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Abstract

Neural Probabilistic Logic Programming (NPLP)
languages have illustrated how to combine the
neural paradigm with that of probabilistic logic pro-
gramming. Together, they form a neural-symbolic
framework integrating low-level perception with
high-level reasoning. Such an integration has been
shown to aid in the limited data regime and to fa-
cilitate better generalisation to out-of-distribution
data. However, probabilistic logic inference does
not allow for data-parallelisation because of the
asymmetries arising in the proof trees during
grounding. By lifting part of this inference pro-
cedure through the use of symbolic tensor oper-
ations, facilitating parallelisation, we achieve a
measurable speed-up in learning and inference
time. We implemented this tensor perspective in
the NPLP language DeepProbLog and demon-
strated the speed-up in a comparison to its regular
implementation that utilises state-of-the-art prob-
abilistic inference techniques.

1 INTRODUCTION

Probabilistic logic inference has recently entered the field
of Neural-Symbolic AI (NeSy) by means of the Neural
Probabilistic Logic Programming (NPLP) languages [10,
14] and other NeSy methods with probabilistic semantics
[11]. These methods promise to facilitate sound probabilistic
reasoning [13] on so-called sub-symbolic representations,
which are representations of data that do not crisply define
the concepts that they contain. For example, an MNIST
[7] image of the digit 7 represents the abstract notion of
the number 7, but requires processing to actually get to
the number 7. While the last decade has shown that neural
networks are very efficient in solving problems on such
kind of sub-symbolic representations, they lack a form of

high-level reasoning. Probabilistic logic, on the other hand,
excels in tasks pertaining to such reasoning, but can only be
applied to symbolic representations of data. Hence, NeSy
tries to bridge these two complementary paradigms.

Probabilistic inference is often mapped onto the weighted
model counting task or, more generally, onto the Algebraic
Model Counting (AMC) task [6]. Since these tasks are gen-
eralisations of model counting, they are also #P -complete
and can thus be computationally expensive. There has for-
tunately been a lot of research into efficient algorithms for
model counting, such as tackling AMC by using knowledge
compilation [2]. This approach compiles, given a probabil-
istic query, a series of graphs called arithmetic circuits in
which the algebraic model count can be calculated in poly-
time. However, the structure of these ACs is dependent on
the query and hence hard to parallelise. While we will focus
on alleviating the computational burden imposed by ground-
ing in the context of NPLP by exploiting data-parallelism,
our construction does tensorise part of the probabilistic lo-
gic inference via AMC to facilitate this data-parallelism. As
AMC is used in other probabilistic logic frameworks [5, 4]
as well, the proposed perspective might be of interest to the
general statistical-relational AI [12] community.

2 PRELIMINARIES

In this paper, we focus on improving inference in the NPLP
setting and we utilise DeepProbLog to illustrate our ap-
proach. DeepProbLog inference is composed of three steps:
(1) grounding, (2) translation into a logical formula and
(3) knowledge compilation. To illustrate each of these steps,
we exploit the following example.

Example 2.1 (Addition). Consider the DeepProbLog pro-
gram

nn(classifier, [I], D, [0, ..., 9]) ::
digit(I, D).

addition(I1, I2, Sum) :-
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digit(I1, D1), digit(I2, D2),
Sum is D1 + D2.

that encodes the task of classifying the sum Sum of two
MNIST images I1 and I2. The first line is a neural pre-
dicate, which represents a neural network that yields 10
probabilities for the image I to be classified as any of the
10 classes [0, ..., 9]. In general, a neural predicate is
of the form

nn(id, [Input], Output, Domain) ::
predicate(Input, Output).

where id is a unique identifier, Input is the input to the
neural network and Output ∈ Domain is the variable that
gets unified with elements of the domain. DeepProbLog is
end-to-end differentiable, meaning that a set of example
ground atoms can be used to optimise all neural networks
involved in those atoms.

Given the program P from Example 2.1 and the ground atom
q = addition( , , 1), the first step in inferring the
probability P (q) is to ground P with respect to q. In the
case of P and q, grounding requires considering all possible
combinations of values for D1 and D2 to see which are
compatible with Sum = 1. Hence, only combinations where
D1 and D2 are equal to 0 and 1 are possible, leading to the
ground program

0.7 :: digit( , 0); 0.3 :: digit( , 1).
0.1 :: digit( , 0); 0.9 :: digit( , 1).

addition( , , 1) :-
digit( , 0), digit( , 1).

addition( , , 1) :-
digit( , 1), digit( , 0).

where the probabilities for the instances of the probabil-
istic fact digit are given by evaluating the neural network
classifier. In the next step, the ground program is re-
written into a propositional logic formula.

(digit( , 0) ∧ digit( , 1)) ∨
(digit( , 1) ∧ digit( , 0)).

Finally, knowledge compilation [2] is used to convert this
propositional logic formula into an effective representation
for inference, which we will refer to as a logic circuit. Such
a logic circuit is transformed according to a certain com-
mutative semiring into an Arithmetic Circuit (AC). This is
done by replacing all probabilistic facts in the logic circuit
with their probability of being true and all occurrences of
∨ and ∧ with the addition and multiplication operations of
the semiring. The AC for q transformed according to the
probability semiring P = ([0, 1] ,+, ·) is given in Figure
1. An arithmetic circuit can itself be evaluated by working

through its nodes in a bottom-up fashion. If the AC was
obtained through a transformation of the logic circuit via
the probability semiring P , then the result of evaluating the
AC is exactly the probability P (q).

addition(  ,  , 1)

digit(   , 0) digit(   , 1) digit(   , 1) digit(   , 0)

××
+

p = 0.7 p = 0.3 p = 0.9 p = 0.1

Figure 1: Arithmetic circuit for Example 2.1. The logic
circuit is completely identical, but with + and × replaced
by ∨ and ∧, respectively.

3 TENSORISATION

Figure 1 illustrates that computing the probability of a
ground atom q reduces to the evaluation of a computational
graph that combines neural networks with an arithmetic
circuit. Such a graph could be parallelised to speed up in-
ference and learning when multiple evaluations of the same
atom are required, for example during learning. Unfortu-
nately, the logic circuit structure can depend on the argu-
ments of q. For example, the value of Sum = 1 in Example
2.1 determines a ground program where D1 and D2 can only
take the values 0 and 1, while they can generally be any
integer between 0 and 9. The other possible values for D1
and D2 are pruned, resulting in a smaller and hence more
efficient subsequent arithmetic circuit. As a consequence,
such a circuit will be of no use for answering queries with
Sum different from 1. While the ACs of all possible queries
can be cached and reused, that still necessitates separate
groundings of the program for each circuit. Moreover, it still
prevents data-parallelisation since different inputs will have
different logic circuits and, consequently, different compu-
tational graphs. Neural networks exploit data-parallelism
and so a data-parallel arithmetic circuit would extend this
parallelism to the reasoning component. Hence, we will opt
to construct a tensor-lifted arithmetic circuit that is valid for
any set of input tensors. By explicitly attaching the neural
architectures to this lifted AC, we obtain a single graph that
can compute probabilities for any set of input tensors. Ad-
ditionally, only a single grounding step is required during
construction of the AC.

3.1 LIFTED ARITHMETIC CIRCUIT

Instead of constructing an arithmetic circuit for a ground
atom, the goal is to do so for an atom where some vari-
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ables are allowed in the arguments. Specifically, only vari-
ables that unify with tensors are allowed, which we will
call tensor variables. For example, instead of the ground
atom addition( , , 1), we wish to have an AC valid
for the atom addition(I1, I2, Sum). The variables I1
and I2 are tensor inputs to the neural predicate and Sum is a
tensor of target values.

Obtaining a logic circuit that is valid for all instantiations
of the tensor variables seems straightforward; we simply
do not want to prune any of the possible values during
program grounding. The problem is that, without a properly
delimited, finite set of possible values, this idea would lead
to an infinite logic circuit. In the case of addition(I1,
I2, Sum), Sum could, a priori, take an infinite number
of values. However, the outputs of all neural predicates in
a program have a specific and finite set of possible values.
Because all tensors are either input to such a neural predicate
or the result of a series of operations on the output of a set
of neural predicates, they always correspond to a finite set
of possible values. Indeed, Sum combines two digits in the
set [0, ..., 9] into their sum that belongs to the set [0,
..., 18]. As such, we will compute all necessary domains
of target tensors from the domains of the neural predicates
during program grounding and prevent that any branches are
pruned. This idea is related to lifted first-order inference [3],
but in a neural-symbolic setting limited to tensor variables.

Keeping track of all values will ensure a logic circuit that
is valid for all tensors. It does not mean that the subsequent
tensor-lifted arithmetic circuit, filled with symbolic probab-
ilities, is very efficient in computing the probability P (q). In-
deed, the result would be a repetitive AC with many similar
branches, since every operation applied to neural predicate
outputs will be repeated for each of the possible values of
those outputs (Figure 2). Fortunately, exactly because they
have a similar or equal format, it is possible to do them in
parallel.

addition(  ,  , S)

d(   , 9)

××
+

p0 p9

d(   , 0)

q0 q9

d(   , 0) d(   , 9)

×
+
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I2

I2 I2
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Figure 2: A slice of the general AC for the non-ground
query addition(I1, I2, Sum). Note that the top row
of additions does depend on a given value of Sum. The full
AC has 19 of such rows, one for each element of the domain
of Sum.

In the addition example, there is only one operator that acts
on the neural predicate outputs, being the addition of two di-
gits. This operator combines the various possible summands
through the conjuncts to then accumulate all combinations
that lead to the same value through the disjuncts (Figure
2). To exploit the symmetry of the tensor-lifted AC, the 10
probabilities PD

I of digit(I, D) that image I encodes the
digit D are modelled as a rank-1 tensor PI. Given the two
images I1 and I2 with probabilities PI1 and PI2 we can
compactly represent the probabilities of all combinations,
i.e., all conjuncts, via the tensor product P⊗ = PI1⊗PI2.
Concretely, P⊗ is a rank-2 tensor where the (µ, ν)th com-
ponent Pµν

⊗ corresponds to the probability of combining the
digits µ and ν. The aggregation of combinations leading to
the same value in the disjuncts can now also be expressed
as a summing operation on the tensor P⊗. In particular, the
rank-1 tensor of probabilities for the sum result P+ is given
componentwise as

P γ
+ =

∑
µ+ν=γ

Pµν
⊗ . (1)

Replacing the multitude of multiplications originating from
the different conjuncts with the tensor product and the vari-
ous additions corresponding to the disjuncts with the sum-
mation in Equation 1 leads to an optimised tensor-lifted
AC (Figure 3). While we have used the addition example
to guide the discussion of how to exploit the symmetry in
a general logic circuit, the provided procedures are valid
for any general program P and atom q containing tensor
variables. More details on general operations are given in
Appendix A. A related approach to tensorising probabilistic
logic inference based on symbolic variable elimination for
undirected factor graphs was proposed by Darwiche [1].

addition(  ,  , S)

digit(   , D1)

P=(p0, ..., p9)

digit(   , D2)

Q=(q0, ..., q9)

I1 I2

I1 I2

I1 I2
P⊗Q 

⊗
Σ

M=(m0, ..., m18)

19

10×10

1010

Figure 3: All conjunctions (AND) of digits and their dis-
junctions (OR) are taken into account by respectively taking
a tensor product and summing over the result. All branches
are annotated with the dimensionality of the signal that they
carry.

Instead of grounding a program for every possible logic
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circuit, we perform a single, expensive grounding step that
symbolically tracks all possibilities in a tensor format. Be-
cause of the efficacy of tensor computing, we will manage
to achieve more time-efficient inference and learning. Of
course, storing all combinatorial information in a tensor
format will lead to a combinatorial increase in memory re-
quirements. However, regular AMC implementations do
already exploit caching of the constructed ACs to prevent
having to perform the expensive grounding step unnecessar-
ily. Hence, they are also putting a combinatorially increasing
strain on the memory.

3.2 BATCHING AND OPTIMISATION

We can now explicitly link the tensor-lifted and optimised
AC to the neural networks present in the program to obtain
the full computational graph of an atom with tensor vari-
ables in its arguments. With a computational graph in place,
we can naturally exploit data-parallelism through batching
of its inputs. This is possible since all equations in the pre-
vious section are tensor equations, meaning that we can
simply add a batching dimension. For example, computing
the probability of all combinations of values for a batch
of tensor inputs of the addition operation would now be a
rank-3 tensor with components P bµν

⊗ = P bµ
I1 ⊗ P bν

I2, where
b denotes the batching dimension. As for optimisation, the
supervision should be a rank-2 tensor T bγ that gives, for
each batch sample b, the rank-1 tensor of probabilities for
each of the elements of the output domain. In the case of
the addition example, the supervision would be a one-hot
encoded tensor of the sum labels.

3.3 EVALUATION

We compare the learning time in DeepProbLog using the
tensor perspective to the standard implementation, which
already caches the arithmetic circuits whenever possible to
minimise the number of program groundings. Additionally,
it also supports batching in the sense that it averages the
gradient over a number of executions of the different cached
arithmetic circuits. The main point of improvement is thus
expected to be the grounding phase, which needs to be
repeated for each cached AC. To illustrate the speed-up,
we will look at an extension of Example 2.1 to addition on
2-digit numbers [10], with 199 possible logic circuits, one
for each possible output sum. The explicit program is given
in Appendix B.

The input in this case is two lists of two MNIST images rep-
resenting two numbers consisting of two digits each together
with their resulting sum. The goal is to optimise a neural
MNIST classifier from a dataset of correct examples of the
addition, such as + = 11. The fact that we only re-
quire a single grounding step manifest itself in significantly
reduced initial learning runtimes. Across 10 independent
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Figure 4: Median and quartiles of regular versus tensor-
ised implementation learning time. Not only is the overall
grounding time reduced, but even with all ACs cached, the
computational graph is more efficient asymptotically too.

learning instances, the average grounding time was only
2.62s. Regular DeepProbLog has to construct 199 separate
ACs that require 199 expensive grounding steps, leading to
an average estimated grounding time of around 200s. Once
all ACs are constructed and caching maximises its effect,
the gap in time per iteration of updating closes, yet the
tensorised perspective does seem to be slightly faster asymp-
totically. The latter is not a given, as we always evaluate the
full arithmetic circuit while caching does allow evaluating
more efficient circuits. It demonstrates the efficacy of tensor-
ising the logical operators and running them in parallel on a
GPU.

4 CONCLUSION

A tensor perspective on algebraic model counting for neural
probabilistic logic programming was proposed. It allowed
the construction of an optimised and lifted computational
graph encoding both the neural and logic component of a
neural probabilistic logic program. Our construction only
requires a single expensive grounding step in contrast to the
many ones for the state-of-the-art approach. This advantage
leads to a noticeable speed-up in learning and inference.

In the future, we aim to further analyse the parallelisation
potential of probabilistic logic. The focus of this paper was
on variables that take tensor values and are involved with
neural predicates, but it might be interesting to extend this to
variables that can take general logic values. An immediate
limitation of our approach is that the lifted circuit always
takes all possible values into account, while it would make
sense to limit to those present in the given dataset. Finally,
this tensorisation is also easier to integrate with approximate
inference methods based on Monte Carlo sampling [8, 9]
through the addition of a separate sampling dimension to
the tensors.
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A AC OPTIMISATION DETAILS

Let T be a general n-ary operation in a DeepProbLog pro-
gram that is applied to n outputs of neural predicates with
their respective rank-1 tensors of probabilities Pi and do-
mains Di. The components of each of these tensors can be
indexed by the domain of the neural predicate, i.e., Pµi

i cor-
responds to the probability of the output of the ith network
being equal to µi ∈ Di. Instead of a single tensor product, all
combinations of neural predicate outputs are now efficiently
modelled in the rank-n tensor

P⊗ =

n⊗
i=1

Pi, (2)

such that Pµ1···µn⊗ is the probability of combining the out-
puts µi ∈ Di for i ∈ {1, . . . , n}. Through the grounding,
the domain of the output of T will be determined, say DT .
Obtaining the probability P ν

T that the output of T is equal
to ν ∈ DT is then again given by aggregating the necessary
probabilities from P⊗ as

P ν
T =

∑
T (µ1,...,µn)=ν

Pµ1···µn⊗ . (3)

Even more, such an n-ary operation on neural predicate
outputs can itself be modelled as a tensor that acts on the
tensor of combinations P⊗. Specifically, we can generally
rewrite Equation 3 in a complete tensorised form as

P ν
T = T ν

µ1···µn
Pµ1···µn⊗ . (4)

This equation illustrates that we can fully tensorise the eval-
uation of an arithmetic circuit originating from an atom and
program where neural predicate outputs are used in general
n-ary operations.

B MULTI-DIGIT PROGRAM

nn(classifier, [I], D, [0, ..., 9]) ::
digit(I, D).

number(I, N) :- number(I, 0, N).
number([], R, R).
number([H | T], Acc, R) :-

digit(H, D), Acc2 is D + 10 * Acc,
number(T, Acc2, R).

addition(I1, I2, Sum) :-
number(I1, N1), number(I2, N2),
Sum is N1 + N2.
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