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Abstract

In this paper, we propose a novel policy optimization framework that maximizes
Return on Investment (ROI) of a policy using a fixed dataset within a Markov
Decision Process (MDP) equipped with a cost function. ROI, defined as the ratio
between the return and the accumulated cost of a policy, serves as a measure of
the efficiency of the policy. Despite the importance of maximizing ROI in various
applications, it remains a challenging problem due to its nature as a ratio of two
long-term values: return and accumulated cost. To address this, we formulate the
ROI maximizing reinforcement learning problem as linear fractional programming.
We then incorporate the stationary distribution correction (DICE) framework to
develop a practical offline ROI maximization algorithm. Our proposed algorithm,
ROIDICE, yields an efficient policy that offers a superior trade-off between return
and accumulated cost compared to policies trained using existing frameworks.

1 Introduction

In economics, Return on Investment (ROI) is a financial metric used to evaluate the profitability
of an investment relative to its cost. The concept of ROI originates from the work of [5] and is
widely regarded as a valuable metric by the majority of marketing managers [4]. ROI is calculated
by dividing the profit generated from the investment by the cost of the investment, and it is a key
indicator for evaluating the efficiency and effectiveness of various economic decisions and strategies
[17]. Maximizing ROI is crucial as a decision with a high ROI yields a higher return at a relatively
lower cost.

While ROI is a compelling metric for optimization, ROI maximization for decision making has not
been actively explored within the field of machine learning. Previous studies on ROI maximization [3]
have focused on multi-armed bandit scenarios, where reward and cost are immediately accessible
following a decision. When it comes to sequential decision-making setups like the Markov Decision
Process (MDP) that additionally considers a cost function, optimizing a sequence of decisions or a
policy to maximize the ratio between return and accumulated cost becomes far more challenging
and remains mostly unexplored. This optimization contains two major difficulties: the fractional
relationship between the return and accumulated cost of a policy, and the fact that both are long-
term quantities collected after a sequence of decisions or actions of the agent. The issues make
ROI maximization via existing policy optimization techniques not straightforward, as it includes
computing the gradient of the ratio between the two expected values.

For effective optimization of ROI, we refer to the dual formulation of V-LP [16], which represents
policy optimization in reinforcement learning (RL) as linear programming in terms of the stationary
distribution. The stationary distribution of a policy is the discounted sum of probabilities of the

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



state-action pairs visited by the agent following the policy. Leveraging the property of stationary
distribution, which allows for easy estimation of both return and accumulated cost, we derive ROI-LP,
linear programming problem for ROI maximization. In this paper, we focus specifically on the offline
setting and aim to derive an offline ROI maximization algorithm. The offline setting, which involves
optimizing a policy using a fixed dataset of pre-collected experiences without further environmental
interactions (e.g., offline RL), has been actively studied recently due to its compelling use cases
[2, 7, 9, 10, 11, 20]. Building on the derived ROI-LP, we incorporate a convex regularization to
address the distribution shift inherent in offline learning. This leads to our proposed algorithm,
ROIDICE, which achieves offline ROI maximization via stationary distribution correction estimation.

Through a series of diverse experiments, we compare ROIDICE to algorithms from other offline
policy optimization frameworks, including offline RL and offline constrained RL. We demonstrate that
maximizing the ROI of a policy leads to a different, more efficient behavior compared to frameworks
that focus solely on maximizing policy return. In summary, our contributions are threefold:

• Formulation of ROI maximization framework in an MDP with a cost function.
• Derivation of ROIDICE, an offline ROI maximization algorithm that optimizes the ROI of a

policy using a fixed dataset of pre-collected experiences.
• Comparison with existing offline policy optimization frameworks, showing that ROIDICE

optimizes ROI and improves policy efficiency across various domains.

2 Backgrounds

Markov Decision Process with a cost function We consider an infinite-horizon discounted Markov
Decision Process (MDP) with a cost function, represented as a tuple M = ⟨S,A, T, r, p0, γ⟩. Here,
S is the set of states, A is the set of actions, T (s′|s, a) denotes the transition probability from state-
action pair (s, a) to the next state s′, and r(s, a) is the reward function for state-action pair (s, a).
p0(s) is the initial state distribution, and γ is the discount factor. Additionally, we introduce a cost
function c(s, a) > 0 for all state-action pairs (s, a).

An agent begins at an initial state following p0(s) and repeats the process of collecting reward r(s, a)
and incurring cost c(s, a) by taking action a in state s and transitioning to the next state s′. The policy
π(a|s) represents the distribution of actions to be taken by the agent in state s. The performance
of the policy π can be evaluated with the expected return Rπ = Eπ [

∑∞
t=0 γ

tr(st, at)] and the
expected accumulated cost Cπ = Eπ [

∑∞
t=0 γ

tc(st, at)], which are the expected cumulative sums of
discounted rewards and costs over rollouts of the policy π.

The main goal of reinforcement learning (RL) is to optimize policy π to maximize expected return
Rπ collected by the agent. Constrained RL optimizes the policy to maximize its expected return Rπ

while constraining its expected accumulated cost Cπ to be lower than a given threshold Cthreshold.

Stationary Distribution and Linear Programming (LP) formulation of RL The stationary
distribution of policy dπ represents the discounted sum of probabilities of the state-action pair (s, a)
visited by an agent following policy π, i.e., dπ(s, a) := (1− γ)

∑∞
t=0 γ

tPr(st = s, at = a). Using
the stationary distribution, Rπ and Cπ can be expressed as linear combinations of the stationary
distribution and the reward and the cost respectively: Rπ = 1

1−γ

∑
s,a dπ(s, a)r(s, a) and Cπ =

1
1−γ

∑
s,a dπ(s, a)c(s, a). This characteristic allows the RL problem to be formulated as a linear

programming (LP), known as the dual of V-LP in [16].

max
d≥0

∑
s,a

d(s, a)r(s, a) (1)

s.t. (B∗d)(s) = (1− γ)p0(s) + γ(T∗d)(s) ∀s (2)

where (B∗d)(s) =
∑

a d(s, a) and (T∗d)(s) =
∑

s̄,ā T (s|s̄, ā)d(s̄, ā).

Constraint (2), known as Bellman flow constraint, is a requirement that any stationary distribution
must satisfy. The condition can be interpreted as ensuring that the probability of state-action pairs
leaving state s matches the total probability of state-action pairs entering s, plus the probability of
state s initiating a trajectory. Once the optimal stationary distribution d∗ is obtained, optimal policy
π∗ can be extracted from it by π∗(a|s) = d∗(s, a)/

∑
a′ d∗(s, a′) ∀s, a.
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Offline RL and DICE-RL Framework In this paper, we assume an offline policy optimization
setting where interaction between the agent and environment is not allowed. Instead, the agent is
provided with a fixed dataset of experiences D = {(si, ai, ri, ci, s′i)}Ni=1, consisting of N transition
samples, to optimize its policy. A unique challenge in offline RL is balancing between policy
optimization and distribution shift, as it is not possible to gather samples from the optimized policy.

In [12], regularized policy optimization is proposed to penalize return maximization (1) with f -
divergence between stationary distributions of the trained policy d and the behavior policy dD,
defined as Df (d||dD) :=

∑
s,a dD(s, a)f (d(s, a)/dD(s, a)). The convexity of f leads to a convex

optimization problem that balances return maximization and distribution shift:

max
d≥0

∑
s,a

d(s, a)r(s, a)− α
∑
s,a

dD(s, a)f

(
d(s, a)

dD(s, a)

)
s.t. (B∗d)(s) = (1− γ)p0(s) + γ(T∗d)(s) ∀s

where α is a hyper-parameter that controls the trade-off. In the constrained setting studied in [13], a
cost constraint

∑
s,a d(s, a)c(s, a) ≤ Cthreshold is added to the problem.

Previous studies have leveraged the characteristics of the above convex optimization problem to
develop practical offline RL algorithms. They follow a similar approach by applying a Lagrangian
multiplier ν(s) to the Bellman flow constraint (2), reformulating the Lagrangian dual of the problem
into the main loss function of the algorithms. We refer to this family of algorithms as the DICE-RL
framework. Detailed explanations of the loss functions and the full derivations of related DICE-RL
algorithms (OptiDICE [12] and COptiDICE [13]) are provided in Appendix A.

Linear-fractional Programming Linear-fractional programming is defined as maximizing a ratio
of two affine functions over a polyhedron. Its standard form is given by:

max
x

f(x) :=
cTx+ α

dTx+ β
s.t. Gx ⪯ h, Ax = b (3)

The domain of f is restricted to ensure the denominator remains positive, i.e., {x|dTx+ β > 0}, as
a zero denominator would result in an infeasible solution.

Assuming the region satisfying the constraints is non-empty and bounded, any linear-fractional
programming can be transformed into equivalent linear programming using the Charnes-Cooper
transformation [1]. The main idea of the transformation is to replace variable x with two new
variables t ≥ 0 and y, such that t(dTx+ β) = 1 and y = tx. This change of variables eliminates
the denominator of f(x), resulting in the following linear programming problem:

max
y,t≥0

cTy + αt s.t. Gy ⪯ th, Ay = tb, dTy + βt = 1.

3 ROI Maximization in Linear Programming form (ROI-LP)

In this section, we start with a return on investment (ROI) maximization problem by substituting the
objective of the dual of V-LP from return Rπ to ROI. This results in a linear-fractional programming
problem, as the objective is the ratio of two linear functions representing return and accumulated cost.
We then apply the Charnes-Cooper transformation to derive an equivalent linear programming (LP),
ROI-LP.

ROI Maximization Problem We begin by defining the ROI of policy π in a Markov Decision
Process (MDP). The ROI of policy π is the ratio between the return Rπ and its accumulated cost Rπ ,
which can be expressed in terms of its stationary distribution dπ: ROI(π) = Rπ

Cπ
=

∑
s,a dπ(s,a)r(s,a)∑
s,a dπ(s,a)c(s,a)

.
Substituting the objective of the dual of V-LP (1) with ROI, we get our ROI maximization problem,
which adheres to the standard form of linear-fractional programming in (3).

max
d≥0

∑
s,a d(s, a)r(s, a)∑
s,a d(s, a)c(s, a)

s.t. (B∗d)(s) = (1− γ)p0(s) + γ(T∗d)(s) ∀s. (4)
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ROI-LP We apply the Charnes-Cooper transformation to reformulate the ROI maximization
problem (4) into an equivalent linear programming problem, ROI-LP. This involves introducing a
non-negative variable t ≥ 0 and replacing d(s, a) with d′(s, a) and t, which are defined as:

d′(s, a) =
1∑

s,a d(s, a)c(s, a)
d(s, a), t =

1∑
s,a d(s, a)c(s, a)

(5)

and thus d(s, a) = d′(s, a)/t. Substituting d, ROI-LP, the linear programming formulations for
maximizing ROI, is given by:

max
d′≥0,t≥0

∑
s,a

d′(s, a)r(s, a)

s.t. (B∗d
′)(s) = t(1− γ)p0(s) + γ(T∗d′)(s) ∀s∑

s,a

d′(s, a)c(s, a) = 1 (6)

where the equality constraint (6) is newly introduced to ensure that (5) is satisfied. Once the
optimization on ROI-LP is complete, optimal stationary distribution d∗(s, a) is obtained by dividing
d′∗(s, a) with t∗.
Remark. When c(s, a) is a fixed constant C for all states and actions, the optimal solution of ROI-LP
becomes equivalent to that of the dual of V-LP. In this case, the optimal t becomes 1

C as per (5), since
any stationary distribution satisfies

∑
s,a d(s, a) = 1. Consequently, the optimal d′∗ becomes d∗

from the dual of V-LP scaled by t. This special case illustrates that ROI maximization simplifies
return maximization when the accumulated cost is constant, regardless of the policy.

4 Offline ROI maximization

In this section, we derive an offline ROI maximization algorithm that extends ROI-LP to also include
the trade-off for distribution shifts. We formulate a convex optimization problem for offline ROI
maximization and use it to derive ROIDICE, the first offline algorithm to optimize policy efficiency
in terms of ROI given a fixed dataset.

4.1 Regularized ROI Maximization Framework

To formulate an offline ROI maximization problem, we add a convex regularization to ROI-LP
representing a distribution shift. The approach is similar to the DICE-RL framework [13], which
incorporates an f -divergence between the stationary distribution of trained policy d and behavior
policy dD into the dual of V-LP. Our regularized ROI maximization framework is given by:

max
d′≥0,t≥0

∑
s,a

d′(s, a)r(s, a)− α
∑
s,a

dD(s, a)f

(
d′(s, a)

dD(s, a)
, t

)
s.t. (B∗d

′)(s) = t(1− γ)p0(s) + γ(T∗d′)(s) ∀s (7)∑
s,a

d′(s, a)c(s, a) = 1 (8)

where the design of f(x, t) will be provided later in this subsection. We denote Df,t(d
′, dD) =∑

s,a dD(s, a)f( d′(s,a)
dD(s,a) , t).

The primary difference between our proposed problem and DICE-RL framework lies in the convex
regularization. The f -divergence Df (d||dD) from DICE-RL framework is not directly applicable
to d′(s, a), as d′(s, a) is not a valid probability distribution; it is derived by scaling the stationary
distribution d(s, a) by t. However, naively incorporating Df (

d′

t ||dD) results in the loss of the
convexity, as f(xt ) of f -divergence is generally not convex with respect to t. To this end, we design
a new convex regularization that measures the amount of distribution shift while not breaking the
convexity of the problem. We begin by outlining three conditions that the regularization should
satisfy.

1. f(x, t) should be convex in x given t > 0 and convex in t given x > 0.
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2. f(x, t) should be zero when x = t.
3. f(x, t) should be well-defined on x > 0 and t > 0.

The first condition is that the problem must maintain convexity with respect to both x and t. The
second condition is that it must effectively regularize the distribution shift. Specifically, Df,t(d

′, dD)
should be minimized to zero when the stationary distribution d(s, a) = d′(s, a)/t matches dD(s, a).
The last condition is to avoid infeasible optimization scenarios, e.g., negative values inside a log
function. We introduce two convex functions as examples.

f1(x, t) =
1

2
(x− t)2, f2(x, t) =

{
1
2 (x− t)2 x ≥ t
x
t log(

x
t )−

x
t + 1 0 < x < t

From f(x) = 1
2 (x − 1)2 of χ2-divergence, we can obtain the first function f1(x, t) by shifting

it by t − 1. We introduce a softened variant of f1, denoted as f2, where a scaled version of the
function f(x) = x log x− x+ 1 (arising from the KL divergence) is seamlessly combined with the
left segment of f1. Although f2(x, t) is not entirely convex with respect to t, it serves as a valid
regularization term, as f2(x, t) = 0 holds exclusively when x = t.
Remark. A unique characteristic of the proposed regularization Df,t(d

′, dD) is that its magnitude
is affected not only by the degree of distribution shift but also by the trained policy’s accumulated
cost. We demonstrate this by comparing the magnitude of Df,t(d

′, dD) and f -divergence Df (
d′

t ∥dD)

that corresponds to typical regularizer of DICE-RL framework. In the case of χ2-divergence,
Df,t(d

′, dD) = t2Df (
d′

t ||dD) as Df (
d′

t ||dD) =
∑

s,a dD(s, a) 1
2t2 (

d′(s,a)
dD(s,a) − t)2. Since t represents

the inverse of the expected accumulated cost (5), the strength of the regularization with Df,t(d
′, dD)

becomes stronger than the actual f -divergence when the expected accumulated cost of the trained
policy is less than 1.

4.2 ROIDICE

We are now prepared to derive ROIDICE, an offline algorithm for ROI maximization based on the
Regularized ROI maximization framework. To enforce the constraints (7) and (8), we introduce
Lagrangian multiplier ν ∈ R|S| and µ ∈ R:

max
w≥0,t≥0

min
ν,µ

L(ν, µ, w, t) :=
∑
s,a

w(s, a)dD(s, a)r(s, a)− α
∑
s,a

dD(s, a)f(w(s, a), t) (9)

+
∑
s

ν(s) (t(1− γ)p0(s) + γ(T∗d′)(s)− (B∗d
′)(s)) + µ

(
1−

∑
s,a

w(s, a)dD(s, a)c(s, a)

)
,

where w(s, a) = d′(s, a)/dD(s, a). We follow a similar derivation process as outlined by [12] and
obtain a closed-form solution of w∗

ν,µ,t(s, a):

w∗
ν,µ,t(s, a) = max

(
0, (f ′)−1

(
eν(s, a)− µc(s, a)

α
, t

))
∀s, a. (10)

where eν(s, a) = r(s, a) + γ
∑

s′ T (s
′|s, a)ν(s′)− ν(s) and (f ′)−1(y, t) is the inverse function of

∂
∂xf(x, t) with respect to x. Loss functions of ν, µ and t are obtained by substituting w∗

ν,µ,t(s, a) into
L(ν, µ, w, t):

min
ν

Es∼p0
[t(1− γ)ν(s)] + E(s,a)∼dD

[
w∗

ν,µ,t(s, a)(eν(s, a)− µc(s, a))− αf(w∗
ν,µ,t(s, a), t)

]
,

min
µ

E(s,a)∼dD

[
w∗

ν,µ,t(s, a)(eν(s, a)− µc(s, a))− αf(w∗
ν,µ,t(s, a), t)

]
+ µ,

max
t≥0

Es∼p0 [t(1− γ)ν(s)]− E(s,a)∼dD

[
αf(w∗

ν,µ,t(s, a), t)
]
.

After the minimization on ν, µ and t is complete, we apply policy extraction techniques from [12] to
obtain the policy that generates optimal stationary distribution d∗(s, a) = 1

tw
∗
ν,µ,t(s, a)dD(s, a). In

this paper, we adopt weighted behavior cloning method, whose loss function is given as,

max
θ

E(s,a)∼dD

[
1

t
w∗

ν,µ,t(s, a) log πθ(a|s)
]

(11)

The more detailed derivation and algorithm of ROIDICE can be found in Appendix B.
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Figure 1: Comparison of ROIDICE with other offline algorithms. We average the scores and obtain
±2× standard error using 1000 seeds. N denotes the number of trajectories within the dataset.

5 Experiments

In this section, we demonstrate that the offline policy obtained from ROIDICE achieves a superior
trade-off between return and accumulated cost compared to other RL approaches such as offline RL
and constrained offline RL, in both finite and continuous domains.

5.1 Random Finite MDP Experiments

We test ROIDICE in a Random MDP setting similar to [12]. A tabular MDP with |S| = 50 and
|A| = 4 is randomly generated and a behavior policy that achieves 90% of the optimal return is used
to gather fixed datasets with {10, 20, 50, 100, 1000, 2000} trajectories. We estimate the empirical
transition probability T̂ (s′|s, a) with the given samples and use it to run a tabular version of ROIDICE.
Details of the experiments are provided in the Appendix C. We compare ROIDICE with DICE-RL on
other offline policy optimization schemes, OptiDICE [12] for offline RL and COptiDICE [13] for
offline constrained RL.

vs. Offline RL In Figure 1a, we compare the performance of ROIDICE with OptiDICE. While
OptiDICE achieves the highest return, it incurs a higher accumulated cost than ROIDICE. This is
expected, as RL does not account for the accumulated cost it incurs. In contrast, ROIDICE optimizes
the policy’s ROI, resulting in a highly efficient policy that delivers a substantial return at a relatively
lower accumulated cost.

vs. Offline Constrained RL In Figure 1b, we compare the performance of ROIDICE with
COptiDICE. Offline constrained RL aims to maximize return while keeping the accumulated cost
below a specified threshold Cπ ≤ Cthreshold. As demonstrated in Appendix A, COptiDICE optimizes
its policy using a penalized reward function r(s, a)− λcc(s, a), where λc is the Lagrange multiplier
for the cost constraint. To ensure satisfaction of the cost constraint, λc is updated to increase when
the constraint is violated. To set the cost thresholds for our experiment, we obtain the accumulated
cost of the ROIDICE policy on the Maximum Likelihood Estimate (MLE) MDP and multiply it
with [0.7, 0.9, 1.0, 1.1, 1.3]. The left side of the figure shows the true ROI performance of the agents,
while the right side shows the ROI performance on the MLE MDP, representing the performance
agents expect. The cost thresholds from the MLE MDP are based on the offline assumption which
excludes the interaction with the true MDP.

With a sufficient number of trajectories in the offline dataset, COptiDICE with a cost multiplier of
1.0, which corresponds to the same cost budget as the optimized ROIDICE policy, achieves the best
ROI among the tested multipliers. Both increasing or decreasing the cost threshold result in reduced
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Table 1: ROI of ROIDICE compared with offline RL and offline constrained RL algorithms. We
average each score and get ±2× standard error with 5 seeds across 10 episodes. The task name is
succinctly stated: Hopper (H), Walker2D (W), Halfcheetah (HC), and Finance (F).

Task ROIDICE OptiDICE COptiDICE CDT
50th 80th 50th 80th

H-m 9.21±0.49 3.58±0.03 7.37±0.19 7.21±0.15 3.04±0.2 3.0±0.16

H-m-e 8.29±0.18 4.93±0.36 7.6±0.44 7.88±0.21 3.71±0.15 3.73±0.16

H-e 8.51±0.25 5.23±0.04 7.9±0.14 7.99±0.18 -0.1±0.17 -0.17±0.23

W-m 3.06±0.14 2.34±0.15 2.66±0.63 2.92±0.48 0.6±0.4 0.82±0.31

W-m-e 4.21±0.78 4.03±0.06 3.45±0.57 3.3±0.49 0.91±0.49 0.77±0.35

W-e 5.01±0.42 4.59±0.02 4.25±0.12 4.2±0.12 -0.01±0.2 -0.01±0.2

HC-m 8.48±0.19 6.18±0.05 8.04±0.4 7.98±0.32 -0.03±0.01 -0.01±0.01

HC-m-e 10.17±0.4 9.04±1.03 8.31±0.4 8.06±0.47 6.12±0.78 6.02±0.08

HC-e 12.69±0.09 12.74±0.13 7.42±0.86 7.91±0.39 12.67±0.07 12.66±0.06

F-M 43.2±13.13 40.3±10.29 24.4±8.5 16.3±5.84 20.5±12.63 20.5±12.63

F-H 47.2±8.67 41.8±7.23 27.3±6.41 26.4±4.31 46.5±8.97 46.5±8.98

policy efficiency, as constrained RL agents typically use the entire available budget to maximize
return. When the number of trajectories is insufficient, ROIDICE is rarely outrun by COptiDICE as
the large discrepancy between True MDP and MLE MDP causes ROIDICE to be optimized on the
erroneous MLE MDPs.

While it is theoretically possible to identify a policy with optimal ROI using a constrained RL
algorithm, doing so requires multiple runs with different cost thresholds to determine the best one.
This process can become computationally intractable and less accurate as the complexity of the
problem increases. In contrast, a single run of ROIDICE is sufficient to find a policy with high ROI
without the need to explicitly search for the right cost threshold.

5.2 ROI Maximization in Continuous Domains

We evaluate our algorithm’s performance across diverse domains using datasets from D4RL [6] (CC
BY 4.0) and NeoRL [18] (CC BY 4.0). From the D4RL benchmark, we select three locomotion
tasks (Hopper, Halfcheetah, Walker2D), and from NeoRL, we include a stock trading task (FinRL).
To assess ROIDICE’s capability to maximize Return on Investment (ROI), we conduct comparative
analyses with various unconstrained or constrained offline RL algorithms. We utilize offline datasets
from D4RL and NeoRL, which are collected using data collection policies that do not consider cost.
Similar to the random MDP experiments, we include OptiDICE and COptiDICE for comparison.
Additionally, we incorporate the Constrained Decision Transformer (CDT, [15]) to represent a recent
approach that leverages the power of generative models on RL.

5.2.1 Environment and Offline Dataset

In the three locomotion environments, observations include the positional values and velocities of
various body parts, with actions corresponding to the torques exerted between links. The common
reward function used in recent benchmarks consists of three components: incentive for forward
running speed, incentive for maintaining a healthy state, and penalty for applying torques on joints.
In this experiment, we use the control penalty as the cost function, aiming to train the agent to strive
for efficient energy consumption from an ROI perspective. We used only forward running speed as
our reward function.

FinRL, the time-driven stock trading simulator, enables us to replicate live stock markets using real
market data. This allows us to assess our algorithm’s proficiency in both resource management and
decision-making amidst uncertainty. Observations include balances, daily stock amounts, closing
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Figure 2: ROI Comparison of ROIDICE and Dataset with varying dataset qualities. We average the
each scores and get ±2× standard error with 5 seeds across 10 episodes. BCn% refers to behavior
cloning utilizing the top n% of the offline dataset, ranked by ROI.

prices, and various technical indicators for each of the 30 stocks in the trading pool. Agents use their
balances to trade these stocks. We define a cost function based on trading volume and stock price,
imposing a fee on each transaction. This requires the agent to strategically optimize its transactions,
considering both stock price fluctuations and associated fees. For more details on each environment
and experimental setting, see Appendix E.

5.2.2 Results

Table 1 presents our results for all four tasks. Each algorithm is trained for 100k steps and evaluated
for a maximum of 1000 steps with 5 seeds across 10 episodes. The data quality levels are denoted as
follows: for locomotion tasks, medium (m), medium-expert (m-e), and expert (e); for the financial
task, medium (M), and high (H). Complete experimental results are provided in Appendix H.

ROIDICE exhibits superior ROI performance compared to other algorithms across most tasks, partic-
ularly excelling in the Hopper environment where there is significant potential for ROI improvement.
OptiDICE also demonstrates high ROI in environments other than Hopper due to the high ROI of the
offline datasets themselves for Walker2D and Halfcheetah (see Figure 2 for dataset ROIs). However,
compared to OptiDICE, ROIDICE shows a greater return with lower accumulated cost in a significant
number of tasks (see Appendix H).

The constrained offline RL algorithms are evaluated under two cost thresholds, specifically using the
80th and 50th percentiles of the accumulated costs from the offline dataset to set the cost conditions
for COptiDICE (discounted with γ = 0.99) and CDT (undiscounted). This constraint setting ensures
that the constrained offline RL algorithms make in-distribution decisions regarding cost constraints.
In some domains, particularly where costs can be lowered with a slight loss in return, COptiDICE
demonstrates a higher ROI compared to OptiDICE, but without fine-grained tuning of cost constraints,
it does not reach the performance of ROIDICE. Conversely, CDT tends to overfit under the current
experiment settings when the dataset lacks diversity. In most cases, CDT either fails to optimize a
policy (resulting in negative ROI), or optimizes a policy with a very high return but also a very high
accumulated cost (resulting in a small ROI).

Figure 2 illustrates how ROIDICE effectively learns from diverse behaviors in the dataset. We
compare the ROI of ROIDICE with that of Behavior Cloning (BC) that clones behaviors only from
high ROI trajectories. We compute the ROI of trajectories in the dataset and select the top 20%, 50%,
and 80% ROI trajectories to train BCn% agents. We can observe that in a significant number of
experiment settings, ROIDICE outperforms BCn% agents. This demonstrates ROIDICE’s capability
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Figure 3: Visualization of ROIDICE and OptiDICE in Hopper environment.

to stitch together various segments from different trajectories to optimize a policy that behaves more
efficiently than any other trajectory in the dataset.

Compared to locomotion tasks, the financial task adds another challenge of high stochasticity. Despite
this, ROIDICE demonstrates strong performance on the financial task with both medium and high-
quality datasets, as shown in Table 1. OptiDICE, although achieving high returns, shows relatively
low ROI performance due to high transaction fees (cost). The high ROI observed from CDT is
actually coincidental, as CDT fails to meet the given cost constraint due to overfitting; its return
maximization policy accidentally results in an efficient policy with high ROI.

Qualitative Behavior Examples Figure 3 illustrates the different behaviors between ROIDICE and
OptiDICE in the Hopper task at the same time steps, selected to clearly represent these differences.
Recall that in the locomotion task, the cost corresponds to the amount of torque applied, i.e., the
energy consumed forcing it to move forward. OptiDICE focuses solely on maximizing return,
resulting in the agent making large, far-jumping movements, even applying torque to the joint after
the jump, which is inefficient for obtaining additional rewards. In contrast, ROIDICE finds the
optimal behavior to increase return while reducing energy consumption. Consequently, the agent
attempts to hop far but avoids inefficient actions that decrease ROI.

6 Conclusion

In this paper, we propose a novel policy optimization framework designed to maximize the Return on
Investment (ROI) of the policy, the ratio between the return and the accumulated cost. Maximizing
ROI is particularly relevant in practical scenarios: the fuel efficiency (km/L) of autonomous vehicles,
managing the trade-off between decision quality and planning time in meta-controllers for real-time
decision-making, or balancing generation quality and inference time in large language models (LLMs).
The ROI maximization is approached through linear-fractional programming that incorporates the
stationary distribution of the policy. We apply the Charnes-Cooper transformation to convert the
problem into equivalent linear programming, ROI-LP. Motivated by the DICE RL frameworks, we
extend ROI-LP to develop our offline policy optimization algorithm, ROIDICE, by incorporating
convex regularization designed to properly regularize the distribution shift. We show that ROIDICE
yields a policy with better efficiency than policies from the existing RL-based optimization methods
by considering the trade-off between return and accumulated cost.

7 Limitations

While our work is innovative in optimizing the ROI of a policy, it functions within the constraints
of an offline setting where direct interaction with the environment is not feasible. Consequently,
the ultimate performance of the policy optimized with ROIDICE is contingent upon the quality of
the provided dataset. Since ROIDICE takes into account both returns and accumulated costs, it is
sensitive to the design of the reward and cost functions. For instance, the agent may behave similarly
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to one trained by an unconstrained RL when the cost function approximates a constant. Conversely,
the agent may exhibit behaviors aimed at minimizing costs excessively, akin to laziness, when the
cost function varies significantly.
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A Full derivation of DICE RL algorithms

In this section, we introduce how DICE RL algorithms are derived from the regularized policy
optimization framework. We derive DICE RL algorithms for both unconstrained and constrained
scenario: OptiDICE [12] and COptiDICE [13].

A.1 Derivation of OptiDICE

We show how OptiDICE is derived from the regularized policy optimization framework in [12]. The
convex optimization of the framework is given as,

max
d≥0

∑
s,a

d(s, a)r(s, a)− α
∑
s,a

dD(s, a)f

(
d(s, a)

dD(s, a)

)
s.t.

∑
a

d(s, a) = (1− γ)p0(s) + γ
∑
s̄,ā

T (s|s̄, ā)d(s̄, ā) ∀s

where convex function f(x) is a convex function generally used in f -divergence: f(x) = 1
2 (x− 1)2

of χ2-divergence or f(x) = x log x− x+ 1 of KL divergence.

Assuming d(s, a) = w(s, a)dD(s, a) is the stationary distribution of the dataset dD(s, a) weighted
by w, the Lagrangian dual of the convex optimization problem is given as,

max
w≥0

min
ν

L(w, ν) :=
∑
s,a

w(s, a)dD(s, a)r(s, a)− α
∑
s,a

dD(s, a)f(w(s, a)) (12)

+
∑
s

ν(s)

[
(1− γ)p0(s) + γ

∑
s̄,ā

T (s|s̄, ā)w(s̄, ā)dD(s̄, ā)−
∑
a

w(s, a)dD(s, a)

]
where ν is the Lagrangian multiplier for the Bellman flow constraint.

We use
∑

s ν(s)
∑

s̄,ā T (s|s̄, ā)w(s̄, ā)dD(s̄, ā) =
∑

s,a w(s, a)dD(s, a)
∑

s′ T (s
′|s, a)ν(s′) to

switch the order of summation and transform the Lagrangian.

max
w≥0

min
ν

L(w, ν) := (1− γ)Es∼p0
[ν(s)] + E(s,a)∼dD

[w(s, a)eν(s, a)− αf(w(s, a))]

where eν(s, a) = r(s, a) + γ
∑

s′ T (s
′|s, a)ν(s′)− ν(s).

OptiDICE [12] simplifies the max-min problem by switching the order of optimization from
maxw≥0 minν L(w, ν) to minν maxw≥0 L(w, ν). The optimal solution is not affected due to the
strong duality of the problem. The switch enables the closed-form solution of stationary distribution
ratio w of the inner maximization problem that satisfies ∂L(w, ν)/∂w(s, a) = 0 ∀s, a.

w∗
ν(s, a) = max

(
0, (f ′)−1

(
eν(s, a)

α

))
(13)

The closed-form solution w∗
ν(s, a) can be plugged in L(w, ν) to derive ν loss of OptiDICE given as,

min
ν

L(w∗
ν , ν) = (1− γ)Es∼p0

[ν(s)] + E(s,a)∼dD
[w∗

ν(s, a)eν(s, a)− αf(w∗
ν(s, a))] (14)

After minimization on ν is complete, optimal ν∗ is plugged in w∗
ν(s, a) to obtain the optimal stationary

distribution d∗(s, a). Policy π that generates d∗(s, a) is trained by using policy extraction techniques
from [12]. In this paper, we adopt weighted behavior cloning method, whose loss function is given
as,

max
θ

E(s,a)∼dD
[w∗

ν∗(s, a) log πθ(a|s)] (15)

A.2 Derivation of COptiDICE

We show how COptiDICE, the extension of OptiDICE to offline constrained RL, is derived. Con-
strained RL assumes an additional cost function c(s, a) and limits the discounted sum of cost
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∑
d(s, a)c(s, a) ≤ Cthreshold. The constraint is added to the regularized policy optimization frame-

work in [13].

max
d≥0

∑
s,a

d(s, a)r(s, a)− α
∑
s,a

dD(s, a)f

(
d(s, a)

dD(s, a)

)
s.t.

∑
a

d(s, a) = (1− γ)p0(s) + γ
∑
s̄,ā

T (s|s̄, ā)d(s̄, ā) ∀s

∑
s,a

d(s, a)c(s, a) ≤ Cthreshold

Lagrangian multiplier λ is applied to the cost constraint and the Lagrangian of the constrained
problem is given as,

max
w≥0

min
ν,λ

Lc(w, ν) := L(w, ν) + λ(Cthreshold −
∑
s,a

w(s, a)dD(s, a)c(s, a)) (16)

After the similar derivations from OptiDICE, the closed-form solution of stationary distribution ratio
w and loss functions for ν are given as,

w∗
ν,λ(s, a) = max

(
0, (f ′)−1

(
eν,λ(s, a)

α

))
(17)

min
ν

(1− γ)Es∼p0
[ν(s)]+E(s,a)∼dD

[w∗
ν,λ(s, a)eν,λ(s, a)− αf(w∗

ν,λ(s, a))] (18)

where eν,λ(s, a) := r(s, a) − λc(s, a) +
∑

s′ T (s
′|s, a)ν(s′) − ν(s). Lagrangian multiplier λ

determines how much reward function r(s, a) is penalized by cost function c(s, a) and its loss
function is given as,

max
λ

λ

(∑
s,a

w∗
ν,λ(s, a)dD(s, a)c(s, a)− Cthreshold

)
(19)

where λ is updated to satisfy the constraint by increasing when discounted sum of cost∑
s,a d(s, a)c(s, a) is larger than the cost upper bound Cthreshold.

B Derivation of ROIDICE

We follow similar approaches from Appendix A to derive ROIDICE from the Regularized ROI
maximization framework. The main goal of the framework is to obtain the optimal stationary
distribution d∗(s, a) = d′∗(s, a)/t∗ that maximizes ROI of the policy from the optimal solutions of
the convex optimization optimization given as,

max
d′≥0,t≥0

∑
s,a

d′(s, a)r(s, a)− α
∑
s,a

dD(s, a)f

(
d′(s, a)

dD(s, a)
, t

)
s.t. (B∗d

′)(s) = t(1− γ)p0(s) + γ(T∗d′)(s) ∀s∑
s,a

d′(s, a)c(s, a) = 1

We derive the Lagrangian of the convex problem by introducing Lagrangian multipliers ν and µ for
the equality constraints. We change the optimization variable d′(s, a) to w(s, a) = d′(s, a)/dD(s, a),
but the ratio is not a valid stationary distribution ratio in contrast to the previous DICE RL algorithms.

max
w≥0,t≥0

min
ν,µ

L(ν, µ, w, t) :=
∑
s,a

w(s, a)dD(s, a)r(s, a)− α
∑
s,a

dD(s, a)f(w(s, a), t)

+
∑
s

ν(s) (t(1− γ)p0(s) + γ(T∗d′)(s)− (B∗d
′)(s)) + µ

(
1−

∑
s,a

w(s, a)dD(s, a)c(s, a)

)
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We use
∑

s ν(s) (γ(T∗d′)(s)− (B∗d
′)(s)) =

∑
s,a d

′(s, a) (γ
∑

s′ T (s
′|s, a)ν(s′)− ν(s)) to ob-

tain an another expression of L(ν, µ, w, t).

max
w≥0,t≥0

min
ν,µ

L(ν, µ, w, t) = Es0∼p0 [t(1− γ)ν(s0)] + E(s,a)∼dD
[w(s, a)(eν(s, a)− µc(s, a))

− αf(w(s, a), t)] + µ

where eν(s, a) = r(s, a) + γ
∑

s′ T (s
′|s, a)ν(s′)− ν(s).

We follow the approaches from OptiDICE [12] and switch the order of the optimization from
maxw≥0,t≥0 minν,µ L(ν, µ, w, t) to maxt≥0 minν,µ maxw≥0 L(ν, µ, w, t) to obtain the closed-form
solution of w. Optimal w that satisfies ∂L(ν,µ,w,t)

∂w(s,a) = 0 in terms of ν, µ and t is given as,

w∗
ν,µ,t(s, a) = max

(
0, (f ′)−1

(
eν(s, a)− µc(s, a)

α
, t

))
(20)

where (f ′)−1(y, t) is an inverse function of ∂
∂xf(x, t) with respect to x. Loss functions of ν, µ and t

are obtained by substituting w∗
ν,µ,t(s, a) into L(ν, µ, w, t):

min
ν

Lνϕ
:= Es∼p0

[t(1− γ)ν(s)] (21)

+ E(s,a)∼dD

[
w∗

ν,µ,t(s, a)(eν(s, a)− µc(s, a))− αf(w∗
ν,µ,t(s, a), t)

]
,

min
µ

Lµ := E(s,a)∼dD

[
w∗

ν,µ,t(s, a)(eν(s, a)− µc(s, a))− αf(w∗
ν,µ,t(s, a), t)

]
+ µ,

max
t≥0

Lt := Es∼p0
[t(1− γ)ν(s)]− E(s,a)∼dD

[
αf(w∗

ν,µ,t(s, a), t)
]
.

Algorithm 1 ROIDICE

Input: The offline dataset D, the initial state offline dataset p0, parameterized Lagrangian multipli-
ers νϕ, µ, t, and policy πθ.
Output: Optimal policy π∗

θ .
Initialize all parameters.
while convergence do

Update νϕ, µ, t with Lνϕ
, Lµ, −Lt

Update θ with Lθ = −E(s,a)∼D

[
1
t · w

∗
ν,µ,t(s, a) · log πθ(a|s)

]
end while
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Figure 4: ROIDICE vs. offline constrained RL. We average the scores and obtain ±2× standard error
using 1000 seeds. N denotes the number of trajectories within the dataset.

C Details of Random MDP experiment

We evaluate ROIDICE on random MDP environments and compare with unconstrained and con-
strained RL algorithms, OptiDICE and COptiDICE. We generate tabular environments with 1000
different seeds. Each environments consists of 50 states and 4 actions. Their transition probability
is randomly generated following Dirichlet distribution. The sparse reward is given when an agent
reaches on the goal state, and the cost function follows Beta(0.2, 0.2) distribution. We add 1 to all
states in order to satisfying the domain condition of linear-fractional programming.

r(s, a) =

{
10
1−γ if s is the goal state
0 otherwise

c(s, a) =

{
0 if s is the goal state
10 · β + 1 otherwise

where the discount factor γ = 0.95 and β ∼ Beta(0.2, 0.2).

After the MDP wih a cost function is generated, we obtain behavior policy πD(a|s) that achieves
90% of the optimal return to gather fixed datasets with {10, 20, 50, 100, 1000, 2000} trajectories. The
dataset is used to estimate the empirical transition probability T̂ (s′|s, a) with the given samples.

With the estimated transition probability T̂ (s′|s, a) and behavior policy πD(a|s), we apply the
estimated MDP to a tabular version of ROIDICE. For the tabular version of ROIDICE, we apply the
primal problem of the Regularized ROI maximization framework to a convex optimization solver
software. For the convex regularization f(x, t), we use f1(x, t) =

1
2 (x− t)2 and α is set to be the

inverse of the number of trajectories.

max
d′≥0,t≥0

∑
s,a

d′(s, a)r(s, a)− α
∑
s,a

dD(s, a)f

(
d′(s, a)

dD(s, a)
, t

)
s.t. (B∗d

′)(s) = t(1− γ)p0(s) + γ(T̂∗d′)(s) ∀s (22)∑
s,a

d′(s, a)c(s, a) = 1 (23)

where (T̂∗d)(s) =
∑

s̄,ā T̂ (s|s̄, ā)d(s̄, ā).
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Figure 5: Comparison of different levels of the hyperparameter (α) of ROIDICE in locomotion
environments using expert data quality. We average the scores and obtain ±2× standard error using
5 seeds across 10 episodes.

D Impact of Various α

We investigate how varying α, which controls the strength of the regularization, affects the perfor-
mance of ROIDICE by sweeping its values. Figure 5 shows the ROI performance for α ranging from
1× 10−6 to 1.0 using expert quality dataset. Recall that the Hopper task datasets generally contain
trajectories with low ROI, while most trajectories of Walker2d and Halfcheetah achieve relatively
high ROI (see Table 2). In the Hopper environment, ROI performance decreases as α increases,
indicating an opportunity to increase ROI when the model is less regularized, as the behavior policy
collecting the offline dataset mostly does not account for the cost. In the Halfcheetah environment,
ROIDICE achieves a high ROI when following the offline dataset due to the dataset’s properties, but
shows largely varying performance with small α due to its lack of coverage outside the dataset. In
the Walker2D environment, ROIDICE shows robustness across various levels of α.

E Data and Environment Details

We assess ROIDICE across four environments: three locomotion tasks (Hopper, Halfcheetah,
Walker2D) and one financial trading task (FinRL). We utilize environment configurations and datasets
provided by [6] (CC BY 4.0) and [18] (CC BY 4.0), with modifications to reward and cost functions.
Additionally, we incorporate an absorbing state and an absorbing action to precisely calculate the sum
of discounted rewards and costs, including an additional dimension to indicate whether the current
state and action are absorbed.

Locomotion Task In the Hopper environment, the reward is multifaceted, consisting of two primary
components: the forward reward and the control cost. The forward reward incentivizes the agent to
make progress towards its goal, while the control cost penalizes actions that are overly aggressive
or energetically inefficient. Halfcheetah and Walker2D environments introduce an additional aspect
to the reward: a healthy reward. This rewards the agent for maintaining stability. The control
cost serves as a mechanism to penalize excessive actions, reflecting the idea that in real-world
scenarios, significant force often comes with considerable energy expenditure. This cost can be seen
as proportional to the energy consumption in physical robots, motivating agents to find smoother and
more energy-efficient strategies for accomplishing their tasks. We utilize the forward reward as a
reward and the control cost as a cost, normalizing the cost for stable learning. The reward and cost
functions are as follows:

r(s, a) = forward_reward_weight ∗ xt − xt+1

dt

c(s, a) =
wm

c

|A|
· ∥a∥22 + bmc

where xt represents the x-coordinate before the action at, and xt+1 represents the x-coordinate
after the action. The parameter forward_reward_weight corresponds to the forward reward and
is specific to each environment. The two hyperparameters, wc > 0 and bc > 0, are weights that
control the strength of the cost, ensuring compliance with the linear-fractional program condition.
Additionally, |A| denotes the size of the action space dimension.

Financial Task FinRL offers a stock trading simulation environment where agents trade stocks
to earn compensation, with 30 tradable stocks available (N = 30). The reward is calculated by
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summing the current balance with the product of the number of shares owned and the closing price of
each share. Additionally, a cost function considers trading volume and stock price, imposing a fee on
each transaction. The reward and cost functions are as follows:

r(s, a, s′) = wf
r · (v(s′)− v(s))

v(s) = s[0] +
∑

s[1 : 31] ∗ s[31 : 61]

ci(s, a) = bfc + wf
c

{
s[i+ 1] ·min(ai, s[i+N + 1] if ai < 0

s[i+ 1] ·min( s[0]
s[i+1] , ai) ∗ pct if ai > 0

where pct = 0.001 denotes a per-share percentage, which is the most commonly used transaction cost
rate for each trade, i = 0, 1, . . . , N represents the index of tradable stocks, and s[j], j ∈ {0, . . . , 181},
represents j-th dimension of state s. Each state dimension contains different information: s[0]
represents the balance, s[1 : 31] denotes today’s closing value for each of the 30 stocks, and s[31 : 61]
indicates today’s trading volume for each of the 30 stocks.

Table 2: Reward and cost function hyperparameters

Hyperparameter Value

wm
c 1.0

bmc 0.1

wf
r 0.001

wf
c 0.0001

bfc 0.1

F Implementation Details

We implement ROIDICE algorithm based on [13] (CC BY 4.0) for the tabular experiment, and [20]
(MIT License) for the continuous domain experiment. Our code is available at: https://github.
com/ku-dmlab/ROIDICE. The implementation and configuration of OptiDICE and COptiDICE are
adopted from the framework presented in [13], while CDT is utilized within the OSRL framework as
described in [14].

The task and dataset name is succinctly stated: Hopper (H), Walker2D (W), Halfcheetah (HC), and
Finance (F); for locomotion tasks, medium (m), medium-expert (m-e), and expert (e); for the financial
task, medium (M), and high (H). We set the hyperparameter α for OptiDICE and COptiDICE,
which controls the strength of the f-divergence regularizer. OptiDICE and COptiDICE have similar
regularizer strengths, so we set the same α for both of them. For Hopper, we set α = 0.01, for
Walker2D (m) α = 0.1, for Walker2D (m-e and e) α = 1.0, and for Halfcheetah (respectively, m, m-e,
and e) we set α = 0.01, α = 0.1, and α = 1.0; for financial task we set α = 1.0. For hyperparameter
settings and model parameter configuration of ROIDICE, see Table 3
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Table 3: Hyperparameters and configuration of ROIDICE.

Task Value

Locomotion

α 1e-06 (H-m, H-e), 1e-05 (W-e, HC-m),
1e-04 (H-m-e, W-m), 1e-03 (W-m, HC-m-e), 1.0 (HC-e)

hidden dim of ν MLP (256, 256)

hidden dim of π MLP (256, 256)

learning rate 3e-04

γ 0.99

optimizer Adam

Finance

α 1.0 (F-M), 0.001 (F-H)

hidden dim of ν MLP (256, 256, 256)

hidden dim of π MLP (256, 256, 256)

learning rate 3e-04

γ 0.99

optimizer Adam

G Experiments Compute Resources

ROIDICE was conducted on a single CPU (AMD Ryzen Threadripper PRO 5995WX) with 256GB
of RAM and a single GPU (NVIDIA RTX 4090). Each training session took about 10 to 20 minutes,
utilizing approximately 20% of the RAM and from 40% to 60% of the GPU memory.

Table 4: Comparison of the runtime and number of parameters between algorithms. All algorithms,
including baseline methods, were trained for 100K iterations on a single NVIDIA RTX 4090 GPU.

ROIDICE (Ours) OptiDICE COptiDICE CDT

Run time (wall-clock) locomotion 10 min. 8 min. 35 min. 150 min.

Run time (wall-clock) finance 20 min. 16 min. 120 min. 250 min.

The number of parameters 140K 140K 357K 730K

H Experiments Results

We average the scores and obtain ±2× standard error using 5 seeds across 10 episodes. The task
names are concisely abbreviated as follows: Hopper (H), Walker2D (W), HalfCheetah (HC), and
Finance (F). Figure 6 illustrates the learning curves of ROIDICE and other offline unconstrained and
constrained RL algorithms. In the Hopper environment, the performance of ROIDICE is significantly
better. OptiDICE attains excessive returns but relatively lower ROI than ROIDICE due to its disregard
for costs in the environment (see Table 5). ROIDICE achieves greater returns than OptiDICE when
dealing with datasets that contain a mix of expert-level and lower-level data. Our analysis shows that
ROIDICE exhibits qualitative behavior by considering both return and accumulated cost. Offline
constrained RL algorithms, COptiDICE and CDT, show high ROI with datasets that include high ROI
trajectories. In the HalfCheetah and Finance environments with high-quality datasets, CDT performs
well but not as well as ROIDICE (see Table 6).
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Figure 6: For each tasks, we report average ROI, return, and cost return with ±2× standard error
with 5 seeds across 10 episodes.
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Table 5: Results of ROIDICE compared with offline RL algorithms.

Task ROIDICE OptiDICE

H-m Rπ 102.414±10.19 134.61±0.64

Cπ 11.124±0.98 37.61±0.24

H-m-e Rπ 151.36±1.96 149.84±10.33

Cπ 18.26±0.27 30.43±0.26

H-e Rπ 115.11±12.24 171.95±1.19

Cπ 13.52±1.28 37.61±0.24

W-m Rπ 69.94±0.63 111.88±6.33

Cπ 22.92±1.07 47.87±0.62

W-m-e Rπ 148.71±27.95 192.13±2.46

Cπ 35.35±1.12 47.68±0.7

W-e Rπ 123.13±14.55 211.95±0.51

Cπ 24.49±0.95 46.2±0.18

HC-m Rπ 361.39±14.67 435.59±3.52

Cπ 42.57±1.05 70.4±0.13

HC-m-e Rπ 577.59±23.47 574.9±54.68

Cπ 56.78±0.27 64.39±1.3

HC-e Rπ 762.98±5.91 759.75±10.55

Cπ 60.11±0.17 59.61±0.25

F-M Rπ 1032.66±365.62 981.2±312.06

Cπ 23.56±2.02 23.91±2.16

F-H Rπ 1093.86±288.69 1076.16±157.41

Cπ 23.05±2.64 25.03±2.3
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Table 6: Results of offline constrained RL algorithms.

Task COptiDICE CDT
50th 80th 50th 20th

H-m Rπ 130.02±4.0 131.45±2.35 81.7±8.09 84.03±11.63

Cπ 17.64±0.65 18.25±0.65 27.08±1.33 27.43±2.02

H-m-e Rπ 93.2±22.9 103.23±14.57 126.3±7.62 127.86±5.54

Cπ 12.14±2.42 13.1±1.72 34.23±1.69 33.99±2.06

H-e Rπ 120.43±10.09 114.05±5.54 -0.6±1.44 -1.16±1.84

Cπ 15.24±0.97 14.28±0.71 7.93±0.36 7.79±0.41

W-m Rπ 75.38±19.38 79.6±13.44 30.0±20.79 40.04±17.1

Cπ 29.12±0.95 29.08±0.56 48.87±2.58 49.74±3.14

W-m-e Rπ 100.7±16.86 94.33±14.25 47.52±25.17 41.76±18.24

Cπ 29.18±0.89 29.6±0.45 47.91±3.24 48.67±4.43

W-e Rπ 120.7±9.7 117.91±9.45 -0.03±5.07 0.29±5.45

Cπ 28.38±1.64 28.03±1.67 24.96±0.39 24.98±0.37

HC-m Rπ 229.85±15.37 297.36±14.02 -0.26±0.12 -0.11±0.13

Cπ 37.07±0.48 37.21±0.58 10.0±0.0 10.0±0.0

HC-m-e Rπ 323.48±18.3 320.2±16.21 432.69±8.78 423.53±4.56

Cπ 38.3±1.32 38.76±0.94 70.37±0.35 70.71±0.63

HC-e Rπ 235.13±28.85 255.62±16.18 768.67±4.38 768.64±4.41

Cπ 31.04±0.78 31.67±0.84 60.66±0.65 60.71±0.58

F-M Rπ 570.02±246.88 351.89±114.96 528.08±321.16 528.54±321.15

Cπ 22.75±2.03 22.13±1.94 24.84±1.71 24.84±1.72

F-H Rπ 665.92±146.82 639.37±107.21 1012.48±212.15 1012.51±212.17

Cπ 24.5±0.95 24.21±0.45 21.68±0.91 21.68±0.91
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I Comparison of Offline Constrained RL Algorithms

Table 7: ROI of ROIDICE compared with offline constrained RL algorithms. We average each score
and get ±2× standard error with 5 seeds across 10 episodes.

Data quality medium medium-expert expert
ROIDICE 9.21±0.49 8.29±0.18 8.51±0.25
VOCE 50th 1.807±0.63 1.33±1.28 1.34±0.67
VOCE 80th 1.799±0.62 1.34±1.3 1.47±0.76
CPQ 50th 1.13±0.58 -0.06±0.41 -0.11±0.71
CPQ 80th -0.10±0.64 -0.15±0.48 -0.70±0.19

Our experiment in continuous domains from Section 5.2 includes non-DICE offline constrained
algorithm, CDT. We additionally provide experiments on other offline constrained RL frameworks,
VOCE [8] and CPQ [21]. Table 7 presents the ROI performance of these constrained offline RL
algorithms in the Hopper environment [6]. These algorithms use two cost budgets, corresponding to
the 50th and 80th percentiles of the accumulated costs from the offline dataset.

Over various experiments, constrained offline RL algorithms commonly have shown low ROIs.
We conjecture that these results are mainly due to the overestimation of costs, making constrained
offline RL algorithms to be overly conservative on choosing costly state-actions. On the other hand,
ROIDICE seems to be less affected by such overestimation, as overestimated costs are partially
mitigated with overestimated rewards when estimating ROIs.

J Experiment Results in Safety RL Environments

Table 8: ROI of ROIDICE compared with offline constrained RL algorithms. We average each score
and get ±2× standard error with 5 seeds across 10 episodes.

Task CarGoal PointPush
ROIDICE 0.160±0.02 0.033±0.01
COptiDICE 50th 0.119±0.01 0.026±0.01
COptiDICE 80th 0.115±0.01 0.022±0.01

We evaluate our approach on OpenAI SafetyGym [19] tasks including CarGoal and PointPush. Table
8 provides results averaged over 5 seeds across 10 episodes. We observed that ROIDICE outperforms
COptiDICE in terms of ROI. We use the rewards and costs from the environment, adding a constant
value of ϵ = 0.1 to each cost to maintain our assumption that c(s, a) > 0∀s, a. The offline dataset is
collected by PPO Lagrangian. ROIDICE uses α = 0.001 for CarGoal and α = 0.01 for PointPush.
COptiDICE uses α = 0.01 for CarGoal and α = 1.0 for PointPush.

23



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4.2, Appendix C, Appendix F, Appendix E
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Appendix C, Appendix F, Appendix E
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5, Appendix C, Appendix F, Appendix E, Appendix H
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Section 5, Appendix H
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix G

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code fo Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper does not directly engage with societal elements or have immediate
applications that could be identified as having positive or negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Section 5.2, Appendix E, Appendix F

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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