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Abstract001

Commercial LLM services often conceal inter-002
nal reasoning traces while still charging users003
for every generated token, including those from004
hidden intermediate steps, raising concerns005
of token inflation and potential overbilling.006
This gap underscores the urgent need for re-007
liable token auditing, yet achieving it is far008
from straightforward: cryptographic verifica-009
tion (e.g., hash-based signature) offers little010
assurance when providers control the entire011
execution pipeline, while user-side prediction012
struggles with the inherent variance of reason-013
ing LLMs, where token usage fluctuates across014
domains and prompt styles. To bridge this gap,015
we present PALACE (Predictive Auditing of LLM016
APIs via Reasoning Token Count Estimation), a017
user-side framework that estimates hidden rea-018
soning token counts from prompt–answer pairs019
without access to internal traces. PALACE in-020
troduces a GRPO-augmented adaptation mod-021
ule with a lightweight domain router, enabling022
dynamic calibration across diverse reasoning023
tasks and mitigating variance in token usage024
patterns. Experiments on math, coding, med-025
ical, and general reasoning benchmarks show026
that PALACE achieves low relative error and027
strong prediction accuracy, supporting both028
fine-grained cost auditing and inflation detec-029
tion. Taken together, PALACE represents an im-030
portant first step toward standardized predictive031
auditing, offering a practical path to greater032
transparency, accountability, and user trust.033

1 Introduction034

Large language model (LLM) services have made035

significant progress in recent years, incorporating036

capabilities such as multi-step reasoning (Guo et al.,037

2025), external tool use (Chen et al., 2024; Zhuang038

et al., 2023), and agent coordination (Zhao et al.,039

2024). These advancements enhance generation040

quality and expand the applicability of LLMs to a041

wider range of real-world domains.042

However, these reasoning LLMs also produce 043

long internal outputs that often include verbose and 044

noisy content, such as backtracking traces or spec- 045

ulative reasoning branches (Aggarwal and Welleck, 046

2025), which may not benefit end users and can 047

hinder comprehension. Moreover, revealing such 048

internal traces poses security and intellectual prop- 049

erty risks: malicious users could extract model 050

behaviors or replicate proprietary agent workflows, 051

threatening the commercial value of LLM systems. 052

To mitigate these risks, LLM service providers 053

like OpenAI (ChatGPT) (OpenAI, 2025), Google 054

(Gemini) (Google Gemini, 2025), and Anthropic 055

(Claude) typically withhold internal tokens gener- 056

ated during reasoning or tool execution. Nonethe- 057

less, users are still billed for the full sequence of 058

tokens, including both hidden internal tokens and 059

visible final outputs. Such services have been for- 060

mally defined as Commercial Opaque LLM Ser- 061

vices (COLS) (Sun et al., 2025b). 062

This opaque design raises serious transparency 063

concerns: users are charged for token usage they 064

cannot observe or verify. All usage data is reported 065

solely by the service provider, whose financial in- 066

centives may conflict with those of the user. This 067

creates the risk of token inflation, where COLS 068

may over-report token usage to increase billing. 069

Empirical studies show that in many state-of-the- 070

art models, over 90% of tokens are consumed in 071

hidden reasoning, with only a small portion form- 072

ing the final answer (Sun et al., 2025a). Even minor 073

inflation under such conditions can result in sub- 074

stantial overcharging, particularly for large-scale 075

API users engaged in synthetic data generation, an- 076

notation, or document processing. For example, 077

a single high-efficiency ARC-AGI evaluation run 078

using OpenAI’s o3 model consumed 111 million to- 079

kens, resulting in a cost of $66,772 (Chollet, 2025), 080

in which more than 60% are the cost of hidden rea- 081

soning tokens, implying that a 30% misreporting 082

of hidden tokens could cost more than $12,000. 083
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Figure 1: The transparency concern of COLS.

Auditing token usage under these conditions is084

challenging for two reasons. First, cryptographic085

approaches (Sun et al., 2025a) offer little assur-086

ance when providers control the entire execution087

pipeline and can selectively expose data. Sec-088

ond, user-side heuristics based on input–output089

lengths are unreliable, because reasoning token us-090

age varies drastically with domain, prompt style,091

and task complexity (Jin et al., 2024). Together,092

these challenges create a critical need for an audit-093

ing solution that works without access to hidden094

traces and remains robust to reasoning variability.095

To address these challenges, we introduce096

PALACE (Predictive Auditing of LLM APIs via To-097

ken Count Estimation), the first user-side frame-098

work to estimate hidden reasoning token usage di-099

rectly from prompt–answer pairs. PALACE requires100

COLS to release lightweight auxiliary datasets that101

are verifiable and guaranteed to be entirely gener-102

ated by COLS’s own LLMs, fulfilling their obliga-103

tion to provide certifiable data for auditing. Each104

sample in these datasets includes a user prompt,105

the model’s reasoning process, and the final an-106

swer. PALACE addresses the trace inaccessibility107

challenge by learning to infer reasoning length108

from observable input–output semantics, eliminat-109

ing any dependency on internal execution data.110

It addresses the reasoning variability challenge111

through two key innovations: a GRPO (Shao et al.,112

2024) (Group Relative Policy Optimization)-driven113

adaptation module that improves reasoning length114

inference for complex tasks, and a lightweight do-115

main router that dynamically calibrates predictions116

across diverse usage scenarios.117

For each auditing instance, the user provides118

her prompt and the corresponding response re-119

turned by COLS, along with the API configura-120

tion. PALACE invokes the router to select the ap-121

propriate GRPO adapted module, and performs 122

the token count prediction. PALACE returns both 123

per-sample predictions and aggregated estimates 124

across multiple queries to support comprehensive 125

auditing of the service. Different from prior audit- 126

ing methods such as (Sun et al., 2025a), PALACE 127

neither relies on hidden tokens or intermediate em- 128

beddings during inference, nor requires users to 129

issue additional queries or requests during the au- 130

diting process. This makes PALACE a lightweight 131

and user-transparent auditing solution for COLS. 132

Our main contributions are summarized as fol- 133

lows: 134

• We introduce reasoning length estimation as 135

a foundation for user-side auditing of hidden 136

reasoning token usage in commercial COLS. 137

• We present PALACE, which combines a 138

GRPO-augmented adaptation module with a 139

lightweight domain router to infer hidden rea- 140

soning length directly from prompt–answer 141

pairs, without access to internal execution 142

traces. 143

• We construct multi-domain benchmark 144

datasets and show that PALACE achieves low 145

relative error and stable cumulative accuracy 146

across reasoning-heavy tasks, enabling fine- 147

grained cost auditing and reliable detection of 148

token inflation. 149

2 Background and Motivation 150

2.1 COLS and Hidden Tokens 151

The development of reasoning LLMs (Muen- 152

nighoff et al., 2025; Hao et al., 2024) and agentic 153

LLMs (Chan et al., 2023) rapidly changes the ser- 154

vice module of LLM service providers. Set reason- 155

ing LLM API as an example, OpenAI now provides 156

multiple reasoning model inference APIs such as 157

o3, o4-mini, o4-mini-high, etc (Jaech et al., 2024; 158

OpenAI, 2025). When a user submits a prompt to 159

one of these APIs, the reasoning model typically 160

generates a reasoning trace and the final answer. 161

While most major providers return only the final an- 162

swer in the API response, they charge based on the 163

total number of tokens consumed by both the rea- 164

soning trace and the answer. As a form of compen- 165

sation, service providers such as OpenAI, Gemini, 166

and Claude offer users only a summarized version 167

of the reasoning content for inspection, while the 168

full reasoning trace remains hidden. Nevertheless, 169
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Figure 2: Example API Call to a Reasoning Model and
Its Token Composition.

the total number of reasoning tokens, including170

those not visible to the user, is still accounted for in171

the billing. OpenAI explicitly states in its documen-172

tation: While reasoning tokens are not visible via173

the API, they still occupy space in the model’s con-174

text window and are billed as output tokens (Ope-175

nAI, 2025). Similarly, Gemini notes: When think-176

ing is turned on, response pricing is the sum of177

output tokens and thinking tokens (Google Gem-178

ini, 2025). Specifically, Figure 2 illustrates a spe-179

cific API request to a reasoning model, where the180

reasoning_tokens count reaches 2,624. These,181

together with the answer’s tokens, constitute the182

completion_tokens that are billed at the standard183

output rate.184

2.2 Token Auditing185

The issue of potential price-service mismatch in186

COLS remains underexplored. (Sun et al., 2025b)187

categorized such mismatches into two types: qual-188

ity downgrade and quantity inflation. Quality down-189

grade occurs when a COLS fails to deliver the190

promised standard of service, instead relying on191

cost-saving alternatives (e.g., smaller LLMs or192

cheaper tool calls) without informing the user. (Cai193

et al., 2025; Yuan et al., 2025) investigated vari-194

ous techniques for detecting model substitution in195

LLM APIs, including output-based statistical tests,196

benchmark comparisons, log probability analysis,197

and the use of Trusted Execution Environments198

(TEEs) (NVIDIA, 2023). For quantity inflation,199

CoIn (Sun et al., 2025a) introduced a hash-tree-200

based framework that enables auditors to issue ver-201

ification requests to COLS for token count and202

semantic validation. However, the need for hash203

tree generation on the server side and the auditor- 204

COLS interaction imposes limitations on practical 205

deployment. Thus, there is a pressing need for a 206

high-accuracy, plug-and-play auditing method to 207

detect quantity inflation with minimal assumptions. 208

3 Dataset Construction 209

Since prior work does not address auditing the rea- 210

soning length based solely on prompt–answer pairs, 211

we construct the first reasoning length auditing 212

dataset. Specifically, we curate four datasets com- 213

prising multi-step reasoning traces generated by 214

DeepSeek-R1 (Guo et al., 2025) and DeepSeek- 215

R1-Distill-Llama-70B. These datasets span diverse 216

domains to support generalization and robust eval- 217

uation (Face, 2025): 218

• OpenR1-Math: A large-scale dataset for 219

mathematical reasoning, consisting of 220K 220

problems sampled from NuminaMath 1.5. 221

Each question is annotated with 2–4 reasoning 222

traces generated by DeepSeek-R1. 223

• OpenR1-Code: A dataset focused on pro- 224

gram synthesis, with samples exhibiting plan- 225

and-execute style reasoning patterns. 226

• OpenR1-Medical: A distilled SFT dataset 227

generated by DeepSeek-R1 (Full Power ver- 228

sion), targeting medically verifiable diagnos- 229

tic questions based on HuatuoGPT-o1. 230

• General Reasoning: A large-scale synthetic 231

dataset containing over 22 million open- 232

domain multi-step QA examples, generated 233

using DeepSeek-R1-Distill-Llama-70B. This 234

dataset provides broad coverage of reasoning 235

styles across domains. 236

We refer to these datasets as DM , DC , DMed, 237

and DG, respectively. 238

GRPO Auditing Dataset The GRPO auditing 239

dataset is constructed to train the auditing model 240

under the GRPO framework. Unlike a supervised 241

regression dataset that uses ground-truth labels for 242

direct loss computation, this dataset provides refer- 243

ence values that GRPO converts into reward signals 244

for policy optimization. 245

Each sample consists of a structured prompt 246

that includes a <Problem> section providing the 247

user prompt, a <Solution> section showing the re- 248

sponse from COLS, and explicit instructions direct- 249

ing the model to generate step-by-step reasoning 250
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Table 1: Instructional prompt template for GRPO-
augmented auditing model training.

Prompt Template for Chain-of-Thought
Reasoning with JSON Output

Given a <Problem> and its corresponding
<Solution>, your task is to predict how
many tokens are consumed in the process
of arriving at the final <Solution> to the
problem.
Generally speaking, the more complex the
problem is, the more tokens are required.

<Problem>
{problem}
</Problem>

<Solution>
{solution}
</Solution>

The Problem has {Input Length} tokens, and
the Solution has {Output Length} tokens.

Please provide a detailed chain-of-thought
reasoning process and include your thought
process within <think> tags.
Your final answer should be enclosed within
<answer> tags.

Please return the predicted number of tokens
in JSON format:
{{"count": int}}

Example format:
<think> Step-by-step reasoning, including
self-reflection and corrections if
necessary. [Limited by 1024 tokens]
</think>
<answer> Summary of the thought process
leading to the final token count and your
predicted token count in JSON format:
{{"count": int}} [Limited by 512 tokens]
</answer>

Let me solve this step by step.

inside <think> tags and output a predicted token251

count in JSON format within <answer> tags. To252

stabilize training and improve estimation accuracy,253

the prompt also provides auxiliary cues such as254

input and output token lengths, which correlate255

with reasoning complexity. This structured setup,256

reflected in Table 1, reference for reward computa-257

tion, allowing GRPO to refine both the reasoning258

process and the accuracy of token count predictions259

across domains.260

4 Method261

4.1 Overview262

As illustrated in Figure 3, PALACE serves as a263

trusted third-party auditor for commercial LLM264

services. It begins by acquiring a lightweight aux- 265

iliary dataset from the COLS provider and con- 266

structing an auditing dataset based on it. A general- 267

purpose auditing model is then obtained by fine- 268

tuning a base LLM on generic QA tasks. To accom- 269

modate diverse reasoning styles across domains 270

and LLM APIs, PALACE further applies GRPO on 271

domain-specific datasets to derive task-specific pa- 272

rameter deltas, referred to as GRPO-augmented 273

modules. A lightweight router is trained to classify 274

user prompts by domain and select the appropriate 275

GRPO-augmented module for inference. 276

During auditing, the user submits a prompt and 277

the corresponding COLS output. PALACE classi- 278

fies the prompt’s domain, loads the relevant GRPO 279

module, and processes the prompt–answer pair us- 280

ing a standardized template. The auditing model 281

then predicts the number of hidden reasoning to- 282

kens, expanding this prediction into a tolerance 283

interval. If the predicted token count deviates from 284

the COLS-reported count beyond a threshold, the 285

sample is flagged as potentially inflated. A dataset 286

exhibiting a high proportion of such samples or a 287

large cumulative error suggests inflationary behav- 288

ior by the COLS. 289

4.2 GRPO-Augmented LLM Training 290

To establish the auditing capability, PALACE first 291

fine-tunes a base LLM W on a general QA dataset 292

DG to obtain a general-purpose auditing model 293

WG. This model is trained to estimate hidden rea- 294

soning token count required for solving a given 295

problem, based on the problem statement and the 296

final answer: 297

WG = argmin
W

E(x,y)∼DG
[L (y, fW(x))] . (1) 298

Because reasoning complexity varies signifi- 299

cantly across tasks and models, we further enhance 300

WG using GRPO on domain-specific datasets. For 301

each target domain and COLS model (e.g., cod- 302

ing domain on OpenAI’s O3-mini), we perform 303

GRPO on DC to inject reasoning-specific adapta- 304

tion into the model. The resulting GRPO-updated 305

model is stored as a domain-specific delta. We 306

define a reward function that encourages accurate 307

predictions within a relative error threshold δ and 308

accounts for the underlying reasoning complexity. 309

Let y be the ground-truth hidden reasoning token 310

count and ℓreason(x) be the known reasoning length 311

from auxiliary data. The reward is defined as: 312
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R(ŷ, y) = max

(
0, 1− |ŷ − y|

|y|

)
(2)313

Here, ŷ denotes the model’s prediction and y314

is the ground truth target. This reward smoothly315

penalizes prediction error relative to the magnitude316

of the target value, and is clipped to lie within the317

[0, 1] interval.318

GRPO (Shao et al., 2024) works by maximiz-319

ing a clipped surrogate objective. This objective320

uses a group-wise advantage, which measures a321

prediction’s reward relative to the average reward322

of its group, thereby stabilizing training. The fi-323

nal objective function is regularized with a KL-324

divergence term against a reference policy πref to325

prevent large, destabilizing policy shifts.326

JGRPO(θ) = E

[
1

N

N∑
i=1

min (ri(θ)Ai,327

clip(ri(θ), 1− ϵ, 1 + ϵ)Ai)]328

− βDKL(πθ∥πref ) (3)329

where ri(θ) is the probability ratio between the cur-330

rent and old policies and Ai is the advantage. The331

resulting GRPO-augmented module, ∆WC , equips332

PALACE with specialized reasoning length predic-333

tion, improving its accuracy on complex tasks.334

4.3 Router Construction335

To enable domain-aware auditing, we train a336

lightweight router to classify user prompts into sup-337

ported domains, enabling dynamic selection of the338

appropriate GRPO module, thereby improving pre-339

diction accuracy while avoiding the need to deploy340

a large monolithic model.341

We denote the router as a classification function 342

frouter : x 7→ d, where x is the user prompt and 343

d ∈ {1, . . . , D} is the domain index corresponding 344

to one of the GRPO-specialized domains. We train 345

frouter on a small subset of samples selected from 346

each dataset DM ,DC ,DMed,DG, using only the 347

prompt text and its associated domain label. 348

The objective is a standard cross-entropy loss 349

over the domain labels: 350

Lrouter = −
∑

(x,d)∈Drouter

log p(d | x), (4) 351

where Drouter is the router training set randomly 352

sampled from the domain-specific datasets. 353

During inference, given a new prompt x, the 354

router first predicts its domain: 355

d̂ = frouter(x). (5) 356

Then, the system loads the corresponding GRPO 357

module ∆Wd̂, applies it to the base model WG, 358

and performs reasoning length prediction with the 359

adapted model WG +∆Wd̂. 360

This modular design ensures scalability and ef- 361

ficiency while leveraging domain-specific adapta- 362

tions for improved auditing accuracy. 363

5 Experiments 364

5.1 Experimental Settings 365

Models and Datasets. We select lightweight yet 366

capable LLMs with strong reasoning ability to sup- 367

port experiments. For training the auditing models, 368

we use Qwen2.5-1.5B, Qwen2.5-3B, LLaMA3.2- 369

1B, and LLaMA3.2-3B. For benchmarks, we adopt 370

the four datasets introduced in Section 3, covering 371

diverse reasoning domains including mathematics, 372

5



programming, medical reasoning, and general prob-373

lem solving (Face, 2025). These datasets are used374

to evaluate PALACE and all baselines, thus provid-375

ing comprehensive coverage of common reasoning376

tasks for large language models.377

Baselines and Metrics. We compare our method378

against three baselines, including the prior work379

CoIn (Sun et al., 2025a) and two naive predictive380

auditing approaches:381

• CoIn: A token auditing method based on an382

embedding hash tree and auditor-based query383

verification. CoIn is effective at detecting384

misreported token counts and meaningless to-385

ken injection. However, it fails to identify386

repeated reasoning fragments and shows lim-387

ited sensitivity when the inflation rate is low.388

• MLP: A simple predictive auditing approach389

that estimates reasoning token length using390

only the input and output lengths. We im-391

plement two two-layer MLP models, one for392

regression and one for classification.393

• Low-Rank Adaptation (LoRA) (Hu et al.,394

2022) Fine-Tuning: A direct fine-tuning base-395

line where LLMs are fine-tuned on the audit-396

ing datasets to predict the reasoning token397

length directly.398

For each dataset, we evaluate auditing performance399

using the following four metrics:400

• Accuracy: A prediction is considered correct401

if its relative error is below 33% compared to402

the ground truth.403

– Pass@1: Computed via greedy decod-404

ing, selecting the most likely prediction.405

– Pass@5: Computed via sampling five406

predictions with a temperature of 0.8,407

counting the result as correct if any pre-408

diction meets the accuracy criterion.409

• Average Error: The mean numeric deviation410

between predicted and ground-truth reasoning411

lengths in greedy decoding.412

• Aggregated Error: The difference between413

the total predicted reasoning length and the414

total ground-truth reasoning length, reflecting415

dataset-level cumulative bias.416

These metrics jointly capture both the precision417

of individual predictions and the overall bias of418

the auditing model across the entire dataset. In 419

particular, the aggregated error reflects whether 420

small per-sample deviations accumulate into large 421

discrepancies, which is critical for reliable large- 422

scale auditing of hidden token usage in real-world 423

LLM deployments. 424

Training Configurations. We use Verl (Sheng 425

et al., 2024) as the training codebase. The relevant 426

settings include: a generation temperature of 0.8, a 427

total batch size of 128 (with 8 rollouts per strategy), 428

an update batch size of 128 per GRPO step, KL 429

penalty β = 0.001, and a learning rate of 1e-6. For 430

the LoRA fine-tuning, we set the LoRA rank to 128, 431

use a batch size of 128, and control the learning 432

rate at 1e-5. Unless otherwise specified, we train 433

for 3 epochs. 434

5.2 Main Results 435

Prediction Accuracy. Table 2 demonstrates that 436

PALACE achieves the strongest prediction accuracy 437

across all domains and model sizes. By leveraging 438

semantic information rather than relying solely on 439

text length and utilizing the reasoning abilities of 440

the auditing model, PALACE consistently delivers 441

high Pass@1 accuracy, even on reasoning-heavy 442

tasks like mathematics. For instance, PALACE pre- 443

dicts the reasoning length with 63.81% accuracy 444

under the 33% relative error, while baselines can- 445

not exceed even 50% accuracy in the same set- 446

ting. LoRA fine-tuning works well particularly on 447

larger backbones such as Qwen2.5-3B. However, 448

its performance becomes unstable on smaller mod- 449

els (e.g., Qwen2.5-1.5B), showing signs of over- 450

fitting and limited generalization. Notably, LoRA 451

fine-tuning has higher pass@5 accuracy in most 452

cases, which is due to the high uncertainty and 453

variance of its prediction. This variance is problem- 454

atic for real-world auditing, where consistent and 455

precise predictions are essential. 456

For other baselines, CoIn struggles to produce 457

reliable predictions under the 33% error boundary, 458

failing to capture nuanced reasoning token patterns. 459

MLP performs slightly better but is fundamentally 460

constrained by the lack of semantic information: 461

its predictions are shallow correlations between in- 462

put–output lengths, leading to low accuracy across 463

most domains. 464

Prediction Error. The error metrics in Table 2 465

further highlight PALACE’s advantage. It is the only 466

method that consistently maintains both low aver- 467

age error and low aggregated error, ensuring accu- 468
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Table 2: Prediction accuracy and error of PALACE. The upper block reports Pass@1/Pass@5 accuracy (%), and the
lower block reports Average (AVG.) and Aggregated (AGG.) errors.

Model Method General Math Coding Medical
Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5

CoIn 63.21 — 44.22 — 38.12 — 46.25 —
MLP 67.86 67.89 27.11 32.87 44.95 47.77 44.99 51.04

Qwen2.5-3B LoRA 85.95 96.74 58.56 82.79 52.92 82.69 50.25 84.87
PALACE 87.28 88.50 62.37 67.15 59.91 64.36 59.13 62.39

Qwen2.5-1.5B LoRA 85.66 94.07 49.26 84.47 35.81 81.21 51.93 83.88
PALACE 88.40 88.65 63.81 65.44 58.39 59.51 59.71 62.86

LLaMA3.2-3B LoRA 62.74 89.59 32.53 59.08 36.40 53.31 36.99 60.64
PALACE 81.42 86.86 51.73 65.60 65.27 71.15 59.59 66.68

LLaMA3.2-1B LoRA 65.48 82.10 24.34 71.72 35.21 54.50 37.39 56.38
PALACE 79.42 83.51 43.48 53.95 34.25 44.00 43.36 50.13

AVG(↓) AGG(↓) AVG(↓) AGG(↓) AVG(↓) AGG(↓) AVG(↓) AGG(↓)

MLP 26.39 1.25 87.45 2.24 87.44 1.47 79.02 1.41

Qwen2.5-3B LoRA 18.11 3.93 40.67 8.74 40.34 4.07 39.69 18.24
PALACE 17.82 6.34 30.58 6.67 34.76 5.61 34.09 13.56

Qwen2.5-1.5B LoRA 19.03 5.80 58.63 2.43 64.61 1.86 35.82 33.31
PALACE 18.43 4.80 36.48 6.72 48.46 7.75 33.60 16.68

LLaMA3.2-3B LoRA 25.23 8.34 30.57 11.80 64.71 2.32 51.49 17.02
PALACE 18.09 5.67 29.19 10.42 29.43 12.78 29.68 23.65

LLaMA3.2-1B LoRA 30.37 10.20 58.41 37.19 52.88 32.11 50.89 27.61
PALACE 21.65 16.84 56.98 15.71 52.74 38.67 40.62 55.82

rate predictions on individual samples while avoid-469

ing cumulative drift at scale. This makes PALACE470

uniquely suited for large-scale auditing, where ag-471

gregate consistency is critical. LoRA fine-tuning472

shows mixed results. Its predictions on larger mod-473

els (e.g., Qwen2.5-3B) appear somewhat more sta-474

ble, but the improvement is limited and inconsistent475

across domains. On smaller models like Qwen2.5-476

1.5B, LoRA clearly overfits, leading to erratic error477

patterns and unreliable auditing performance.478

The baselines are less reliable than PALACE. CoIn479

not only produces inaccurate predictions but also480

misses subtle inflation, generating high error. MLP481

sometimes achieves low aggregated error, which482

indicates it memorizes dataset-level distributions,483

but its high average error and low accuracy make it484

unsuitable for precise auditing.485

PALACE Regression vs Classification. We further486

examined whether a classification LLM could serve487

as an alternative to PALACE’s regression-based to-488

ken estimation. In the classification setting, reason-489

ing token counts are discretized into usage buck-490

ets and the model predicts the corresponding class491

rather than the exact number. This design allows492

training by simply attaching a classification head.493

However, as shown in Table 3, the classification494

Table 3: Regression vs classification.

Models Dataset Classification PALACE

Qwen2.5-3B

General 62.15 87.28
Math 56.02 62.37

Coding 43.44 59.91
Medical 52.10 59.13

Qwen2.5-1.5B

General 71.34 88.40
Math 55.27 63.81

Coding 51.02 58.39
Medical 49.83 59.71

approach lags behind PALACE’s GRPO across al- 495

most every dataset. On Qwen2.5-3B, classification 496

achieves reasonable performance (e.g., 62.15 on 497

the General set), but remains notably lower than 498

PALACE’s 87.28. Similar gaps are seen in all other 499

domains. The trend is consistent on the smaller 500

Qwen2.5-1.5B model. These results suggest that al- 501

though the accuracy of classification models is not 502

computed in exactly the same way as regression, 503

the data show a clear gap between classification 504

and regression, especially GRPO based regression. 505

A likely reason is that classification does not fully 506

leverage the LLM’s reasoning ability, which leads 507

to weaker token count estimation. The details of 508

classification dataset construction can be found in 509

Appendix A. 510

7



(a) Pass@1 Accuracy (b) Pass@5 Accuracy

Figure 4: PALACE router vs LLM trained on merged dataset. Experiments are conducted on Qwen2.5-1.5B model.

PALACE Router vs Merged Dataset. To assess511

whether routing truly improves auditing perfor-512

mance, we compared PALACE’s router-based design513

with a simpler merged dataset baseline, where all514

domain data were combined and a single GRPO515

adapter was trained across tasks. As shown in Fig-516

ure 4, the router consistently yields stronger re-517

sults on Qwen2.5-1.5B. It achieves higher Pass@1518

accuracy on nearly every subtask, from General519

reasoning to Medical queries, and also provides520

small but meaningful gains on Pass@5. This im-521

provement comes from the router’s ability to par-522

tition inputs by domain and activate the most rele-523

vant GRPO adapter, instead of forcing one generic524

adapter to absorb heterogeneous reasoning styles.525

By doing so, the router helps PALACE mitigate vari-526

ance across tasks and reduces the cross-domain527

interference observed in the merged-training setup,528

resulting in more stable and accurate token-length529

predictions overall.530

Error Threshold and Auditing Accuracy. To531

evaluate how PALACE and baselines respond to vary-532

ing error tolerances, we conduct a sensitivity anal-533

ysis that adjusts the error threshold used to com-534

pute auditing accuracy. Following CoIn (Sun et al.,535

2025a), we gradually relax the relative error toler-536

ance (e.g., 10%, 30%, 50%, 100%) and measure537

how often each method correctly flags suspicious538

samples under each threshold. We run this compari-539

son on Qwen2.5-1.5B across four datasets, compar-540

ing PALACE with CoIn and LoRA fine-tuning. As541

shown in Figure 5, PALACE outperforms the base-542

lines especially at low error thresholds where small543

deviations must still be caught. This demonstrates544

that PALACE is more sensitive to subtle token mis-545

reporting and better suited for real-world auditing,546

where providers might slightly misstate reasoning547

length to avoid detection.548

(a) General (b) Math

(c) Coding (d) Medical

Figure 5: The relationship between error threshold and
auditing accuracy. The experiments in this figure are
conducted on Qwen2.5-1.5B model.

6 Conclusion 549

COLS conceal most of their internal reasoning 550

traces while still billing for every hidden token, 551

creating a fundamental transparency gap and the 552

risk of token inflation. In this work, we intro- 553

duce PALACE, the first predictive auditing frame- 554

work that estimates hidden reasoning token usage 555

solely from prompt–answer pairs, without requir- 556

ing access to internal traces. Our method com- 557

bines GRPO-augmented adaptation modules and 558

a lightweight domain router to handle reasoning 559

style variance across domains, enabling stable pre- 560

dictions under heterogeneous usage scenarios. Ex- 561

tensive experiments on math, coding, medical, and 562

general reasoning benchmarks demonstrate that 563

PALACE achieves low relative error, high Pass@1 564

accuracy, and strong cumulative consistency. Pre- 565

dictive auditing is a viable path to cost verification 566

and token inflation detection. The contributions 567

in this paper lay a foundation for transparent and 568

accountable LLM API billing. 569

8



Limitations570

While PALACE represents an initial step toward pre-571

dictive auditing of hidden reasoning tokens, its572

current scope naturally suggests avenues for fu-573

ture work. The framework currently relies on a574

small provider-released dataset to start training,575

and expanding this with more diverse or validated576

samples could broaden auditing coverage. More-577

over, PALACE infers reasoning length only from578

prompt–answer pairs; incorporating complemen-579

tary signals, such as lightweight metadata, may im-580

prove robustness against unusual or obfuscated rea-581

soning traces. Taken together, these observations582

frame the present scope of PALACE while pointing583

to clear directions for making predictive auditing584

more flexible and widely applicable.585
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A Additional Experimental Setup and 684

Results 685

Classification Dataset. To support lightweight 686

auditing, where a model can be trained by sim- 687

ply adding a classification head, we construct a 688

classification variant of the auditing dataset. Rea- 689

soning token counts are discretized into predefined 690

usage buckets (e.g., [0–2000], [2000–4000], . . . , 691

[>10000]), each representing a cost range. This 692

setup tolerates small deviations while still detect- 693

ing major overcharges and offers a simpler alterna- 694

tive for models that are less suited to fine-grained 695

regression. The dataset uses the same sources as 696

the regression version, but each reasoning length is 697

mapped to a bucket index. Formally, each sample 698

is (x, y′), where x is the same prompt–answer pair 699

and y′ ∈ {1, . . . ,K} is the bucket index. In ex- 700

periments, we compare this approach with GRPO. 701

GRPO yields stronger predictions, but classifica- 702

tion trains faster and is ideal for lightweight audit- 703

ing. 704

In the experiments, we use five buckets (i.e., five 705

labels) for each dataset. The buckets are split so 706

that each bucket contains roughly the same number 707

of samples, ensuring a balanced label distribution 708

and preventing the model from being biased toward 709

overrepresented reasoning lengths. The bucket set- 710

ting can be found in Table 4. 711

LoRA Fine-Tuning Dataset. Since LoRA fine- 712

tuning does not require the model to generate an 713

explicit reasoning process, we construct a stream- 714

lined dataset where the auditing LLM is trained 715

solely to predict the reasoning length as a regres- 716

sion task. This simplifies the input–output format 717

and focuses the model’s capacity on accurate nu- 718

meric estimation. Table 5 illustrates the structure 719

of the LoRA fine-tuning dataset. 720
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Table 4: Regression vs classification.

Dataset 0 1 2 3 4

General [0-500] [500-700] [700-900] [900-1100] [1100-]
Math [0-2000] [2000-4000] [4000-6000] [6000-10000] [10000-]

Coding [0-2000] [2000-4000] [4000-6000] [6000-8000] [8000-]
Medical [0-500] [500-700] [700-900] [900-1200] [1200-]

Table 5: Input prompt template used in regression-style reasoning length auditing.

Prompt Template for Regression Auditing

You are an AI reasoning analyzer. Given a math problem and the model output together with their
token length, estimate how many tokens were used in the detailed reasoning process that led to
the answer:

Problem: {problem}

Answer: {solution}

The approximate number of tokens in the reasoning process is: {Reasoning Length}
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