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Abstract

Commercial LLM services often conceal inter-
nal reasoning traces while still charging users
for every generated token, including those from
hidden intermediate steps, raising concerns
of token inflation and potential overbilling.
This gap underscores the urgent need for re-
liable token auditing, yet achieving it is far
from straightforward: cryptographic verifica-
tion (e.g., hash-based signature) offers little
assurance when providers control the entire
execution pipeline, while user-side prediction
struggles with the inherent variance of reason-
ing LLMs, where token usage fluctuates across
domains and prompt styles. To bridge this gap,
we present PALACE (Predictive Auditing of LLM
APIs via Reasoning Token Count Estimation), a
user-side framework that estimates hidden rea-
soning token counts from prompt—answer pairs
without access to internal traces. PALACE in-
troduces a GRPO-augmented adaptation mod-
ule with a lightweight domain router, enabling
dynamic calibration across diverse reasoning
tasks and mitigating variance in token usage
patterns. Experiments on math, coding, med-
ical, and general reasoning benchmarks show
that PALACE achieves low relative error and
strong prediction accuracy, supporting both
fine-grained cost auditing and inflation detec-
tion. Taken together, PALACE represents an im-
portant first step toward standardized predictive
auditing, offering a practical path to greater
transparency, accountability, and user trust.

1 Introduction

Large language model (LLM) services have made
significant progress in recent years, incorporating
capabilities such as multi-step reasoning (Guo et al.,
2025), external tool use (Chen et al., 2024; Zhuang
et al., 2023), and agent coordination (Zhao et al.,
2024). These advancements enhance generation
quality and expand the applicability of LLMs to a
wider range of real-world domains.

However, these reasoning LLMs also produce
long internal outputs that often include verbose and
noisy content, such as backtracking traces or spec-
ulative reasoning branches (Aggarwal and Welleck,
2025), which may not benefit end users and can
hinder comprehension. Moreover, revealing such
internal traces poses security and intellectual prop-
erty risks: malicious users could extract model
behaviors or replicate proprietary agent workflows,
threatening the commercial value of LLM systems.
To mitigate these risks, LLM service providers
like OpenAl (ChatGPT) (OpenAl, 2025), Google
(Gemini) (Google Gemini, 2025), and Anthropic
(Claude) typically withhold internal tokens gener-
ated during reasoning or tool execution. Nonethe-
less, users are still billed for the full sequence of
tokens, including both hidden internal tokens and
visible final outputs. Such services have been for-
mally defined as Commercial Opaque LLM Ser-
vices (COLS) (Sun et al., 2025b).

This opaque design raises serious transparency
concerns: users are charged for token usage they
cannot observe or verify. All usage data is reported
solely by the service provider, whose financial in-
centives may conflict with those of the user. This
creates the risk of token inflation, where COLS
may over-report token usage to increase billing.
Empirical studies show that in many state-of-the-
art models, over 90% of tokens are consumed in
hidden reasoning, with only a small portion form-
ing the final answer (Sun et al., 2025a). Even minor
inflation under such conditions can result in sub-
stantial overcharging, particularly for large-scale
API users engaged in synthetic data generation, an-
notation, or document processing. For example,
a single high-efficiency ARC-AGI evaluation run
using OpenAlI’s 03 model consumed 111 million to-
kens, resulting in a cost of $66,772 (Chollet, 2025),
in which more than 60% are the cost of hidden rea-
soning tokens, implying that a 30% misreporting
of hidden tokens could cost more than $12,000.
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Figure 1: The transparency concern of COLS.

Auditing token usage under these conditions is
challenging for two reasons. First, cryptographic
approaches (Sun et al., 2025a) offer little assur-
ance when providers control the entire execution
pipeline and can selectively expose data. Sec-
ond, user-side heuristics based on input—output
lengths are unreliable, because reasoning token us-
age varies drastically with domain, prompt style,
and task complexity (Jin et al., 2024). Together,

these challenges create a critical need for an audit-

ing solution that works without access to hidden
traces and remains robust to reasoning variability.

To address these challenges, we introduce
PALACE (Predictive Auditing of LLM APIs via To-
ken Count Estimation), the first user-side frame-
work to estimate hidden reasoning token usage di-
rectly from prompt—answer pairs. PALACE requires
COLS to release lightweight auxiliary datasets that
are verifiable and guaranteed to be entirely gener-
ated by COLS’s own LLMs, fulfilling their obliga-
tion to provide certifiable data for auditing. Each
sample in these datasets includes a user prompt,
the model’s reasoning process, and the final an-
swer. PALACE addresses the trace inaccessibility
challenge by learning to infer reasoning length
from observable input—output semantics, eliminat-
ing any dependency on internal execution data.
It addresses the reasoning variability challenge
through two key innovations: a GRPO (Shao et al.,
2024) (Group Relative Policy Optimization)-driven
adaptation module that improves reasoning length
inference for complex tasks, and a lightweight do-
main router that dynamically calibrates predictions
across diverse usage scenarios.

For each auditing instance, the user provides
her prompt and the corresponding response re-
turned by COLS, along with the API configura-
tion. PALACE invokes the router to select the ap-

propriate GRPO adapted module, and performs
the token count prediction. PALACE returns both
per-sample predictions and aggregated estimates
across multiple queries to support comprehensive
auditing of the service. Different from prior audit-
ing methods such as (Sun et al., 2025a), PALACE
neither relies on hidden tokens or intermediate em-
beddings during inference, nor requires users to
issue additional queries or requests during the au-
diting process. This makes PALACE a lightweight
and user-transparent auditing solution for COLS.

Our main contributions are summarized as fol-
lows:

* We introduce reasoning length estimation as
a foundation for user-side auditing of hidden
reasoning token usage in commercial COLS.

* We present PALACE, which combines a
GRPO-augmented adaptation module with a
lightweight domain router to infer hidden rea-
soning length directly from prompt—answer
pairs, without access to internal execution
traces.

* We construct multi-domain benchmark
datasets and show that PALACE achieves low
relative error and stable cumulative accuracy
across reasoning-heavy tasks, enabling fine-
grained cost auditing and reliable detection of
token inflation.

2 Background and Motivation

2.1 COLS and Hidden Tokens

The development of reasoning LLMs (Muen-
nighoff et al., 2025; Hao et al., 2024) and agentic
LLMs (Chan et al., 2023) rapidly changes the ser-
vice module of LLM service providers. Set reason-
ing LLM API as an example, OpenAl now provides
multiple reasoning model inference APIs such as
03, 04-mini, 04-mini-high, etc (Jaech et al., 2024;
OpenAl, 2025). When a user submits a prompt to
one of these APIs, the reasoning model typically
generates a reasoning trace and the final answer.
While most major providers return only the final an-
swer in the API response, they charge based on the
total number of tokens consumed by both the rea-
soning trace and the answer. As a form of compen-
sation, service providers such as OpenAl, Gemini,
and Claude offer users only a summarized version
of the reasoning content for inspection, while the
full reasoning trace remains hidden. Nevertheless,
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Figure 2: Example API Call to a Reasoning Model and
Its Token Composition.

the total number of reasoning tokens, including
those not visible to the user, is still accounted for in
the billing. OpenAl explicitly states in its documen-
tation: While reasoning tokens are not visible via
the API, they still occupy space in the model’s con-
text window and are billed as output tokens (Ope-
nAl, 2025). Similarly, Gemini notes: When think-
ing is turned on, response pricing is the sum of
output tokens and thinking tokens (Google Gem-
ini, 2025). Specifically, Figure 2 illustrates a spe-
cific API request to a reasoning model, where the
reasoning_tokens count reaches 2,624. These,
together with the answer’s tokens, constitute the
completion_tokens that are billed at the standard
output rate.

2.2 Token Auditing

The issue of potential price-service mismatch in
COLS remains underexplored. (Sun et al., 2025b)
categorized such mismatches into two types: qual-
ity downgrade and quantity inflation. Quality down-
grade occurs when a COLS fails to deliver the
promised standard of service, instead relying on
cost-saving alternatives (e.g., smaller LLMs or
cheaper tool calls) without informing the user. (Cai
et al., 2025; Yuan et al., 2025) investigated vari-
ous techniques for detecting model substitution in
LLM APIs, including output-based statistical tests,
benchmark comparisons, log probability analysis,
and the use of Trusted Execution Environments
(TEEs) (NVIDIA, 2023). For quantity inflation,
Coln (Sun et al., 2025a) introduced a hash-tree-
based framework that enables auditors to issue ver-
ification requests to COLS for token count and
semantic validation. However, the need for hash

tree generation on the server side and the auditor-
COLS interaction imposes limitations on practical
deployment. Thus, there is a pressing need for a
high-accuracy, plug-and-play auditing method to
detect quantity inflation with minimal assumptions.

3 Dataset Construction

Since prior work does not address auditing the rea-
soning length based solely on prompt—answer pairs,
we construct the first reasoning length auditing
dataset. Specifically, we curate four datasets com-
prising multi-step reasoning traces generated by
DeepSeek-R1 (Guo et al., 2025) and DeepSeek-
R1-Distill-Llama-70B. These datasets span diverse
domains to support generalization and robust eval-
uation (Face, 2025):

* OpenR1-Math: A large-scale dataset for
mathematical reasoning, consisting of 220K
problems sampled from NuminaMath 1.5.
Each question is annotated with 2—4 reasoning
traces generated by DeepSeek-R1.

* OpenR1-Code: A dataset focused on pro-
gram synthesis, with samples exhibiting plan-
and-execute style reasoning patterns.

* OpenR1-Medical: A distilled SFT dataset
generated by DeepSeek-R1 (Full Power ver-
sion), targeting medically verifiable diagnos-
tic questions based on HuatuoGPT-ol.

* General Reasoning: A large-scale synthetic
dataset containing over 22 million open-
domain multi-step QA examples, generated
using DeepSeek-R1-Distill-Llama-70B. This
dataset provides broad coverage of reasoning
styles across domains.

We refer to these datasets as Dys, Do, Dued,
and D¢, respectively.

GRPO Auditing Dataset The GRPO auditing
dataset is constructed to train the auditing model
under the GRPO framework. Unlike a supervised
regression dataset that uses ground-truth labels for
direct loss computation, this dataset provides refer-
ence values that GRPO converts into reward signals
for policy optimization.

Each sample consists of a structured prompt
that includes a <Problem> section providing the
user prompt, a <Solution> section showing the re-
sponse from COLS, and explicit instructions direct-
ing the model to generate step-by-step reasoning



Table 1: Instructional prompt template for GRPO-
augmented auditing model training.

Prompt Template for Chain-of-Thought

Reasoning with JSON Output

Given a <Problem> and its corresponding
<Solution>, your task is to predict how
many tokens are consumed in the process
of arriving at the final <Solution> to the
problem.

Generally speaking, the more complex the
problem is, the more tokens are required.

<Problem>
{problem}
</Problem>

<Solution>
{solution}
</Solution>

The Problem has
the Solution has

tokens, and
tokens.

Please provide a detailed chain-of-thought
reasoning process and include your thought
process within <think> tags.

Your final answer should be enclosed within
<answer> tags.

Please return the predicted number of tokens
in JSON format:
{{"count"”: int}}

Example format:

<think> Step-by-step reasoning, including
self-reflection and corrections if
necessary. [Limited by 1024 tokens]
</think>

<answer> Summary of the thought process
leading to the final token count and your
predicted token count in JSON format:
{{"count”: int}} [Limited by 512 tokens]
</answer>

Let me solve this step by step.

inside <think> tags and output a predicted token
count in JSON format within <answer> tags. To
stabilize training and improve estimation accuracy,
the prompt also provides auxiliary cues such as
input and output token lengths, which correlate
with reasoning complexity. This structured setup,
reflected in Table 1, reference for reward computa-
tion, allowing GRPO to refine both the reasoning
process and the accuracy of token count predictions
across domains.

4 Method

4.1 Overview

As illustrated in Figure 3, PALACE serves as a
trusted third-party auditor for commercial LLM

services. It begins by acquiring a lightweight aux-
iliary dataset from the COLS provider and con-
structing an auditing dataset based on it. A general-
purpose auditing model is then obtained by fine-
tuning a base LLM on generic QA tasks. To accom-
modate diverse reasoning styles across domains
and LLM APIs, PALACE further applies GRPO on
domain-specific datasets to derive task-specific pa-
rameter deltas, referred to as GRPO-augmented
modules. A lightweight router is trained to classify
user prompts by domain and select the appropriate
GRPO-augmented module for inference.

During auditing, the user submits a prompt and
the corresponding COLS output. PALACE classi-
fies the prompt’s domain, loads the relevant GRPO
module, and processes the prompt—answer pair us-
ing a standardized template. The auditing model
then predicts the number of hidden reasoning to-
kens, expanding this prediction into a tolerance
interval. If the predicted token count deviates from
the COLS-reported count beyond a threshold, the
sample is flagged as potentially inflated. A dataset
exhibiting a high proportion of such samples or a
large cumulative error suggests inflationary behav-
ior by the COLS.

4.2 GRPO-Augmented LLM Training

To establish the auditing capability, PALACE first
fine-tunes a base LLM )V on a general QA dataset
D¢ to obtain a general-purpose auditing model
Weg. This model is trained to estimate hidden rea-
soning token count required for solving a given
problem, based on the problem statement and the
final answer:

Wa = arg mv\i/n E(zy)~pe £ (Y, fw(x))] . (1)

Because reasoning complexity varies signifi-
cantly across tasks and models, we further enhance
W using GRPO on domain-specific datasets. For
each target domain and COLS model (e.g., cod-
ing domain on OpenAI’s O3-mini), we perform
GRPO on D¢ to inject reasoning-specific adapta-
tion into the model. The resulting GRPO-updated
model is stored as a domain-specific delta. We
define a reward function that encourages accurate
predictions within a relative error threshold ¢ and
accounts for the underlying reasoning complexity.
Let y be the ground-truth hidden reasoning token
count and #reason () be the known reasoning length
from auxiliary data. The reward is defined as:
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R(§,y) = max (0, 1- ‘y’;‘y‘> @)

Here, 3 denotes the model’s prediction and y
is the ground truth target. This reward smoothly
penalizes prediction error relative to the magnitude
of the target value, and is clipped to lie within the
[0, 1] interval.

GRPO (Shao et al., 2024) works by maximiz-
ing a clipped surrogate objective. This objective
uses a group-wise advantage, which measures a
prediction’s reward relative to the average reward
of its group, thereby stabilizing training. The fi-
nal objective function is regularized with a KL-
divergence term against a reference policy 7.y to
prevent large, destabilizing policy shifts.

E min (r;(6

chp(ri(e), 1—e€14¢€A;)]
— BDxL(7g]|Tref) 3)

Jorro (0

where 7;(6) is the probability ratio between the cur-
rent and old policies and A; is the advantage. The
resulting GRPO-augmented module, AW¢, equips
PALACE with specialized reasoning length predic-
tion, improving its accuracy on complex tasks.

4.3 Router Construction

To enable domain-aware auditing, we train a
lightweight router to classify user prompts into sup-
ported domains, enabling dynamic selection of the
appropriate GRPO module, thereby improving pre-
diction accuracy while avoiding the need to deploy
a large monolithic model.

We denote the router as a classification function
frouter © @ — d, where z is the user prompt and
d € {1,..., D} is the domain index corresponding
to one of the GRPO-specialized domains. We train
frouter ON @ small subset of samples selected from
each dataset Dys, Do, Dmed, D, using only the
prompt text and its associated domain label.

The objective is a standard cross-entropy loss
over the domain labels:

D

(m 7d) E€Drouter

logp(d|z), (4

Erouter = -

where Dyoyeer 1S the router training set randomly
sampled from the domain-specific datasets.

During inference, given a new prompt x, the
router first predicts its domain:

~

d= frouter(x)- ©)

Then, the system loads the corresponding GRPO
module AW , applies it to the base model Wg,
and performs reasoning length prediction with the
adapted model Wg + AW ;.

This modular design ensures scalability and ef-
ficiency while leveraging domain-specific adapta-
tions for improved auditing accuracy.

S Experiments

5.1 Experimental Settings

Models and Datasets. We select lightweight yet
capable LLMs with strong reasoning ability to sup-
port experiments. For training the auditing models,
we use Qwen2.5-1.5B, Qwen2.5-3B, LLaMA3.2-
1B, and LLaMA3.2-3B. For benchmarks, we adopt
the four datasets introduced in Section 3, covering
diverse reasoning domains including mathematics,



programming, medical reasoning, and general prob-
lem solving (Face, 2025). These datasets are used
to evaluate PALACE and all baselines, thus provid-
ing comprehensive coverage of common reasoning
tasks for large language models.

Baselines and Metrics. We compare our method
against three baselines, including the prior work
Coln (Sun et al., 2025a) and two naive predictive
auditing approaches:

* Coln: A token auditing method based on an
embedding hash tree and auditor-based query
verification. Coln is effective at detecting
misreported token counts and meaningless to-
ken injection. However, it fails to identify
repeated reasoning fragments and shows lim-
ited sensitivity when the inflation rate is low.

* MLP: A simple predictive auditing approach
that estimates reasoning token length using
only the input and output lengths. We im-
plement two two-layer MLP models, one for
regression and one for classification.

¢ Low-Rank Adaptation (LoRA) (Hu et al.,
2022) Fine-Tuning: A direct fine-tuning base-
line where LLLMs are fine-tuned on the audit-
ing datasets to predict the reasoning token
length directly.

For each dataset, we evaluate auditing performance
using the following four metrics:

* Accuracy: A prediction is considered correct
if its relative error is below 33% compared to
the ground truth.

— Pass@1: Computed via greedy decod-
ing, selecting the most likely prediction.

— Pass@5: Computed via sampling five
predictions with a temperature of 0.8,
counting the result as correct if any pre-
diction meets the accuracy criterion.

* Average Error: The mean numeric deviation
between predicted and ground-truth reasoning
lengths in greedy decoding.

* Aggregated Error: The difference between
the total predicted reasoning length and the
total ground-truth reasoning length, reflecting
dataset-level cumulative bias.

These metrics jointly capture both the precision
of individual predictions and the overall bias of

the auditing model across the entire dataset. In
particular, the aggregated error reflects whether
small per-sample deviations accumulate into large
discrepancies, which is critical for reliable large-
scale auditing of hidden token usage in real-world
LLM deployments.

Training Configurations. We use Verl (Sheng
et al., 2024) as the training codebase. The relevant
settings include: a generation temperature of 0.8, a
total batch size of 128 (with 8 rollouts per strategy),
an update batch size of 128 per GRPO step, KL
penalty 5 = 0.001, and a learning rate of 1e-6. For
the LoRA fine-tuning, we set the LoRA rank to 128,
use a batch size of 128, and control the learning
rate at le-5. Unless otherwise specified, we train
for 3 epochs.

5.2 Main Results

Prediction Accuracy. Table 2 demonstrates that
PALACE achieves the strongest prediction accuracy
across all domains and model sizes. By leveraging
semantic information rather than relying solely on
text length and utilizing the reasoning abilities of
the auditing model, PALACE consistently delivers
high Pass@1 accuracy, even on reasoning-heavy
tasks like mathematics. For instance, PALACE pre-
dicts the reasoning length with 63.81% accuracy
under the 33% relative error, while baselines can-
not exceed even 50% accuracy in the same set-
ting. LoRA fine-tuning works well particularly on
larger backbones such as Qwen2.5-3B. However,
its performance becomes unstable on smaller mod-
els (e.g., Qwen2.5-1.5B), showing signs of over-
fitting and limited generalization. Notably, LoORA
fine-tuning has higher pass@35 accuracy in most
cases, which is due to the high uncertainty and
variance of its prediction. This variance is problem-
atic for real-world auditing, where consistent and
precise predictions are essential.

For other baselines, Coln struggles to produce
reliable predictions under the 33% error boundary,
failing to capture nuanced reasoning token patterns.
MLP performs slightly better but is fundamentally
constrained by the lack of semantic information:
its predictions are shallow correlations between in-
put—output lengths, leading to low accuracy across
most domains.

Prediction Error. The error metrics in Table 2
further highlight PALACE’s advantage. It is the only
method that consistently maintains both low aver-
age error and low aggregated error, ensuring accu-



Table 2: Prediction accuracy and error of PALACE. The upper block reports Pass@ 1/Pass @35 accuracy (%), and the
lower block reports Average (AVG.) and Aggregated (AGG.) errors.

Model Method General Math Coding Medical

Pass@1 Pass@5 \ Pass@1 Pass@5 \ Pass@1 Pass@5 \ Pass@1 Pass@5

Coln 6321 — 4422 — 38.12 — 46.25 —

MLP | 6786 6789 | 2711 3287 | 4495 4777 | 4499  51.04

Owenzs.3p  LORA | 8595 9674 | 5856 8279 | 5292 8269 | 025 8487
' PALACE | 8728 8850 | 6237 6715 | 5991 6436 | 59.13 6239
Owen2s.1sp LORA | 8566 9407 | 4926 8447 | 3581 8121 | 5193 8388
S-L5B  pALACE | 8840 8865 | 6381 6544 | 5839 5951 | 5971  62.86
LoRA | 6274 8959 | 3253 5908 | 3640 5331 | 3699  60.64

LLaMA3.2-3B b\ ACE | 8142 8686 | 5173 6560 | 6527 7115 | 5959  66.68
LoRA | 6548 8210 | 2434 7172 | 3521 5450 | 3739 5638

LLaMA3.2-1B  p\yACE | 7942 8351 | 4348 5395 | 3425 4400 | 4336 5013
| AVG(l) AGG(}) | AVG(l) AGG()) | AVG(l) AGG() | AVG(l) AGG()

MLP | 2639 125 | 8745 224 | 8744 147 | 79.02 141

Owenzs.3p  LORA [ 1811 393 | 40.67 874 | 4034 407 | 3969 1824
' PALACE | 1782 634 | 3058 667 | 3476 56l 3409 1356
Owenzs.155 _LORA [ 1903 580 | 5863 243 | 64l 186 | 3582 333l
SLSB pATACE | 1843 480 | 3648 672 | 4846 775 | 3360 1668
LoRA | 2523 834 | 3057 1180 | 6471 232 | 5149  17.02

LLaMA3.2-3B  p\YACE | 18.09 567 | 2919 1042 | 2943 1278 | 29.68 2365
LoRA | 3037 1020 | 5841  37.19 | 5285 3211 | 5089  27.61

LLaMA3.2-1B  p\YACE | 2165 1684 | 5698 1571 | 5274 3867 | 40.62 5582

rate predictions on individual samples while avoid-
ing cumulative drift at scale. This makes PALACE
uniquely suited for large-scale auditing, where ag-
gregate consistency is critical. LoRA fine-tuning
shows mixed results. Its predictions on larger mod-
els (e.g., Qwen2.5-3B) appear somewhat more sta-
ble, but the improvement is limited and inconsistent
across domains. On smaller models like Qwen2.5-
1.5B, LoRA clearly ovetfits, leading to erratic error
patterns and unreliable auditing performance.

The baselines are less reliable than PALACE. Coln
not only produces inaccurate predictions but also
misses subtle inflation, generating high error. MLP
sometimes achieves low aggregated error, which
indicates it memorizes dataset-level distributions,
but its high average error and low accuracy make it
unsuitable for precise auditing.

PALACE Regression vs Classification. We further
examined whether a classification LLM could serve
as an alternative to PALACE’s regression-based to-
ken estimation. In the classification setting, reason-
ing token counts are discretized into usage buck-
ets and the model predicts the corresponding class
rather than the exact number. This design allows
training by simply attaching a classification head.
However, as shown in Table 3, the classification

Table 3: Regression vs classification.

Models | Dataset | Classification ~PALACE
General 62.15 87.28

Math 56.02 62.37

Qwen2.5-3B | ding 43.44 59.91
Medical 52.10 59.13

General 71.34 88.40

Math 55.27 63.81

Qwen2.5-1.5B | (0 ing 51.02 58.39
Medical 49.83 59.71

approach lags behind PALACE’s GRPO across al-
most every dataset. On Qwen2.5-3B, classification
achieves reasonable performance (e.g., 62.15 on
the General set), but remains notably lower than
PALACE’s 87.28. Similar gaps are seen in all other
domains. The trend is consistent on the smaller
Qwen2.5-1.5B model. These results suggest that al-
though the accuracy of classification models is not
computed in exactly the same way as regression,
the data show a clear gap between classification
and regression, especially GRPO based regression.
A likely reason is that classification does not fully
leverage the LLM’s reasoning ability, which leads
to weaker token count estimation. The details of
classification dataset construction can be found in
Appendix A.
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Figure 4: PALACE router vs LLM trained on merged dataset. Experiments are conducted on Qwen2.5-1.5B model.

PALACE Router vs Merged Dataset. To assess
whether routing truly improves auditing perfor-
mance, we compared PALACE’s router-based design
with a simpler merged dataset baseline, where all
domain data were combined and a single GRPO
adapter was trained across tasks. As shown in Fig-
ure 4, the router consistently yields stronger re-
sults on Qwen2.5-1.5B. It achieves higher Pass@1
accuracy on nearly every subtask, from General
reasoning to Medical queries, and also provides
small but meaningful gains on Pass@35. This im-
provement comes from the router’s ability to par-
tition inputs by domain and activate the most rele-
vant GRPO adapter, instead of forcing one generic
adapter to absorb heterogeneous reasoning styles.
By doing so, the router helps PALACE mitigate vari-
ance across tasks and reduces the cross-domain
interference observed in the merged-training setup,
resulting in more stable and accurate token-length
predictions overall.

Error Threshold and Auditing Accuracy. To
evaluate how PALACE and baselines respond to vary-
ing error tolerances, we conduct a sensitivity anal-
ysis that adjusts the error threshold used to com-
pute auditing accuracy. Following Coln (Sun et al.,
2025a), we gradually relax the relative error toler-
ance (e.g., 10%, 30%, 50%, 100%) and measure
how often each method correctly flags suspicious
samples under each threshold. We run this compari-
son on Qwen2.5-1.5B across four datasets, compar-
ing PALACE with Coln and LoRA fine-tuning. As
shown in Figure 5, PALACE outperforms the base-
lines especially at low error thresholds where small
deviations must still be caught. This demonstrates
that PALACE is more sensitive to subtle token mis-
reporting and better suited for real-world auditing,
where providers might slightly misstate reasoning
length to avoid detection.
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Figure 5: The relationship between error threshold and
auditing accuracy. The experiments in this figure are
conducted on Qwen2.5-1.5B model.

6 Conclusion

COLS conceal most of their internal reasoning
traces while still billing for every hidden token,
creating a fundamental transparency gap and the
risk of token inflation. In this work, we intro-
duce PALACE, the first predictive auditing frame-
work that estimates hidden reasoning token usage
solely from prompt—answer pairs, without requir-
ing access to internal traces. Our method com-
bines GRPO-augmented adaptation modules and
a lightweight domain router to handle reasoning
style variance across domains, enabling stable pre-
dictions under heterogeneous usage scenarios. Ex-
tensive experiments on math, coding, medical, and
general reasoning benchmarks demonstrate that
PALACE achieves low relative error, high Pass@1
accuracy, and strong cumulative consistency. Pre-
dictive auditing is a viable path to cost verification
and token inflation detection. The contributions
in this paper lay a foundation for transparent and
accountable LLM API billing.



Limitations

While PALACE represents an initial step toward pre-
dictive auditing of hidden reasoning tokens, its
current scope naturally suggests avenues for fu-
ture work. The framework currently relies on a
small provider-released dataset to start training,
and expanding this with more diverse or validated
samples could broaden auditing coverage. More-
over, PALACE infers reasoning length only from
prompt—answer pairs; incorporating complemen-
tary signals, such as lightweight metadata, may im-
prove robustness against unusual or obfuscated rea-
soning traces. Taken together, these observations
frame the present scope of PALACE while pointing
to clear directions for making predictive auditing
more flexible and widely applicable.
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10

A Additional Experimental Setup and
Results

Classification Dataset. To support lightweight
auditing, where a model can be trained by sim-
ply adding a classification head, we construct a
classification variant of the auditing dataset. Rea-
soning token counts are discretized into predefined
usage buckets (e.g., [0-2000], [2000-4000], ...,
[>10000]), each representing a cost range. This
setup tolerates small deviations while still detect-
ing major overcharges and offers a simpler alterna-
tive for models that are less suited to fine-grained
regression. The dataset uses the same sources as
the regression version, but each reasoning length is
mapped to a bucket index. Formally, each sample
is (x,y’), where x is the same prompt—answer pair
and y' € {1,..., K} is the bucket index. In ex-
periments, we compare this approach with GRPO.
GRPO yields stronger predictions, but classifica-
tion trains faster and is ideal for lightweight audit-
ing.

In the experiments, we use five buckets (i.e., five
labels) for each dataset. The buckets are split so
that each bucket contains roughly the same number
of samples, ensuring a balanced label distribution
and preventing the model from being biased toward
overrepresented reasoning lengths. The bucket set-
ting can be found in Table 4.

LoRA Fine-Tuning Dataset. Since LoRA fine-
tuning does not require the model to generate an
explicit reasoning process, we construct a stream-
lined dataset where the auditing LLM is trained
solely to predict the reasoning length as a regres-
sion task. This simplifies the input—output format
and focuses the model’s capacity on accurate nu-
meric estimation. Table 5 illustrates the structure
of the LoRA fine-tuning dataset.



Table 4: Regression vs classification.

Dataset | 0 1 2 3 4

General | [0-500] [500-700] [700-900] [900-1100] [1100-]
Math [0-2000]  [2000-4000] [4000-6000] [6000-10000]  [10000-]

Coding | [0-2000] [2000-4000] [4000-6000]  [6000-8000] [8000-]

Medical | [0-500] [500-700] [700-900] [900-1200] [1200-]

Table 5: Input prompt template used in regression-style reasoning length auditing.

Prompt Template for Regression Auditing

You are an AI reasoning analyzer. Given a math problem and the model output together with their
token length, estimate how many tokens were used in the detailed reasoning process that led to
the answer:

Problem: {problem}
Answer: {solution}

The approximate number of tokens in the reasoning process is: {Reasoning Length}
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