Non-Vacuous Generalization Bounds for Large Language Models

Sanae Lotfi “! Marc Finzi“*? Yilun Kuang "'

Tim G. J. Rudner ' Micah Goldblum' Andrew Gordon Wilson !

Abstract

Modern language models can contain billions of
parameters, raising the question of whether they
can generalize beyond the training data or sim-
ply parrot their training corpora. We provide the
first non-vacuous generalization bounds for pre-
trained large language models (LLMs), indicating
that language models are capable of discovering
regularities that generalize to unseen data. In par-
ticular, we derive a compression bound that is
valid for the unbounded log-likelihood loss using
prediction smoothing, and we extend the bound to
handle subsampling, making bound computation
900 times faster on massive datasets. To achieve
the extreme level of compression required for non-
vacuous bounds, we devise SubLoRA, a simple
low-dimensional nonlinear parameterization that
leads to non-vacuous generalization bounds for
very large models with up to 849 million param-
eters. Finally, we use our bounds to understand
LLM generalization and find that larger models
have better generalization bounds and are more
compressible than smaller models.

1. Introduction

Do large language models (LLMs) merely memorize the
training data, and if so, are they able to meaningfully gener-
alize beyond their training set? This question is central to
understanding LLLMs as they continue to grow in capacity
and are capable of memorizing and parroting training exam-
ples verbatim (Brown et al., 2020; Chowdhery et al., 2022;
Carlini et al., 2020; 2023).

In this work, we address the question of generalization in
LLMs by computing the first non-vacuous generalization
bounds for language model pretraining on next token pre-

“Equal contribution 'New York University *Carnegie Mellon
University. Correspondence to: Sanae Lotfi <sl8160@nyu.edu>,
Andrew Gordon Wilson <andrewgw @cims.nyu.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

diction, thereby providing a mathematical guarantee that
LLMs are able to generalize beyond their training data.

Although significant progress has been made in constructing
non-vacuous generalization bounds for image classification
models using the PAC-Bayes framework (Catoni, 2007)
in conjunction with extreme levels of model compression
(Zhou et al., 2019; Lotfi et al., 2022), non-vacuous general-
ization bounds for large language models remain elusive.

Compared to image classification models, constructing non-
trivial bounds for language models presents additional chal-
lenges: (i) LLMs are trained on autoregressive token pre-
diction, and thus token predictions are not independent; (ii)
the relevant negative log-likelihood (NLL) metric (bits per
dimension) is a continuous and unbounded random variable
for which previously used non-vacuous PAC-Bayes bounds
are invalid; and (iii) LLMs have orders of magnitude more
parameters than image classification models. To address
these challenges, we derive new generalization bounds that
can be applied to the unbounded bits per dimension ob-
jective. We also introduce an extension of these bounds
which can be computed using only a subset of the training
data, making bound computation 900 times faster on the
OpenWebText dataset, which has more than 9 billion tokens.

Achieving the extreme level of compression required to ob-
tain non-vacuous generalization bounds for LLMs is another
challenge. To this end, we devise SubLoRA (Subspace-
Enhanced Low-Rank Adaptation): simple nonlinear param-
eterization for LLMs that makes it possible to smoothly
vary the level of compression while maintaining expressiv-
ity. SubLoRA combines low-rank adaptation (LoRA) (Hu
et al., 2021), originally proposed for efficient fine-tuning,
with subspace training (Li et al., 2018; Lotfi et al., 2022) to
pretrain highly compressed LLMs from scratch.

Combining the above-described theoretical and practical
contributions, we achieve the first non-vacuous bounds
for large language models. To highlight the efficiency of
our new compression technique, we compare SubLoRA to
LoRA and subspace training in Figure 1 (left). We compute
two metrics that we define as follows: Top-1 Error, which
is the 0-1 error in predicting the next token averaged over a
given document; and the bits per dimension metric, which

Non-Vacuous Generalization Bounds for Large Language Models

* & ° = 1.00 ° 2 —— Bound
— C
— ° © & S20 ' Empirical Risk
£ 14 = R 2} .
o < 0.95 $18 Complexity
= < g P e --- Random Guess
[a) o 1l6
& 12 . .8 -
@ o o 0.90 N 814
© 9) 0
L 212
10 @
1 2 3 0.05 0.10 0.15 10
Complexity Complexity 10° 10?
Extent of Compression
SubLoRA e LoRA Subspace (model size KB)

Figure 1. Finding solutions that simultaneously achieve low training error and low complexity with SubLoRA. (Left): The Pareto
frontier of model complexity (the 2nd term in Equation 1) and the empirical risk (bits per dimension (BPD) and Top-1 Error) of language
models using LoRA and subspace compression for next token prediction pretraining. The generalization bound is formed from the sum
of the two axes (lower is better), with the shaded region showing where bounds are vacuous. Combining both LoRA and subspace
compression in the form of SubLLoRA yields the best bounds, while using LoRA alone yields vacuous bounds for top-1 error. (Right):
SubLoRA enables a smooth tradeoff over the extent of model compression for a fixed model, finding the degree of compression that is
optimal for the situation in constructing the generalization bounds. We plot the contributions of the empirical risk and the complexity term

to the bound as a function of this degree of compression.

corresponds to the average negative log-likelihood per doc-
ument. The shaded region highlights where bounds become
vacuous, with SubLoRA achieving non-vacuous bounds for
both bits per dimension and Top-1 Error. The term vacuous
refers to the random guess performance which is log, V' for
BPD and 1 — 1/V for Top-1 Error, where V is the vocabu-
lary size. In contrast, we see that only using LoRA achieves
vacuous bounds for Top-1 Error and only using subspace
achieves a high value of empirical BPD. Despite the sim-
plicity of SubLoRA, it has an improved ability to trade-off
model complexity with training error. In Figure 1 (right),
we highlight the trade-off between model complexity and
empirical risk in the generalization bounds as we vary the
level of compression.

‘We summarize our contributions as follows:

* Novel bounds for the unbounded negative log-
likelihood objective: we introduce novel bounds
specifically tailored to account for the unbounded con-
tinuous bits-per-dimension loss, commonly used to
evaluate LLMs for next-token prediction.

¢ Subsampling bounds for practical bound evalua-
tion: To make the evaluation of the bounds practical on
LLMs with massive datasets, we derive subsampling-
based bounds that allow for efficient evaluation. In
practice, the evaluation of the bound takes 45 minutes
on a single GPU instead of 3 days on 8 GPUs in parallel
for the OpenWebText dataset.

¢ A simple yet powerful nonlinear subspace compres-
sion for LLMs: as we show in Figure 1, using LoRA

alone to compress the discrepancy between the random
initialization and a learned model leads to vacuous
bounds for the top-1 error. At the same time, linear
subspace training alone does not unlock the full com-
pression potential of LLMs compared to a nonlinear
compression scheme. We show that a combination of
these two approaches, while simple, yields a strong
nonlinear compression of the model, which leads to
the best generalization bounds for LLMs.

¢ Non-vacuous generalization bounds for models with
nearly a billion parameters: our work not only in-
troduces the first non-vacuous generalization bounds
for LLMs, but it also extends these bounds to models
with over 800 million parameters, demonstrating the
scalability of our compression technique.

e Improved understanding of generalization in
LLMs: as we increase the size of models, we find
that they are able to find more compressed representa-
tions of the data and achieve better bounds, therefore
disproving the claim that larger LLMs are simply better
at regurgitating their training data.

The significance of these contributions lies in the ability to
offer mathematical proof that large language models are,
in fact, powerful knowledge compressors and are capable
of generalization beyond their training samples, especially
as their scale increases. To the best of our knowledge, our
work is the first to show that generalization bounds improve
with more parameters on models of practical sizes, in line
with the empirical benefits of large models. We make our
code available here.

https://github.com/Sanaelotfi/SubLoRA-bounds-for-LLMs

Non-Vacuous Generalization Bounds for Large Language Models

2. Related Work

Generalization bounds. Neural networks have seen
widespread adoption because of their strong performance
on new unseen test samples, known as generalization. Early
generalization theory literature bounded the difference in
training and test error, called the generalization gap, using
complexity measures like VC-dimension (Vapnik, 1991)
and Rademacher complexity (Bartlett & Mendelson, 2002).
These generalization bounds were vacuous for neural net-
works, which are often flexible enough to fit randomly la-
beled training data (Zhang et al., 2021). The flexibility of
neural networks and its negative impact on these classical
bounds calls into question why they generalize. Neural
networks are so flexible that they have parameter vectors
where they fit their training data and simultaneously assign
incorrect labels to testing data, and they also have parameter
vectors where they fit their training data and instead assign
correct labels to the testing data. Why do such flexible
models actually make correct test predictions in practice?

PAC-Bayes generalization theory bridges this gap by lever-
aging the fact that while neural networks are highly flexible
and can fit random labels, they encode a preference for the
correct ones (Catoni, 2007; Dziugaite & Roy, 2017). Unlike
earlier generalization bounds which measured complexity
merely as a function of the hypothesis class, PAC-Bayes
generalization bounds reward models which have a strong
prior that places its mass on parameter vectors that align
with observed data. This formulation allows one to draw a
parallel between generalization and compressibility (Zhou
et al., 2019; Lotfi et al., 2022). By placing disproportionate
prior mass on compressible parameter vectors, achieving
a tight bound simply requires finding a family of models
(posterior) that well fit the training data. Such compression
bounds achieve the tightest guarantees to date on modern
convolutional architectures and large-scale datasets, show-
casing the strong inductive bias of neural networks and
indicating that they can significantly compress their training
sets (Lotfi et al., 2022). While PAC-Bayes has proven a very
fruitful framework for devising such bounds, the insight on
using a prior to bound the complexity of a given model does
not require a posterior and can actually be incorporated into
simpler finite hypothesis bounds.

Recent generalization theory literature has expanded analy-
sis to several relevant models—autoregressive time-series
models and simple n-gram language models (McDon-
ald et al., 2011; Bharadwaj & Hasegawa-Johnson, 2014;
Vankadara et al., 2022). In contrast, we construct bounds
for autoregressive transformer-based language models.

Existing bounds for unbounded objectives. A number
of works have explored techniques for generating gener-
alization bounds on unbounded objective functions more
generally, but these approaches are not practical for applica-

tion to LLMs. A well established strategy relevant for e.g.
linear regression with Gaussian errors is to bound the tails
of the objective as subgaussian random variables, and then
generalization bounds can be constructed for subgaussians
more generally (Alquier et al., 2016; Germain et al., 2016).
Other kinds of known tail behavior have also been exploited
(Holland, 2019; Kuzborskij & Szepesvari, 2019). For the
NLL of a language model, there is no clear analogous tail
behavior, so we must take a different approach.

Haddouche et al. (2021) devise an approach for general un-
bounded objectives by constructing a hypothesis dependent
bound on the objective, even if the objective is unbounded
more generally. If the risk can be bounded sup,, R(h,x) <
Q(h) for a function Q(h), then PAC-Bayes bounds can be
constructed using Q(h) even if sup;, Q(h) = co. However,
even though Q(h) is finite for LLMs as there are only a fi-
nite number of inputs, () grows exponentially for NLL with
the number of layers in the network and is closely related
with the Lipschitz constant. For large models like LLMs,
this value is far too large to be useful in constructing bounds.

Language models and compression. Large language mod-
els are parameterized with as many as billions of parameters
and, as a result, have a significant memory footprint, which
makes pretraining, finetuning, and even evaluation challeng-
ing without access to large-scale computing infrastructure.
To reduce the memory footprint of large language models,
a wide array of compression schemes has been proposed
to enable evaluation, fine-tuning, and pre-training with lim-
ited computational resources. Low-Rank Adaptation (Hu
et al., 2021, LoRA) freezes the pre-trained model weights
and inserts trainable rank decomposition matrices into each
attention layer of the transformer architecture used in large
language models. Doing so allows for significantly reducing
the number of trainable parameters for fine-tuning on down-
stream tasks. For example, LoRA can reduce the number of
trainable parameters in GPT-3 175B fine-tuned with Adam
by a factor of 10,000 and the GPU memory requirement
by a factor of 3. Building on LoRA, Q-LoRA (Dettmers
et al., 2023a) quantizes a pretrained model to 4-bits, adds a
small set of learnable weights parameterized using LoRA,
and then tunes these weights by backpropagating gradients
through the quantized model. Other compression meth-
ods for large language models use distillation (Liu et al.,
2023), sub-4-bit integer quantization (Kim et al., 2023; Park
et al., 2022), sparse quantized representations that identify
and isolate outlier weights (Dettmers et al., 2023b), weight
quantization based on approximate second-order informa-
tion (Frantal et al., 2022), or tensor-train decompositions
(Xu et al., 2023).

Achieving a good generalization bound has distinct require-
ments from the existing compression literature. Unlike exist-
ing compression schemes for language models, which aim

Non-Vacuous Generalization Bounds for Large Language Models

to accelerate inference and training or to reduce the memory
footprint, we focus on specifying the trained model param-
eters in only few bits, even if doing so decreases neither
latency nor memory requirements.

3. Background

Subspace training. Lotfi et al. (2022) train a com-
pressible model by parameterizing a carefully constructed
low-dimensional random subspace. The weights § &
RP are then defined as the sum of a random initial-
ization #y and a projection P € RP*? from a lower-
dimensional subspace w € R%: § = , + Pw. P is con-
structed as the Kronecker product of random Gaussian ma-
trices P = (Q1 ® Q2)/v/D for Q1, Q2 ~ N(0,1)VP*V4,
normalized so that P P ~ I. The weights w can then be
optimized over by backpropagating through the transforma-
tion. With a learned quantization strategy—optimizing over
quantized weights and the quantization levels—Lotfi et al.
(2022) use arithmetic coding to encode the weights using
the empirical probabilities over quantization bins.

Low Rank Adaptation (LLoRA). Similarly inspired by
evidence that overparametrized models have low intrin-
sic dimensionality (Li et al., 2018; Aghajanyan et al.,
2020), Hu et al. (2021) propose LoRA as a parameter-
efficient finetuning method. Given a pretrained weight
matrix Wiretrained € Re*® 1 oRA decomposes its total up-
date AW accumulated throughout finetuning as a prod-
uct of two trainable low-rank matrices U € R**",V €
R"*® for r < min(a,b) while freezing Woretrained- Thus
Whnetuned = Wprelrained + AW = Wpretrained +UV. In this
work, we use LoRA for pretraining instead. In particu-
lar, we take randomly initialized neural network weights
Wy € R**? and represent their update during pretraining
as UV, yielding Wyretrainea = Wo + AW = Wy 4+ UV.
We decrease the dimensionality further by applying sub-
space projection to the LoRA matrices, which we describe
in detail in Section 5.

4. Methodology

In constructing non-vacuous generalization bounds for
LLMs, we expand and improve upon existing techniques in
three ways: (1) we construct a simple and effective nonlin-
ear parameterization which is more effective and scalable
than purely linear subspaces; (2) we construct new bounds
that can handle the continuous and unbounded nature of the
negative log-likelihood; (3) we make these bounds more
practical to compute with LLMs by deriving a new bound
which holds even when the empirical risk is evaluated only
on a small subsample of the full training dataset.

4.1. Finite Hypothesis Compression Based
Generalization Bounds

Given a bounded risk R(h,x) € [a,a + A] and a finite hy-
pothesis space h € H for which we have a prior P(h), it is
straightforward to derive a generalization bound relating the
empirical risk R(h) = LS R(h, X;) to the expected
risk R(h) = E[R(h)] so long as {X;}™, are sampled inde-
pendently. With probability at least 1 — §, we have

log1/P(h) 4+ log1/é
2m ’

R(h) < R(h) + A\/ 1)

We provide an elementary proof in Appendix A.1.

If the prior likelihood P(h) of the found model A can be in-
creased (either by choosing a better prior, or by finding more
likely hypotheses), then the generalization bound improves.
Following Lotfi et al. (2022), we adopt the powerful but
general Solomonoff prior P(h) < 2K "14) (Solomonoff,
1964) where K is the prefix Kolmogorov complexity of
h, with the model architecture A provided as input. The
Kolmogorov complexity of hypothesis h is defined as the
length of the shortest program that produces & for a fixed
programming language P (Kolmogorov, 1963). While K is
not computable, it is possible to compute the upper bound

log1/P(h) < K(h|A)log2 < C(h)log2+ 2log C(h),

where C(h) is the number of bits required to represent
hypothesis h using some pre-specified coding. Therefore, if
we can find hypotheses h that both have a low empirical risk
and a small compressed size, then we can construct strong
generalization bounds.

4.2. Enabling the Independence Assumption for
Generalization Bounds on Text Data

Using Equation 1 requires that X; in the sum
R(h) = L5 | R(h, X;) are drawn independently. Thus,
we must be careful in the construction and interpretation of
our bounds so that this constraint is satisfied. Instead of con-
sidering bounds at the level of tokens, which are correlated,
we instead define X; to be an entire document sampled from
the data generating process from which the corpus was sam-
pled. We define the risk on a given document as the negative
log-likelihood of the entire document divided by its length,
according to the autoregressive model.

It is also possible to choose X; to be a context chunk, i.e.,
a sequence of length equal to the context length, as is com-
monly used in the training of models since a document may
be larger than the maximum transformer context length. In
such cases, the sequences are no longer independent samples
from the data generating process. It is possible to construct
valid bounds on these sequences which respect the indepen-
dence assumption. However, in doing so we must shift the

Non-Vacuous Generalization Bounds for Large Language Models

interpretation of the bounds from being over the random-
ness in sampling from the data generating process to the
randomness in sampling sequences that can be constructed
from a fixed and finite dataset formed by concatenating the
documents together.

We explore these alternate sequence-level bounds in Ap-
pendix B. However, we believe that the document-level
bounds provide a more meaningful and significant state-
ment about generalization.

Note (Satisfying the LLD assumption). For document-
level bounds, we sample the documents independently from
the dataset. For sequence-level bounds, we divide the Open-
WebText dataset into sequences of length equal to the context
length and sample sequences independently so that a single
sample from the dataset includes all of the tokens in the
given sequence. Whether or not samples from a set are inde-
pendent depends on how we sample from the set and not the
contents of the set. We can draw independent samples from
a set containing only similar elements, and the similarity of
the elements does not affect the independence. Specifically,
each element of our set is either an entire document or an
entire sequence of tokens—not individual tokens—and we
draw them independently.

4.3. Accommodating the Unbounded NLL Objective
Using Prediction Smoothing

The primary metric for pretraining of large language mod-
els, as for other autoregressive models, is the negative log-
likelihood (NLL), or bits per dimension (BPD), of the gener-
ative model. The BPD loss is formally defined as the average
over the negative log probabilities in logarithm base 2 as
follows: BPD(h, X) = —+ Zf log, p(zi|x<;). Unlike
classification error which is a {0, 1} valued random variable,
the log-likelihood is an unbounded quantity that does not
have an obvious sub-Gaussian, or other, well-understood
tail behavior.

To overcome this challenge, we construct generalization
bounds for BPD not of the original model but instead on a
smoothed version of it that limits the worst case behavior.
We define this smoothed model as a token-level mixture of
the original LLM token predictions and a uniform distribu-
tion over the vocabulary of size V:

pu(@ile<:) = (1= a)po(zilr<i) +/V, ()
where pg(z;|z ;) is the base model of token probabilities,
a € (0,1) is the mixing parameter, and pp, (z;|x<;) is the
smoothed predictor.

The model on an entire document X composed of L tokens
is defined autoregressively in terms of this mixture model
pn(X) := IEpy(z5]z<;), and we find this to be a more
effective way of constructing the bounds than construct-
ing the mixture at the document level. In analogy to label

o
o

P NTT

-
N

N

o

IS
o
~
o N
Interval Size A

NLL (BPD)
—
=
N
o
Compressed Size (KB)

-
o
NLL (BPD)

©
o
-
o]

1074 1073 1072 107!
Prediction smoothing (a)

104 10°
Subspace Dimension (d)

Empirical Risk ~ === Compressed Size === Bound Worst Case Interval Size

Figure 2. Varying Parameters of the Compression Bounds.
(Left): A plot of the generalization bound as a function of the
projection dimension d with LoRA. The subspace dimension gives
us a way to explicitly trade off the degree of compression with
the empirical risk, and we optimize d to produce the best bounds.
(Right): A plot of the worst case range of BPD values A, empiri-
cal risk, and the resulting generalization bounds as a function of
the prediction smoothing parameter «.. For each model, a different

alpha can be chosen after the models have already been trained.

smoothing where the labels of the training objective are
mixed with the uniform distribution, we term this operation
as prediction smoothing.

As we show in Appendix A.2, the NLL of the predic-
tion smoothed model on a document BPD(h, X) :=
—log, pr(X)/L can be bounded as follows:

log,(V/a) — A < BPD(h, X) <logy(V/a),

for A = log, (1+(1—a)V/a). With prediction smoothing,
the risk R(h, X) = BPD(h, X) on a given document is
bounded in an interval of size A, and therefore we can use
Equation (1) to generate bounds for negative log-likelihood
of this model. We refer to A as the worst-case interval size.

We explore the trade-off over different values of « in Fig-
ure 2 (right). As « gets larger, the interval size A repre-
senting the worst-case behavior goes down, whereas the
empirical risk goes up, leading to a sweet spot in the middle.
By defining the hypothesis h = (6, d, r, @) to include the
model parameters, LoORA space hyperparameters d, r, and
the mixture weight o, we can view « as merely one addi-
tional model parameter accounted in log 1/P(h). By doing
s0, we are free to optimize over « in the computation of the
bound, and we can do so without retraining the model.

4.4. Using Subsampling in Bound Computation

The empirical risk requires evaluating the model on the full
training dataset of m data points: R(h) = Ly Ri(h).
As large language models are typically trained for only 1
epoch or less, doing so is prohibitively expensive. Instead,
we propose to modify our generalization bounds to account
for evaluating only a subsample of size n < m of the

training dataset when computing the empirical risk.

Denoting R(h) = Sy Rg(i)(h) where o (%) is a random
sample (with replacement) from 1, ..., m. In Appendix A.3
we derive a new bound both over the randomness in o (7) and

Non-Vacuous Generalization Bounds for Large Language Models

Table 1. Non-vacuous generalization bounds for GPT-2 compressed models. Our best document-level generalization bounds achieved
for the GPT-2 architecture for BPD and Top-k token prediction error, all of which are non-vacuous.

Metric ‘ SubLoRA LoRA Only Subspace Only Original Model Random Guess
Top-1 Error Bound (%) 96.41 100 96.52 100 99.99
Top-10 Error Bound (%) 77.90 84.37 79.36 100 99.98
Top-100 Error Bound (%) 58.34 67.26 75.95 100 99.80
Bits per Dimension Bound 12.12 13.09 14.59 70.76 15.62

the randomness in X which holds with probability > 1 — 4:

~ IOg - —+ IOg si IOg %s
R(h) < R(h) +A\/P(h)5 +A #

2m
3

where s = n/(n + m). Using this subsampling bound,
we can accelerate bound computation. For dataset sizes in
the 10’s of millions, we can get away with evaluating only
10, 000 data points after the model has been trained, with a
negligible penalty in the bounds. In fact, we need not even
train on the entirety of the training data in order to produce
valid bounds as long we sample uniformly.

5. SubLoRA: A Simple and Efficient Nonlinear
Parameterization of the Hypothesis Space

To find compressible solutions A that simultaneously are
expressive enough to achieve low training error, we search
over a carefully designed manifold of possible parameters
that live within the parameter space.

In contrast to Lotfi et al. (2022), we consider a nonlinear
parameterization of the model weights 8 = f (6, w) given
by the composition of LoRA (Hu et al., 2021) (a nonlinear
parameterization) and the subspace compression matrices.
Given a vector of model parameters ¢, we break down its
constituent components into the different weight matrices
W, and associated biases b;: unflatten(0) = {(W;, b;) }ier-
We define a nonlinear parameterization of the hypothesis
space as

6 = 6y + LoRA(Pw), “

where LoRA is defined by the implementation of the low-
rank products for the weight matrices, leaving the biases
unchanged. As Pw and 6 are the flattened parameter vec-
tors, LoRA(-) is defined as the operation that unflattens the
vector, applies the low-rank product, and then flattens the
result. Here, 6 is merely a random initialization of the
model parameters, and P € RP*? is a Kronecker product
projector P = @1 ® Q2 for @1, Q2 constructed by orthog-
onalizing Gaussian random matrices by QR factorization:
Py, Py ~ N(0,1/v/D)VP*Vd with Q1 Ry = P and simi-
larly for Q5. We apply LoRA only over the self-attention

layer and the last linear layer weight matrices, meaning that
other model parameters do not differ from their initialized
values. In order to compress the model, we need only to rep-
resent the vector w since 0y and P are chosen ahead of time
and specified in the architecture via random initialization.

Note (Selecting the LoRA layers). While LoRA was devel-
oped for finetuning LLMs, we find that even when pretrain-
ing using LoRA, we can achieve non-trivial performance.
Our initial exploration of LoRA for pretraining involved
applying LoRA not only to attention layers but to all other
linear layers as well. We found that for pretraining, it is
more efficient to use LoRA for both the attention layers and
the last linear layer, while including other layers provides
insignificant returns.

In Figure 1 (left), we show the Pareto frontier of empirical
risk and the complexity penalty in the relevant generaliza-
tion bound with LoRA, subspace training, and SubLoRA.
Rather than being competing methods for compression,
LoRA and subspace training are complementary and ex-
ploit different structures in the parameter space to provide a
family of models in the original hypothesis space that are
both expressive and compressible. SubLoRA achieves a
strict improvement over LORA and subspace training, often
being the deciding factor whether the bounds are vacuous
or non-vacuous. In Figure 2 (left), we explore how the com-
pressed size of the model and the empirical risk vary as a
function of the subspace dimension d.

6. Non-Vacuous Generalization Bounds for
Large Language Models

We outline the pretraining and bound computation pipeline
and then present our empirical results.

6.1. End-to-end Pipeline

Assembling the components described in Section 4, we train
variants of a GPT-style architecture through the nonlinear
compressed parameterization in Equation (4). We use sev-
eral values for the subspace dimension d and two values for
the rank of the LoRA matrices r. Nearing the end of train-
ing, we train for additional steps using quantization-aware

Non-Vacuous Generalization Bounds for Large Language Models

Table 2. Validation performance vs. bounds. Validation performance of the models achieving the best bits per dimension bound for
each setting. For models trained using different compression techniques, SubLoRA performs best in terms of validation loss. Although
the original model achieves the best validation BPD and NLL, it leads to vacuous bounds given its large number of parameters.

Metric SubLoRA LoRA Only Subspace Only Original Model Random Guess
Bits per Dimension Bound 12.12 13.09 14.59 70.76 15.62
Validation BPD 10.53 11.21 13.85 4.35 -
Validation NLL 7.29 7.77 9.60 3.01 -

training with a small number of quantization levels (with
additional details listed in Appendix E). We express w in
this quantization and encode it using arithmetic coding to
determine the compressed size of the model. Added to the
size of the model are the bits needed to encode the choice
of d, r, a, the learning rate, and the quantization levels.

We evaluate the empirical log probabilities and token pre-
dictions for each token in the document on a small subset
of the training data n = 10,000 documents. We use this
sub-sampling size to evaluate all the bounds reported in the
paper. With these predictions, we can compute the gener-
alization bound in Equation (3) as a function of «, and we
optimize over this parameter for each model. Finally, we
can tune the extent of compression through the different
choices of d and choose the subspace dimension that pro-
duces the best bound. We provide additional details about
bound computation in Appendix C.

6.2. Non-Vacuous Bounds for GPT-2 Small

We consider the GPT-2 small architecture with 124M pa-
rameters and compute our next token prediction document-
level bounds by pretraining these models on the Open-
WebText dataset using SubLoRA. We report the results
in Table 1. We consider the token level error averaged
over a document as the empirical risk. For instance, the
Top-1 Error Bound refers to the upper bound on the ex-
pected Top-1 error per token averaged over the document
R(h, X)) = %Zle 1largmax p(z;|z<; = 2%,) = 2¥],
where the upper index & denotes the document index and the
lower index denotes the position within the document. The
argmax operator operates over the discrete conditional prob-
ability distribution across the vocabulary. Thus, R(h, X})
represents the proportion of tokens accurately predicted
within a given document. Random guess performance is
log, V for BPD and 1 — k/V for Top-k Error.

The best bounds are indeed obtained using our simple com-
pression technique, which combines the strengths of both
low-rank adaptation and subspace training. When we solely
apply quantization and arithmetic coding without imple-
menting LoRA or linear subspace compression during the
training phase, we obtain vacuous bounds.

6.3. Performance

In Table 2, we report the validation performance of the mod-
els that achieve the best bounds in Table 1. In particular,
we report the bits per dimension (BPD) and negative log-
likelihood (NLL) losses alongside the generalization bounds.
For compressed models, we see that the bounds have the
same trend as the validation performance, as all these mod-
els contain a smaller number of parameters compared to the
initial parameter space. Although the original model with
the full set of parameters achieves the best validation perfor-
mance, it leads to vacuous bounds given its large number of
parameters.

It is important to note that we report the validation BPD loss
of the model achieving the best bounds, and not the best
validation BPD loss achieved by the different compression
schemes, which can be lower depending on the subspace
parameters. Figure 2 (left) reflects this trade-off between
the compressed size of the model and the empirical risk.

6.4. Extending Our Bounds to Larger Models

We use SubLoRA to obtain generalization bounds for much
larger variants of GPT-2 of sizes 354M (GPT-2 medium),
458M, 773M (GPT-2 large), and 849M parameters. Ta-
ble 3 shows that our simple compression approach yields
non-vacuous bounds for models with nearly a billion pa-
rameters. Moreover, we see that the smallest model, where
we previously performed experiments and tuned our hyper-
parameters, actually achieves the worst bound on bits per
dimension as we scale the models up. In conclusion, our
approach extends naturally to much larger language models
and proves that it is possible to achieve tighter bounds as
we increase the size of the model.

Note (Limitations). Note that due to computational con-
straints, we pre-train the larger GPT-2 variants with
SubLoRA only for a limited number of hyperparameter set-
tings in contrast to the 124M model for which we did a
thorough hyperparameter sweep. It is likely that the tightest
empirically achievable bounds are much stronger for the
new large models than what we report in Table 3.

Non-Vacuous Generalization Bounds for Large Language Models

lell
1.06 e 1.05)
14.0 I - 17.5%
(V5]

©1.04 o 8
13.5 5 $ 1.00 - 15045
2 ° ° B T
g H ﬂ: 1.02 [} C—— 8 PS - 12.5 -8
@ 13.0 ¢ i & e oo 5 095 1 1002
a g 1.00 ogtg ﬁ 8 is 05
= 12.5 o s ° s 2 0.90 & L i: 3; - 75 @
2 0.98 sesfl =S 1M S
\—f*/ g 40 0 §
12.0 o S
0.96 0.85 - 55 O

106 107 108 106 107 108 106 107 108

Number of LLM Parameters

Figure 3. Larger models achieve stronger generalization bounds. As we scale up the size of the model via the model parameters
(holding the training set fixed), we find that our generalization bounds get better rather than worse. Dots show models trained with
differing degrees of compression, indicated by their color. On the right we show the number of bits required to express the training dataset
using the model and including the model weights in the compression. Classification error bounds consistently favor smaller models, while
data compression favors much larger models, and BPD bounds are in between.

Table 3. Non-vacuous generalization bounds for models with up
to 849M parameters. Non-vacuous bounds achieved for GPT-2
architectures with different sizes, ranging from 124 to 849 million
parameters. We report below the bounds on the bits-per-dimension
(BPD), Top-1 Error, and Top-100 Error. All of the BPD bounds
are non-vacuous and tighter than the GPT-2 small bounds.

Model Size | BPD | Top-1Error | Top-100 Error

124M 12.12 96.41 58.34
354M 11.96 95.99 58.4
458M 11.95 96.69 58.49
773M 12.10 96.17 59.25
849M 12.01 96.51 58.89

7. Understanding the Generalization of LLMs

As language models grow in size, it is clear that they gain
an increasing capacity to fit their training data. On the one
hand, this increasing capacity might mean that, as LLMs
become capable of learning increasingly complex functions,
they become increasingly likely to merely memorize their
training samples and not perform any meaningful general-
ization beyond their training corpora. On the other hand,
large language models have proven to be surprisingly capa-
ble of generalizing, often extending to tasks that seem quite
different from the training objective.

We investigate the tension between these two narratives
along several fronts: We assess how generalization bounds
change with the size of the model, whether language models
can form a compression of the training data even when
accounting for their large size, and how structure in the
training data affects the generalization of the learned model.
In Appendix D, we use our bounds to quantify of the benefits
of pre-training in LLMs.

7.1. Larger Models Are More Compressible and
Generalize Better

Empirically, it has been found that LLMs generalize better
as the number of parameters is increased, with a fixed size
of dataset (Kaplan et al., 2020; Brown et al., 2020), and this
fact is of great importance leading to the creation of ever
larger and more powerful models. From a generalization
theory perspective, this trend is counterintuitive because of
the growing hypothesis class, and a naive analysis would
suggest that larger models should generalize worse. To
date, we are not aware of any convincing demonstration that
generalization bounds improve with more parameters on
models of practical sizes.

We evaluate our bounds on a collection of LLMs with differ-
ent numbers of parameters, choosing the appropriate scaling
for the width, depth, number of attention heads, etc. Surpris-
ingly, we find that our generalization bounds in fact improve
with model size, even as the training dataset is held fixed.
With our SubLoRA compression, larger models find even
simpler representations of the data given a fixed training set.
These results are shown in Figure 3. While some explana-
tions for why larger models should generalize better have
been put forward in the literature (Nakkiran et al., 2021; Gu-
nasekar et al., 2017), the mechanism by which larger models
become more compressible is not clear, and we believe this
result is noteworthy and requires further investigation.

In addition to constructing generalization bounds, we can
use our compressed models to form a compression of the
training dataset itself. In Figure 3, we count the number
of bits needed to encode the model C'(h) and the number
of bits to encode the data using the model C'({X},|h),
which is the negative log-likelihood of the entire dataset
according to the model. Adding these two up, we have a

Non-Vacuous Generalization Bounds for Large Language Models

compression of the training dataset using the model, and
one which is closely related to our generalization bounds.

7.2. How Does Generalization of Large Language
Models Depend on Structure in Text?

Neural networks that fit a training dataset of random noise
will not be able to generalize, and the ability of over-
parametrized networks to fit noise implies that uniform con-
vergence is impossible across the general hypothesis class
(Nagarajan & Kolter, 2019). This is a clear demonstration
that the structure of the dataset influences generalization.
However, the impact of more subtle structures is less under-
stood theoretically. Here, we use our bounds to investigate
how the temporal order structure relates to generalization.

We train models that explicitly break the temporal structure
of the text data by applying random permutations to each
sequence during training. Consequently, the model can only
make use of the input information as if it were a bag of
words. We find that this broken order structure indeed leads
to less favorable generalization bounds. Figure 4 shows
the best error bounds when the original and perturbed data
are used to train the model and evaluate the bounds for the
bits per dimension, top-1 error, and top-100 error losses.
While the top-1 error bound becomes vacuous as we break
the text structure, the top-100 error and bits per dimensions
bounds remain non-vacuous. This might be due to the fact
that as we perturb the sequence, predicting the next token
accurately becomes an extremely difficult task for LLMs,
while predicting a token that fits generally into the context,
without necessarily being the correct token, is an easier task.

13
° 1.0 0.60
312
@ 0.55
o 11 0.9
i 0.50
BPD © Top-1 Top-100

B Regular Permuted Context

Figure 4. Breaking text structure with permutations. We com-
pute bounds for LLMs that were trained with the order of the
tokens shuffled within each sequence.

8. Discussion

In this work, we demonstrated that large language models
can themselves form highly compressed representations
of distributions over text. Using these highly compressed
LLMs, we compute the first non-vacuous generalization
bounds for LLM pretraining. Our findings suggest that
the development of tighter compression bounds presents a
fruitful avenue for understanding how and why language
models generalize.

We discuss below the limitations of our work and their
implications for future work.

Non LI.D. token level bounds. In our work, we split up the
training data into I.I.D. documents that form the basis of our
bounds. However, the loss for each of these documents also
decomposes as a sum over non L.I.D. tokens, and it is likely
that this additional structure could also be exploited in the
bound construction to significantly increase the effective
number of training samples.

Efficient bound computation on pretrained models.
Our procedure for computing generalization bounds re-
quires training LLMs from scratch through our SubLoRA
parametrization. It may be possible to devise a fast method
of computing bounds on a model that has already been
trained, but still constraining its generalization error.

Nonlinear parameterizations. Unlike previous state-of-
the-art bounds from Lotfi et al. (2022), we employ a non-
linear parameterization via LoRA, significantly improving
the bounds. This observation opens up an avenue for rich
nonlinear parameterizations that simultaneously reduce the
number of parameters while also including diverse functions
which are likely to fit the training data.

Bounds for models that generate high quality text. In
Table 6 and Table 7, we show samples of generated text
using both a GPT-2 style model pretrained in the standard
fashion and a GPT-2 style model pretrained using SubLoRA.
While the vanilla GPT-2 style model produces reasonable
sentences, the SubLoRA pretrained model often outputs
ungrammatical text.

Alternative approaches to learning with LLLMs. Modern
language models make possible new inference techniques
such as in-context learning and prompt-tuning. These modes
are already seeing widespread deployment and warrant anal-
ogous theories of generalization.

Generalization beyond the training distribution. Recent
work showed that language models prefer low-complexity
numerical sequences on which they were not trained, even
at random initialization (Goldblum et al., 2023), and gen-
eralization theory may be useful for explaining why LLMs
can generalize far outside of their training distribution, and
even outside of the text modality, for example to tabular
data (Hegselmann et al., 2023) or images (Delétang et al.,
2023).

We hope that future work will address these limitations and
that our approach can help lay the groundwork for comput-
ing LLM generalization bounds for even larger models.

Non-Vacuous Generalization Bounds for Large Language Models

Acknowledgements

We acknowledge anonymous reviewers for helpful feedback.
This work is supported by NSF CAREER 1IS-2145492,
NSF CDS&E-MSS 2134216, NSF HDR-2118310, BigHat
Biosciences, Capital One, and an Amazon Research Award.

Impact Statement

The goal of this work is to advance our understanding of
large language models and improve their trustworthiness.
However, we note that there are many facets of large lan-
guage models—such as biases—that may not be captured
by generalization bounds.

References

Aghajanyan, A., Zettlemoyer, L., and Gupta, S. Intrin-
sic dimensionality explains the effectiveness of language
model fine-tuning. arXiv preprint arXiv:2012.13255,
2020.

Alquier, P., Ridgway, J., and Chopin, N. On the properties
of variational approximations of gibbs posteriors. The
Journal of Machine Learning Research, 17(1):8374-8414,
2016.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3(Nov):463—482, 2002.

Bharadwaj, S. and Hasegawa-Johnson, M. A PAC-Bayesian
approach to minimum perplexity language modeling. In
Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Pa-
pers, pp. 130-140, Dublin, Ireland, 2014.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:
1877-1901, 2020.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T. B., Song, D.,
Erlingsson, U., Oprea, A., and Raffel, C. Extracting
training data from large language models. arXiv preprint
arXiv:2012.07805, 2020.

Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramer, F.,
and Zhang, C. Quantifying memorization across neural
language models. Proceedings of the 37th International
Conference on Learning Representations (ICLR 2023),
2023.

Catoni, O. Pac-bayesian supervised classification: the
thermodynamics of statistical learning. arXiv preprint
arXiv:0712.0248, 2007.

10

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G.,
Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fe-
dus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph,
B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Weli, J., Meier-Hellstern, K., Eck, D., Dean,
J., Petrov, S., and Fiedel, N. Palm: Scaling language
modeling with pathways, 2022.

Delétang, G., Ruoss, A., Duquenne, P.-A., Catt, E., Ge-
newein, T., Mattern, C., Grau-Moya, J., Wenliang, L. K.,
Aitchison, M., Orseau, L., et al. Language modeling is
compression. arXiv preprint arXiv:2309.10668, 2023.

Dettmers, T., Shmitchell, S., Roberts, A., Lee, K., Brown,
T. B., Song, D., and Raffel, C. Qlora: Efficient finetun-
ing of quantized llms. arXiv preprint arXiv:2305.14314,
2023a.

Dettmers, T., Shmitchell, S., Roberts, A., Lee, K., Brown,
T. B., Song, D., and Raffel, C. Spqr: A sparse-quantized
representation for near-lossless 1lm weight compression.
arXiv preprint arXiv:2308.07234, 2023b.

Dziugaite, G. K. and Roy, D. M. Computing nonvacuous
generalization bounds for deep (stochastic) neural net-
works with many more parameters than training data.
arXiv preprint arXiv:1703.11008, 2017.

Frantal, Z., Gruslys, A., and Kiela, D. Gptq: Accurate post-
training quantization for generative pre-trained transform-
ers. arXiv preprint arXiv:2210.17323, 2022.

Germain, P., Bach, F., Lacoste, A., and Lacoste-Julien, S.
Pac-bayesian theory meets bayesian inference. Advances
in Neural Information Processing Systems, 29, 2016.

Goldblum, M., Finzi, M., Rowan, K., and Wilson, A. G.
The no free lunch theorem, kolmogorov complexity, and
the role of inductive biases in machine learning. arXiv
preprint arXiv:2304.05366, 2023.

Gunasekar, S., Woodworth, B. E., Bhojanapalli, S.,
Neyshabur, B., and Srebro, N. Implicit regularization
in matrix factorization. Advances in neural information
processing systems, 30, 2017.

Haddouche, M., Guedj, B., Rivasplata, O., and Shawe-
Taylor, J. Pac-bayes unleashed: Generalisation bounds
with unbounded losses. Entropy, 23(10):1330, 2021.

Non-Vacuous Generalization Bounds for Large Language Models

Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang,
X., and Sontag, D. Tabllm: Few-shot classification of
tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pp.
5549-5581. PMLR, 2023.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. The collected works of Wassily Hoeffd-
ing, pp. 409-426, 1994.

Holland, M. Pac-bayes under potentially heavy tails. Ad-
vances in Neural Information Processing Systems, 32,
2019.

Hu, E. J,, Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kim, J., Lee, J. H., Kim, S., Park, J., Yoo, K. M., Kwon, S.]J.,
and Lee, D. Memory-efficient fine-tuning of compressed
large language models via sub-4-bit integer quantization.
arXiv preprint arXiv:2305.14152, 2023.

Kolmogorov, A. N. On tables of random numbers. Sankhya:
The Indian Journal of Statistics, Series A, pp. 369-376,
1963.

Kuzborskij, I. and Szepesvari, C. Efron-stein pac-bayesian
inequalities. arXiv preprint arXiv:1909.01931, 2019.

Langdon, G. G. An introduction to arithmetic coding. IBM
Journal of Research and Development, 28(2):135-149,
1984.

Li, C., Farkhoor, H., Liu, R., and Yosinski, J. Measuring
the intrinsic dimension of objective landscapes. arXiv
preprint arXiv:1804.08838, 2018.

Liu, Y., Xu, Q., Xu, W,, and Zhu, J. Llm-qat: Data-free
quantization aware training for large language models.
arXiv preprint arXiv:2305.17888, 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Lotfi, S., Finzi, M., Kapoor, S., Potapczynski, A., Goldblum,
M., and Wilson, A. G. Pac-bayes compression bounds
so tight that they can explain generalization. Advances
in Neural Information Processing Systems, 35:31459—
31473, 2022.

11

McDonald, D. J., Shalizi, C. R., and Schervish, M. General-
ization error bounds for stationary autoregressive models.
arXiv preprint arXiv:1103.0942, 2011.

Nagarajan, V. and Kolter, J. Z. Uniform convergence may
be unable to explain generalization in deep learning. Ad-
vances in Neural Information Processing Systems, 32,
2019.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B.,
and Sutskever, I. Deep double descent: Where bigger
models and more data hurt. Journal of Statistical Mechan-
ics: Theory and Experiment, 2021(12):124003, 2021.

Park, G., Kim, J., Kim, J., Choi, E., Kim, S., Kim, S.,
Lee, M., Shin, H., and Lee, J. Lut-gemm: Quantized
matrix multiplication based on luts for efficient inference
in large-scale generative language model. arXiv preprint
arXiv:2206.09557, 2022.

Solomonoff, R. J. A formal theory of inductive inference.
part i. Information and control, 7(1):1-22, 1964.

Vankadara, L. C., Faller, P. M., Hardt, M., Minorics, L.,
Ghoshdastidar, D., and Janzing, D. Causal forecasting:
generalization bounds for autoregressive models. In Un-
certainty in Artificial Intelligence, pp. 2002-2012. PMLR,
2022.

Vapnik, V. Principles of risk minimization for learning the-
ory. Advances in neural information processing systems,
4,1991.

Wang, A., Singh, A., Michael, J., Hill, F,, Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and analy-
sis platform for natural language understanding, 2019.

Xu, Q., Xu, W., and Zhu, J. Tensorgpt: Efficient compres-
sion of the embedding layer in llms based on the tensor-
train decomposition. arXiv preprint arXiv:2307.00526,
2023.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107—
115, 2021.

Zhou, W., Veitch, V., Austern, M., Adams, R. P., and Orbanz,
P. Non-vacuous generalization bounds at the imagenet
scale: a pac-bayesian compression approach. In Interna-
tional Conference on Learning Representations, 2019.

Non-Vacuous Generalization Bounds for Large Language Models

A. Derivations and Generalization Bounds
A.1. Finite Hypothesis Bound

Theorem A.1. Consider a bounded risk R(h,x;) € [a,a + A] and a finite hypothests space h € H for which we have
a prior P(h) that does not depend on {x;}. Let the empirical risk R(h) = LN R(h,x;) be a sum over independent

random variables R(h, ;) for a fixed hypothesis h. Let R(h) = E[R(h)] be the expected risk.
With probability at least 1 — §:

log1/P(h) +1logl/$
2m ’

MMSRW+A¢ 5)

Proof. As mf%(h) is the sum of independent and bounded random variables, we can apply Hoeffding’s inequality (Hoeffding,
1994) for a given choice of i . Forany ¢ > 0
P(R(h) > R(h) +t) = P(mR(h) > mR(h) + mt)
P(R(h) > R(h) +t) < exp (—2mt>/A?).
We will choose t(h) differently for each hypothesis h according to
exp (—2mt(h)?/A%) = P(h)s.

Solving for t(h), we have

t(h):A\/logl/P(h)Jrlogl/é ©)

2m

This bound holds for a fixed hypothesis h. However h was constructed using the training data, so for h*({x}), the random
variable,

1 m
_ h* i
= 2RO ().,
cannot be decomposed as a sum of independent random variables. Since h* € H, if we can bound the probability that
R(h) > R(h) + t(h) for any h, then the bound also holds for h*.
Applying a union over the events |, ,, [R(h) > R(h) + t(h)], we have

P(R(h*) = R(h*) + t(h*)) < P(| J [R(h) = R(h) +t(h)])

heH

< > P(R(h) > R(h) + t(h))
heH

<Y Py =

heH

Therefore we conclude that for any h (dependent on = or not), with probability at least 1 — 4,

log1/P(h) +1logl/d
2m '

MngW+A¢
O

Note (Satisfying the finite hypothesis space assumption). We consider neural networks as programs which run on a
computer; and therefore they must have a finite size. For instance, without using any compression, the weights of a neural
network are typically represented using floating point numbers, and therefore the weights of real models can only take on a
finite number of values determined by the precision. If we consider a compression of the hypothesis, then we can express it
in a smaller number of bits, which is again finite and not real valued. From this perspective, all neural networks that we
train and deploy in practice belong to a finite hypothesis space given a fixed architecture.

12

Non-Vacuous Generalization Bounds for Large Language Models

A.2. Bounding Log-Likelihood

Theorem A.2. Given o € (0,1), an « prediction smoothed autoregressive language model h over a token vocabulary of
size V for a given sequence X will have a BPD(h, X) that lies in the interval

BPD(h, X) € (logQ(V/a) —log, (1 +(1- a)V/a),logg(V/a)), @)

and the size of the interval is A =log, (1 + (1 — a)V/a).

Proof. The BPD decomposes as the average over the negative log probabilities,
k

BPD(h, X) ZIng pr(@ilz<s).

Since pg(z;|z<;) € (0,1), we can conclude that

—logy pr(xi|r<i) = — log, ((1 —a)pe(xi|r<;) + a/V)
—logy pr(zi|r<i) < logy(V/a)

and
—log, p(wilz<i) = —logy (1 — a)pp(xilz<i) + a/V) > —log, (1 —a) + /V)
—logy pr(x;i|r<s) > —logy (‘a, (1+(1 -« V/a))
—logy pr(®i|w<;) > logy(V/a) —logy (1+ (1 — a)V/a).
Since each element — log, pj, (;]x<;) of the average is in the interval (log,(V/a) — A, logy(V/a)), so is BPD(h, X).
O
A.3. Subsample Bounds

Denoting R(h) = Iy R (iy(h) where (i) is a random sample (with or without replacement) from 1,...,m, we can
construct a simple Hoeffding bound over the randomness in o (i), considering X fixed. Despite the fact that h(X)isa

function of the training dataset X, R((X),X) =" R(h(X), X o(i)) still decomposes as the sum of L.LD. random
variables (or I.1.D. random variables sampled without replacement), and E[R(h(), X)|X] = R(h(X), X).

Applying the Hoeffding bound (Hoeffding, 1994), with probabiliiy 1 — d: R< R(h) + 14/ log 1/ % . Combining this bound
with the original bound that holds with probability 1 — d;, we have

2 log1l/P(h) +1logl/é log1/6
R(h)SR(hH—A\/Og /P(h) $log1/0 |\, [log1/o2
2m 2n
Combining the two failure probabilities into one: & = d; + J2, we can choose §; and J so that optimize the

bound keeping their sum fixed. While there are no closed form solutions, the solution for the combined square root

\/— log 1 /2m — log d2/2n as the solution d; = sd, d2 = (1 — s)d where s = min.

Plugging these values into the bound, we have

2 log =+~ + log = log ——
R(h) gR(h)+A\/”(";mS5+A # 8)

13

Non-Vacuous Generalization Bounds for Large Language Models

Algorithm 1 Compute Finite Hypothesis Bound.

1: Inputs: Neural network fj, Training dataset of m documents { X} }7,, subsampled set of n documents { X, ;) }i-;,
quantization levels C, Intrinsic dimension d, LoRA rank r, prediction smoothing probability o, Confidence 1 — §.

2: function COMPUTE_BOUND(fy, L, d, 7, at, { Xi } 71, { Xo(5) i1, 0))
3: w <= TRAIN_SUBLORA(fy, d, 7, { Xk }72 1) > (Section 5)
4: W < TRAIN_QUANTIZE(w, C, { X})
5: Compute quantized train error R () with prediction smoothing probability o and subsampled dataset { X5 (;) }i ;.
6: log1/P(h) + GET_COMPRESSED_SIZE(®) > (Section 4.1)
7 return GET_FINITE_HYPOTHESIS_BOUND(R (), log 1/ P(h), m, n) > (Section 4.4)
8: end function
9: function TRAIN_QUANTIZE(w, C, {X,}7) > (Appendix E)

10: Initialize ¢ < GET_CLUSTERS(w, C)

11: for i = 1 to quant_epochs do

12: céc—pVL(w,c)and w < w — pV,, L (w, ¢)

13: end for

14: return w

15: end function

16: function GET_COMPRESSED_SIZE(w)

17: ¢, count < GET_UNIQUE_VALS_COUNTS(w)

18: message_size < DO_ARITHMETIC_ENCODING(w, ¢, count)

19: message_size <~ message_size + hyperparam_search > (Appendix E)

20: return message_size + 2 x log (message_size)

21: end function

B. Sequence-level Bounds

We construct sequence level bounds on chunks of size 1024 (equal to the context length) which are sampled from the
non-overlapping chunkings of the OpenWebText dataset.

We report our sequence-level bounds in Table 4. Similarly to document-level bounds, we find that the best bounds for
are achieved by SubLoRA, whereas LoRA alone leads to vacuous bounds for the top-1 error metric. We find that despite
the differing interpretation, the bounds are very similar in values to the document level bounds that we report in Table 1,
with differences arising from the empirical risk evaluation and having a slightly larger m due to the presence of some long
documents.

Table 4. Our best sequence-level generalization bounds achieved for the GPT-2 architecture for BPD and Top-k token prediction error, all
of which are non-vacuous.

Metric ‘ SubLoRA LoRA Only Subspace Only Original Model Random Guess
Top-1 Error (%) 96.17 100 97.40 100 99.99
Top-10 Error (%) 78.18 85.85 80.15 100 99.98
Top-100 Error (%) 58.72 65.19 76.11 100 99.80
Bits per Dimension 12.09 12.90 14.68 65.37 15.62

C. Bound Computation

We provide pseudo-code for bound computation in Algorithm 1.

We first train a compressed neural network in the SubLoRA subspace, determined by the LoRA rank r and the intrinsic
dimensionality d of the linear subspace projection. To further compress the model, we use aggressive quantization with
quantization-aware training as proposed by Lotfi et al. (2022) in order to map the weights of SubLoRA into C' quantization
levels, and compute the number of bits required to represent our model using arithmetic coding, a form of variable length

14

Non-Vacuous Generalization Bounds for Large Language Models

encoding that leverages the fact that certain quantization levels are more frequent than others (Langdon, 1984).

Finally, we evaluate the empirical risk using a subset of the training data and a prediction smoothing probability «, where
the subsampling size n = 10, 000 documents. Having both the empirical risk and the compressed size of the model, we
compute our bound as described in Equation (3). In practice, we compute the bounds for different values of r, d, L and «
while paying additional bits for each of these settings, and report the lowest bound in Table 1 and Table 3.

D. The Importance of Pretraining L.LLMs

To demonstrate the benefits of pretraining for LLM, we fine-tune both a randomly initialized and a pretrained GPT-2 model
with SubLoRA on the QQP and CoLA binary classification datasets from GLUE (Wang et al., 2019). For both models, we
fine-tune using SubLoRA with rank 8 and intrinsic dimension equal to 30000 for 5 epochs with a learning rate of 2 x 107>,
We quantize the checkpoints of finetuned models and obtain the following non-vacuous classification accuracy bounds in
Table 5.

Table 5. Pretrained GPT-2 models finetuned with SubLoRA leads to significantly better bounds compared to randomly initialized GPT-2
models finetuned with SubLoRA.

Error Bound for Error Bound for
Dataset pretrained LLM (%) randomly initialized LLM (%) Random Guess (%)
+ SubLoRA Finetuning + SubLoRA Finetuning
QQP (%) 35.27 71.72 50
CoLA (%) 38.89 53.42 50

As Table 5 shows, pretrained LLMs lead to tighter, non-vacuous bounds compared to randomly initialized LLM when
finetuned on the same set of downstream tasks. Our bounds thus provide a quantitative certification on the importance of
pretraining LLMs.

E. Experimental Details
In this section, we describe the experimental setup we used to obtain the bounds that we report.

We follow the pretraining setup described in nanoGPT! as a backbone for our experiments The model architecture in use is a
124 million parameter GPT-2-style model with 12 layers, 12 heads in multi-headed attention, and an embedding dimension
of 768, and we pretrain this model on the training split of the OpenWebText dataset” using SubLoRA, LoRA, Subspace
training. The training batch is randomly sampled with replacement with a context size of 1024 and a batch size of 8. For
optimization, we use a PyTorch AdamW optimizer with weight decay set to 10~2, epsilon set to 1075, and no decay bias
(Loshchilov & Hutter, 2017).

Following Hu et al. (2021), we apply the LoRA modules on the query and value weight matrices in the attention layers.
Additionally, we apply LoRA on the linear head of the model. In both cases, we use a LoRA alpha value of 32 and dropout
ratio of 0.1.

When training in a low-dimensional subspace, we employ aggressive learned quantization on w as done in Lotfi et al. (2022).
After training, we can finally encode quantized weights into a bitstream using arithmetic coding (Langdon, 1984) from the
empirical probabilities over the quantization bins (Zhou et al., 2019).

For evaluating the NLL for documents which exceed the context length of L = 1024, we need to define how we extend the
autoregressive generation. We will use notation x;.; = {z;, Zit1,...,%;—1,Z;}, and f(z|z) for the model probabilities for
token x feeding in the context z with size up to L. The model is defined autoregressively, p(x.;) = ¥, p(z;]|z.;—1), and
p(zi|z.i—1) = f(a;|x.;—1) for the first L tokens. For tokens with index greater than L, we shift « into the context in chunks
of size 100:

p(xi|ei—1) = f(zi|lwimpiz1) 9

"https://github.com/karpathy/nanoGpPT
2http: //Skylion007.github.io/OpenWebTextCorpus

15

https://github.com/karpathy/nanoGPT
http://Skylion007.github.io/OpenWebTextCorpus

Non-Vacuous Generalization Bounds for Large Language Models

where L' = L — (i — L)%100 and % is the modulo operation. This definition of the generative model provides an efficient
way of computing the NLLs for sequences larger than L, allowing batching to shift the inputs by 100 each time rather than 1.

Optimizing over hyperaparmeters. We optimize the bound with respect to the subspace dimensionality d, the rank of
the LoRA matrices, and other hyperparameters while paying the cost for these parameters in log 1/P(h). In particular,
we perform a grid search over subspace dimensions d € {5000,10000, 25000, 50000, 100000, 200000}, LoRA rank
r € {1,4}, learning rate Ir € {2 x 107%,5 x 1073,5 x 107°}, and mixing parameter for prediction smoothing o €
{0.0001, 0.001, 0.005,0.01,0.05,0.1,0.25,0.5}. We also consider two different values for the quantization levels C' €
{11,17}.

SubLoRA pretraining with varying model sizes. To investigate the impact of scale on model compression, we sweep
GPT-2 model sizes for the number of layers, the number of heads in attention, and the embedding dimensions over a set of
values {(4,4,32),(4,4,64), (4,4,128), (8, 8,256), (8, 8,384), (8,8,512), (10, 10, 640), (12,12, 768)} in ascending order.

Training larger variants of GPT-2. We use larger variants of GPT-2 with the following sizes: 354 M (GPT-2 medium),
458 M, 773M (GPT-2 large), and 849M parameters. For these experiments, we use a fixed LoRA rank of 4 and a fixed
learning rate of 2 x 10~% given our limited computations resources. However, we consider two values of the intrinsic
dimensionality d € {25000, 50000} and two values of the quantization levels: 11 and 17.

F. Text Generation

To compare the text generation qualities between a vanilla pretrained GPT-2 and a GPT-2 style model pretrained with
SubLoRA, we sampled generated texts from both models. With a temperature value of 0.8, we obtain decoded sequences
and present them in Table 6 and Table 7.

16

Non-Vacuous Generalization Bounds for Large Language Models

Generated Text

GPT-2 From left: John Walsh, Ryan Johnson, D.J. Williams, and Cameron
Thomas. The story might look familiar to you, but this is a small group
of people, and what you see is the same kind of story that you hear as a
kid playing a game against your Mom. Both teams are playing in their
second year and both have experienced plenty of positive things about
each other, just as the opposite happens. Imagine that. Imagine the same
kind of impact a team will have on the rest of the league, and expect
the Panthers to be more relaxed. Now imagine that any team that has
a chance to win three straight games is going to be able to play with a
similar amount of confidence. That makes sense, right? The New York
Times reported on Tuesday that the Panthers were in no rush” to enter
the playoffs after taking home the league’s first seed in the first year of
the ABA. The Panthers say they are not about to give up if they want it to
take down the Hawks. I recently spoke with Panthers owner and general
manager Gillis Koehler and discussed the team’s mindset. Let’s start
with what the Panthers are planning to accomplish. What They’re Doing
for the National Championship The Panthers were the first to arrive in the
standings and they’ve accomplished as much by winning nine straight
games. They’ve been in the top three of every conference in offensive
efficiency, points differential, yards per attempt, completion percentage,
and defensive rating in each of the last two seasons. Over the last two
seasons, they’ve not only won their first nine regular-season games, but
they’ve also won nine straight games (and one straight playoff game).
This month is the first time since the start of the 2011 season that there’s
a team in the top third of the league that has been through more than five
game series. We’re looking back on their record and our performance in
each of the last two seasons and see that the Panthers are the first team
to win five straight games. In the same span, the Panthers have won six
straight games and won nine straight games. This season, they’re 22-7
and 15-1 (since the start of the 2011 season). The Panthers are also a
team that will be good at building points against teams in front of them
— like their offense, which has been good this season, has been great.

Table 6. Examples of generated text from a pretrained 124 million parameter GPT-2-Small model.

17

Non-Vacuous Generalization Bounds for Large Language Models

Generated Text

GPT-2 (SubLoRA)

th he the startedt at its,, the a more be power and- by. S and, of of -’s
on. The UK I The, are the on the the under, but the then the day,. The.
The. It for the! a,. M an they first the the speak have times. cover that (
illegal In the day where I The who when and $ In We *[{* As she I WeP
spirituality. The all And one which a more says thought the other (ed 15:
And P It as/ T - 2 But We The The theah It who the full of that to was
"The they (It As We A and each (. The It - We The M I*

a- year of with of U- the, the by its not of take, a really.. ” “L, again
timeline The as a last”, We It. (. took The to a our In_ The The in that
and: or It You this. Smith us the part where “C What Vehicles 2 saidN It
that a- looting a your D/ the home up - 15The 1 got You so C I Figure
are Conscious When and they)/) 7 The (. The Thees90 for never- The (
Fellow— 8 But girls 3 temperature she are It A Grove came), This The
He That WeWhat In is The eastern and,:

game there (.J The that the this (B to the lot on the the so they. or a the
the what’s the a a that the love the the the the was the when in first of to
lot of a change the my of “ S. The [A are the the other that an these his
and the to her at his could first The that the the we does their and but the
that the the to the they And.It m if and isn or has the, with the it and our
that a just a lot. login, He top When the I a’s’t Thelt the several was its,
including, 4D (The for the Trump the the the have governmentman;0 0
(The, team A’t any We’s are is are soA in was who. He or that the of
never and the. The time or O of a- us to just ” The have of his it Oaths a
where the the helped at look’d The. The by, but the not and there and.
The that The- again I make the me was up. P of family the the the in of
of

. The are you to a were-. with a. ” alternating all. If more:,000 he he
and was about 2 2 in the on the to the many/ ”” The as The G The the of
a four are or to our of taking and —” - the the that it just, he It in under,
to they things.j—endoftext— the the on some that the new a did of the
the there The the of look ! all and 2 who and a through that the us: *”’ on
back to the S For said: was But. So into [We are from). We We ” 7 The.
The. ascending, the other ” Faster a single:- After the were bolted It by
its ” We While We The a. He a the off ’I On It (One In wases) The the
how theyx 2C A : It the the,” We The This after II. relaxed The on (O

Table 7. Examples of generated text from a GPT-2 style model pretrained with SubLoRA.

18

