Purity Law for Neural Routing Problem Solvers with
Enhanced Generalizability

Wenzhao Liu'! Haoran Li' Congying Han'* Zicheng Zhang?
Angi Li® Tiande Guo'

1School of Mathematical Sciences, University of Chinese Academy of Sciences
2
JD.com
3School of Mathematical Sciences, Nankai University

{liuwenzhao22,lihaoran21}@mails.ucas.ac.cn, hancyOucas.ac.cn
zhangzicheng6@jd.com, angqili@nankai.edu.cn, tdguo@ucas.ac.cn

Abstract

Achieving generalization in neural approaches across different scales and distri-
butions remains a significant challenge for routing problems. A key obstacle is
that neural networks often fail to learn robust principles for identifying universal
patterns and deriving optimal solutions from diverse instances. In this paper, we
first uncover Purity Law, a fundamental structural principle for optimal solutions
of routing problems, defining that edge prevalence grows exponentially with the
sparsity of surrounding vertices. Statistically and theoretically validated across di-
verse instances, Purity Law reveals a consistent bias toward local sparsity in global
optima. Building on this insight, we propose Purity Policy Optimization (PUPO),
a novel training paradigm that explicitly aligns characteristics of neural solutions
with Purity Law during the solution construction process to enhance generalization.
Extensive experiments demonstrate that PUPO can be seamlessly integrated with
popular neural solvers, significantly enhancing their generalization performance
without incurring additional computational overhead during inference. The code is
available at https://github. com/Kejun0627/PUPQO.

1 Introduction

Routing problems, such as Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP),
are fundamental combinatorial optimization (CO) problems with broad applications in operations
research and computer science fields, including scheduling [38| 3], circuit compilation [36,|9], and
computational biology [25,[15]. Due to their NP-hard nature, even the most advanced exact solver [2]
could not efficiently find the optimal solution for large-scale instances within a reasonable time
frame. As a result, approximate heuristic algorithms, such as LKH3 [[16 [17] and HGS [42], have
been developed to find near-optima with improved efficiency. However, these approaches still face
significant computational overhead owing to their iterative search processes for each instance.

Deep learning, particularly deep reinforcement learning, holds significant promise for developing fast
and advanced neural routing problem heuristics. Learning-based approaches generally fall into two
categories: methods that learn to construct solutions step by step [4} 24} 26, 18], and learn to search
for better solutions iteratively [30,[7,[11]. Among these, neural constructive methods excel in faster
inference and higher performance, enabling real-time applications. However, they often struggle with
generalization and exhibit limited performance on large-scale or heterogeneous instances.

*Corresponding author: hancy @ucas.ac.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Kejun0627/PUPO

The primary challenge behind this weak generalizability lies in the tendency of neural models to
overfit to specific patterns tied to particular training settings. To address this, some approaches have
focused on simplifying the decision space, such as restricting the feasible action set [10, [12]] and
employing divide-and-conquer strategies [22,137,/31]]. While these methods improve the performance,
they inherently reduce the potential optimality of the solutions. More importantly, they lack guidance
from the universal structural properties of routing problems, which prevents neural solvers from
directly learning consistent and applicable patterns across various instances during training.

In this paper, we first explore generalizable structural patterns in routing problems, then leverage
them to guide the learning process of neural solvers. To begin with, we define edge purity order as
a measure of vertex density around edges, where sparser neighborhoods yield lower purity orders.
We reveal Purity Law, a fundamental principle for routing problems stating: the proportion of
different edges in the optimal solution follows a negative exponential law based on their purity orders
across various instances. This indicates that edges with lower purity orders are more prevalent in
optimal solutions, with their frequency increasing exponentially as the order decreases. Purity Law
demonstrates its potential to capture universal structural information in two key ways. First, it is
ubiquitously present in optimal solutions in various instances, underscoring its strong connection to
optimality. Second, the parameters of its negative exponential model remain statistically invariant
across varying instance scales and distributions, proving that the sparsity-driven edge dominance law
is intrinsic rather than data-specific.

Based on the universal presence of Purity Law, we propose PUrity Policy Optimization (PUPO), a
novel training framework that incorporates this generalizable structural information into the policy
optimization process. PUPO guides the solution construction process by encouraging the emergence
of Purity Law. Specifically, it modifies the policy gradient to balance the purity metrics of solutions
at different decision stages. By aligning with Purity Law, PUPO helps models learn consistent
patterns independent of specific instances, thereby improving their ability to generalize to different
distributions and scales, without altering the underlying network architecture. Notably, PUPO can be
easily integrated with a wide range of existing neural solvers. Extensive experiments show that PUPO
significantly enhances the generalization ability of these solvers, without increasing computational
overhead during inference. Our contributions include:

* We identify Purity Law as a fundamental principle that reliably characterizes optima across various
instances, offering a novel perspective to comprehend common structural patterns in routing problems.

* We propose PUPO, a novel training approach that explicitly encourages alignment with Purity Law
during the solution construction process, helping models to learn consistent patterns across instances.

* We demonstrate through extensive experiments that PUPO can be seamlessly integrated with popu-
lar neural routing problem solvers to considerably improve their generalization, without increasing
computational cost during inference.

2 Related Work

According to the way the solutions are generated, neural approaches can488 generally be divided into
two classes: learning to directly construct and learning to iteratively improve solutions. Discussions
on classical neural solvers are provided in Appendix[A] Traditional Neural methods often struggle
with poor generalization [19]. Recently, some works have attempted to improve the generalizability of
neural routing problem solvers. UTSP [35]] applies unsupervised learning by leveraging permutation
properties of TSP, but fails to scale to instances larger than 2000 vertices. HTSP [37] improves
efficiency for large-scale TSP by employing hierarchical reinforcement learning. LEHD [31]] and
GLOP [45] continuously refine solutions through divide-and-conquer strategies via neural models.
Following local reconstruction, SIL [32] proposes self-improved training, utilizing the pseudo-labels
of previous partial solutions, which boosting the scalability of NCO methods. INVIT [10] simplify
the decision space by restricting actions to local neighborhoods, as well as enforcing the invariant
nested view transformer, to improve generalization. ELG [[12] ensembles a global policy and local
policies, whose outputs are aggregated with a pre-fixed rule. The local policies also utilizing k-
nearest neighbors to promote cross-size generalizability. More detailed discussions are provided in
Appendix [A] However, these approaches inherently trade off the optimality of solutions in favor of
generalization. Despite progress, no research has explored universal structural principles of routing
problems to guide neural learning, leaving the challenge of identifying consistent instance patterns
unsolved.

3 Preliminary

3.1 Routing Problems

In this paper, we focus on the Euclidean routing problems in two-dimensional space. Given an
instance, let G = (X,) represents an undirected graph, X = {x;|1 < ¢ < |X|} is the vertex
set, and € = {e;; = (x4, x;)[1 < 4,5 < |X|} is the edge set, where | X[is the number of vertices.
In the Euclidean routing problems, G is fully connected and symmetric, with each vertex z; € X
represented by a coordinate (z}, 2?) scaled to the unit square [0, 1]. Each edge e;; € £ is assigned
a visit cost c(x;,), typically the Euclidean distance between the vertices ; and z;. A feasible
solution 7 = (7q,...,7n) is an index sequence of length NV that satisfies all the constraints. The
objective is to find the optimal one with the minimum total cost among all feasible solutions, where

the total cost of 7 is formulated as follows:

L(T) :C(ITN7IT1)+Z1]',\;2 C(Iﬁ—u'rﬂ)' (1)

The constraints vary according to specific routing problems. For example, in TSP, the constraint is
that feasible solutions are Hamiltonian cycles which visit each vertex exactly once. In CVRP, each
vertex x; has a demand d; to fulfill, and depot node x is introduced for the vehicle to replenish when
it runs out of its capacity. The vehicle is constrained to visit vertices except depot strictly once while
not exceeding capacity limit.

3.2 Policy Learning for Routing Problems

Policy learning is the dominant paradigm in deep reinforcement learning for solving routing problems.
Given an instance X, a feasible solution 7 is autoregressively generated through the neural policy:

N
po(7|X) = pa(r1|X) [[po(riel 61, X), ©)
t=2

where 6 are the parameters of the policy network, trained by minimizing the expected total cost:
£(9|X) =]Epe(‘r\X)[L(T)}' 3)

REINFORCE [44] is the cornerstone of policy-based reinforcement learning methods, which com-
putes the gradient V.L(6|X) in the context of routing problems as the following:

N
Epo(r12) (L(T)—b(X))t;VIngo(Ttlﬁzt—hX) : “

where b(X) is a baseline for variance reduction.

4 Purity Patterns for Generalization

In this section, we first explore the structural patterns closely tied to generalization in optimal
solutions of routing problems. We observe that edges surrounded by sparse vertices consistently
prevail across different instances. To capture this relationship, we propose the concept of purity order,
which quantifies the density of vertices around an edge. Based on this, we uncover the Purity Law, an
empirical phenomenon that reveals a universal structural principle in optimal solutions of routing
problems.

4.1 Purity Order in Routing Problems

We first introduce the concept of purity order to formulate the vertex density around each edge.
Definition 4.1 (Purity Order). The covering set N, and purity order K, of an edge e;; = (;,x;)
are defined as:
Ne(ey) ={z € X | (x;i —)T - (z; — x) < 0}, (52)
Kp(eij) = Kp(wi, 7;5) := [Ne(ei)]- (5b)

Figure 1: Example of edge purity orders with the same length.

Geometrically, the covering set of an edge corresponds to the vertices lying within a circle, whose
diameter is defined by this edge, and the purity order is the cardinality of this set. It is not difficult
to obtain that the computational complexity required to calculate the purity order for all nodes is
O(|X|?). The purity order can reflect the local density of vertices surrounding an edge. A lower purity
order indicates a more sparse and “pure” configuration of vertices around the edge. For convenience,
we refer to an edge with purity order k as a k-order pure edge.

Additionally, we investigate the topological properties of 0-order pure edges with the lowest redun-
dancy (details and proofs shown in Appendix [B). Specifically, we establish the existence of 0-order
pure neighbors for any vertex, laying the groundwork for our optimization paradigm. We then prove
the connectivity of the subgraph formed by 0-order pure edges, indicating that these edges capture
global structural properties. Furthermore, we demonstrate that the polyhedron formed by the 0-order
pure neighbors of any vertex is convex, highlighting its structural integrity and stability. This insight
suggests the potential for efficient computational methods. We also design the purity order for
non-Euclidean problems, which can be referred to Appendix [C]

Intuitive Example Analysis. Measuring vertex redundancy around an edge, purity order can also
capture topological information beyond edge length. Even among edges of equal length, those with
lower purity orders typically exhibit more favorable structural properties. As shown in Fig.[T] consider
two edges, e; and eg, formed with vertices 1 and x5 from vertex z. Despite of the same length,
their purity orders are 4 and 0, respectively. The edge e; passes through a denser region of vertices,
which negatively affects the subsequent connections, making it harder to form a cohesive structure.
In contrast, e;, surrounded by sparser vertices, has minimal negative impact on the underlying
connectivity of others, suggesting more conducive to a well-structured solution. These observations
suggest that solutions with more lower-order pure edges may have a greater potential for optimality.

4.2 Purity Law in Optimal Solutions of Routing Problems

We quantitatively investigate the distribution of purity orders in optimal solutions across various
instance scales and distributions, leading to the concept of the Purity Law.

Purity Law : The distribution of edges in optimal solutions follows a negative exponential
law based on their purity orders across various instances.

To validate the Purity Law, we conduct extensive statistical experiments on instances with varying
scales and distributions. The following discussions focus on TSP, while the Purity Law also exists in
CVRP despite more constraints, with verification and analysis presented in Append. D} Specifically,
we create datasets from 84 instance types with scales ranging from 20 to 1000, sampled from
four classical distributions. The corresponding optimal solutions are computed using the LKH3
algorithm [17]. A detailed description of the dataset is provided in Append. [E]

For each instance type, we calculate the purity order of every edge in the optimal solution and then
statistic the proportion y of edges with a given purity order k, which is defined as:

Z T* r)er* H(K (Ti*77->'k) = k)
y(k)z i 7j)e Np :) k‘E[O,N—Q], ©)

3 4 B 6
Puity Order

Uniform Clustered

3
Puity Order

100

o 1 2 4 s 6 o 1 2 3 4 s 5 sl
Purity Order

Explosion Implosion

Figure 2: Purity Law curves under varying scales and distributions.

3
Purity Order

Mean Purity Order Proportion of 0-order Pure Edges ,Mean Purity Order of non-0-order Pure Edges

_ Uniform
— 16 Clustered
025 Explosion
15 Implosion
02 < 1.4
0.5
85
12
01 11

©
S

Order
Percent (%)

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Scales

Figure 3: Mean purity order, proportion of O-order pure edges, and average order of non-0-order pure
edges for varying instance.

where N is the length of solution, (7;°,7) is the edge in the optimal solution 7*, and I(-) is the
indicator function. Next, we fit the proportions to a negative exponential function:

logy(k) = —Bk + log «, @)

and present statistics of fitted parameters «, 3, and fitting errors in Table [7/|of Appendix [F And all
detailed fitting results for each instance type are also available in Appendix [[] The remarkably low
mean and variance of fitting errors statistically underscore that the negative exponential law reliably
and universally applies across different instance scales and distributions.

The negative exponential relationship reveals that purity orders of edges and their proportions in the
optimal solution decrease exponentially, confirming our earlier comprehension. To better understand
the decay rate, we visualize the fitted curves for different instance types in Fig. 2} where we plot
the logarithm of y for clarity. As seen in Fig.[2] the coefficient « is invariant for both scales and
distributions, with different curves nearly overlapping at the vertical axis intersection. The decay rate
5 slightly increases with instance scale, indicating that, for larger-scale instances, the proportion of
each purity order decreases more rapidly.

Theorem 4.2. For edge e, assume that K, (ey,) = k is an positive even number, z; € Nc(€ezy)
evenly distributed on both sides of e, and the probability of each node being selected follows a
uniform distribution. Then, the probability of e, being at the optimal solution holds the following
inequality:

KN

Ples, € <
(eay € ToPT] < 24571k + 1)1

®)

For the random Euclidean routing problem, we theoretically prove that under certain conditions,
there is an upper bound about the probability of an edge with purity order k& being at the optimal
solution, which is shown in Theorem 2] The proof of Theorem [.2]can be referred to Appendix
Notably, this upper bound decreases monotonically with increasing k. This means that edges of
higher purity order have a lower probability of forming the optimal solution, consistent with our
findings. Furthermore, the negative exponential form of this upper bound indirectly confirms the
purity law we propose.

4.3 Consistent Dominance of Lowest-order Pure Edges

The rapid decay of the negative exponential function ensures that edges with lower purity orders
dominate the optimal solution, while edges with higher purity orders are seldom present. To concretely

illustrate this property, we calculate the mean purity order, the proportion of 0-order pure edges, and
the average order of non-0-order pure edges in optimal solutions for each instance type. The results,
shown in Fig. [3] highlight the consistent dominance of 0-order pure edges.

The variations in these metrics exhibit a steady trend across different instance scales and distributions,
further reinforcing the universality and stability of the Purity Law. The mean purity order stabilizes
around 0.1, indicating that the optimal tours consistently maintain a quite low level of overall purity
order. Furthermore, the proportion of 0-order pure edges consistently stays around 92%, reflecting
their dominant presence in optimal solutions. This proportion also aligns with the fitting parameter .
For non-0-order pure edges, which have a minimal purity order of 1, the mean purity order remains
around 1.15. This suggests that, even among non-0-order pure edges, low-order pure edges are
predominant, with higher-order pure edges being quite rare. Notably, all these proportions remain
nearly invariant when the instance scale exceeds 300, underscoring the remarkable and dominant
consistency of low-order pure edges. These quantitative characteristics indicate that, compare with
the well-known k-nearest prior, Purity Law can reflect additional structural information. Further
discussions on connection with k-nearest prior are available in Appendix [H]

5 Policy Learning Inspired by Purity Patterns

In standard neural learning for routing problems, the total cost, as defined in Eq. (@), is typically the
only objective for policy optimization. However, relying solely on this reward signal, neural networks
often fail to capture inherent structural patterns present across different instances. Despite efforts to
modify the architecture of policy networks and learning modules in previous research, the absence
of guidance from generalizable structural principles, limits effective learning of universal patterns,
resulting in poor generalization. Fortunately, the widespread and stable presence of purity patterns in
optima presents a promising avenue for improving generalization. Motivated by this, we introduce
two key concepts—purity availability and purity cost—to characterize purity patterns for neural learning.
By incorporating these into the policy training, we propose PUrity Policy Optimization (PUPO) to
encourage alignment with the Purity Law, enhancing generalization in neural solvers.

5.1 Purity Availability and Purity Cost

In the Markov model of routing problems, the state at time ¢ consists of the unvisited vertex set U; and
the current partial solution T, which includes the visited vertex set V;. The action a; corresponds to
the vertex 7; selected for the next visit.

Definition 5.1 (Purity Availability). The purity availability ¢(-) of the unvisited vertex set Uy is
defined as the average minimum available purity order, given by:

> wscu, M0 e, i Kp (i, 75)

U, =
¢(t) |Z/[t|)

1<t<N. 9)

The purity availability ¢ ({;) measures the potential purity order of future edges that can be formed
by the unvisited vertices. We demonstrate that the ¢ is supermodular, meaning the absolute value of
marginal gain in purity availability diminishes as the set /; increases. The proof is in Appendix

Proposition 5.2 (Supermodularity of Purity Availability). The set function ¢ : 2% — R, defined on
subsets of the finite set X, is supermodular. Specifically, for any subsets A C B C X and any vertex
x € X\ B, the following holds:

P(AU{z}) — ¢(A) < @(BU{z}) — ¢(B). (10)

This indicates that, as the solution construction progresses, the absolute value of marginal improve-
ment in purity availability becomes more significant on smaller unvisited sets.

Definition 5.3 (Purity Cost). The purity cost C(Uy, Tr11) for selecting an action Ty1 at time t is
defined as:

{Kp(TtaTtJrl) + ¢Upt1) — ¢(Us), fort <N, (11

Kp(TN,Tl), fort:N.

The purity cost C'(Uy, 7¢+1) includes both the purity order of the new edge formed by 7; and 7441,
and the difference in purity availability before and after the action 7. This formulation captures

both the contribution of action 7,1 to the purity order of the current partial solution and its impact
on the purity potential of the remaining unvisited vertices.

5.2 Policy Optimization with Purity Weightings

To improve generalization, we integrate purity costs into policy optimization process, aligning model
with the Purity Law. This encourages the learning of structural patterns that are consistent across
varying instances. To assess the potential of the current state-action pair in fostering a low-purity
structure for future solution construction, we introduce the purity weighting based on purity costs.

Definition 5.4 (Purity Weightings). Let § be a discount factor. The purity weighting W (Uy, Ty41) is
defined as:

N .
W(Z/{taTH»l) =1+ Z (5J7tC(Z/{j,Tj+1). (12)

j=t
Building on this characterization, we propose the purity policy gradient V L py po (0] X) as follow:

N
Epg(ray | (L(T) = (X)) > W (lhy—1,7)V1og pa(Te|T1:0-1, X) |, (13)

t=2

The complete description of the PUPO framework is presented in Appendix[J} And we also provide
an theoretical analysis on optimization error of PUPO in Appendix [Kl PUPO establishes upon the
REINFORCE algorithm with a POMO baseline, incorporating generalizable purity patterns into the
modified policy gradient. At each stage of the solution construction, PUPO employs a discounted
purity cost that reflects the purity potential of both the current partial solution and the unvisited vertex
set, encouraging the model to favor actions with lower purity orders during training. This approach
helps the model to learn consistent, cross-instance patterns that align with the Purity Law, thereby
enhancing its generalization capability. Notably, PUPO is flexible and can be integrated with various
popular constructive neural solvers, without any alterations to the network architecture. Further
discussion on the derivation process and explanation of PUPO are provided in Appendix [[]

6 Numerical Experiments

To validate the effect of PUPO on enhancing generalization, we compare the performance of both
vanilla policy optimization and PUPO across several state-of-the-art constructive neural solvers.
Additionally, we conduct a comprehensive evaluation of generalization performance and purity
metrics on well-known public datasets.

6.1 Experimental Setups

Dataset. To ensure the adequacy of the experiments, we validate the model’s performance on two
categories of datasets. The randomly generated dataset used in this paper is the same as that in INViT
[LO], which is widely adopted to testify existing DRL approach. The real-world dataset we used is
TSPLIB [39] and CVRPLIB [40]]. More details about dataset we used are presented in Appendix @

Comparison Methods. Although PUPO can be integrated with any DRL-based neural constructive
model, we select four representative SOTA methods with high recognition for our experiments. This
section mainly present the results on two latest and advanced neural solvers ELG [12]] and INViT [10]
We also conduct experiments on two classical neural solvers POMO [26]] and PF [[L8]], whose results
can be seen in Appendix [M] For each method, we conduct training on scales of 50 and 100.

Evaluation Metrics. We report three widely adopted performance metrics to evaluate the general-
izability of each comparison method, including the average total cost of solutions, the average gap
to the optimal solutions, and the average solving time. The gap characterizes the relative difference
between the output solution of neural models and the optimal solution, which is calculated as the
following:

L(Tmodel) _ L(Topt)
L(7ort)

gap = x 100% (14)

We also present three metrics to reflect the ability of the model to perceive purity information: the
average purity order (APO (all) for short), the proportion of 0-order pure edges (Prop-0 (%) for short),
and the average order of non-0-order pure edges (APO (non-0) for short) for each solution.

Experimental Settings. All the numerical experiments are implemented on an NVIDIA GeForce
RTX 3090 GPU with 24 GB of memory, paired with a 12th Gen Intel(R) Core(TM) i9-12900 CPU.
We train each model using the vanilla method and PUPO, respectively. In each training paradigm, we
use the original network architectures and hyper-parameters provided in the source code, without
any modifications to modules. Due to the different magnitude in the policy gradient between the two,
we only adjust the learning rates during PUPO. Details about the learning rates of each model are
available in Appendix [O] All models are trained on random instances from a uniform distribution.

6.2 Generalization Performance Analysis

Table 1: The experimental results of average gap (%) on the randomly generated TSP dataset with
different distributions and scales after training each model using both the vanilla and PUPO methods,
where - means out of memory, bold formatting represents superior results, Blue highlights the relative
decrease ratio (%) in the gap, while Red indicates its relative increase ratio (%).

ELG-50 ELG-100 INVIT-50 INVIT-100
Instance | Vanilla PUPO Vanilla PUPO Vanilla PUPO Vanilla PUPO

U-100 6.60 7.10 17.62 5.86 6.39 19.13 2.14 2.17 11.59 2.61 2.35 19.92
U-1000 20.81 1947 | 640 1795 1749 | 258 7.27 717 [143 7.41 6.26 | 1545
U-5000 31.50 26.84 | 1478 | 29.22 23.77 | 18.66 9.41 9.09 337 9.39 8.05 | 14.25
U-10000 - - - - 7.89 7.63 | 3.39 7.51 6.25 | 16.74
C-100 10.05 898 | 10.60 | 11.50 937 | 1845 2.90 286 | 1.55 3.59 322 1023
C-1000 27.14 2413 | 11.09 | 27.06 2113 | 21.90 8.44 8.00 |525 8.37 720 | 1393
C-5000 38.89 3563 | 8.39 40.44 29.29 | 27.58 9.90 945 | 451 9.65 855 [11.35
C-10000 - - - - 10.85 10.09 |6.92 | 1047 911 | 13.00
E-100 6.85 7.23 15.64 7.28 7.19 J1.22 2.15 211 223 2.70 241 | 10.88
E-1000 2455 2377 |321 2401 21.57 | 10.16 9.61 9.18 | 439 9.61 8.77 1 8.76
E-5000 35.67 28.88 | 19.03 | 3477 26.26 | 2447 1244 11.65 | 636 | 1145 1041 |9.03
E-10000 - - - 1122 10.61 | 544 | 10.96 9.62 | 1224
1-100 6.66 7.23 1 8.69 6.64 6.60 1 0.56 2.44 238 222 2.77 2.62 1546
1-1000 21.30 20.54 | 3.56 18.62 1852 | 0.57 7.56 7.50 [0.70 7.81 690 | 11.65
1-5000 3040 27.64 1 9.07 30.70 24.64 | 19.76 9.20 8.86 | 3.60 9.44 8.96 }5.14
1-10000 - - - - 8.36 7.68 | 8.10 8.27 6.78 | 18.05

Table 2: The experimental results of average gap (%) on the randomly generated CVRP dataset with
different distributions and scales after training each model using both the vanilla and PUPO methods.

ELG-50 ELG-100 INVIT-50 INVIT-100
Instance | Vanilla PUPO Vanilla PUPO Vanilla PUPO Vanilla PUPO
U-50 745 8.15 19.45 8.32 9.09 19.36 4.25 4.58 17.83 4.75 5.06 16.42

U-500 1548 1097 |29.14 8.91 8.84 10.73 10.75 9.83 1855 9.67 837 |13.50
U-5000 22.75 831 | 6347 597 514 | 1385 9.67 726 | 2498 7.90 472 1 40.18
C-50 7.45 7.28 1236 7.40 8.05 18.82 4.50 4.84 1T7.58 4.064 4.97 17.20
C-500 1647 1021 | 37.98 8.82 792 |10.18 9.79 8.93 18.79 9.22 751 | 18.56
C-5000 20.45 872 5736 | 7.10 543 2350 8.49 707 1672 | 7.66 451 | 41.07
E-50 7.58 8.13 17.32 8.57 9.15 16.79 4.56 4.94 18.52 4.88 5.37 19.98
E-500 1586 11.12 | 29.88 9.32 8.68 16.93 10.48 9.82 16.26 9.82 852 | 1327
E-5000 27.10 852 | 68.58 8.26 633 2336 9.64 7.71 | 20.08 8.47 517 139.03
1-50 7.77 8.22 15.85 8.34 8.67 13.94 4.41 4.77 18.26 4.78 5.08 16.29
1-500 1576 1083 | 31.29 8.97 8.83 1 1.53 10.15 9.49 1 6.48 9.34 828 | 1135
1-5000 19.43 7.05 | 63.73 6.01 524 | 1291 8.23 6.87 | 1648 7.35 4.58 | 37.66

Performance on Randomly Generated Dataset. Table [I]and [2] presents the performance on the
randomly generated TSP and CVRP dataset, trained using both the vanilla and PUPO methods. The
experimental results for total cost, statistics of gap and solving time are provided in Appendix [P} It
can be observed that PUPO training enhances the performance across nearly all instance types on
both TSP and CVRP. Notably, the PUPO-trained INViT-100 accomplishes a gap of 4.51% on C-5000
of CVRP, whereas the Vanilla-trained model can only reach a gap of 7.66%.

From the perspective of test scale, PUPO training significantly improves model generalization
performance on larger instances. For example, INViT-100 achieves a 18.05% relative enhancement
on 1-10000 of TSP, 40.18% and 41.07% on U-5000 and C-5000 of CVRP. And ELG-50 shows
significantly 68.58% and 63.73% gain on E-5000 and I-5000 of CVRP. On scales closer to the
training scale, diverse phenomena can be observed. INViT-100 accomplishes an 9.92% uplift on U-
100 of TSP, while most other PUPO-trained solvers experience negative performance changes on the

mU-50 ®mU-500 mU-5000mC-50 m=C-500 mC-5000
W E-50 E-500 E-5000 = I-50 I-500 1-5000
30.00
25.00
20.00
15.00
10.00

5.00
000 - el ||I"II I|I M| ol n

-5.00 ELG-50 ELG-100 ViT-50 INVIT-100

Relative Deviation (%)

-10.00
-15.00

Figure 4: The bar chart of relative deviations (%) in solving time between Vanilla- and PUPO-trained
models, where positive values indicate that PUPO-trained models hold shorter solving times.

same scale. This suggests that PUPO may involve in a trade-off, sacrificing accuracy on smaller-scale
instances while learning patterns more suited to larger scales. This trade-off is linked to the implicit
regularization feature of PUPO, which is discussed in the subsequent part. From a distributional
perspective, PUPO leads to positive average relative improvements across all distributions, indicating
an enhancement in generalizability with respect to distributions.

Performance on Real-world Dataset. Table [3] presents the performance on TSPLIB, further
demonstrating that PUPO enhances the generalization ability on real-world data. For example,
PUPO-trained ELG-50 achieves 31.6% relative enhancement on CVRPLIB 501 ~ 1000. Similar to
the experimental results on random datasets, PUPO training leads to better performance on large-scale
instances, but there are still some unimproved instances at small scale.

Table 3: Performance of average gap (%) on TSPLIB and CVRPLIB after training each model using
both the vanilla and PUPO methods.

Instance Vanilla PUPO Vanilla PUPO
ELG-50 ELG-100
TSPLIB 1~100 4.25 4.57 T7.57 491 4.90 10.10

TSPLIB 101~1000 10.81 10.21 | 5.50 9.47 10.16 17.27
TSPLIB 1001~5000 2288 2024 | 1155 | 2345 18.69 | 20.27
CVRPLIB 1~200 9.84 9.52 1332 8.30 8.62 13.81
CVRPLIB 201~500 13.11 11.26 | 14.13 9.73 9.55 4 1.90
CVRPLIB 501~1000 | 16.25 11.12 | 31.60 | 10.18 9.96 12.18
INVIT-50 INViT-100
TSPLIB 1~100 1.71 1.84 T7.78 243 216 | 1091
TSPLIB 101~1000 4.97 4.67 1 6.01 5.60 497 | 11.15
TSPLIB 1001~5000 9.65 849 | 1200 | 932 8.68 1 6.87
CVRPLIB 1~200 8.93 9.00 10.78 8.72 9.57 19.84
CVRPLIB 201~500 1261 1231 | 236 12.05 11.34 | 5.88
CVRPLIB 501~1000 | 13.31 12.59 | 5.45 1231 11.28 | 8.37

6.3 Computational Efficiency Analysis

Figure []illustrates the relative deviations in solving time between Vanilla-trained and PUPO-trained
models on CVRP, where positive values indicate that PUPO-trained models hold shorter solving
times. Following the figure, most of the relative deviations are within 10%, suggesting negligible
differences between the two, even the PUPO-trained models tend to solve faster in most cases. The
possible reason may derive from that PUPO acts as an implicit regularization, which may have a
positive impact on the computation of the model during the forward inference phase. Since PUPO
only provides guidance during the training phase, it does not introduce additional time overhead
during inference. Due to tensorizable computation of PUPO, training time does not increase greatly.

6.4 Learning Mechanisms Analysis

Purity Perception. To further explore the role of PUPO during the training process, Table [presents
three metrics that evaluate the purity of tours obtained by INViT-100. Numerical results of purity

metrics for all models are available in Appendix [P| The table demonstrates that PUPO-trained models
consistently generate solutions with more outstanding purity.

Table 4: The experimental results of Vanilla- and PUPO-trained model on three purity evaluation
metrics, where bold formatting represents more pure results.

Prop-0 (%) APO (all) APO (non-0)
Vanilla PUPO | Vanilla PUPO | Vanilla PUPO
100 80.02 80.53 0.13 0.12 1.16 1.12

1000 85.46 86.48 0.23 0.19 1.81 1.66
5000 4336 4395 0.31 0.24 2.52 2.10
10000 87.17 88.27 0.54 0.55 4.28 4.86
Uniform 7436 75.23 0.17 0.14 1.44 1.33
Clustered | 73.82 74.65 0.34 0.33 2.76 3.02
Explosion | 7391 74.71 0.48 0.42 3.85 3.64
Implosion | 7391 74.64 0.21 0.20 1.73 1.74

Compared to vanilla training, PUPO enhances the Prop-0 metric across all types, and it lead to
a reduction in the two kinds of APO metric across nearly all types. Notably, the largest average
improvement in Prop-0 occurs at the scale of 10,000, with a 1.1% increase, which also corresponds
to the scale where INViT-100 achieves its most promoted generalization performance. These results
suggest that PUPO facilitates the emergence of Purity Law during training, leading to enhanced
model generalization.

Implicit Regularization. Furthermore, we calculate the sum of the Frobenius norm of the parameter
matrices for each model after different training, as presented in Table[5] It can be observed that PUPO
training reduces the sum of the parameter norms, acting as an implicit regularization mechanism. In
contrast, we also perform explicit regularization training by directly incorporating the sum of the
norms into the reward function, but it does not result in improved generalizability. This suggests that
PUPO effectively mitigates overfitting on the specific training set, encouraging the model to learn
more generalizable structural patterns.

Table 5: The sum of Frobenius norm of the parameter matrices for each model after different training,
where bold formatting represents lower value.

| ELG-50 ELG-100 INViT-50 INViT-100

Vanilla | 336.44 336.24 430.83 429.78
PUPO 335.8 335.67 425.26 425.19

7 Conclusion

In this paper, we reveal Purity Law, a fundamental structural principle for optima of routing problems,
which defines that edge prevalence grows exponentially with the sparsity of surrounding vertices.
And we propose Purity Policy Optimization (PUPO) to explicitly promote alignment with Purity
Law during the solution construction process. Extensive experiments demonstrate that PUPO can be
seamlessly integrated with popular neural solvers, significantly enhancing their generalization perfor-
mance without incurring additional computational overhead during inference. Purity Law provides a
novel perspective on routing problems, revealing a systematic bias toward local sparsity in global
optima validated across diverse instances statistically. While improving large-scale generalization,
maintaining high accuracy for small-scale scenarios is still a limitation PUPO needs to improve. In
future work, we plan to explore more effective training methods for leveraging Purity Law, and design
network architectures that integrate Purity Law to promote the perception to it, thereby achieving
greater generalizability.

Acknowledgments

This paper is supported by the National Key R&D Program of China project (2021 YFA1000403),
and the National Natural Science Foundation of China (Nos. 12431012, U23B2012).

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory
and algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

David L. Applegate, Robert E. Bixby, Vasek Chvatal, William Cook, Daniel G. Espinoza,
Marcos Goycoolea, and Keld Helsgaun. Certification of an optimal tsp tour through 85,900
cities. Operations Research Letters, 37(1):11-15, 2009.

Tapan P Bagchi, Jatinder ND Gupta, and Chelliah Sriskandarajah. A review of tsp based
approaches for flowshop scheduling. European Journal of Operational Research, 169(3):816—
854, 2006.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405-421, 2021.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng
Chee. Learning generalizable models for vehicle routing problems via knowledge distillation.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 31226-31238. Curran Associates,
Inc., 2022.

Paulo da Costa, Jason Rhuggenaath, Yinggian Zhang, Alp Akcay, and Uzay Kaymak. Learning
2-opt heuristics for routing problems via deep reinforcement learning. SN Computer Science, 2,
09 2021.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bg-nco:
Bisimulation quotienting for efficient neural combinatorial optimization. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information
Processing Systems, volume 36, pages 77416-77429. Curran Associates, Inc., 2023.

Ekrem Duman and I Or. Precedence constrained tsp arising in printed circuit board assembly.
International Journal of Production Research, 42(1):67-78, 2004.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. INVIiT: A generalizable routing problem
solver with invariant nested view transformer. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceed-
ings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pages 12973-12992. PMLR, 21-27 Jul 2024.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to
arbitrarily large tsp instances. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pages 7474-7482, 2021.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. In Kate
Larson, editor, Proceedings of the Thirty-Third International Joint Conference on Artificial Intel-
ligence, IJCAI-24, pages 6914-6922. International Joint Conferences on Artificial Intelligence
Organization, 8 2024. Main Track.

Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Giinne-
mann. Generalization of neural combinatorial solvers through the lens of adversarial robustness.
arXiv preprint arXiv:2110.10942, 2021.

Tiande Guo, Congying Han, Siqi Tang, and Man Ding. Solving combinatorial problems with
machine learning methods. Nonlinear Combinatorial Optimization, pages 207-229, 2019.

Dan Gusfield. Integer linear programming in computational biology: Overview of ilp, and new
results for traveling salesman problems in biology. Bioinformatics and Phylogenetics: Seminal
Contributions of Bernard Moret, pages 373—404, 2019.

11

[16] Keld Helsgaun. An effective implementation of the lin—kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106-130, 2000.

[17] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966-980, 2017.

[18] Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep reinforced multi-pointer transformer for the traveling salesman problem.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 8132-8140,
2023.

[19] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
tsp requires rethinking generalization. In International Conference on Principles and Practice
of Constraint Programming, 2021.

[20] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

[21] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

[22] Minsu Kim, Jinkyoo Park, and joungho kim. Learning collaborative policies to solve np-hard
routing problems. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
10418-10430. Curran Associates, Inc., 2021.

[23] Minsu Kim, Jiwoo Son, Hyeonah Kim, and Jinkyoo Park. Scale-conditioned adaptation for
large scale combinatorial optimization. In NeurIPS 2022 Workshop on Distribution Shifts:
Connecting Methods and Applications, 2022.

[24] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475, 2018.

[25] C. Korostensky and G. Gonnet. Near optimal multiple sequence alignments using a traveling
salesman problem approach. In 6th International Symposium on String Processing and Informa-
tion Retrieval. 5th International Workshop on Groupware (Cat. No.PR00268), pages 105-114,
1999.

[26] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in
Neural Information Processing Systems, 33:21188-21198, 2020.

[27] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon.
Matrix encoding networks for neural combinatorial optimization. Advances in Neural Informa-
tion Processing Systems, 34:5138-5149, 2021.

[28] P. Langley. Crafting papers on machine learning. In Pat Langley, editor, Proceedings of the
17th International Conference on Machine Learning (ICML 2000), pages 1207-1216, Stanford,
CA, 2000. Morgan Kaufmann.

[29] Wenzhao Liu, Congying Han, Tiande Guo, Haoran Li, and Zicheng Zhang. Fusion of multi-level
information: Solve large-scale traveling salesman problem with an efficient framework. In
International Conference on Neural Information Processing, pages 89—103. Springer, 2024.

[30] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving
vehicle routing problems. In International conference on learning representations, 2019.

[31] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing
Systems, volume 36, pages 8845-8864. Curran Associates, Inc., 2023.

12

[32] Fu Luo, Xi Lin, Yaoxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu
Zhang. Boosting neural combinatorial optimization for large-scale vehicle routing problems. In
The Thirteenth International Conference on Learning Representations, 2025.

[33] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing
Tang. Learning to iteratively solve routing problems with dual-aspect collaborative transformer.
Advances in Neural Information Processing Systems, 34:11096-11107, 2021.

[34] Sahil Manchanda, Sofia Michel, Darko Drakulic, and Jean-Marc Andreoli. On the generalization
of neural combinatorial optimization heuristics. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 426—442. Springer, 2022.

[35] Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36, 2024.

[36] Alexandru Paler, Alwin Zulehner, and Robert Wille. Nisq circuit compilation is the travelling
salesman problem on a torus. Quantum Science and Technology, 6(2):025016, mar 2021.

[37] Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian.
H-tsp: Hierarchically solving the large-scale traveling salesman problem. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(8):9345-9353, Jun. 2023.

[38] Jean-Claude Picard and Maurice Queyranne. The time-dependent traveling salesman problem
and its application to the tardiness problem in one-machine scheduling. Operations research,
26(1):86-110, 1978.

[39] Gerhard Reinelt. Tsplib - a traveling salesman problem library. OR Software, 1991. Available
athttp://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/,

[40] Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subrama-
nian. New benchmark instances for the capacitated vehicle routing problem. European Journal
of Operational Research, 257(3):845-858, 2017.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[42] Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap*
neighborhood. Computers & Operations Research, 140:105643, 2022.

[43] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural
information processing systems, 28, 2015.

[44] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229-256, 1992.

[45] Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop:
Learning global partition and local construction for solving large-scale routing problems in
real-time. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):20284-20292,
Mar. 2024.

[46] Dongxiang Zhang, Ziyang Xiao, Yuan Wang, Mingli Song, and Gang Chen. Neural tsp solver
with progressive distillation. Proceedings of the AAAI Conference on Artificial Intelligence,
37(10):12147-12154, Jun. 2023.

[47] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 42769-42789. PMLR, 23-29 Jul 2023.

13

http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/

A More Discussion on Related Works.

With the rapid progress in deep learning, various neural approaches to combinatorial optimization
have emerged. Overviews of these methods can be found in Guo et al. [[14] and Bengio et al. [3]].

Classical Neural Solvers. According to the way the solutions are generated, neural approaches can
generally be divided into two classes: learning to directly construct and learning to iteratively improve
solutions. For constructive methods, Vinyals et al. [43]] introduce the Pointer Network, which solves
routing problems end-to-end utilizing Recurrent Neural Networks to encode vertex embeddings,
trained via supervised learning. Kool et al. [24] first introduce the Transformer architecture [41]]
to solve routing problems. Kwon et al. [26] further propose the policy optimization with multiple
optima (POMO), which improves the performance by exploiting solution symmetries. Meanwhile,
some works based on graph learning [21 20]] also show potential to solve routing problems. Pointer-
former [18]] enhances memory efficiency by adopting a reversible residual network in the encoder
and a multi-pointer network in the decoder. For iterative methods, DRL-2opt [7] trains a DRL policy
to select appropriate 2-opt operators for refining solutions. Ma et al. [33]] design dual-aspect collabo-
rative Transformer to learn embeddings for the node and positional features separately, iteratively
solving routing problems. GCN+MCTS [11] integrates graph decomposition and Monte Carlo Tree
Search to handle large-scale instances effectively but time-consuming.

Next, we will supplement more related work on improving generalization of neural routing problem
solvers. AMDKD [6] introduces knowledge distillation to tackle the cross-distribution generalization
concerns in the routing problem. Specifically, it leverages knowledge from teachers trained on
exemplar distributions to yield a generalist student model. Also along with knowledge distillation,
PDAM [46] adopts curriculum learning to train TSP samples in increasing order of their problem
size and progressively distilling high-level knowledge from small models to large models via a
distillation loss. SCA [23]] designs a plugged network to mix scale information into the original
representation vector, which can help the pre-trained model adapt the policy to larger-scale tasks. By
studying adversarial robustness, Geisler [[13]] derives perturbation models for SAT and TSP to enhance
the expressiveness of the model with perturbations. Zhou [47] proposes a generic meta-learning
framework to enhance the ability of the initialized model to fast adapt to new tasks during inference
and conduct extensive experiments on VRPs. Sahil [34] Formalizes solving a CO problem over a given
instance distribution as a separate learning task and investigates meta-learning to optimize the capacity
of the model to adapt to new tasks. Reformulating the Markov Decision Process of the solution
construction in combinatorial optimization problems, BQ-NCO [8] proposes a novel Bisimulation
Quotienting method for generalizable neural solver. GDMF [29] proposes an divide-and-conquer
framework via fusing multi-level feature for large-scale TSP.

B Topological Properties of 0-order Pure Edges

As the class of edges with the lowest degree of redundancy, 0-order pure edges are demonstrated by
the following propositions to possess a series of favorable topological properties.

Proposition B.1. Given an instance X, for any vertex x € X, there exists at least one vertex that
can form a 0-order pure edge with x.

Proof. We prove the proposition by contradiction.

Assume that for any x € X', we choose
y(z) := argmin ||z — y||°.
Since no vertex can form a 0-order pure edge with z, we have that
Ky(z,y(x)) >0, VrelX.

Therefore, there must exist a point z(z) such that
(z = 2(2))" (y(z) = 2(x)) < 0.

14

Then we can derive that

lz = ()|
=llz — 2(z) + 2(z) — y(2)|?
=llz = 2(2)|* + [|2(2) = y(@)|* = 2(z - 2(2))" (y(z) — 2(2))
||z = 2(@)I* + 2(2) — y(2)II?
>|lw — z(2)]1%,

which means that the distance between z(z) and x is smaller than the distance between y(x) and x.
Therefore, it contradicts the assumption that y(x) is the nearest neighbor of . O

Proposition B.2. Given an instance X, the subgraph Gy = (X, &) is connected, where &y is the
edge set of all 0-order pure edges.

Proof. We prove the proposition by contradiction.

Suppose the subgraph Gy is not connected. Without loss of generality, assume that G has two
connected components, denoted as F; and F5. Let f; € Fj and fy € F; be such that

dist — dist(Fy, Fy) = min min dist(a, b).
ist(f1, f2) = dist(Fy, F») min min dis (a,b)

Since ey, r, ¢ Go, we have that
K,y(f1,f2) > 0.

Therefore, there must exist a point f3 such that the following inequality holds:

(fi = f3)"(fa— f3) <0,

which means that the distance between f3 and f; is smaller than the distance between f5 and f;.
Regardless of whether f3 € Fy or f3 € Fb, this leads to a contradiction with the assumption that the
distance between f1 and f5 is the shortest distance between F; and Fb.

O

Proposition B.3. Given an instance X, for any vertex x € X, the polyhedron formed by its 0-order
pure neighbors D is convex.

Proof. Consider any three adjacent 0-order pure neighbors A, B, and C' of point X. We have that
/ABC = ZABX + /X BC.

Since A and C' are 0-order pure neighbors of X, it follows that
/ABX,/XBC < g

and thus ZABC < .

Due to the arbitrariness of A, B, and C, the polyhedron formed by its O-order pure neighbors Df is
convex. O

Proposition establishes the existence of O-order pure neighbors for any point, providing a
foundation for subsequent analysis. While proposition [B.2]demonstrates that the subgraph formed by
0-order pure edges possesses overall graph structural properties. And proposition[B.3|describes the
intrinsic topological features of the 0-order neighbor set for any given point. The three propositions
above characterize the mathematical properties of purity order theoretically.

15

C Purity Order Form for Non-Euclidean Problems

In non-Euclidean problems, there is no longer direct connectivity between vertices, and the metric
is given a priori by the edge cost matrix. Given G = (V, E), we define purity order K, (e;;) in
non-Euclidean routing problems as follow:

maXo, e M, |£’Lm,| + MaXm;eM; |£j7nj |

Kp(eij) = 5 : (15)

1(ei;) U(&ims) }» &im,; 18 the shortest path from vertex v; to vy,
Keig)

where M; = {m|argma:cml(&m)S
To understand it intuitively, we first need to find the shortest path starting from the two endpoints,
which does not exceed half the length of the edge and has the largest length, and then define the purity
order of the two end points as the average of the maximum number of nodes in the shortest path. We
take an instance of the non-Euclidean TSP dataset of size 50 in [27] as an example and calculate the
pure order according to the above definition. The purity order distribution is as follows:

D Verification of Purity Law on CVRP

Although different routing problems face distinct constraints, the common goal of VRPs is to
minimize the sum of the total tour cost, which is typically characterized by the spatial relationships
between nodes. The Purity Law describes a universal local structure of spatial relationships, which
are highly relevant to the common goal of VRPs. We also verify the Purity Law on CVRP. Using
the dataset from the original paper of INViT [10]], we computed the proportion (%) of edges with
purity orders 0 ~ 10 in the optima. The result is shown in the tabld6] It can be observed that the
negative exponential law still obviously holds. And lowest-order pure edges still keep dominance in
the optimal solutions, while the concentration is slightly reduced due to capacity constraints.

Table 6: The verification result of Purity Law on CVRP.

CVRP-50 CVRP-500
Purity Order | Uniform Clustered Explosion Implosion | Uniform Clustered Explosion Implosion
0 78.3 76.5 78.2 78.4 66.6 65.8 67.3 66.8
1 13.2 12.9 133 13.2 11.3 11.2 11.2 11.3
2 5.5 5.6 5.5 5.3 43 4.4 43 4.4
3 3.1 3.1 3.0 3.1 2.4 2.5 2.3 2.4
4 2.1 22 2.0 2.1 1.6 1.6 1.5 1.6
5 1.5 1.6 1.6 1.5 1.1 1.2 1.1 1.1
6 1.2 1.3 1.3 1.2 0.9 1.0 0.9 0.9
7 1.0 1.0 1.0 1.0 0.7 0.7 0.7 0.7
8 0.9 0.9 0.8 0.9 0.7 0.7 0.6 0.6
9 0.7 0.7 0.7 0.8 0.5 0.6 0.5 0.6
10 0.7 0.6 0.6 0.6 0.5 0.5 0.5 0.5

E Detailed Description of Statistical Dataset

To construct the dataset in statistical experiments, we first generate 21 different scales within the range
of 20 to 1000, with intervals of 50 except 20. For each scale, we consider four widely recognized
classical distributions, which is uniform, cluster, explosion and implosion, resulting in 84 different
instance types totally. For instance types with scales under 500, 256 instances are randomly sampled
to form the dataset, while for those with sizes of 500 or above, the number of instances is reduced
to 128, which is due to the fact that optimal solutions of large-scale instances require an excessive
amount of time. The optimal solutions for all instances are solved by LKH-3 [[16 [17]], which is the
SOTA heuristic capable of producing optimal solutions even for large-scale instances.

F Detailed Fitting Result

The mean and variance of fitted parameters « and 3, along with fitting errors are shown in Table
And the detailed values of the fitting error, o and 3 for each instance type are listed in Table
According to the table, the low mean and variance of the fitting errors demonstrate the reliability and
university of the fitting results across different instance scales and distributions.

16

Table 7: Fitting results of the exponential function in Eq. (7).

FITTING ERROR « B
MEAN 2.23E-05 0.92 2.63
VARIANCE 8.45E-10 1.57E-04 1.49E-02

Table 8: The fitting errors, coefficients v and 3 in Sec. [F2]

B

Uniform Clustered Explosion Implosion

Fitting Error @
Uniform Clustered Explosion Implosion | Uniform Clustered Explosion Implosion

20 | 6.58E-05 245E-04 1.01E-04 5.71E-05 | 0.8860 0.8554 0.8835 0.8872 22514 2.0800 2.2483 2.2630
50 | 542E-05 7.90E-05 3.96E-05 5.05E-05 | 09115 0.8919 0.9027 0.9002 2.5166 2.3295 2.4152 2.3923
100 | 2.41E-05 3.75E-05 1.85E-05 3.61E-05 | 0.9204 0.9124 0.9091 0.9137 2.5974 2.5133 2.4567 2.5286
150 | 2.54E-05 2.57E-05 2.96E-05 1.78E-05 | 0.9236 0.9188 0.9150 09184 2.6410 2.5782 2.5412 2.5681
200 | 2.18E-05 220E-05 2.62E-05 1.63E-05 | 0.9236 0.9221 0.9197 0.9202 2.6384 2.6192 2.6002 2.5887
250 | 1.18E-05 1.35E-05 2.38E-05 242E-05 | 0.9263 0.9245 0.9209 0.9227 2.6568 2.6366 2.6066 2.6337
300 | 1.26E-05 1.49E-05 2.06E-05 2.08E-05 | 0.9259 0.9258 0.9211 0.9224 2.6535 2.6578 2.6057 2.6201
350 | 1.39E-05 1.40E-05 1.61E-05 1.71E-05 | 0.9273 0.9263 0.9236 0.9224 2.6762 2.6621 2.6318 2.6166
400 | 1.33E-05 1.54E-05 1.80E-05 1.05E-05 | 0.9278 0.9280 0.9241 0.9235 2.6814 2.6918 2.6430 2.6206
450 | 1.04E-05 1.12E-05 1.61E-05 1.52E-05 | 0.9280 0.9288 0.9234 0.9260 2.6805 2.6947 2.6289 2.6633
500 | 8.38E-06 1.15E-05 1.18E-05 1.28E-05 | 0.9273 0.9288 0.9256 0.9255 2.6634 2.6936 2.6515 2.6536
550 | 1.04E-05 1.49E-05 1.94E-05 1.31E-05 | 0.9306 0.9298 0.9257 0.9267 2.7190 2.7186 2.6615 2.6673
600 | 7.55E-06 1.08E-05 1.48E-05 1.26E-05 | 0.9294 0.9306 0.9259 0.9275 2.6931 2.7207 2.6591 2.6803
650 | 1.I3E-05 1.37E-05 9.63E-06 1.79E-05 | 0.9297 0.9310 0.9262 0.9263 2.7058 2.7293 2.6535 2.6689
700 | 1.34E-05 1.02E-05 1.40E-05 1.77E-05 | 0.9280 0.9306 0.9277 0.9256 2.6856 2.7175 2.6877 2.6563
750 | 1.22E-05 1.19E-05 1.50E-05 1.26E-05 | 0.9287 0.9308 0.9264 0.9282 2.6959 2.7251 2.6658 2.6930
800 | 1.22E-05 1.29E-05 9.97E-06 1.19E-05 | 0.9294 0.9311 0.9255 0.9273 2.7040 2.7323 2.6459 2.6750
850 | 1.30E-05 1.12E-05 1.80E-05 1.33E-05 | 0.9300 0.9305 0.9276 0.9271 2.7151 2.7184 2.6909 2.6707
900 | 1.33E-05 1.03E-05 1.08E-05 1.46E-05 | 0.9309 0.9316 0.9276 0.9281 2.7296 2.7357 2.6790 2.6906
950 | 1.33E-05 1.38E-05 1.44E-05 1.41E-05 | 0.9299 0.9314 0.9284 0.9277 2.7132 2.7376 2.6951 2.6855
1000 | 1.51E-05 1.21E-05 1.26E-05 1.24E-05 | 0.9310 0.9318 0.9282 0.9289 2.7340 2.7413 2.6890 2.6978

G Proof of the upper bound

Theorem G.1. For edge e, assume that K,(e,,) = k is an positive even number, z; € N.(€4y)
evenly distributed on both sides of e, and the probability of each node being selected follows a
uniform distribution. Then, the probability of e, being at the optimal solution holds the following
inequality:
Plesy € Topr] < M (16)
WO o Tk 1 1)

Proof. Let w,,, denote the Hamilton Path formed by edge e,, and vertices z; € N (e,). Then, the
following inequality holds:

Plesy € Topr] < Pledges in w,, do not cross|. (17
Next, We will analyze the probability that no edges in w;, cross and obtain an upper bound. We
prove this theorem by induction.

When k = 2, there are z1, z9 € Nc(emy) evenly distributed on both sides of e;,. At this time, there
are six pOSSible cases for Wy (Zla z,Y, 22)’ (225 z,Y, Zl)’ (Zla 22, I, y)’ (Zla 22,Y, I), (l’, 21522, y)?
(y, 21, 22,). Among them, (21, x,y, 22) and (22, , y, z1) have no edge intersection, so

1 21
Plesy € Topr| < Pledges in wy, do not cross| = 3= 5 0030 (18)
Now, we assume that when K, (e,,) = k, the following equation holds:
Pledges i d] e (19)
edges in w,,, do not cross| = ———.
£ Y El(k+ 1)

(k')

It means that among all (k + 1)! combinations of wy,, there are situations where the edges

of wg, do not cross. When K,(e,,) = k + 2, first, there are totally (k + 3)! combinations of

wgy. Next, we consider the non-intersection structure based on case k. For every (k")l situations
42~

17

where the edges of w;, do not cross, consider one side of ey, first. If adding a point still leaves no
intersection, there are g + 1 possible addition positions. Considering both sides symmetrically, there

. 2
are (% +1)2 = @ non-intersection cases. Therefore, it can be obtained that

(k2 (k+2)2

Fledges i wry donot cross] = 4k/2(;€14; 3)!4 - 4("€+2)/2Elf (?kQJ)r!!Z) + ! 20)

Hence,
Plesy € Torr] < 4,;_1(]:'_’_1)” (21)
O

H Connection between Purity Law and k-Nearest Prior

The k-nearest prior in routing problems refers to the observation that in optimal solutions, the next
city visited is frequently among the k nearest neighbors of the current city, where k& typically a small
value. Purity Law and the k-nearest prior are both local phenomena that are commonly observed
in optimal solutions of routing problems. However, the Purity Law can reflect more topological
information.

First, the k-nearest neighbor with smaller values of that exhibit good structural quality tend to
have lower purity orders for the edges they form. Second, the purity order reflects local structural
information that the k-nearest prior can not capture. For example, in Fig. [T} both z; and x, are
the 5-NN of z, and they are equivalent under the k-NN metric. However, under the purity order
metric, they are distinguished. The neighbor x; with a lower purity order is a more ideal candidate
for connecting to z compared to x3, due to its more coherent local structure. Thus, Purity Law
not only contains distance information but also incorporates the structural information of the node
distribution around the edges. This richer information carried by Purity Law allows it to contribute
more effectively to generalization.

I Proof of the supermodularity of Purity Availability ¢

Proposition L.1. The set function ¢ : 2% — R defined on the subsets of the finite set X is su-

permodular, that is, for any subset A C B C X and any x € X \ B, the following inequality
holds:

p(AU{z}) — ¢(A) < ¢(BU{z}) — &(B).

Proof. Given subsets U C X and any vy,v2 € X \ U, we prove the equivalent definition of
supermodular functions:

(U U{v1}) + o(UU{v2}) < ¢(U U {v1,v2}) + ¢(U). (22)

18

First, we have

Z min Kp(l‘i,l‘j)

= 0]
sty T T+ 0 Kelon i)
(U U{n}) = ji -
R I A
(U UA{va}) = J#i T
w €U wjeUrBi{%l,vz} Kp(wi, 25) + w,-ell%%vz} Ky(vy, ;) + . e?}iurivl} K (vs, ;)
&(U U {v1,v2}) = j#i

|U|+2

By the following relations, we partition U into three parts, denoted as Uy, Uy, Us, respectively.
Uy = {z; | arg myinKp(xi,y) eU}
Uy = {xz; | argmyinKp(xi,y) =1}
Us = {x; | argmyinKp(xi,y) = vy}

Then, we prove that the following expression is non-positive from three parts:

(@(U U{v1}) + o(U U {v2})) = (6(U U {v1,v2}) + ¢(U)).-

Part 1
2 1 1
in K (23, 25) | 77— | 177
2 min Kyl ”““J’LU|+1 <U|+|U+2>}
x; €U
< in K,)(1 ><o
min Ti, T S
7, ©i€U b P00+ 1) (U] +2)
ZTq 0
Part 2

(<minx]€U Kp(zi, ;) ming,ev Kp(a:i,a:j)) N (Kp(xi,vl) Kp(:z:i,vl)))

Ul +1 B U] Ul+1 |U[+2

1

minmjeU Kp(zjfUl) minzjeUU{vg} Kp(xjavl))

|
M A

|Ul+1 Ul +2
(_minmjeU Kp(x, ;) K, (x;,v1)) min,, ey Kp (25, v1)
= \UI(JU] +1) U+ 1)U +2) (U + 1)(JU| +2)
Z (_Kp(ﬂfi,m) +1 Kp(zi,v1)) ming, ey Kp(2;,v1)
T i(ui+1) U+ D(U] +2) U+ 1)U +2)

1
Ul + D(U] + 2)

=2 37 Kyl vn) + |U] min Ky, 00) = [V2|(U] +2)

;€U
1
< —2|U- in K,(x; U| min K,(x; —|U1|(JU] + 2
1

SO ey 2O -2 <o

19

Part 3

8
2™

((mianGU Kp(z;, ;) ming cy Kp(cvi,acj)> N (Kp(xi,vg) Kp(lfi,ﬂg)))

Ul +1 B U] Ul+1 |U[+2

2

N (minxjeU Kp(zj v2) ming cyuqo,} Kp(l'j,’l)g))
Ul +1 |U| +2
B Z (_minx].eU Kp(x, ;) Kp(z,v2)) ming ey Kp(xj,v2)
il \UI(jU] +1) U+ 1)U +2) (IUT+ DU +2)
Z (_ K, (x;,v9) +1 K, (x;,v9)) ming, ey Kp(z;, va)
T i(ui+1) U+ D(U] +2) U+ 1)U +2)

1
IO T DT) | 2,2 Koleive) + U] min Koo, ve) = [Ual(U] +2)

Tj €Uy

1
< -2 in K,(x; in K,(z; — 2
1

ST DT (A -2l <0

The gain consists of three parts, each of which is non-positive. Therefore, the overall gain is
non-positive, and the supermodular property is thus proven.

O

J The Whole PUPO Algorithm

The whole algorithm of PUPO is presented in Algorithm[I] PUPO is established upon the REIN-
FORCE with baseline, incorporating Purity Law information into the modified policy gradient. At
different stages of solution construction, PUPO introduces discounted cost information that reflects
the purity potential of the partial solution and the unvisited vertex set, which encourages the model to
take actions with lower purity orders at each step during the training process. This approach helps
the model to learn consistent patterns with the Purity Law prior, an information that is independent
of specific instances, thereby enhancing its generalization ability. Notably, PUPO can be easily
integrated with arbitrary existing constructive neural solvers, without any alterations to network
architecture.

K Theoretical analysis on optimization error of PUPO

Theorem K.1. Assume that for all 0, V?? is B-smooth and bounded V. Suppose the variance is
bounded as follows: E[||VVPe — VVP?||?] < o2 Fort < B(V* — V() /o2, suppose we use a
constant stepsize of ny = 1/, and thereafter, we use ny, = /2/(8T). For all T, we can obtain:

26(V* — V() 202

: (t))12 < -
?%%}IE[HVV [17] < T + T (23)
N _—
where VVP = E, (7 1x) (L(‘r)fb(X))t;W(Ut_l,Tt)Vlogpg(Tthl:t_l,X) , VVpo =

N
S (L(1) = (X)) W (Uy—1,)V log po(Te|T1:4—1, X), and the update rule of gradient ascent al-
t=2

gorithm is 0,11 = 0y + mﬂ.

The proof method is similar to [[1]. And these optimization error theorem confirms that our proposed
algorithm can converge to stationary points.

20

Algorithm 1 PUPO Training

Input: number of epochs E, steps per epoch M, batch size B, scale of training instances N,
discount factor ~, learning rate &
Init 9, 68L «— @
forepoch=1,..., Fdo
forstep=1, ..., M do
Vie{l,2,...,B}
s; < Randomlnstance()
7% + SampleRollout(s;, pg)
74BL « GreedyRollout(s;, pgsr)
for time=1,..., N —1do
Ui Ui\ 7
o(Uf) « 3 min Kp(a,b, s;)
aEUJf beUy
b#a

¢WUiy) o(Uf)

C(Uti’ TtiJrl) <_K:D(Tii7 7—ti+17 Si) +

Uil U
' Xt i
Wi, 1 +J§t7] CU;,711)
end for
L1 . . N .
VL 53 (L) = LrPh)) - (Z Wi Vglogp(7|mi.i-1 si>>
i=1 t=2
0 0+6VL
end for
§BL + UpdateBaseline(6, §51)
end for

(a) =

°
)
()=1
)
e
(b) _ ® =
()=0
@ : the vertex in unvisted vertex set ® : the vertex in current partial tour

Figure 5: Example of two purity potential.

L Further Discussion on Derivation Process and Explanation of PUPO

In this section, We will discuss the derivation process and explanation of PUPO in more detail. For
convenience, W; 1 denotes the shorthand for W (Uy, 7¢41).

Enhancing the purity potential of the unvisited vertex set at each step is essential for learning a
policy with strong generalization capability. For intuitive understanding, we plot a specific example
shown in Fig. [5] In this figure, policy (a) selects myopic local optima in the earlier decision stages.
In the later stages, constrained by the requirement to select vertices only from the unvisited vertex
set, it is forced to connect some "bad" edges with higher purity orders (see red edges). In contrast,
strategy (b) constructs a tour with a higher overall purity level. For solving instances of the same

21

type during training, the tour lengths obtained by strategies (a) and (b) may not differ significantly.
However, when generalized to other instances, myopic strategies like (a), which result in poor purity
in the later stages, are more likely to lead to tours of lower quality.

Inspired by supermodularity, we design purity weights to assess the potential purity of states at
each time step for future decision under different policies. We constructed a Purity Availability
metric with supermodular properties to measure the purity potential of the unvisited vertex set. On
one hand, since Purity Availability represents the average minimum available purity order, higher
values indicate that the state will not be able to generate highly pure structures in the future. For
example, in the figure above, the Purity Availability of strategies (a) and (b) at the current state
are 1 and 0, respectively. It means that policy (b) possess ability to construct purer structures in
the future. On the other hand, constrained by the necessity to select nodes only from the unvisited
vertex set, later decision stages often lead to states that are unfavorable for generalization and difficult
to distinguish under tour length metrics. Due to supermodularity, the marginal benefit of Purity
Availability, ¢(Uy;) — &(Us—1), is greater at later stages, making the purity measure in the later
decision phases more significant. Inspired by supermodularity, we designed the purity cost based
on the marginal benefit of state and the purity order of the actions. Furthermore, we designed purity
weights based on the concept of future discounting to comprehensively assess the future purity
potential of intermediate states during policy transitions.

Through analysis of upper and lower bounds and experimental analysis, PUPO encourages the
exploration of higher-quality states under the purity measure. First, we present a pair of upper
and lower bounds for Eq. (12). Since W; > 1, the following inequality holds:

N
Epy(ri2) | L(T) ZVIOgPO(Tt‘letfla X)}

t=2

N
<Epy(rx) | L(T) Z WiV log pg(7e|T1:0-1, X)]

t=2

N N
<Ep,(rx) | L(T) <Z Wt> Z V log pg(7¢|71:0-1, X)] .
L t=2 =2

The left-hand side of the inequality represents the original policy gradient with tour length as the
N
reward, while the right-hand side represents the policy gradient with [>~ W; | L(7) as the reward.
=2
In this reward, the purity weights act as multiplicative factors on the tour length. It means that the
overall purity of the tour is also incorporated into the reward information. The policy gradient of
PUPO lies between the two, applying each W, to the logarithm of action probabilities at each time
step. This more subtle approach encourages the exploration of strategies that can transition to states
with higher quality under the purity measure.

M Numerical Result on Two Classical Solvers

We also conduct experiments on two classical neural solvers POMO and PF. Table[9] show the results
on random dataset of TSP. It can be observed that PUPO training enhances the performance of four
classical models across nearly all instance types. In particular, AM-100 and PF-100 demonstrate
superior performance across all distributions and scales compared to those trained with the vanilla.
Table [10] also shows the results on TSPLIB, and Table [T1] shows the result on random dataset of
CVREP. It can be observed that for CVRP, PUPO training enhances the performance more significantly.
Although PUPO also enhanced the generalizability of AM and PF, their global perception and
decision modules remain vulnerable, resulting in larger performance gaps as the scale increases. This
observation abstracts us to focus on developing network architectures that incorporate Purity Law in
future work.

22

Table 9: The experimental results of average gap (%) on the randomly generated dataset with different
distributions and scales of TSP after training two classical model using both the vanilla and PUPO
methods, where bold formatting represents superior results.

POMO-50 POMO-100 PE-50 PF-100
Instances | Vanilla PUPO | Vanilla PUPO || Vanilla PUPO | Vanilla PUPO
U-100 5.21 5.35 5.07 4.61 4.16 4.31 3.64 3.39
U-1000 35.51 34.01 31.23 30.16 41.00 39.10 30.57 29.93
U-5000 67.99 65.12 80.64 68.42 113.55 104.09 | 80.59 77.53
C-100 7.75 8.03 7.66 6.07 7.67 7.71 7.24 6.90
C-1000 41.14 39.82 37.99 33.84 51.04 49.58 47.50 44.11
C-5000 77.78 7593 | 7637 70.03 137.51 131.61 | 137.15 121.79
E-100 5.01 5.18 5.04 4.71 4.98 5.12 4.74 4.65
E-1000 3557 35.07 32,97 30.20 46.04 45.34 41.60 37.73
E-5000 71.95 66.66 | 74.55 66.33 133.99 129.02 | 120.96 110.16
I-100 5.02 5.17 5.12 4.64 4.71 491 4.49 4.35
1-1000 3738 37.12 3244 3094 46.54 44.83 36.11 34.47
1-5000 78.57 74.05 72.87 66.58 151.37 138.71 | 120.67 103.74

Table 10: Performance of average gap (%) on TSPLIB after training two classical model using both
the vanilla and PUPO methods.

POMO-50 POMO-100 PF-50 PF-100
Vanilla PUPO | Vanilla PUPO || Vanilla PUPO | Vanilla PUPO
1~100 5.82 5.17 4.98 4.48 7.42 8.37 7.82 7.16

101~1000 17.39 16.14 | 14.12 12.17 2596 2477 | 2337 22.68
1001~5000 | 48.41 46.48 | 43.33 40.46 75.57 7258 | 66.05 60.86

Table 11: The experimental results of average gap (%) on the randomly generated dataset with
different distributions and scales of CVRP after training POMO model using both the vanilla and
PUPO methods, where bold formatting represents superior results.

POMO-50 POMO-100
Instance | Vanilla PUPO | Vanilla PUPO
U-50 4.6 5.704 6.146 6.769
U-500 16.379 14.311 | 14.843 13.383
U-5000 | 22.846 16.122 | 20.599 18.067
C-50 5.204 6.346 6.388 6.384
C-500 14997 13.21 | 12.837 12.279
C-5000 | 15.803 11.694 | 13.172 13.376
E-50 4.624 5.851 6.042 6.704
E-500 16.227 14.622 | 14.249 13.525
E-5000 | 22.761 17.148 | 21.638 17.673
1-50 4.57 5.794 6.117 6.911
1-500 15.744 14.239 | 14.033 13.16
1-5000 19.703 14.64 | 16.513 16.214

N Detailed Description of Dataset in Comparative Experiments

To ensure the adequacy of the experiments, we validate the model’s performance on two categories of
datasets. The randomly generated dataset used in this paper is the same as that in INViT [10]], which
is widely adopted to testify existing DRL approach. For TSP, it contains 16 subsets and correspond-
ing (near-)optimal solutions for TSP, including 4 distributions (uniform, clustered, explosion, and
implosion, denoted as U, C, E, I) and 4 scales (100, 1000, 5000 and 10000). For CVRP, it contains
12 subsets and corresponding (near-)optimal solutions for CVRP, including 4 distributions (uniform,
clustered, explosion, and implosion, denoted as U, C, E, I) and 3 scales (50, 500 and 5000).

23

The real-world dataset we used is TSPLIB and CVRPLIB. TSPLIB is a well-known TSP library [39]]
that contains 100 instances with various nodes distributions and their optimal solutions. These
instances come from practical applications with scale ranging from 14 to 85,900. In our experiment,
we consider all instances with no more than 10000 nodes. For CVRP, we include all instances in
CVRPLIB Set-X [40], containing 100 instances varying in scale from 100 to 1000.

O Detailed of the Learning Rates of Models

Specifically, for TSP, the learning rates are set to 0.0001, 0.00015, 0.0001, 0.00017, 0.0001, 0.00012,
0.00011, 0.00012 for POMO-50, POMO-100, PF-50, PF-100, ELG-50, ELG-100, INViT-50, and
INVIT-100, respectively. For CVRP, the learning rates are set to 0.0001, 0.00006, 0.0001, 0.0001,
0.00005, 0.0001 for POMO-50, POMO-100, ELG-50, ELG-100, INViT-50, and INViT-100.

P Detailed Experimental Result

Table [I2] shows the training time per epoch with different methods. We can see that the training time
of PUPO does not increase significantly owing to the tensorizable computation.

Table 12: The numerical results of training time (minutes) per epoch during different training.

| POMO-50 POMO-100 INViT-50 INViT-100

Vanilla 3.05 4.49 7.72 15.75
PUPO 5.95 14.20 11.598 21.40

The experimental results of the specific tour length is presented in Table Table|14]illustrates the
solving time of Vanilla-trained and PUPO-trained models on randomly generated dataset. Following
the table, it can be observed that there is almost no difference between Vanilla and PUPO. The
numerical results of purity metrics for all models are presented in Table [I5] Following the table,
PUPO-trained models possess the ability to generate solutions with more outstanding purity. Detailed
results of ELG and INVIiT are provided in Table[T6]to Table [27]

Table 13: The length of tours generated from each model after different training on randomly
generated dataset of TSP.

| POMO-50 POMO-100 | PF-50 PF-100 \ INVIT-50 INViIT-100

Vanilla PUPO Vanilla PUPO | Vanilla PUPO Vanilla PUPO | Vanilla PUPO Vanilla PUPO
Uniform 100 8.28 8.29 8.27 8.23 8.19 8.21 8.15 8.13 8.03 8.04 8.07 8.05
1000 | 3147 31.12 3047 3022 | 3274 3230 3032 30.17 | 2491 2488 2494 24.67
5000 | 8575 8428 9220 8597 | 109.00 104.18 92.18 90.62 | 55.85 55.69 5584 55.15
10000 - - - - - - - - 79.07 7888 7879 77.87
Clustered 100 5.72 5.73 571 5.63 571 571 5.68 5.67 5.46 5.46 5.50 5.48
1000 19.82 19.65 1939 18.80 | 21.26 21.05 20.78 2030 | 1525 1519 1524 15.07
5000 | 53.06 5250 52.64 50.77 | 70.86 69.10 70.71 66.13 | 32.79 32.66 32773 32.39
10000 - - - - - - - - 4488 4458 4472 4417
Explosion 100 6.86 6.87 6.86 6.83 6.86 6.87 6.84 6.83 6.67 6.66 6.70 6.68
1000 | 21.90 21.84 2147 21.03 | 2350 2336 2272 2210 | 17.67 17.60 17.67 17.53
5000 | 57.30 5581 58.14 5562 | 77.35 7530 7257 69.02 | 37.52 3728 3723 36.88
10000 - - - - - - - - 4328 43.05 43.18 42.66
Implosion 100 7.48 7.49 7.48 7.45 7.45 7.47 743 7.42 7.29 7.29 7.32 7.30
1000 | 27.61 27.57 2663 2633 | 2939 29.04 2728 2695 | 21.64 21.63 21.69 21.51
5000 | 72.59 7124 7128 6846 | 100.18 95.14 86.94 8027 | 4496 4483 4505 44.78
10000 - - - - - - - - 7224 71779 72,17 7118

24

Table 14: The solving time for each model with different training methods on randomly generated

dataset of TSP.
\ POMO-50 POMO-100 \ PF-50 PF-100 INVIiT-50 INVIT-100

Vanilla PUPO Vanilla PUPO | Vanilla PUPO Vanilla PUPO | Vanilla PUPO Vanilla PUPO

U-100 0.20 0.22 0.21 0.22 2.02 1.97 1.00 1.02 0.85 0.80 1.07 0.91
U-1000 2.35 2.34 241 2.40 23.67 24.08 13.57 14.18 13.24 12.88 17.83 17.34
U-5000 19.68 19.10 20.00 19.57 | 246.65 246.12 205.14 204.15 | 91.20 89.44 120.07 119.87
U-10000 - - - - - - - - 22499 223.69 288.44 287.11
C-100 0.21 0.21 0.21 0.21 2.08 2.13 0.97 0.98 0.84 0.80 1.04 1.17
C-1000 2.35 2.35 2.44 243 25.28 26.11 14.05 15.28 13.00 12.77 17.57 16.56
C-5000 19.16 1938 1999 19.35 | 275.68 27449 21236 211.68 | 89.48 88.23 118.63 117.31
C-10000 - - - - - - - - 22247 22232 288.67 288.90
E-100 0.21 0.21 0.20 0.22 2.18 2.17 0.97 1.09 0.82 0.83 1.05 0.94
E-1000 2.38 2.36 2.46 2.40 2544 2453 13.94 13.82 12.94 13.05 17.70 17.98
E-5000 19.30 18.67 1998 19.57 | 411.08 411.22 213.01 212.39 | 89.58 89.93 11893 118.34
E-10000 - - - - - - - - 223.24 223.03 288.86 288.32

1-100 0.21 0.20 0.21 0.21 3.02 2.89 1.00 0.97 0.83 0.79 1.05 1.01
1-1000 2.37 2.45 245 2.45 20.84 21.01 14.08 13.99 12.91 12.73 17.60 17.31
1-5000 19.95 19.28 19.84 19.30 | 44575 444.87 186.14 186.05 | 89.92 88.30 118.87 118.69
1-10000 - - - - - - - - 222.56 221.72 289.39 290.99

Table 15: The numerical results of purity evaluation for three models on TSP after different training.

POMO-50 POMO-100
Vanilla Vanilla
Prop-0 (%) APO (all) APO (non-0) Prop-0 (%) APO (all) APO (non-0) | Prop-0 (%) APO (all) APO (non-0) Prop-0(%) APO (all) APO (non-0)
U-100 75.65% 0.15 111 75.29% 0.15 111 76.81% 0.15 112 79.48% 0.14 1.17
U-1000 62.51% 0.64 1.98 64.32% 0.62 1.92 65.67% 0.52 175 67.70% 0.52 1.76
U-5000 24.91% 1.36 2.97 26.39% 1.33 3.05 24.54% 1.50 3.03 26.64% 123 2.74
U-10000 - - - - - - - - - - - -
C-100 70.66% 0.23 1.26 70.13% 0.24 1.28 72.34% 0.24 1.30 75.35% 0.20 1.28
C-1000 59.13% 0.85 2.30 58.29% 0.80 2.19 61.18% 0.77 2.17 62.52% 0.66 1.97
C-5000 23.65% 1.93 3.88 23% 1.64 333 23.58% 1.64 331 24.76% 1.48 3.05
C-10000 - - - - - - - - - - - -
E-100 73.72% 0.17 1.15 74.35% 0.17 1.14 75.24% 0.17 1.17 77.77% 0.17 1.22
E-1000 62.92% 0.69 2.03 61.35% 0.67 2.03 63.32% 0.62 1.89 65.58% 0.57 1.84
E-5000 25.09% 1.53 327 23.99% 1.41 3.06 24.20% 1.55 3.13 26.04% 1.30 2.82
E-10000 - - - - - - - - - - - -
1-100 72.97% 0.19 1.20 73.50% 0.19 119 74.80% 0.19 123 77.27% 0.18 1.26
1-1000 61.52% 0.77 222 60.27% 0.77 2.20 64.14% 0.65 2.01 65.01% 0.62 1.95
1-5000 24.05% 1.93 3.83 23.70% 1.69 341 24.12% 1.65 3.33 25.30% 1.46 3.07
1-10000 - - - - - - - - - - - -
PF-50 PF-100
Vanilla PUPO Vanilla PUPO
Prop-0 (%) APO (all) APO (non-0) Prop-0 (%) APO (all) APO (non-0) ‘ Prop-0 (%) APO (all) APO (non-0) Prop-0 (%) APO (all) APO (non-0)
U-100 77.46% 0.14 1.09 71.571% 0.15 1.10 80.07% 0.12 1.08 80.31% 0.12 1.08
U-1000 59.68% 0.74 2.00 60.73% 0.70 1.94 65.66% 0.56 1.78 66.06% 0.54 175
U-5000 18.66% 2.36 3.92 20.04% 2.14 3.65 23.09% 1.56 294 23.60% 1.49 2.92
U-10000 - - - - - - - - - - - -
C-100 71.41% 0.24 1.27 71.53% 0.25 1.29 72.49% 0.24 1.29 73.64% 0.23 1.28
C-1000 52.39% 1.21 2.67 52.53% 1.17 2.60 54.38% 1.09 2.54 56.51% 0.97 2.37
C-5000 15.08% 4.52 6.54 15.42% 4.06 5.95 16.08% 4.20 6.31 18% 3.13 4.93
C-10000 - - - - - - - - - - - -
E-100 74.92% 0.19 1.16 74.82% 0.18 1.17 76.63% 0.17 1.17 77.34% 0.16 1.16
E-1000 55.35% 0.98 2.33 55.95% 0.98 2.34 57.53% 0.89 221 59.66% 0.81 2.12
E-5000 16.05% 3.52 5.18 16.64% 3.39 5.10 17.60% 3.01 4.62 18.77% 2.73 4.40
E-10000 - - - - - - - - - - - -
1-100 73.76% 0.24 1.30 73.68% 0.24 1.28 75.671% 0.22 1.29 76.24% 0.22 1.29
1-1000 54.17% 1.40 3.09 55.04% 1.42 3.15 59.29% 1.14 2.79 60.07% 1.13 2.81
1-5000 15.18% 8.14 10.81 15.90% 8.46 11.59 17.79% 7.46 10.38 18.88% 6.02 8.88
1-10000 - - - - - - - - - - - -
INVIiT-50 INVIT-100
Vanilla Vanilla
Prop-0 (%) APO (all) APO (non-0) Prop-0 (%) APO (all) APO (non-0) ‘ Prop-0 (%) APO (all) APO (non-0) Prop-0 (%) APO (all) APO (non-0)
U-100 81.52% 0.10 1.05 0.82 0.10 1.04 80.95% 0.11 1.07 0.82 0.10 1.05
U-1000 86% 0.16 1.37 0.86 0.15 1.33 85.80% 0.17 143 0.87 0.14 133
U-5000 43.52% 0.18 1.56 0.44 0.17 1.05 43.38% 0.20 1.61 0.44 0.17 1.48
U-10000 87.39% 0.18 1.55 0.88 0.17 1.50 87.32% 0.20 1.65 0.88 0.16 1.47
C-100 79.78% 0.14 1.18 0.80 0.13 1.17 79.26% 0.16 1.26 0.80 0.14 1.19
C-1000 86.02% 0.22 1.88 0.86 0.19 1.63 85.56% 0.23 1.83 0.87 0.18 1.61
C-5000 43.72% 0.20 1.61 0.44 0.18 1.55 43.32% 0.27 2.20 0.44 0.17 1.52
C-10000 87.40% 0.84 6.91 0.88 0.88 7.34 87.15% 0.71 5.74 0.88 0.87 7.77
E-100 80.56% 0.12 111 0.81 0.12 111 80.09% 0.13 1.15 0.81 0.12 111
E-1000 85.42% 0.30 2.34 0.86 0.28 223 85.09% 0.30 233 0.86 0.26 2.16
E-5000 43.54% 0.42 347 0.44 0.48 4.07 43.40% 0.53 4.33 0.44 0.43 373
E-10000 87% 0.95 7.68 0.87 1.03 8.38 87% 0.97 7.58 0.88 0.88 7.57
1-100 79.98% 0.12 1.12 0.80 0.12 1.12 79.77% 0.14 1.17 0.80 0.13 1.13
1-1000 85.69% 0.19 1.54 0.86 0.18 1.54 85.39% 0.21 1.64 0.86 0.18 1.55
1-5000 43.39% 0.23 1.88 0.44 0.22 1.81 43.33% 0.24 1.92 0.44 0.19 1.66
1-10000 87.34% 0.30 2.47 0.88 0.29 2.39 87.16% 0.27 2.18 0.88 0.30 2.62

25

Table 16: Detailed results of ELG-TSP-50 [Vanilla] on random dataset.

Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std
U-50 0.167 8.385 6.599 1.095 13.377 0.019
U-500 1.638 28.051 20.805 16.915 25.198 0.017
U-5000 21.006 67.121 31.496 30.52 32.456 0.009
C-50 0.17 5.838 10.047 3.552 20.179 0.03
C-500 2.027 17.867 27.142 19.898 34.527 0.034
C-5000 19.721 41.468 38.888 35.129 42.994 0.03
E-50 0.169 6.97 6.848 1.456 19.511 0.024
E-500 2.079 20.064 24.554 17.191 32.079 0.036
E-5000 19.915 45.129 35.672 32.112 42.508 0.045
I-50 0.167 7.591 6.655 1.143 14.219 0.021
1-500 1.96 24.401 21.303 17.254 25.035 0.02
1-5000 19.832 53.693 30.403 28.01 32.592 0.018
Table 17: Detailed results of ELG-TSP-50 [PUPO] on random dataset.
Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std
U-50 0.163 8.425 7.102 0.73 13.637 0.018
U-500 1.667 27.742 19.474 15.497 22.476 0.015
U-5000 21.34 64.744 26.84 24.991 28.767 0.015
C-50 0.169 5.783 8.982 2.337 17.056 0.026
C-500 2.012 17.461 24.132 18.047 29.298 0.024
C-5000 19.84 40.475 35.625 34.174 38.202 0.016
E-50 0.171 6.996 7.234 0.849 15.83 0.022
E-500 2.139 19.941 23.767 18.862 30.275 0.032
E-5000 19.73 42.989 28.882 26.586 32.44 0.022
I-50 0.172 7.629 7.233 1.79 19.087 0.023
1-500 2 24.238 20.544 16.96 25.203 0.019
1-5000 19.781 52.342 27.644 25.039 30.885 0.021
Table 18: Detailed results of ELG-TSP-100 [Vanilla] on random dataset.
Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std
U-50 0.17 8.327 5.859 1.414 10.455 0.017
U-500 1.714 27.389 17.954 15.157 21.448 0.016
U-5000 21.802 65.96 29.223 27.378 30.284 0.011
C-50 0.18 5.912 11.495 35 33.416 0.041
C-500 2.135 17.842 27.057 17.086 53.627 0.059
C-5000 20.303 41.904 40.44 35.008 53.044 0.073
E-50 0.177 6.991 7.277 1.466 32.814 0.037
E-500 2.164 19.952 24.007 15.306 34.444 0.046
E-5000 20.288 44711 34.771 28.244 53.191 0.104
I-50 0.181 7.582 6.639 1.27 53.637 0.037
1-500 2.129 23.869 18.621 13.569 23.293 0.021
1-5000 20.454 53.499 30.701 28.03 37.713 0.04
Table 19: Detailed results of ELG-TSP-100 [PUPO] on random dataset.

Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std
U-50 0.169 8.416 6.394 1.544 11.726 0.018
U-500 1.642 27.513 18.491 15.788 21.281 0.013
U-5000 21.291 63.176 23.769 22.484 24.722 0.008
C-50 0.168 5.803 9.374 3.302 19.165 0.027
C-500 2.028 17.033 21.131 15.879 26.933 0.022
C-5000 19.813 38.576 29.285 27.614 30.616 0.011
E-50 0.17 6.993 7.188 1.913 15.156 0.022
E-500 2.094 19.599 21.568 16.944 27.233 0.025
E-5000 19.835 42.083 26.262 23.14 29.791 0.025
I-50 0.171 7.657 7.602 1.684 16.868 0.023
1-500 1.978 24.035 19.515 14.306 23.205 0.017
1-5000 19.735 51.01 24.636 21.293 28.75 0.031

26

Table 20: Detailed results of ELG-VRP-50 [Vanilla] on random dataset.

Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std

U-50 0.182 10.597 7.446 2.438 15.163 0.024
U-500 1.702 79.532 15.478 10.783 20.443 0.027
U-5000 41.938 729.196 22.753 12.2 31.278 0.069
C-50 0.192 9.228 7.451 1.417 19.272 0.032
C-500 1.788 64.274 16.468 10.468 25.644 0.035
C-5000 31.429 681.954 20.448 14.562 29.403 0.063
E-50 0.189 9.461 7.577 1.767 16.394 0.026
E-500 1.783 60.506 15.855 11.473 26.178 0.032
E-5000 31.684 437.246 27.103 15.508 48.303 0.126
I-50 0.191 10.086 7.766 1.961 19.897 0.028
1-500 1.797 73.173 15.762 10.151 22.652 0.03
1-5000 31.711 700.698 19.427 15.743 28.109 0.051

Table 21: Detailed results of ELG-VRP-50 [PUPO] on random dataset.

Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std

U-50 0.186 10.665 8.15 2.483 21.006 0.027
U-500 1.694 76.488 10.968 8.122 15.112 0.016
U-5000 31.128 647.568 8.312 7.469 10.66 0.013

C-50 0.189 9.21 7.275 1.289 20.119 0.029
C-500 1.759 60.866 10.214 6.542 15.321 0.02
C-5000 30.684 615.111 8.72 4.76 16.811 0.048

E-50 0.189 9.513 8.132 2.725 17.49 0.027
E-500 1.748 58.13 11.117 8.009 17.598 0.02
E-5000 30.737 373.572 8.516 6.827 11.048 0.018

I-50 0.187 10.127 8.22 2.307 17.804 0.028

1-500 1.767 70.051 10.83 7.665 14.91 0.016
1-5000 30.623 629.346 7.046 4.803 9.885 0.021

Table 22: Detailed results of ELG-VRP-100 [Vanilla] on random dataset.

Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std

U-50 0.195 10.685 8.315 1.049 19.544 0.028
U-500 1.843 75.079 8.907 6.067 13.065 0.015
U-5000 33.265 631.606 5.969 4.003 8.587 0.018
C-50 0.199 9.22 7.395 1.519 21.493 0.032
C-500 1.856 60.128 8.818 4.944 13.067 0.018
C-5000 31.53 609.493 7.103 5912 8.039 0.01
E-50 0.2 9.547 8.566 2.14 23.925 0.031
E-500 1.865 57.156 9.322 7.064 15.291 0.019
E-5000 31.831 372.201 8.259 6.408 9.693 0.013
I-50 0.201 10.144 8.344 1.643 20.51 0.031
1-500 1.888 68.729 8.97 5.076 14.439 0.017
1-5000 31.839 622.795 6.013 5.351 6.99 0.007

Table 23: Detailed results of ELG-VRP-100 [PUPO] on random dataset.

Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std

U-50 0.178 10.811 9.093 2.543 22.455 0.031
U-500 1.673 75.034 8.842 6.207 11.874 0.015
U-5000 31.197 626.848 5.142 3.314 7.476 0.016
C-50 0.189 9.359 8.047 1.617 23.159 0.038
C-500 1.757 59.604 7.92 5.273 13.105 0.015
C-5000 30.857 597.049 5.434 2.846 6.627 0.016
E-50 0.19 9.647 9.148 1.991 23.308 0.034
E-500 1.757 56.838 8.676 6.645 12.068 0.015
E-5000 30.796 365.526 6.33 4.875 7.202 0.009
I-50 0.189 10.262 8.673 1.927 23.732 0.036
1-500 1.758 68.808 8.833 6.697 14.897 0.014
1-5000 30911 617.372 5.237 3.594 6.488 0.011

27

Table 24: Detailed results of INVIT-VRP-50 [Vanilla] on random dataset.

Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std
U-50 0.836 10.286 4251 0.544 8.944 0.016
U-500 8.903 76.366 10.747 9.049 13.794 0.012
U-5000 137.071 654.376 9.672 8.218 10.969 0.01
C-50 0.74 8.978 4.5 0.718 15.507 0.024
C-500 8.035 60.676 9.786 7.865 11.631 0.008
C-5000 131.165 615.721 8.492 7.421 9.728 0.011
E-50 0.769 9.199 4.555 0.296 11.336 0.018
E-500 8.044 57.801 10.475 7.92 15.046 0.015
E-5000 131.003 376.968 9.641 8.73 10.735 0.009
I-50 0.743 9.775 4.408 0.427 12.283 0.019
1-500 7.756 69.659 10.148 7.872 12.083 0.01
1-5000 128.097 635.588 8.229 7.275 9.21 0.008
Table 25: Detailed results of INVIT-VRP-50 [PUPO] on random dataset.
Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std
U-50 0.797 10.329 4.584 0.572 9.606 0.016
U-500 7.909 75.738 9.828 7.848 12.912 0.011
U-5000 128.458 639.748 7.256 6.153 9.235 0.012
C-50 0.789 9.008 4.841 0.553 15.779 0.025
C-500 7.947 60.189 8.926 7.654 11.551 0.009
C-5000 127.466 608.262 7.072 6.281 7.985 0.007
E-50 0.795 9.233 4.943 0.531 10.928 0.019
E-500 8.012 57.44 9.819 7.607 14.179 0.014
E-5000 132.614 370.181 7.705 6.471 9.107 0.012
I-50 0.846 9.819 4.872 0.481 14.009 0.02
1-500 8.1 69.219 9.49 7.007 12.117 0.012
1-5000 130.251 627.491 6.873 6.444 7.233 0.003
Table 26: Detailed results of INVIT-VRP-100 [Vanilla] on random dataset.
Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std
U-50 0.778 10.319 475 0.235 10.179 0.017
U-500 7.906 75.658 9.672 8.112 11.936 0.009
U-5000 130.972 643.717 7.896 6.829 9.479 0.01
C-50 0.77 8.989 4.639 1.182 15.259 0.024
C-500 7.903 60.362 9.223 7.537 11.981 0.009
C-5000 126.556 611.67 7.655 7.229 7.876 0.003
E-50 0.777 9.227 4.878 0.587 11.05 0.019
E-500 7.915 57.486 9.82 7.829 12.352 0.01
E-5000 127.763 372.908 8.472 7.441 9.643 0.01
I-50 0.779 9.81 4.782 0.707 13.409 0.021
1-500 7.941 69.15 9.336 7.609 11.371 0.009
1-5000 127.558 630.358 7.353 6.908 7.836 0.004
Table 27: Detailed results of INVIT-VRP-100 [PUPO] on random dataset.

Instance | Mean Time (s) Mean Length Mean Gap (%) Min Gap (%) Max Gap (%) Std
U-50 0.776 10.365 5.055 0.369 9.866 0.017
U-500 7.796 74.755 8.366 7.137 10.577 0.008
U-5000 127.661 625.141 4.723 4.172 5.306 0.005
C-50 0.775 9.017 4.973 0.651 17.35 0.026
C-500 7.754 59.417 7.511 5.883 9.331 0.007
C-5000 127.345 593.798 4511 4.173 4.826 0.003
E-50 0.783 9.27 5.365 0.804 12.195 0.021
E-500 7.903 56.784 8.517 7.271 12.073 0.01
E-5000 127.504 361.641 5.165 4.653 5.629 0.004
I-50 0.793 9.856 5.283 0.473 13.671 0.021
1-500 7.891 68.487 8.276 6.14 10.157 0.008
1-5000 126.872 614.135 4.584 4223 4.953 0.003

28

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction can accurately reflect the
contributions and scope of our paper, and are supported by theoretical analysis or empirical
results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work in the section [7l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

29

Answer: [Yes]

Justification: The proof of all the theorems appeared in the main text is provided in the
Appendix [and B}

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The procedure of our algorithm PUPO is outlined in Algorithm I} with details
provided in Appendix [J]

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

30

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Since we have conducted extensive experiments on several environments and
implemented several algorithms, providing detailed scripts is intricate. The code will be
made available upon acceptance of the article.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the numerical experiments section of the main text, we present a brief
introduction to experimental settings. More details about the experimental setting can be
found in Appendix [N]and [O]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported the variance of fitting results of the exponential function in
tab[7] And we report standard variance of gap at comparative experiments in Appendex [P|

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have reported the compute resources in the experimental settings part of
section ??.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in this paper adheres to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This article mainly focuses on theoretical analysis and algorithm design, and
does not directly involve particular applications. Therefore, it does not discuss the potential
societal impacts.

Guidelines:

32

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societAal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of models or datasets with a high risk of
misuse. Therefore, no special safeguards were required.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and code libraries used in this work are properly cited. We give
clear credit to the original authors and fully comply with their license terms (e.g., MIT,
CC-BY).

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

33

13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing experiments or research involving
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

34

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

35

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminary
	Routing Problems
	Policy Learning for Routing Problems

	Purity Patterns for Generalization
	Purity Order in Routing Problems
	Purity Law in Optimal Solutions of Routing Problems
	Consistent Dominance of Lowest-order Pure Edges

	Policy Learning Inspired by Purity Patterns
	Purity Availability and Purity Cost
	Policy Optimization with Purity Weightings

	Numerical Experiments
	Experimental Setups
	Generalization Performance Analysis
	Computational Efficiency Analysis
	Learning Mechanisms Analysis

	Conclusion
	More Discussion on Related Works.
	Topological Properties of 0-order Pure Edges
	Purity Order Form for Non-Euclidean Problems
	Verification of Purity Law on CVRP
	Detailed Description of Statistical Dataset
	Detailed Fitting Result
	Proof of the upper bound
	Connection between Purity Law and k-Nearest Prior
	Proof of the supermodularity of Purity Availability
	The Whole PUPO Algorithm
	Theoretical analysis on optimization error of PUPO
	Further Discussion on Derivation Process and Explanation of PUPO
	Numerical Result on Two Classical Solvers
	Detailed Description of Dataset in Comparative Experiments
	Detailed of the Learning Rates of Models
	Detailed Experimental Result

