the quality and relevance of the generated audio. We
present both the holistic samples and the object-selected

samples. Each participant is provided with an input image,
along with the corresponding generated audio, and is asked
to rate each sample on a scale from 1 to 5 based on sev-
eral criteria: (i) Overall Quality (OVL), which evaluates
the general quality of the audio; (ii) Relevance to the Text
Prompt (RET), which assesses how well the audio matches
any associated text description; (iii) Relevance to the Input
Image (REI), which judges the alignment between the audio
and the visual content; (iv) Relevance to the Selected Ob-
ject (REO), which focuses on how well the generated audio
aligns with a specific object in the visual scene.

Baselines. We compare our method with several baseline
models, each of which is adapted for our task: (i) Retrieve &
Separate (Zhao et al., 2018), a two-stage object-aware model
that first retrieves audio based on a text prompt (Elizalde
et al., 2023), then separates the object-specific audio from
the specified visual object (Zhao et al., 2018); (ii) Audi-
oLDM 1 & 2 (Liu et al., 2023; 2024), which we fine-tune on
our dataset for a fair comparison; (iii) Captioning (Li et al.,
2022a), a cascade model that takes input image, generates
captions and feeds them to a pre-trained AudioLDM 2; (iv)
Make-an-Audio (Huang et al., 2023b), which supports ei-
ther text or image prompts for audio generation. We extract
its image branch and fine-tune it on our dataset; (v) Im2Wav
(Sheffer & Adi, 2023), an image-guided open-domain audio
generation model that operates auto-regressively. Since the
original model generates only 4 seconds of audio, we retrain
it on our dataset to better suit our task; (vi) SSV2A and
(vii) CoDi, which are sound-source-aware and any-to-any
generative models respectively. We use their image-to-audio
branch for comparison; (viii) SpecVQGAN (Iashin & Rahtu,
2021), (ix) Diff-Foley (Luo et al., 2023), (x) Seeing & Hear-
ing (Xing et al., 2024), (xi) FoleyCrafter (Zhang et al., 2024),
which are video-to-audio generative models. We modify
them by using static images (randomly sampling a single
frame from each video clip) as input and fine-tuning them
on our dataset.
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“Distant 
chatter with 
cars passing”

“Train arriving 
with people 

talking”

OursAudioLDM 2 Make-an-Audio Im2Wav SpecVQGAN Diff-FoleyAudioLDM 1

“Jet roaring 
with crowd 
cheering”

Text
“Dog growls 
with goose 

honks”

MaskImage

Generated AudioPrompt Type Target Audio

Figure 3: Qualitative model comparison. We show audio generation results for our method and the baselines, each of
which is conditioned on an image, text, or segmentation mask.

4.2. Comparison to Baselines

Quantitative results. Table 1 compares our approach to
baselines on the AudioCaps dataset (see Appendix E for
evaluations on another dataset), showing that our model out-
performs across metrics and generates high-quality audio.
In particular, our method achieves the highest ACC scores,
demonstrating its ability to generate sounds closely linked
to visual objects in the scene. Among baselines, SSV2A
performs competitively, likely due to its object-level speci-
ficity from the external object detector. Diff-Foley, Seeing &
Hearing, and FoleyCrafter perform competitively, likely due
to their contrastive representations enhancing audio-visual
consistency. Make-an-Audio, Im2Wav, and SpecVQGAN
achieve reasonable AVC scores but underperform on FAD
and KL, suggesting limitations in audio quality. AudioLDM,
Captioning, and CoDi show lower ACC and FAD metrics,
likely reflecting that CLAP text embeddings fail to represent
complex audio events. Retrieve & Separate struggles with
retrieval in multi-source scenes, limiting its performance in
complex scenarios. These results demonstrate our model’s
strength in leveraging object-level cues to generate contex-
tually relevant sounds.

For subjective evaluation, we randomly select 100 gener-
ated samples from the test set, including 50 with manually
created segmentation masks for specific objects (see Ap-
pendix C). These samples are then rated by 50 participants.
Our model achieves the highest average ratings across all
measures, with a significant lead in REO, indicating better
alignment between generated sounds and objects in the im-
age. Interestingly, baselines achieve similar REO scores,
suggesting limited ability to link audio to object-level vi-
sual cues. Moreover, our model consistently outperforms in
OVL, RET, and REI, further validating the objective metrics
and demonstrating improved contextual alignment.

Qualitative results. Figure 3 compares our method with
generative baselines on the AudioCaps dataset. In the first

Method Time (↓) Attempts (↓) Satisfaction (↑)

AudioLDM 1 (Liu et al., 2023) 7.34 3.20 2.00 ± 0.88
AudioLDM 2 (Liu et al., 2024) 5.10 2.40 2.80 ± 1.04
FoleyCrafter (Zhang et al., 2024) 3.00 2.80 3.00 ± 1.96
SSV2A (Guo et al., 2024) 2.95 1.80 3.40 ± 1.42

Ours 2.67 1.60 3.60 ± 0.68

Table 2: Interaction satisfaction evaluation of user-driven
audio generation methods. We report average time (min-
utes), number of attempts, and satisfaction score (with 95%
confidence intervals).

example, where a dog and a goose are present, baselines
generate only dog growls, missing the goose honks, while
our method captures both sounds, demonstrating its object-
aware capability. Similarly, in the second and third exam-
ples, baselines produce only partial sound events, whereas
our model generates the complete soundscape. In the fi-
nal example, featuring a small jet in the background with
a cheering crowd, vision-based models fail to detect the
jet due to its small size, generating only crowd and wind
noises, while text-based models struggle to combine mul-
tiple sounds. Our approach captures all relevant sounds,
highlighting its ability to generate accurate audio aligned
with complex visual scenes. For a more direct experience,
please view the results video on the project webpage.

Interaction satisfaction. We conduct another human
study focusing on user-driven audio generation, compar-
ing our method to text-based baselines (we exclude those
that do not allow user prompting). We ask 5 experienced
participants to generate “baby laughs and puppy barks” from
a single image (the one in Figure 2), and we measure the
average time taken, the number of attempts required, and
a 5-point subjective satisfaction score. As shown in Table
2, text-based baselines often miss one of the sounds and
require multiple prompt adjustments, leading to higher time
and lower satisfaction. Our method, by contrast, consis-
tently requires fewer attempts, takes less time, and achieves
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Method ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

(i) Frozen Diffusion 0.692 1.543 1.047 1.943 0.733
(ii) Muiti-Head Attn. 0.415 2.238 1.903 2.115 0.887
(iii) Additive Attn. 0.103 15.747 7.425 1.343 0.137
(iv) Txt-Img Attn. 0.856 1.270 0.520 2.097 0.890
(v) Aud-Img Attn. 0.634 1.761 1.232 1.731 0.692
(vi) Mask Training 0.763 1.446 0.742 1.947 0.797

Ours 0.859 1.271 0.517 2.102 0.891

Table 3: Quantitative ablation studies on the AudioCaps
dataset.

higher satisfaction, even for participants already familiar
with prompting.

4.3. Ablation Study and Analysis

Table 3 summarizes the ablation experiments. We explore
the following model variations: (i) freezing the latent dif-
fusion weights rather than fine-tuning them; (ii) replacing
single-head attention with multi-head attention; (iii) altering
the attention mechanism from dot-product to additive atten-
tion; (iv) using text-image attention instead of segmentation
masks during inference; (v) substituting text-image atten-
tion with audio-image attention; (vi) using segmentation
masks instead of attention during training. We also show
additional results in Appendix D.

Effect of freezing diffusion weights. We test the impact
of freezing the latent diffusion model weights instead of
fine-tuning them during training. We observe that freezing
the weights degrades the performance, which suggests that
fine-tuning is required to achieve more coherent audio.

Impact of attention head. We compare our single-
head attention mechanism with the multi-head counterpart
(Vaswani et al., 2017). The multi-head approach enhances
the alignment between textual inputs and the generated
audio, leading to a stronger correspondence between text
descriptions and sound outputs. However, this improve-
ment reduces controllability when specifying specific audio
characteristics based on the segmentation mask. We con-
jecture that this limitation arises because each head in the
multi-head attention focuses on different regions of the in-
put (Voita et al., 2019; Hamilton et al., 2024). While this
strategy increases text-audio alignment, the lack of a clear
definition for each head’s specific scope reduces the inter-
pretability of the final results. This likely contributes to the
masking results deviating from expectations.

Evaluation of attention scoring mechanism. We assess
the role of the attention scoring function by replacing dot-
product attention with the additive one (Bahdanau, 2014).
The additive variant collapses significantly, indicating that
segmentation masks are not a suitable replacement for this
attention. As explained by the theory in Section 3.3, this

Input Image Attention Mask Input Image Attention Mask

Figure 4: Visualization results. We visualize the difference
between attention maps and segmentation masks using im-
ages from Places (Zhou et al., 2017) and text prompts from
BLIP (Li et al., 2022a).

could be because addition operations are not compatible
with the contrastive losses used by CLAP & CLIP and seg-
mentation masks generated by SAM, which disrupts our
grounding model.

Choice of attention modality. We investigate the effec-
tiveness of text-image attention compared to an adapted
audio-image attention model (Li et al., 2024b). Results
show a decline in performance, which could be attributed
to the inherent limitations of the CLAP model in represent-
ing overlapping audio. This limitation probably introduces
noise, thereby weakening the model’s ability to form audio-
visual associations essential for audio generation.

Role of masking during training and inference. We
compare the text-image attention to segmentation masks at
test time. Results show that this attention achieves compa-
rable performance to segmentation masks, suggesting both
methods provide similar guidance (Section 3.3). Notably,
using segmentation masks in both training and testing de-
grades performance. We hypothesize that masking entire
object regions imposes an overly rigid prior, as sound is typ-
ically emitted from specific parts (e.g., a dog’s head rather
than its tail). From a probabilistic viewpoint, hard masks
sampled from the ground-truth distribution exhibit high vari-
ance, whereas soft attention, empowered by CLIP & CLAP,
directly approximates the ground-truth distribution. This
allows the model to focus on sound-relevant regions while
maintaining audio accuracy at test time.

4.4. Cross-dataset Evaluation

Visualization between grounding and masking. In Fig-
ure 4, we visualize the comparison between the attention
maps generated by our model and the segmentation masks
produced by SAM. For this, we use images from Places
(Zhou et al., 2017) and text prompts derived from BLIP (Li
et al., 2022a). To visualize the attention maps, we apply
bilinear interpolation to match the resolution of the segmen-
tation masks. Our results show a strong alignment between
our model’s attention maps and the segmentation masks,
providing empirical evidence for the theory in Section 3.3
and the findings of the ablation study in Section 4.3. While
the segmentation masks represent a form of hard attention,
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Mask Output AudioInput Image Mask Output AudioInput Image

Figure 5: Interactive audio generation. Our model gener-
ates object-specific sounds in the city (left) and beach (right)
scenes, and composes a complete soundscape when one or
more objects are selected.

Input Image Mask Output Audio Mask Output AudioInput Image

Figure 6: Generating soundscapes from visual texture
changes.. We generate different soundscapes by manipulat-
ing the visual textures of the same scene, such as changing
weather (left) or materials (right).

directly highlighting entire selected objects, our model gen-
erates soft attention maps that probabilistically focus on
the sound-relevant areas within each object. This similarity
indicates that, through training, our model learns to capture
object-specific regions similar to those identified by segmen-
tation, achieving the desired grounding in a flexible manner.
Furthermore, this observation suggests that attention maps
can be replaced with segmentation masks at test time.

Interactive audio generation. We ask whether our model
will generate object-specific sounds by isolating individual
objects within a scene. As shown in Figure 5, we use the
same image for each scene, separating different objects
(cars, people, seagulls, etc.) to generate corresponding audio
outputs. The results illustrate that our model successfully
learns to generate distinct sounds for each object, such as car
engines or footsteps, reflecting their unique sound textures.
Furthermore, when multiple objects are selected together,
our model is able to generate the entire soundscape that
represents the scene property. This capability highlights our
model’s strength in interactively synthesizing audio.

Sound adaptation to visual texture changes. We explore
whether our method can generate soundscapes that adapt to
changes in visual textures, inspired by audio-visual video
editing (Lee et al., 2023). Starting with images from the
Places (Zhou et al., 2017) and Greatest Hits (Owens et al.,
2016) datasets, we apply an off-the-shelf image translation
model (Park et al., 2020; Li et al., 2022b) to create paired
scenes (e.g., sunny-rainy, water-grass), and then overlay full-

image segmentation masks on top. As illustrated in Figure 6,
our model generates context-appropriate soundscapes. For
instance, it generates rain sounds for dark skies, wind sounds
for clear skies, water splashing for watery surfaces, and
grass crunching for grassy areas. This demonstrates that our
model successfully captures variations in visual textures to
generate corresponding audio.

Balancing the volume of different objects. We find in
Figure 5 that specifying each object separately tends to
assign a similar volume to all sources. However, when mul-
tiple objects are selected, our method dynamically accounts
for context. For example, if a large car dominates the scene,
its siren may overwhelm subtle ambient sounds, creating
a more realistic blend instead of flattening everything to
equal volume. Moreover, we quantitatively confirm this
context-driven behavior in Table 1, 7, and 10, where our
object-aware method better reflects how certain sources can
overpower others or combine to create natural audio events.

Interactions among multiple objects. We show in Figure
6 that our method captures interactions, like a stick splash-
ing water, instead of generating only generic water flowing
sounds. These results indicate our model’s ability to handle
basic multi-object interactions from static images.

5. Conclusion
In this paper, we proposed an interactive object-aware audio
generation model, focusing on aligning generated sounds
with specific visual objects in complex scenes. To achieve
this, we developed a diffusion model grounded in object-
centric representations, enhancing the association between
objects and their corresponding sounds via multi-modal
attention. Theoretical analysis demonstrates that our object-
grounding mechanism is functionally equivalent to seg-
mentation masks. Quantitative and qualitative evaluations
show that our model surpasses baselines in sound-object
alignment, enabling cross-dataset generalization and user-
controllable synthesis. We hope our work not only advances
controllable audio generation but also inspires further ex-
ploration into the relationships between objects and sounds.
We will release code and models upon acceptance.

Limitations and broader impacts. Our model shows
promising results in generating object-specific sounds from
images but has certain limitations. First, relying on static
images makes it challenging to produce non-stationary audio
synchronized with dynamic events, such as impact sounds
(Figure 6). Second, it may lack precise control over the type
of sound generated for similar objects, leading to ambiguity
(e.g., a car might produce a siren or engine noise in Figure
3). Lastly, while useful for content creation like filmmaking,
our model could be misused to generate misleading videos.
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A. Results Video
We provide a results video on the project webpage, which
showcases our model’s ability to generate sounds based on
the masked object prompts. Specifically, this video demon-
strates the following:

• Our model can interactively generate object-specific
sounds within complex scenes.

• Despite being trained on the AudioSet (Gemmeke et al.,
2017), our model can be successfully applied to out-of-
domain visual scenes, including those from the Places
dataset (Zhou et al., 2017), the Greatest Hits dataset
(Owens et al., 2016), and even random web images.

• Our model can capture variations in visual textures to
generate corresponding audio.

• Our model can capture diverse objects within an image
and generate sounds more accurately than the baselines.

B. Dataset Preprocessing Details
B.1. Dataset Refinement

We use the AudioSet (Gemmeke et al., 2017) as the primary
source for this task. The original dataset comprises 4,616
hours of video clips, each paired with corresponding labels
and captions. Inspired by Sound-VECaps (Yuan et al., 2024),
we apply the following refinement steps to adapt the dataset
for our use.

Audio-visual matching. To ensure strong correspondence
between audio and visual inputs, we train an audio-visual
matching model (Figure 8), which consists of a 6-layer
non-causal transformer with a rotary positional embedding
mechanism (Su et al., 2024). Visual embeddings are ex-
tracted using the ViT-B/16 Transformer module from CLIP
(Radford et al., 2021), while audio embeddings are gen-
erated using the BEATs model (Chen et al., 2022b). Both
embeddings are then passed through a 3-layer MLP to match
a 768-dimensional space. The model is trained in a self-
supervised manner (Owens & Efros, 2018; Korbar et al.,
2018), treating audio-visual pairs from the same tempo-
ral instance as matches and those from different videos as
mismatches, which allows the model to learn audio-visual
correspondences without human annotations.

For training efficiency, the videos are standardized to 8
frames per second, with each frame resized to 224x224 pix-
els. During the evaluation, our model achieves an accuracy
of 91% for matching scenarios and 85% for non-matching
scenarios on a set of 100 matched and 100 mismatched sam-
ples, indicating its effectiveness in capturing audio-visual
alignment. We use this model to score each clip in the Au-
dioSet, with results shown in Figure 7. A threshold of 0.6 is
then applied to filter the dataset.
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Figure 7: Distribution of matching scores. We present the
scores for audio-visual pairs in the AudioSet.
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Figure 8: Model architecture of audio-visual matching.
We train a model to quantify the correspondence between a
video and its corresponding soundtrack.

Caption rephrasing. To ensure captions to focus exclu-
sively on visible sounding objects, we utilize Llama (Tou-
vron et al., 2023) with a tailored prompt (Figure 9). Given
the video and audio captions, our prompt instructs the model
to generate a single sentence highlighting the common fea-
tures between the audio and visual content. The prompt
emphasizes including only events present in both modali-
ties, while excluding modality-specific details such as overly
specific visual features. The model is guided to capture
the order and parallel occurrence of events using temporal
markers like “and then”, “followed by”, and “while”. This
process enhances the consistency between audio and visual
descriptions.

Audio filtering. We filter out clips containing human vo-
calizations (e.g., singing, talking), voiceovers, and music
using a sound event detection model (Kong et al., 2020b)
and the metadata from AudioSet. This step ensures that
the remaining audio data largely consists of ambient and
context-specific sounds that are more likely to align with
the visual content.

After applying these refinement steps, the dataset is reduced
to 748 hours of video clips that most likely contain contin-
uous sounds throughout each clip and exhibit high audio-
visual correspondence.

16

https://tinglok.netlify.app/files/avobject/


Sounding that Object: Interactive Object-Aware Image to Audio Generation

Role-System:
You are a helpful assistant for identifying audio-visual events and generating sentences. Your task is to identify the overlapping or 
common features between a 10-second audio and the corresponding visual description, and help the user to generate a single sentence 
of caption that represents this intersection.
The caption feature is a sentence generated by an audio-caption model: {enclap_caption}.
The label feature is several audio events that happened in the audio: {audio_label}.
Lastly, the user is given several sentences which are the image description of the scene for each second, connected by “and then”.
Please identify all the audio events and visual elements based on all three features and try to conclude in one single sentence to describe 
this scene with the shared audio-visual events or actions that present sound and sight together.
Please emphasize time features to present the order of each event, such as “and then”, “followed by”, “after” for order; “and”, “while” etc., 
for parallel events.
Intersection Focus:
• Based on the first caption feature, you might need to change or alter any wrong audio event, improve the sentence with more features, 

such as the weather, the emotion of any people, the description of the car and so on.
• Keep only the features that are common between the audio and visual descriptions. If an event or element is mentioned in both the 

audio and the visual description, include it in the final caption.
• Omit any feature or detail that is present in only one modality. This includes removing overly specific visual details, such as the color, 

shape, any text or label, name and what people are writing and so on, that do not align with the audio description and vice versa.
Please ensure that the final caption accurately reflects the common elements of the audio-visual scene, maintaining the order of 
occurrence, and capturing the shared background, foreground, and context.
Role-User:
The descriptions of the frames are: {frame_caption}

Figure 9: Prompt for Llama. We extract common features between the audio and visual caption using Llama, ensuring the
resulting caption focuses on events present in both modalities while avoiding overly specific details.
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Figure 10: Categorical distribution of the filtered Au-
dioSet. We show top 8 categories derived from AudioSet
annotations.

B.2. Dataset Configuration

Figure 10 shows the top-8 categorical distributions, derived
from AudioSet (Gemmeke et al., 2017) annotations. We
uniformly sample 48 hours across these categories for the
test set, with the remaining used for training. Notably, there
is no overlap between training and testing videos. As most
clips contain multiple sound sources, we randomly select
100 examples from the test set to assess our model’s ability
to generate object-specific sounds through human evaluation.
For 50 of these samples, we manually create object masks by
splitting each caption into object snippets and then randomly

selecting one to guide SAM in generating the mask.

C. Additional Evaluation Details
ACC. We use the PANNs model* (Kong et al., 2020b) to
compute ACC for each audio clip, leveraging annotations
from AudioSet. Each audio clip is first processed through
the pre-trained PANNs model to obtain logit values for all
sound event classes, excluding classes like “Speech" and
“Music." We then sample the logits for each clip based on
its annotated labels in AudioSet. Since these logits are
softmax outputs, they represent the model’s confidence in
each sound event, allowing us to interpret them as accuracy
scores. Finally, we compute the mean of these sampled
logits across all clips to determine the overall ACC score.

FAD, KL, and IS. We measure FAD, KL, and IS using
the AudioLDM-Eval toolbox†. The reference and gener-
ated audio files are organized into separate folders, and the
toolbox is run in paired mode.

AVC. We measure AVC using a two-stream network
(Arandjelovic & Zisserman, 2017). One stream extracts
audio features, while the other extracts visual features. We
use OpenL3‡ (Cramer et al., 2019) to obtain these features
and compute the cosine similarity for each image-audio pair.

*https://github.com/qiuqiangkong/
audioset_tagging_cnn

†https://github.com/haoheliu/audioldm_
eval

‡https://github.com/marl/openl3
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Scale ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

λ = 1.0 0.413 2.021 0.914 1.336 0.674
λ = 1.5 0.657 1.558 0.762 1.617 0.751
λ = 2.0 0.859 1.271 0.517 2.102 0.891
λ = 2.5 0.807 1.440 0.589 2.012 0.853
λ = 3.0 0.796 1.482 0.576 2.023 0.841

Table 4: Quantitative results under different CFG scales.

Specifically, we employ the “env” content type model with
a 512-dimensional linear spectrogram representation.

Human evaluation. We conducted a human evaluation
to assess the quality and relevance of the generated audio
using Amazon Mechanical Turk§. The interface for this
study is shown in Figure 11. Each participant was presented
with an input image and the corresponding generated audio,
then rated each sample on a scale from 1 to 5 based on
the following criteria: (i) Overall Quality (OVL), assess-
ing the general audio quality; (ii) Relevance to Input Text
(RET), measuring the alignment of the audio with the asso-
ciated text description; (iii) Relevance to Input Image (REI),
evaluating how well the audio corresponds to the visual con-
tent; and (iv) Relevance to Selected Object (REO), focusing
on the alignment of the audio with a specific object in the
image.

We randomly selected 100 samples for evaluation, each rated
by 50 unique participants to ensure reliability. These sam-
ples included both (50%) holistic and (50%) object-specific
cases. To control for random responses, we incorporated a
set of noise-only samples. Consistently low scores for these
control samples confirmed the reliability of participants. Ad-
ditionally, we ensured that each participant spent at least
90 seconds evaluating each sample to guarantee thoughtful
assessment.

To further validate our results, we computed the inter-rater
reliability using Cohen’s kappa (McHugh, 2012), which
indicated a substantial agreement among raters (κ = 0.78).
Furthermore, we conducted a statistical significance test
(paired t-test) (Kim, 2015) between our model and base-
lines for each criterion, confirming that the improvements
reported are statistically significant (p < 0.01). The final
scores presented in the main paper are the mean ratings
across all participants.

D. Additional Results
Different CFG scales. We evaluate our model’s perfor-
mance across CFG scales ranging from 1.0 to 3.0. As shown
in Table 4, there is a consistent improvement in metrics as
λ increases from 1.0 to 2.0, reaching peak performance at
λ = 2.0. However, further increasing λ beyond 2.0 results

§https://www.mturk.com/

Threshold ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

0.4 0.521 1.874 0.888 1.432 0.696
0.5 0.743 1.536 0.691 1.625 0.774
0.6 0.859 1.271 0.517 2.102 0.891
0.7 0.845 1.387 0.612 1.987 0.882
0.8 0.812 1.501 0.664 2.005 0.879

Table 5: Quantitative results under different audio-visual
matching scores.

Method ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

w/o PE 0.787 1.493 0.674 1.913 0.779
w/ PE (Ours) 0.859 1.271 0.517 2.102 0.891

Table 6: Model performance comparison with and without
positional encoding.

in a gradual decline across most metrics.

Different thresholds of audio-visual matching. We test
our model’s performance across different audio-visual
matching thresholds, varying from 0.4 to 0.8 (Figure 7).
The same held-out test set is used to assess the metrics, with
results presented in Table 5. We empirically find that the
model achieves optimal performance at a threshold of 0.6.

Effect of positional encoding. We assess the impact of
positional encoding (PE) on our model’s performance. As
shown in Table 6, removing positional encoding leads to a
significant degradation across all metrics, highlighting its
importance in the model’s overall performance.

Impact of overall scene context. We examine whether
capturing the overall scene context benefits audio generation.
To this end, we compare the Captioning & Mix baseline,
where each detected object in the image is captioned sep-
arately, passed to AudioLDM to generate individual audio
clips, and subsequently mixed, against the Captioning base-
line (as described in Section 4.1) that leverages the full
scene. As shown in Table 7, although Captioning & Mix
yields more accurate audio events (ACC), the perceptual
metrics (FAD, KL, IS, and AVC) consistently favor the full-
scene Captioning method. These results suggest that context
awareness is crucial for generating high-quality audio.

Choice of segmentation module. We replace SAM with
SAM 2 (Ravi et al., 2024), a more sophisticated segmen-
tation method, and evaluate it on the test set. We show in
Table 8 that this substitution leads to further gains in genera-
tion accuracy and quality, which confirms that more precise
segmentation masks benefit our method and aligns well with
Theorem 3.1.

Synchformer-based metric. Inspired by Synchformer’s
contrastive pre-training (Iashin et al., 2024), we employ
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Figure 11: Human evaluation interface. We show the interface used for the subjective evaluation of generated audio
samples. Participants are presented with input text, an image, and a corresponding audio sample, and are instructed to rate
the audio on four criteria. All ratings must be completed before advancing to the next sample.

Method ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

Captioning & Mix 0.643 7.634 2.511 1.443 0.645
Captioning 0.587 2.778 1.364 1.901 0.773

Table 7: Model performance comparison with and without
mixing strategy.

Method ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

w/ SAM 0.859 1.271 0.517 2.102 0.891
w/ SAM 2 0.881 1.153 0.472 2.295 0.936

Table 8: Evaluation comparison between SAM and SAM 2
modules.

ImageBind (Girdhar et al., 2023) to measure audio-visual
matching on static images. By extracting features from both
modalities and computing cosine similarity, we show in
Table 9 that our method consistently outperforms baselines
on this metric.

E. Additional Dataset Evaluations
VGG-Sound dataset. To further evaluate our method, we
evaluate it on the VGG-Sound dataset (Chen et al., 2020),
which contains in-the-wild audio-visual data collected from
YouTube. Following (Chen et al., 2021a), we use VGG-
Sound Sync, a 14-hour subset that contains about 5,000

Method IB (↑)

Ground Truth 0.66

Retrieve & Separate (Zhao et al., 2018) 0.29
AudioLDM 1 (Liu et al., 2023) 0.24
AudioLDM 2 (Liu et al., 2024) 0.27
Captioning (Li et al., 2022a) 0.31
Make-an-Audio (Huang et al., 2023b) 0.19
Im2Wav (Sheffer & Adi, 2023) 0.33
SpecVQGAN (Iashin & Rahtu, 2021) 0.37
Diff-Foley (Luo et al., 2023) 0.39

Ours 0.45

Table 9: Comparison of ImageBind (IB) scores across dif-
ferent methods.

video clips with better audio-visual synchronization, for test-
ing. To obtain captions aligned with this dataset, we apply
the same refinement procedure described in Appendix B.1.
We assess our model and all baselines (trained on AudioSet)
using the VGG-Sound Sync dataset. As presented in Ta-
ble 10, our method outperforms all baselines across multiple
metrics, particularly in ACC. These results indicate that our
model generates more accurate audio that captures the com-
plexity of each scene, while preserving audio quality.

ImageHear dataset. We also evaluate our method on the
ImageHear dataset (Sheffer & Adi, 2023), an image-to-
audio benchmark comprising 100 web-sourced images span-
ning 30 visual categories (2–8 images per class). Although
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Method ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

Ground Truth / / / / 0.986

Retrieve & Separate (Zhao et al., 2018) 0.143 4.731 1.726 1.782 0.713
AudioLDM 1 (Liu et al., 2023) 0.256 3.876 1.634 1.901 0.634
AudioLDM 2 (Liu et al., 2024) 0.401 3.114 1.137 1.915 0.687
Captioning (Li et al., 2022a) 0.491 2.378 1.089 2.001 0.763
Make-an-Audio (Huang et al., 2023b) 0.395 3.436 1.571 1.876 0.721
Im2Wav (Sheffer & Adi, 2023) 0.412 3.005 1.474 1.894 0.747
SpecVQGAN (Iashin & Rahtu, 2021) 0.544 2.722 1.015 1.916 0.796
Diff-Foley (Luo et al., 2023) 0.607 1.834 0.941 2.161 0.851

Ours 0.761 1.112 0.675 2.342 0.898

Table 10: Additional quantitative comparison of our method and baselines on the VGG-Sound Sync dataset.

Method CS (↑) ACC (↑)

Make-an-Audio (Huang et al., 2023b) 27.44 0.77
Im2Wav (Sheffer & Adi, 2023) 9.53 0.49
SpecVQGAN (Iashin & Rahtu, 2021) 18.98 0.49
Diff-Foley (Luo et al., 2023) 35.12 0.86

Ours 47.37 0.88

Table 11: Additional comparison of our method and base-
lines on the ImageHear dataset.

each image contains only a single object, which does not
align well with our object-aware setting, our method contin-
ues to outperform all baselines in both clip-score (CS) and
ACC, as reported in Table 11.

F. Proof of Theorem 3.1
Proof. For notation simplicity, let uq ∈ ∆P denote the
softmax attention weight computed on query q such that
uq,l =

exp(⟨Ev(tq),Et(iq,l)⟩Σ)∑P
k=1 exp(⟨Ev(tq),Et(iq,k)⟩Σ)

. We first state the follow-
ing lemma.

Lemma F.1. Under the same conditions in Theorem 3.1 of
the main paper, we have

Eq[∥uq − pq∥ℓ1 ] ≤
√
2ϵcontrast

Proof. Notice that

ϵcontrast

= Eq,d∼pq

[
− log

exp (⟨Ev(tq), Et(iq,d)⟩Σ)∑P
k=1 exp (⟨Ev(tq), Et(iq,k)⟩Σ)

]
− Eq,d∼pq

[− log pq,d]

= Eq,d∼pq

[
log

pq,d
uq,d

]
= Eq [DKL(pq,d∥uq,d)]

where DKL denotes the KL distance. By Pinsker’s inequal-

ity and Cauchy-Schwarz inequality,

ϵcontrast = Eq [DKL(pq,d∥uq,d)]

≥ 1

2
· Eq

[
∥pq,d − uq,d∥2ℓ1

]
≥ 1

2
· (Eq [∥pq,d − uq,d∥ℓ1 ])

2
.

It follows that

Eq[∥uq − pq∥ℓ1 ] ≤
√
2ϵcontrast.

Returning to the proof of Theorem 3.1 in the main paper, let
sq := f(aq) = f(uqV ) denote the audio output on query q
by the trained model. We decompose errtest by

errtest

= Eq[v(f
∗(pqV

∗), iq, pq)]− Eq[v(f
∗(uqV

∗), iq, pq)]︸ ︷︷ ︸
A

+ Eq[v(f
∗(uqV

∗), iq, pq)]− Eq[v(f
∗(aq), iq, pq)]︸ ︷︷ ︸

B

+ Eq[v(f
∗(aq), iq, pq)]− Eq[v(f(aq), iq, pq)]︸ ︷︷ ︸

C

+ Eq[v(f(aq), iq, pq)]− Eq[v(f(aq), iq,mq)]︸ ︷︷ ︸
D

+ Eq[v(f(aq), iq,mq)]− Eq[v(f(mqV ), iq,mq)]︸ ︷︷ ︸
E

.

By Lemma F.1 and ∥V ∗∥∞ ≤ Bv , we have

A ≤ Eq[Lv · Lf ·Bv · ∥uq − pq∥ℓ1 ]
≤ Lv · Lf ·Bv ·

√
2ϵcontrast.

Since ∥V ∗ − V ∥∞ ≤ ϵV and ∥uq∥1 = 1, we have

B = Eq[v(f
∗(uqV

∗), iq, pq)]− Eq[v(f
∗(uqV ), iq, pq)]

≤ Lv · Lf · ϵV .
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By definition, C ≤ ϵf . Using the definition ϵsam =
Eq[∥mq − pq∥ℓ1 ], we have

D ≤ Eq[Lv · ∥mq − pq∥ℓ1 ]
≤ Lv · ϵsam.

and using ∥V ∥∞ ≤ Bv with Lemma F.1,

E ≤ Eq[Lv · Lf ·Bv · ∥mq − uq∥ℓ1 ]
≤ Lv · Lf ·Bv · (ϵsam +

√
2ϵcontrast).

Combining, we have

errtest ≤ Lv · Lf ·
(
ϵV +Bv ·

(
ϵsam + 2

√
2ϵcontrast

))
+ Lv · ϵsam + ϵf .

This completes the proof.
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