
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTI-ACTION SELF-IMPROVEMENT FOR NEURAL
COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-improvement has emerged as a state-of-the-art paradigm in Neural Combina-
torial Optimization (NCO), where models iteratively refine their policies by gener-
ating and imitating high-quality solutions. Despite strong empirical performance,
existing methods face key limitations. Training is computationally expensive, as
policy updates require sampling numerous candidate solutions per instance to ex-
tract a single expert trajectory. More fundamentally, these approaches fail to ex-
ploit the structure of combinatorial problems involving the coordination of mul-
tiple agents, such as vehicles in min-max routing or machines in scheduling. By
supervising on single-action trajectories, they fail to exploit agent-permutation
symmetries, where distinct sequences of actions yield identical solutions, hinder-
ing generalization and the ability to learn coordinated behavior.
We address these challenges by extending self-improvement to operate over joint
multi-agent actions. Our model architecture predicts complete agent-task assign-
ments jointly at each decision step. To explicitly leverage symmetries, we employ
a set-prediction loss, which supervises the policy on multiple expert assignments
for any given state. This approach enhances sample efficiency and the model’s
ability to learn coordinated behavior. Furthermore, by generating multi-agent ac-
tions in parallel, it drastically accelerates the solution generation phase of the self-
improvement loop. Empirically, we validate our method on several combinatorial
problems, demonstrating consistent improvements in the quality of the final solu-
tion and a reduced generation latency compared to standard self-improvement.

1 INTRODUCTION

End-to-end constructive Neural Combinatorial Optimization (NCO) has emerged as a powerful
framework for solving combinatorial optimization (CO) problems by casting them as sequential
Markov Decision Processes (MDPs), where a neural policy constructs solutions step by step (Ben-
gio et al., 2021). Reinforcement Learning (RL)-based methods have proven especially effective in
this setting, enabling models to learn solution strategies through interaction rather than relying on
pre-existing expert data (Bello et al., 2017; Kool et al., 2019; Kwon et al., 2020; Kim et al., 2022).

Despite their flexibility, traditional RL approaches in NCO face significant challenges. The sparse
reward signals inherent to combinatorial optimization – where a meaningful objective is avail-
able only upon solution completion – have largely limited training to the REINFORCE algorithm
(Williams, 1992) and variants (Kool et al., 2019; Kim et al., 2022; Kwon et al., 2020). Since these
methods require backpropagation through the entire solution trajectory, the resulting high memory
requirements and risk of gradient instability have encouraged a “heavy-encoder, light-decoder” ar-
chitectural paradigm. In this setup, a static representation of the initial problem is generated once
and used for all subsequent decisions. This becomes a critical bottleneck, as it fails to reflect the
evolving problem state, often resulting in suboptimal decisions in the later stages of solution con-
struction (Drakulic et al., 2023; Luo et al., 2024). Recently, self-improvement methods have of-
fered a compelling solution to these issues (Pirnay & Grimm, 2024; Corsini et al., 2024). During
training, these algorithms generate numerous solutions for a given problem instance, identify the
best-performing trajectory, and use it as a pseudo-expert example for imitation learning. Because
the policy is trained on individual state-action pairs along this expert trajectory, it enables the use of
more powerful, decoder-only architectures that can dynamically re-encode the state at each step.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Agent 1 Agent 2

. . .

Agent 1 Agent 2 Agent 1 Agent 2

Agent 1 Agent 2 Agent 1 Agent 2

Figure 1: Example for agent-permutation sym-
metry. Both trajectories have the same solution.

However, this next-token prediction approach
of self-improvement faces a fundamental limi-
tation in multi-agent CO problems, where mul-
tiple decision entities (agents) must plan and co-
ordinate their actions to achieve a shared ob-
jective. These problems often exhibit agent-
permutation symmetries, meaning that differ-
ent permutations of agent-task assignments can
yield identical solutions. For example, in ve-
hicle routing, assigning driver 1 to location A
and then driver 2 to location B leads to the
same overall route as the reverse assignment or-
der (Figure 1). However, by supervising the
policy on a single “best” next action per state,
self-improvement implicitly enforces an arbi-
trary agent order and treats the remaining symmetric choices as errors. This reduces sample ef-
ficiency and limits the model’s ability to learn coordination in multi-agent settings, thus limiting
generalization performance.

To address these limitations, this paper introduces MACSIM – a Multi-ACtion Self-Improvement
Method. MACSIM extends the self-improvement paradigm by incorporating a multi-agent policy
that predicts joint assignments for all agents in parallel at each decision step. To explicitly lever-
age problem symmetries, we employ a set-prediction loss, which allows the policy to learn from
multiple equivalent expert assignments for a given state. This design promotes agent coordination,
improves sample efficiency, and significantly accelerates solution generation. We demonstrate the
effectiveness of MACSIM on several challenging combinatorial optimization tasks spanning both
routing and scheduling domains. Our key contributions are as follows:

• We propose MACSIM, a novel learning paradigm for cooperative multi-agent combinato-
rial optimization problems that achieves better empirical results with lower solution gener-
ation latency compared to standard self-improvement methods.

• We develop a new solution generation scheme that models the entire joint-agent action
space in a single forward pass – thus fostering coordination – and avoids conflicts between
agents through an autoregressive sampling algorithm.

• We introduce a permutation-invariant surrogate loss function for imitation learning on ex-
pert multi-action trajectories, which stabilizes and accelerates the training process.

2 RELATED WORKS

The application of deep learning to CO problems was pioneered by the Pointer Network (Vinyals
et al., 2015), which was trained via supervised learning to autoregressively construct solutions for
the Traveling Salesman Problem (TSP). This paradigm was quickly adapted to RL, removing the
dependency on optimal solutions as training data and thus improving scalability (Bello et al., 2017;
Nazari et al., 2018). A major architectural advance came with transformer-based policies leveraging
self-attention (Vaswani et al., 2017), leading to substantial performance gains (Kool et al., 2019).

A common strategy in these REINFORCE-based methods (Williams, 1992) is to apply a com-
putationally expensive encoder once per problem instance and use the resulting embeddings in a
lightweight, iterative decoder. While efficient, this “encode-once” approach has been shown to gen-
eralize poorly to out-of-distribution instances (Manchanda et al., 2022). In response, recent works
have explored alternative strategies, such as re-encoding the state at each decoding step (Drakulic
et al., 2023; Luo et al., 2024), learning a diverse set of policies to improve performance at test time
(Grinsztajn et al., 2023; Hottung et al., 2025), or abandoning autoregressive decoding entirely in
favor of heatmap-based (Joshi et al., 2019; Fu et al., 2021; Qiu et al., 2022; Ye et al., 2023) or
diffusion-based methods (Sun & Yang, 2023; Li et al., 2023; 2024).

Self-improvement learning has recently emerged as a powerful training paradigm that bypasses the
need for expert solutions (Corsini et al., 2024; Pirnay & Grimm, 2024). Inspired by elite sampling
from cross-entropy methods (Boer et al., 2005), these approaches sample multiple solution trajec-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tories, identify the best-performing one as a “pseudo-expert” and train the policy to imitate this
target via next-token prediction. However, this approach assumes a unique optimal action per step,
which is often violated in CO problems that exhibit symmetries (Cappart et al., 2023). In such cases,
forcing the model to follow a single sequence reduces solution diversity and impairs generalization.

Several lines of research have focused explicitly on exploiting symmetries. POMO (Kwon et al.,
2020) and Sym-NCO (Kim et al., 2022) leverage the cyclic symmetry of the TSP by training on
rollouts from all possible starting nodes and using their averaged returns to compute a low-variance
baseline. More recently, DPN (Zheng et al., 2024) generalized this concept to multi-agent problems
like the min-max VRP, where the order of agent routes is permutation-invariant. DPN samples
multiple agent orderings and computes an agent-permutation-symmetric baseline, which reduces
gradient variance and accelerates convergence by avoiding redundant learning.

We extend self-improvement to explicitly leverage these structural symmetries in multi-agent CO
problems. In contrast to PARCO, which resolves conflicts post-hoc, and DPN, which reduces vari-
ance through permutation-invariant baselines, MACSIM generates coordinated and conflict-free as-
signments directly and learns with a set-based loss, leading to more robust symmetry-aware policies.

3 PRELIMINARIES

NCO typically involves a reformulation of the respective CO problem into a Markov Decision
Process (MDP), where a solution τ to a problem instance x is constructed over a finite horizon
t = 1, . . . , T . The current configuration of the problem at time step t is encoded in the state
st ∈ S, which typically represents all information in a graph G = {V, E , w}, with N nodes V ,
edges E ⊆ V × V and edge weights w : E → R (Khalil et al., 2017). At each step, a policy πθ
with learnable weights θ selects an action at ∈ V based on st, and the transition function ψ updates
the state to st+1 (Khalil et al., 2017). Due to the sequential structure of MDPs, NCO commonly
adopts autoregressive (AR) policies that generate actions step by step, conditioned on prior deci-
sions. Classical approaches trained via REINFORCE typically encode only the initial state s0 using
a graph neural network, while the policy operates autoregressively from this encoding. In contrast,
self-improvement methods enable training at the action level, allowing the policy to encode inter-
mediate states st and use decoder-only architectures defined as P (τ | x; θ) =∏T

t=1 πθ(at | st).
In this work, we specifically target CO problems that can be framed as a cooperative multi-agent
MDP (MMDP or Markov Game) withM agents sharing a common reward (Boutilier, 1996). Agents
correspond to decision entities executing tasks, such as machines in scheduling problems or vehicles
in routing. The state st of the problem can be defined by a bipartite graph G = {V,M, E , w}, where
V is the set of nodes (tasks), M is the set of agents, and edges E ⊆ M×V denote feasible agent-task
assignments, each associated with a cost w : E → R.

At each step t, the policy πθ maps the state st to a bipartite matching at = {akt }Mk=1 between agent
and tasks. Each element akt = (mk, vk) denotes the assignment of task vk to agent mk, where no
two agents can be assigned to the same task. Given this matching, the problem transitions from st
to st+1 according to a transition function ψ : S × V × M → S , until a solution τ is obtained.
The transition function is assumed order-invariant, meaning it depends only on the final matching
at, not on the order in which assignments are produced. Agents receive a shared reward observed
only at terminal states, where the return R(τ, x) equals the negative value of the CO objective for
the complete solution.

4 MULTI-ACTION SELF-IMPROVEMENT

4.1 MULTI-AGENT POLICY

The permutation invariance of the transition function with respect to joint agent–task assignments
induces symmetries over agent orderings. Standard self-improvement typically ignores this structure
by assuming a single best action per time-step. In contrast, our approach leverages these agent-
permutation symmetries by learning a policy that generates complete joint agent-task assignments
at instead of single next actions at = (m, v). To this end, MACSIM utilizes a multi-agent policy
that directly maps the current state st to a joint agent-action assignment at. This policy first encodes

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Joint Logits Autoregressive Sampling State Update

Current
Best

Policy

Generation Loop
Instance

Decode solutions with
current best policy

Target
Policy

SampleValidation
Dataset

Update if improved

Update via
set-based
loss

Select best solution and
add state-action pairs

 to dataset

Figure 2: Overview of MACSIM. It generates joint agent-action logits in parallel through a multi-
agent policy and autoregressively samples from them to generate complete agent-task assignments.
The policy is used to sample β solutions, where the best serves as training example. A set-based
loss function is used to train the policy on pseudo-expert multi-agent actions for a given state.

the bipartite input graph G into agent embeddings HM ∈ RM×d and task embeddings HV ∈ RN×d.
Based on these embeddings, it computes a matrix of unnormalized logits L ∈ RM×N , where each
entry Lm,v represents the compatibility score for assigning task v to agent m. For full architectural
details of the policy network, we refer the reader to Appendix B.

While the idea of multi-agent policies in NCO is not novel, existing approaches either sample only
once from the resulting joint-distribution (Liu et al., 2024), thus discarding learned inter-agent cor-
relations as well as potential efficiency gains through multi-step prediction. Or, they assume inde-
pendence across agents by normalizing L per agent and sampling independently from the resulting
marginal distributions. However, this independence assumption does not hold, leading to subop-
timal coordination and conflicts, where agents happen to select the same action. PARCO (Berto
et al., 2024) resolves conflicts by a post-hoc resolution mechanism, prioritizing agents with larger
log-probabilities while leaving others idle. Yet, since agents are modeled independently through
different marginal distributions, effective coordination does not take place.

4.2 MULTI-ACTION GENERATION

To address this, we introduce an autoregressive sampling procedure, that utilizes the joint-logits L
from the neural policy to sequentially sample agent-action pairs from their joint distribution without
replacement. To this end, the probability of generating a specific sequence at is factorized using the
chain rule of probability:

P (at | L) =
M∏
k=1

P
(
mt,k, vt,k | a<k

t ,L
)

(1)

where a<k
t = ((mt,1, vt,1), . . . , (mt,k−1, vt,k−1)) denotes the sequence of previous assignments

in the construction of at. This formulation casts the selection of each agent-task pair as a step in
a sequence, where the choice at step k is conditioned on all prior assignments. Specifically, let
Mk and Vk be the sets of agents and tasks, respectively, available at step k, with M1 = M and
V1 = V . At each step k ∈ {1, . . . ,M}, the policy samples a feasible and available agent-task pair,
(mk, vk) ∈ Ek ⊆ E , where Ek = E ∩ (Mk × Vk), from a categorical distribution with probabilities
proportional to their scores Lmk,vk :

P
(
akt = (mk, vk) | a<k

t ,L
)
=

exp(Lmk,vk)∑
(m′,v′)∈Ek

exp(Lm′,v′)
, (2)

After sampling akt = (mk, vk), the sets for the next step are updated via Mk+1 = Mk \ {mk} and
Vk+1 = Vk \ {vk} and the process continues until all agents are assigned to a task. We summarize
this sampling process, which guarantees the generation of a valid matching at, in Algorithm 1. The
validity of the resulting distribution is formally stated as follows:
Proposition 1. The function P (at | L) defined by the autoregressive process in Equations 1 and 2
is a valid probability distribution over the space of all possible ordered agent-task matchings.1

1A proof for Proposition 1 can be found in Appendix A.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Joint Action Sampling from L

Require: Score matrix L ∈ RM×N , feasible pairs E
Ensure: a = [(m1, v1), . . . , (mM , vM)]

1: a← [] ▷ Initialize empty sequence
2: for k = 1 to M do
3: P (m, v)← softmax

(m,v)∈E
(Lm,v) ▷ Normalize

4: (mk, vk) ∼ P ▷ Sample from joint dist.
5: a← a ∥ (mk, vk) ▷ Append
6: Lmk,: ← −∞; L:,vk ← −∞ ▷ Mask
7: end for
8: return a

The injectivity constraint implies that earlier as-
signments reduce the set of available actions
for subsequent agents, making the generation
process order-sensitive, even though the final
solution is permutation-invariant. Our autore-
gressive approach explicitly models this depen-
dency: the joint softmax normalization dynami-
cally integrates coordination, since the denomi-
nator depends on all remaining agent-task pairs.
High logits for a pair (m∗, v∗) implicitly reduce
the probability of competing agents choosing
the same task, allowing the policy to prioritize
favorable assignments and avoid conflicts with-
out relying on heuristics or post hoc conflict resolution, as PARCO does.

Substituting the definition of P (at | L) from Equation (1) into the decoder-only policy of Section 3
yields the following definition of our MACSIM policy:

P (τ | st) =
T∏

t=1

πθ(L | st)
M∏
k=1

P (akt | a<k
t ,L) (3)

In this formulation, the joint logits L are computed only once by the computationally expensive neu-
ral policy πθ, after which M actions are generated using a fast autoregressive sampling procedure.
As a result, MACSIM can construct solutions significantly faster than fully autoregressive models,
as we demonstrate in the experimental section of this paper.

4.3 SKIP TOKEN

The generative model defined by Equation (3) requires each agent to select an action at every de-
cision step. However, enforcing task assignments for all agents at every step can be suboptimal,
particularly in problems with strong inter-agent dependencies. In job-shop scheduling, for instance,
the set of available jobs for a machine likely changes as other machines schedule operations. In such
cases, it may be beneficial for an agent to wait until a more favorable task becomes available.

Therefore, we introduce a dummy action, referred to as the skip token. The skip token is a transient
action that can be chosen by any agent at any time, allowing them to wait until the next decision step
without modifying the current solution. To encourage efficient solution construction, each use of the
skip token incurs a small penalty added to the objective value. Empirically, we find that annealing
this penalty toward zero during training yields the best performance. This strategy encourages the
policy to increasingly prioritize generating high-quality solutions as training progresses. We exam-
ine the effect of the skip token in Table 3 and provide more details and analyses in Appendix D.3.

Technically, the skip token is implemented as a learnable embedding hskip ∈ Rd which is added to
the set of all task embeddings HV . Unlike other actions, the skip token can be selected by multiple
agents, with the only restriction that at least one agent selects an actual task.

4.4 POLICY LEARNING

We train MACSIM with a two-stage self-improvement framework, similar to Pirnay & Grimm
(2024) and Corsini et al. (2024). In the first stage, the current best policy π∗

θ generates β ≫ 1
solutions for each problem instance x. We select the best solution with respect to the objective value
plus the penalty term for skip token usage, and add the state-action pairs ((s1,a

∗
1), . . . , (sT ,a

∗
T))

corresponding to the solution τ∗ to the training dataset. In the second stage, the policy network πθ
is updated via imitation learning on these pseudo-expert trajectories.

Unlike prior work that predicts a single “token” from a partial solution, we aim to maximize the
likelihood of the policy producing the entire expert multi-agent action a∗t given the state st. The
corresponding negative log-likelihood (NLL) under our generative process of Equation (1) is:

LML = −
M∑
k=1

logP (mk, vk | a<k
t) = −

M∑
k=1

log

(
exp(Lmk,vk)∑

(m′,v′)∈Ek
exp(Lm′,v′)

)
. (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

However, direct optimization with LML is problematic. As detailed in Appendix E, its primary flaw
is conflicting gradient signals: each term in the sum assumes one assignment is correct at a given
step and consequently penalizes all others, including those that occur later in the expert assignments.

A first step to mitigate this issue is to utilize the agent order from the expert assignment. By assuming
a fixed agent order m∗ = (m1, . . . ,mM) the choice of agent at step k becomes deterministic. Thus,
P (mk | a<k

t) = 1 and the probability P (vk,mk | a<k
t) can be factorized as P (vk | mk,a

<k
t),

transforming the generative process into a Plackett-Luce (PL) model (Volkovs & Zemel, 2012). Its
NLL computes the loss over the marginal distributions for each agent, preventing gradient conflicts:

LPL = −
M∑
k=1

logP (vk | mk,a
<k
t) = −

M∑
k=1

log
exp(Lmk,vk)∑

v′∈Vk
exp(Lmk,v′)

. (5)

While this improves gradient stability, the loss remains sensitive to the permutation of the expert
sequence. However, every permutation of the assignments in a∗ yields the same solution, which
should be reflected in the loss function. Ideally, this would be achieved by averaging the Plackett-
Luce loss over all possible M ! agent orderings, which is computationally intractable. Therefore, we
employ a surrogate loss by relaxing the sequential dependence assumption for the loss calculation
and treating each agent–task pair in an expert matching as an independent supervised instance with
conditional probability P (v | m). This is justified because the expert data consist only of valid
matchings, making it unnecessary to enforce the injectivity constraint within the loss itself. This
is analogous to bipartite matching in object detection (Carion et al., 2020), where the assignment
between predictions and ground-truth objects is first established algorithmically, and losses are then
computed independently for each matched pair. The resulting surrogate is defined as the cross-
entropy (CE) loss summed over all agents:

LCE = −
M∑
k=1

logP (vk | mk) = −
M∑
k=1

log
exp(Lmk,vk)∑

v′∈V exp(Lmk,v′)
. (6)

This surrogate is permutation-invariant, computationally efficient, and provides a more robust train-
ing signal as we will validate empirically in the experimental section. Moreover, we provide a
thorough analysis of LCE in Appendices E and F.

5 EXPERIMENTS

We assess the effectiveness of MACSIM on representative multi-agent CO problems, spanning rout-
ing and scheduling domains. Specifically, we evaluate MACSIM on two challenging scheduling
problems – the flexible job shop scheduling problem (FJSP) and the flexible flow shop problem
(FFSP) – as well as a common routing problem, the heterogeneous capacitated vehicle routing prob-
lem (HCVRP). We compare MACSIM with common and SOTA solvers for the respective CO prob-
lems and the self-improvement method (SLIM) of Corsini et al. (2024); Pirnay & Grimm (2024).2

5.1 PROBLEMS

Flexible Job Shop Scheduling Problem. The FJSP is concerned with scheduling N jobs on M
machines (agents). Each job consists of a sequence of operations that must be executed in a fixed
order. Unlike the classical job shop problem, each operation in FJSP can be processed by a subset
of eligible machines Mk ⊆ M, with machine-dependent processing times, resulting in a combined
routing (assigning operations to machines) and sequencing problem (ordering operations on each
machine). The common objective is to minimize the makespan of the resulting schedule. The
formal mathematical model and the MMDP formulation of the FJSP are presented in Appendix C.1.

To evaluate the performance on the FJSP, we compare MACSIM against several baselines. First,
we include OR-Tools, a state-of-the-art CP-SAT solver widely applied in scheduling (Col & Tep-
pan, 2019). We also benchmark against classical priority dispatching rules – FIFO (Firt In First
Out), MOR (Most Operations Remaining), and MWKR (Most Work Remaining) – commonly used
in manufacturing scheduling (Montazeri & Wassenhove, 1990). Lastly, we consider learning-based
approaches, including a graph neural network trained via Proximal Policy Optimization (PPO) pro-
posed by Song et al. (2022), and the dual attention model DANIEL (Wang et al., 2023).

2Source code is available at https://anonymous.4open.science/r/macsim-B23A

6

https://anonymous.4open.science/r/macsim-B23A

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Flexible Flow Shop Scheduling Problem. The FFSP involves scheduling N jobs that must pass
through S sequential processing stages. The key challenge lies in the flexibility at each stage, which
contains M parallel machines; a job can be processed by any available machine within a stage.
The objective is to determine the assignment and sequence of jobs on machines to minimize the
makespan. A detailed problem formulation for the FFSP is provided in Appendix C.2.

We compare MACSIM against traditional baselines – Gurobi (Gurobi Optimization, LLC, 2025),
a Genetic Algorithm (Hejazi & Saghafian, 2005), and Particle Swarm Optimization (Singh & Ma-
hapatra, 2012) – as well as neural baselines: MatNet (Kwon et al., 2021), PolyNet (Hottung et al.,
2025), and PARCO (Berto et al., 2024).

Min-Max Heterogeneous Capacitated Vehicle Routing Problem. The HCVRP is a challenging
extension of the classical CVRP, designed to capture more realistic logistics and transportation sce-
narios. In HCVRP, a fleet of heterogeneous vehicles, each with distinct capacities and travel costs,
is responsible for serving a set of customer demands. The objective differs from standard CVRP: in-
stead of minimizing the total cost or distance, the goal is to minimize the maximum route length (or
workload) among all vehicles, ensuring a balanced distribution of effort across the fleet. A detailed
mathematical formulation for the min-max HCVRP is provided in Appendix C.3.

For the HCVRP, we employ two well-known heuristic baselines: Simulated Annealing (İlhan, 2021)
and SISR (Christiaens & Berghe, 2020), a state-of-the-art heuristic for solving the CVRP and vari-
ants. Neural baselines involve Equity-Transformer (ET) (Son et al., 2024), DRLLI (Li et al., 2022),
2D-Ptr (Liu et al., 2024), and DPN (Zheng et al., 2024).

5.2 EXPERIMENTAL RESULTS

We present the main empirical results in Table 1, which reports test-set performance of the eval-
uated methods in terms of average objective values (Obj.), gaps to the best-known solutions, and
average inference latency for a single instance. For neural baselines, we report performance under
both greedy (g.) and sampling (s.) decoding, with the latter evaluated using 1,280 sampled solutions
(more details on the experimental setup can be found in Appendix H). MACSIM consistently out-
performs neural baselines across all problem types and sizes, surpasses all methods on FFSP, and
substantially reduces the gap to OR-Tools on FJSP, even outperforming it on 20× 5 instances.

Compared to SLIM, the advantage of MACSIM increases with the number of agents, as shown
in Figure 3b for the HCVRP and FFSP. In addition, MACSIM significantly reduces inference time
compared to SLIM. For FFSP 50×4 instances, SLIM requires nearly ten times longer than MACSIM
to generate a solution. This difference grows with the number of agents, as shown in Figure 3c,
which illustrates the number of forward passes needed by each policy to construct a solution and
the resulting inference times. MACSIM requires only a fraction of the construction steps used by
SLIM, and this advantage further increases with the number of agents due to its multi-agent policy.

While MACSIM is not necessarily the fastest among the neural solvers evaluated here, slower in-
ference times compared to other methods can be attributed to the fact that, like SLIM, MACSIM
performs step-wise re-encoding of the problem state. As discussed in previous work, this enables
better generalization to out-of-distribution instances (e.g., Luo et al. (2024)). Table 2 validates this
by evaluating models trained on the small FJSP instances of Table 1 on larger instances, where
MACSIM outperforms all neural baselines and even OR-Tools on two out of three instance types.

We also conduct an ablation study to assess the impact of MACSIM’s components. First, Figure 3a
evaluates MACSIM with different sequence generation modes. While “MACSIM-full” refers to the
generative model defined by Equation (3) with the sequential sampling algorithm described in Al-
gorithm 1, “MACSIM-random-order” and “MACSIM-fixed-order” denote variants where agents act
in random or fixed order, respectively, given logits L. The results in Figure 3a and table 3 highlight
the effectiveness of the proposed sampling procedure, particularly on instances with many agents.
Moreover, Table 3 confirms the importance of the skip token, which proves especially beneficial
in larger instances where coordination among agents is more challenging. Although the skip token
increases generation latency, it substantially improves solution quality. A more detailed analysis of
the skip token and its penalty is provided in Appendix D where we provide more experiments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Test set performance of MACSIM and baselines on FJSP, FFSP, and HCVRP. Best obj.
values found by any solver are shown in bold; grey backgrounds indicate the best neural solver.

FJSP
N ×M 10× 5 20× 5 15× 10
Metric Obj. Gap Time (s.) Obj. Gap Time (s.) Obj. Gap Time (s.)

OR-Tools 96.32 0.00% 1597 188.15 0.03% 1800 143.53 0.00% 1724
FIFO 119.4 23.96% 0.16 216.08 14.88% 0.32 184.55 28.58% 0.51
MOR 115.38 19.79% 0.16 214.16 13.85% 0.32 173.15 20.64% 0.51
MWKR 113.23 17.56% 0.16 209.78 11.53% 0.32 171.25 19.31% 0.50
PPO (g.) 111.67 15.94% 0.45 211.22 12.29% 1.43 166.92 16.30% 1.35
DANIEL (g.) 106.71 10.79% 0.45 197.56 5.03% 0.94 161.28 12.37% 1.43
SLIM (g.) 103.85 7.82% 0.91 194.37 3.33% 1.18 154.32 7.62% 2.74
MACSIM (g.) 102.21 6.12% 0.44 191.08 1.58% 0.76 149.84 4.40% 1.32
PPO (s.) 105.59 9.62% 1.11 207.53 10.33% 2.36 160.86 12.07% 6.42
DANIEL (s.) 101.67 5.55% 0.74 192.78 2.49% 1.87 153.22 6.75% 6.10
SLIM (s.) 98.74 2.51% 2.32 189.08 0.52% 6.91 149.02 3.82% 20.08
MACSIM (s.) 97.64 1.37% 0.86 188.10 0.00% 2.28 145.95 1.69% 6.19

FFSP
N ×Mi × S 20× 4× 3 50× 4× 3 100× 4× 3

Metric Obj. Gap Time (s.) Obj. Gap Time (s.) Obj. Gap Time (s.)
Gurobi (600s) 31.61 31.93% 600 - - 600 - - 600
Genetic Algorithm 31.15 30.01% 21.05 56.92 19.23% 44.82 99.25 13.79% 89.20
Particle Swarm 29.10 21.45% 46.17 55.10 15.42% 82.46 97.30 11.56% 154
MatNet (g.) 27.26 13.77% 1.22 51.52 7.92% 2.17 91.58 5.00% 4.97
PolyNet (g.) 26.71 11.48% 1.69 51.01 6.85% 2.45 91.22 4.59% 5.21
PARCO (g.) 26.31 9.81% 0.26 51.19 7.23% 0.52 91.29 4.67% 0.89
SLIM (g.) 26.18 9.27% 0.86 50.01 4.75% 3.36 91.97 5.45% 5.14
MACSIM (g.) 25.75 7.47% 0.28 49.36 3.39% 0.43 89.88 1.86% 0.96
MatNet (s.) 25.43 6.14% 3.88 49.68 4.06% 8.91 89.72 2.87% 18.00
PolyNet (s.) 24.98 4.26% 5.04 49.23 3.12% 9.24 89.21 2.28% 19.29
PARCO (s.) 24.78 3.42% 0.99 49.27 3.20% 1.97 89.46 2.57% 4.04
SLIM (s.) 24.19 0.96% 1.55 48.13 0.82% 10.21 89.50 2.61% 19.01
MACSIM (s.) 23.96 0.00% 0.49 47.74 0.00% 0.91 87.22 0.00% 3.60

HCVRP
N ×M 60× 3 80× 3 100× 3
Metric Obj. Gap Time (s.) Obj. Gap Time (s.) Obj. Gap Time (s.)

SISRs 6.57 0.00% 478 8.52 0.00% 750 10.29 0.00% 1084
Simulated Annealing 7.04 7.15% 382 9.17 7.63% 561 11.13 8.16% 765
ET (g.) 7.58 15.37% 0.28 9.76 14.55% 0.38 11.74 14.09% 0.45
DPN (g.) 7.46 13.54% 0.28 9.66 13.38% 0.40 11.48 11.56% 0.46
DRLLi (g.) 7.43 13.09% 0.34 9.64 13.15% 0.46 11.44 11.18% 0.58
2D-Ptr (g.) 7.20 9.59% 0.20 9.24 8.45% 0.27 11.12 8.07% 0.31
SLIM (g.) 7.19 9.44% 0.63 9.25 8.57% 0.87 11.10 7.87% 1.04
MACSIM (g.) 7.15 8.83% 0.35 9.15 7.39% 0.43 11.02 7.09% 0.78
ET (s.) 7.14 8.68% 0.52 9.19 7.86% 0.66 11.20 8.84% 1.02
DPN (s.) 7.03 7.00% 0.55 9.16 7.51% 0.71 11.03 7.19% 1.08
DRLLi (s.) 6.97 6.09% 0.73 9.10 6.81% 1.10 10.90 5.93% 1.48
2D-Ptr (s.) 6.82 3.81% 0.32 8.85 3.87% 0.44 10.71 4.08% 0.55
SLIM (s.) 6.88 4.75% 2.40 8.92 4.69% 3.31 10.81 5.05% 4.09
MACSIM (s.) 6.76 2.89% 1.65 8.78 3.05% 2.29 10.67 3.69% 2.76

0 10 20 30 40

Epoch

100

105

110

115

120

125

130

M
ak

es
p

an

MACSIM-full

SLIM

MACSIM-random-order

MACSIM-fixed-order

(a)

3 5 712 18 24

Number of Agents

0

1

2

3

4

5

6

A
vg

.
G

ap
(%

)
of

S
L

IM
re

la
ti

v
to

M
A

C
S

IM HCVRP (N = 60)

FFSP (N = 50)

(b)

8.0

9.0

10.0

11.0

50× 4× 3 50× 6× 3 50× 8× 3
FFSP N ×Mi × S

1

3

5
120

140

160

180

10

30

50

Time:

Steps:

SLIM

SLIM (const.)

w/o penalty

w/o penalty

MACSIM

MACSIM

In
fe

re
n

ce
ti

m
e

in
se

c.
(b

ar
s)

R
eq

u
ir

ed
co

n
st

ru
ct

io
n

st
ep

s
T

(l
in

es
)

(c)

Figure 3: Left: Validation performance (makespan) on FJSP 10× 5 instances during training under
different sequence generation strategies. Middle: Average performance gap of SLIM relative to
MACSIM across varying numbers of agents. Right: Inference efficiency comparison, reporting
construction steps (lines, right axis) and inference time to generate a solution (bars, left axis).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Generalization performance of MACSIM and baseline solvers on larger FJSP instance
distributions not seen during training.

FJSP
N ×M 20× 10 30× 10 40× 10
Metric Obj. Gap Time (s.) Obj. Gap Time (s.) Obj. Gap Time (s.)

OR-Tools 195.98 3.14% 1800 274.67 0.00% 1800 365.96 0.08% 1800
PPO (g.) 215.78 13.56% 1.91 312.59 13.81% 2.86 416.18 13.81% 3.82
DANIEL (g.) 198.50 4.46% 1.85 281.49 2.48% 2.76 371.45 1.58% 3.81
SLIM (g.) 195.89 3.09% 3.11 281.87 2.62% 4.57 374.13 2.31% 6.03
MACSIM (g.) 192.15 1.12% 1.19 276.01 0.49% 1.71 365.87 0.05% 2.27
PPO (s.) 214.81 13.05% 6.23 308.55 12.33% 12.79 410.76 12.33% 24.54
DANIEL (s.) 193.91 2.05% 6.35 279.20 1.65% 12.37 370.08 1.21% 21.09
SLIM (s.) 194.19 2.19% 28.15 281.42 2.46% 69.97 373.70 2.20% 139.30
MACSIM (s.) 190.02 0.00% 6.79 275.48 0.29% 14.12 365.67 0.00% 27.13

Table 3: Ablation study on MACSIM components

FJSP
N ×M 10× 5 15× 10

Metric Obj. Time Obj. Time
MACSIM-full (s.) 97.64 0.86 145.95 6.19
w/o AR-sampling fixed (s.) 98.97 0.76 155.13 3.97

random (s.) 98.66 0,78 150.72 4.15
w/o skip-token (s.) 98.69 0.75 159.65 3.89

Table 4: Comparison of Loss Functions

FJSP FFSP
N ×M 10× 5 20× 5 20× 12 50× 12
Metric Obj. Obj. Obj. Obj.
LSA (s.) 98.81 189.18 24.29 49.58
LML (s.) 98.13 188.97 24.15 49.02
LPL (s.) 97.99 188.81 24.08 47.90
LCE (s.) 97.64 188.10 23.96 47.74

Finally, Table 4 compares the loss functions from Section 4.4, along with the single-agent cross-
entropy loss LSA defined in Appendix E.1. Our surrogate set-based cross-entropy loss consistently
achieves the best performance on both FJSP and FFSP.

6 CONCLUSION

We presented MACSIM, a novel self-improvement framework tailored for multi-agent CO prob-
lems. Instead of predicting a single next token, MACSIM learns a multi-agent policy that emits joint
agent–task logits in one forward pass and then samples a valid matching autoregressively without
replacement. This design captures inter-agent dependencies, prevents conflicts by construction, and
amortizes policy computation over multiple assignments, drastically accelerating solution genera-
tion. A second key ingredient is a permutation-invariant, set-based learning objective. By supervis-
ing on the set of expert agent–task pairs rather than a single agent’s next step, MACSIM explicitly
exploits agent-permutation symmetries, avoids gradient conflicts inherent to single-action imitation,
and promotes coordinated behaviors. A skip token combined with an annealed penalty further en-
ables agents to defer actions when beneficial while keeping construction efficient.

Empirically, MACSIM achieves state-of-the-art results on challenging scheduling and routing
benchmarks, consistently improving solution quality. By leveraging the structural symmetries of
multi-agent problems, our approach enhances both the performance and scalability of neural solvers,
making self-improvement practical for complex, real-world optimization tasks. Overall, MACSIM
advances self-improvement for multi-agent CO by unifying joint-action modeling and symmetry-
aware learning, yielding a more coordinated, generalizable, and practical solver.

Limitations and Future Work. Although MACSIM substantially improves inference and training
time (see Figure 6 for training times) compared to standard self-improvement, its reliance on step-
wise encoding results in slower generation than some lightweight neural solvers, which may hinder
applicability in latency-critical settings. Future work will therefore focus on further reducing gen-
eration latency through more efficient policy architectures. A promising direction is to encode and
cache the initial problem state once, and then incrementally update embeddings as the state evolves,
rather than re-encoding the entire graph at each step. This strategy could retain MACSIM’s ability
to leverage multi-agent symmetries while reducing both memory and computational overhead.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our results, we provide complete access to our implementation, model
weights, and training configurations. The source code is available at https://anonymous.
4open.science/r/macsim-B23A, and the trained model weights along with all config-
uration files used in our experiments can be found at https://osf.io/5z2aj/?view_
only=783b0bb138e64431a681fd36452ea710. Detailed descriptions of model architec-
tures, training procedures, and experimental setups are provided in the main paper and appendix.
These resources together ensure that our experiments can be independently reproduced.

REFERENCES

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2017.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Federico Berto, Chuanbo Hua, Laurin Luttmann, Jiwoo Son, Junyoung Park, Kyuree Ahn,
Changhyun Kwon, Lin Xie, and Jinkyoo Park. Parco: Learning parallel autoregressive policies
for efficient multi-agent combinatorial optimization. arXiv preprint arXiv:2409.03811, 2024.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, et al. RL4CO: an extensive reinforcement
learning for combinatorial optimization benchmark. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V. 2, pp. 5278–5289, 2025.

Pieter-Tjerk De Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tutorial on the
cross-entropy method. Annals of Operations Research, 134:19–67, 2005.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In TARK,
volume 96, pp. 195–210, 1996.

Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of Opera-
tions Research, 41(3):157–183, 1993.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference
on Computer Vision, pp. 213–229. Springer, 2020.

Jan Christiaens and Greet Vanden Berghe. Slack induction by string removals for vehicle routing
problems. Transportation Science, 54(2):417–433, 2020.

Giacomo Da Col and Erich C. Teppan. Industrial size job shop scheduling tackled by present day
CP solvers. In Principles and Practice of Constraint Programming: 25th International Confer-
ence, CP 2019, Stamford, CT, USA, September 30 – October 4, 2019, Proceedings, pp. 144–160.
Springer-Verlag, 2019. doi: 10.1007/978-3-030-30048-7 9.

Andrea Corsini, Angelo Porrello, Simone Calderara, and Mauro Dell’Amico. Self-labeling the job
shop scheduling problem. In Advances in Neural Information Processing Systems, volume 37,
pp. 105528–105551, 2024.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisim-
ulation quotienting for efficient neural combinatorial optimization. In Advances in Neural Infor-
mation Processing Systems, volume 36, pp. 77416–77429, 2023.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL https:
//github.com/Lightning-AI/lightning.

10

https://anonymous.4open.science/r/macsim-B23A
https://anonymous.4open.science/r/macsim-B23A
https://osf.io/5z2aj/?view_only=783b0bb138e64431a681fd36452ea710
https://osf.io/5z2aj/?view_only=783b0bb138e64431a681fd36452ea710
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large TSP instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35
No. 8, pp. 7474–7482, 2021.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Win-
ner takes it all: Training performant RL populations for combinatorial optimization. In Advances
in Neural Information Processing Systems, volume 36, pp. 48485–48509, 2023.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2025. URL https://www.
gurobi.com.

Seyed Reza Hejazi and S. Saghafian. Flowshop-scheduling problems with makespan criterion: a
review. International Journal of Production Research, 43(14):2895–2929, 2005.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

André Hottung, Mridul Mahajan, and Kevin Tierney. Polynet: Learning diverse solution strategies
for neural combinatorial optimization. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.),
International Conference on Representation Learning, volume 2025, pp. 80417–80435, 2025.

Johann Hurink, Bernd Jurisch, and Monika Thole. Tabu search for the job-shop scheduling problem
with multi-purpose machines. Operations Research Spektrum, 15(4):205–215, 1994.

İlhan İlhan. An improved simulated annealing algorithm with crossover operator for capacitated
vehicle routing problem. Swarm and Evolutionary Computation, 64:100911, 2021.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial op-
timization algorithms over graphs. In Advances in Neural Information Processing Systems, vol-
ume 30, 2017.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. In Advances in Neural Information Processing Systems, volume 35, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2015.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems! In
International Conference on Learning Representations, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems, volume 33, pp. 21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
encoding networks for neural combinatorial optimization. In Advances in Neural Information
Processing Systems, volume 34, pp. 5138–5149, 2021.

Jingwen Li, Yining Ma, Ruize Gao, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Deep
reinforcement learning for solving the heterogeneous capacitated vehicle routing problem. IEEE
Transactions on Cybernetics, 52(12):13572–13585, 2022. doi: 10.1109/TCYB.2021.3111082.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2T: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, volume 36, pp. 50020–50040, 2023.

Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast T2T: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
In Advances in Neural Information Processing Systems, volume 37, pp. 30179–30206, 2024.

11

https://www.gurobi.com
https://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qidong Liu, Chaoyue Liu, Shaoyao Niu, Cheng Long, Jie Zhang, and Mingliang Xu. 2D-Ptr:
2D array pointer network for solving the heterogeneous capacitated vehicle routing problem. In
Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems,
pp. 1238–1246, 2024.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. In Advances in Neural Information Processing
Systems, volume 36, 2024.

Laurin Luttmann and Lin Xie. Neural combinatorial optimization on heterogeneous graphs: An
application to the picker routing problem in mixed-shelves warehouses. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 34, pp. 351–359, 2024.

Laurin Luttmann and Lin Xie. Learning to solve the min-max mixed-shelves picker-routing problem
via hierarchical and parallel decoding. arXiv preprint arXiv:2502.10233, 2025.

Sahil Manchanda, Sofia Michel, Darko Drakulic, and Jean-Marc Andreoli. On the generalization of
neural combinatorial optimization heuristics. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 426–442. Springer, 2022.

Mrn Montazeri and L. N. Van Wassenhove. Analysis of scheduling rules for an FMS. The Interna-
tional Journal of Production Research, 28(4):785–802, 1990.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, volume 31, 2018.

Cemal Özgüven, Lale Özbakır, and Yasemin Yavuz. Mathematical models for job-shop scheduling
problems with routing and process plan flexibility. Applied Mathematical Modelling, 34(6):1539–
1548, 2010.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Jonathan Pirnay and Dominik G. Grimm. Self-improvement for neural combinatorial optimization:
Sample without replacement, but improvement. Transactions on Machine Learning Research,
2024. ISSN 2835-8856.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinato-
rial optimization problems. In Advances in Neural Information Processing Systems, volume 35,
pp. 25531–25546, 2022.

Manas Ranjan Singh and S. S. Mahapatra. A swarm optimization approach for flexible flow shop
scheduling with multiprocessor tasks. The International Journal of Advanced Manufacturing
Technology, 62:267–277, 2012.

Jiwoo Son, Minsu Kim, Sanghyeok Choi, Hyeonah Kim, and Jinkyoo Park. Equity-Transformer:
Solving NP-Hard Min-Max Routing Problems as Sequential Generation with Equity Context. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38 No. 18, pp. 20265–
20273, 2024.

Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics,
19(2):1600–1610, 2022.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. In Advances in Neural Information Processing Systems, volume 36, pp. 3706–3731, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28, 2015.

Maksims Volkovs and Richard Zemel. Efficient sampling for bipartite matching problems. In Ad-
vances in Neural Information Processing Systems, volume 25, 2012.

Runqing Wang, Gang Wang, Jian Sun, Fang Deng, and Jie Chen. Flexible job shop scheduling via
dual attention network-based reinforcement learning. IEEE Transactions on Neural Networks and
Learning Systems, 35(3):3091–3102, 2023.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. DeepACO: Neural-enhanced ant
systems for combinatorial optimization. In Advances in Neural Information Processing Systems,
volume 36, pp. 43706–43728, 2023.

Zhi Zheng, Shunyu Yao, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Ke Tang. DPN:
decoupling partition and navigation for neural solvers of min–max vehicle routing problems. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOF OF PROPOSITION 1

Proposition 1. The probability P (at | L) of generating a specific sequence of agent-task assign-
ments defined by

P (at | L) =
M∏
k=1

exp(Lmk,vk)∑
(m′,v′∈Ek)

exp(Lm′,v′)
(7)

is a valid probability distribution over the space of all possible ordered agent-task matchings.

Proof. To establish that P (a | L) is a valid probability distribution over the space Aseq of all or-
dered sequences of M agent-task assignments, we demonstrate that it satisfies two axioms: (i)
non-negativity and (ii) normalization.

Non-negativity. Each term in Equation (7) is mapped into the probability simplex via the softmax
function f : REk → ∆(|Ek|) applied to the set of available agent–task pairs Ek = E∩(Mk×Vk). By
definition of the probability simplex, the softmax yields non-negative values that sum to one. Thus,
each conditional probability P (ak | a<k,L) is non-negative, and the total probability P (a | L), as
a product of non-negative terms, is also non-negative for any a ∈ Aseq, satisfying the non-negativity
axiom.

Normalization. To verify normalization, we demonstrate that the sum of probabilities over the
entire sample space is unity. We expand this sum by expressing it as a nested sum over all possible
choices at each step of the sequence generation. Using the notation E(a<k) for the set of available
choices at step k given the history a<k we have:

∑
a∈Aseq

P (a | L) =
∑

a∈Aseq

M∏
k=1

P (ak | a<k,L)

=
∑
a1∈E

∑
a2∈E(a1)

· · ·
∑

aM∈E(a<M)

M∏
k=1

P (ak | a<k,L)

=
∑
a1∈E

P (a1 | L)
∑

a2∈E(a1)

P (a2 | a1,L) · · ·
∑

aM∈E(a<M)

P (aM | a<M ,L)

Consider the sum over all possible assignments for any given history a<k. By substituting the
definition from Equation 2, we have:∑

ak∈E(a<k)

P (ak = (mk, vk) | a<k,L) =
∑

(mk,vk)∈E(a<k)

exp(Lmk,vk
)∑

(m′,v′)∈E(a<k) exp(Lm′,v′)

=

∑
(mk,vk)∈E(a<k) exp(Lmk,vk)∑
(m′,v′)∈E(a<k) exp(Lm′,v′)

= 1

Since
∑

ak∈E(a<k) P (ak | a<k,L) = 1 for any 1 ≤ k ≤M , the marginalized sum collapses:∑
a∈Aseq

P (a | L) = 1× . . .× 1 = 1.

Thus, the normalization property is satisfied. Since both axioms hold, P (a | L) is a valid probability
distribution.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B MACSIM POLICY

Agent Projections Action Projections

Action Embedding Agent Embedding

Agent 1 Agent 2

Iteratively Sampling Agent Actions:

Agent 1 Agent 2

LayerNorm

Cross-MHA

Add & LayerNorm

Transformer Encoder Layer

Cross-MHA

Add & LayerNorm

Transformer Encoder Layer

LayerNorm

Edge Weights Edge Weights

Figure 4: MACSIM Policy

As defined in Section 3, the problems tackled
by MACSIM can be formulated as MMDPs,
whose states are bipartite graphs consisting of
agent and task nodes. MACSIM therefore re-
quires an architectural policy backbone, that is
capable of encoding such graph structure effec-
tively. Our policy is strongly motivated by re-
lated works of Kwon et al. (2021); Luttmann
& Xie (2024; 2025), who define such architec-
tures in the realm of NCO.

First, the policy employed in our paper projects
the different node-types (agents and tasks) from
their distinct feature spaces into a mutual em-
bedding space of dimensionality d using type-
specific transformations Wϵi for node i of type
ϵi. The features used to represent agents and
tasks for the respective problems can be found
in Appendix C.

Given the initial embeddings H0
M and H0

V
for agents and tasks, respectively, we use sev-
eral layers of self- and cross-attention to en-
able message passing between all nodes in the
graph. While self-attention is applied indepen-
dently to agent and task embeddings follow-
ing the Transformer architecture Vaswani et al.
(2017), cross-attention allows message passing
between agent and task nodes.

Formally, to perform cross-attention we com-
pute a matrix of attention scores A using agent
embeddings as queries Q and task embeddings
as keys K:

A =
QK⊤
√
dk

where
Q = WQHl−1

M , K = WKHl−1
V

and WQ and WK ∈ Rdk×d are weight matrices learned per attention head3 and dk is the per-
head embedding dimension. The resulting attention scores A ∈ RM×N can be interpreted as the
(learned) compatibility of an agent m and a task v. Similar to MatNet Kwon et al. (2021), we fuse
these learned attention scores with the edge weights w : E → R. In FFSP, for instance, the weight w
of an edge connecting an agent and a task node corresponds to the duration of the respective job on
that specific machine. Formally, we concatenate the attention score and the matrix of edge weights
and feed the resulting score vector through a multi-layer perceptron MLP : RM×N×2 → RM×N ,
with a single hidden layer comprising of d units and GELU activation function Hendrycks & Gimpel
(2016). Further, we pass the transpose of the attention scores and of the supply matrix A⊤, E⊤ ∈
RN×M through a second MLP to obtain the reverse compatibility AV→M of tasks v on agents m:

AM→V = MLPM
(
[A||E]

)
, AV→M = MLPV

(
[A⊤||E⊤]

)
, (8)

The resulting attention scores are then used to compute the embeddings for the nodes of the respec-
tive type:

H′
M = softmax(AM→V)VV , VV = WV

V Hl−1
V (9)

H′
V = softmax(AV→M)VM, VM = WV

MHl−1
M (10)

3For succinctness, we omit the layer and head enumeration

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

As in Vaswani et al. (2017), H′
M and H′

V are then augmented through skip connections and layer
normalization, before being passed to the self-attention layer, yielding the agent and task embed-
dings Hl

M and Hl
V , respectively, of the current layer l.

Given the final agent and task embeddings HM and HV , respectively, the policy utilized in MAC-
SIM uses a multiple-pointer mechanism similar to Berto et al. (2024):

L = c · tanh
(
QK⊤
√
d

)
, Q = WQ

DecHM, K = WK
Dec(HV ||hskip) (11)

with learnable parameters WQ
Dec and WK

Dec ∈ Rd×d, and c is a scale parameter, set to 10 following
Bello et al. (2017) to enhance exploration.

C PROBLEM DEFINITIONS

C.1 FLEXIBLE JOB SHOP SCHEDULING PROBLEM

The Flexible Job Shop Scheduling Problem (FJSP) is a highly complex, NP-hard optimization prob-
lem and a generalization of the classical Job Shop Scheduling Problem (JSP). The problem concerns
scheduling a set of N jobs on M machines. Each job consists of a sequence of operations that must
be processed in a specific order. The critical distinction from the classical JSP is the “flexibility”:
each operation can be processed by any machine from a given subset of capable machines. This
introduces two interdependent decision layers: a routing problem (assigning each operation to a
suitable machine) and a sequencing problem (determining the order of operations on each machine).
The FJSP can be modeled as a multi-agent CO problem, where each machine acts as an agent re-
sponsible for building its own schedule. In an autoregressive framework, a decision is made at each
step to assign and schedule the next operation, considering machine availability and job precedence
constraints. The ultimate goal is typically to find a schedule that minimizes the makespan, i.e., the
time required to complete all operations for all jobs.

C.1.1 MATHEMATICAL MODEL

We present a common mixed-integer linear programming (MILP) model for the FJSP, based on the
formulation described by Özgüven et al. (2010):

Indices
j, l Job index
i, h Operation index
k Machine index

Parameters
N Number of jobs
M Number of machines
Oj Set of operations for job j
Mij Set of machines capable of processing operation i of job j
pijk Processing time of operation i of job j on machine k
B A very large positive number (for big-M constraints)

Decision variables
Cmax The makespan (maximum completion time)
cij Completion time of operation i of job j

xijk

{
1 if operation i of job j is assigned to machine k
0 otherwise

yjilkh

{
1 if op (j, i) precedes op (l, h) on machine k
0 otherwise

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Objective:

minCmax (12)

Subject to:

Cmax ≥ cij ∀j, ∀i ∈ Oj (13)∑
k∈Mij

xijk = 1 ∀j, ∀i ∈ Oj (14)

cij −
∑

k∈Mij

pijkxijk ≥ c(i−1)j ∀j, ∀i ∈ Oj , i > 1 (15)

cij − clh +B(1− yjilkh) ≥ pijk −B(2− xijk − xlhk) ∀j, l, i, h, k s.t. j < l (16)
clh − cij +B · yjilkh ≥ plhk −B(2− xijk − xlhk) ∀j, l, i, h, k s.t. j < l (17)

cij ≥
∑

k∈Mij

pijkxijk ∀j, ∀i ∈ Oj , i = 1 (18)

The objective function in equation 12 minimizes the makespan. The makespan itself is defined by
constraint set equation 13 as being greater than or equal to the completion time of every operation.
Constraint set equation 14 is the assignment constraint, ensuring that each operation is assigned to
exactly one machine from its set of eligible machines. The chronological sequence of operations
within the same job is enforced by constraint set equation 15, which states that an operation (j, i)
cannot be completed before the completion of its predecessor (j, i−1) plus its own processing time.
For the first operation of a job, constraint set equation 18 ensures its completion time is at least its
processing time. Constraint sets equation 16 and equation 17 are the core disjunctive constraints that
prevent a machine from processing more than one operation at a time. For any two operations (j, i)
and (l, h) assigned to the same machine k, these “big-M” constraints ensure that one must finish
before the other begins. The binary variable yjilkh determines their relative order.

C.1.2 MULTI-AGENT MDP

To solve the FJSP with MACSIM, we cast it as a multi-agent Markov decision process (MDP) as
defined in Section 3. In this formulation, we define the state of the FJSP at construction step t as
a bipartite graph, where machines correspond to the set of agents M and jobs/operations to the set
of tasks V . An edge (m, v) ∈ E exists if machine m can process the next operation of job v, with
processing time w(m, v). At each step, each agent m chooses an action am = v from the set of
admissible edges (m, v) (or the skip token), which assigns job v’s next operation to machine m.
The joint action at = {amt }m∈M induces a deterministic transition to st+1, which updates the
schedule, the job progress, and machine queues. The reward is 0 for all intermediate steps, with a
final terminal reward of the negative makespan (−Cmax) shared between all agents.

C.2 FLEXIBLE FLOW SHOP PROBLEM

The flexible flow shop problem (FFSP) is a challenging and extensively studied optimization prob-
lem in production scheduling, involving N jobs that must be processed by a total of M machines
divided into i = 1 . . . S stages, each with multiple machines (Mi > 1). Jobs follow a specified se-
quence through these stages, but within each stage, any available machine can process the job, with
the key constraint that no machine can handle more than one job simultaneously. The FFSP can
naturally be viewed as a multi-agent CO problem by considering each machine as an agent that con-
structs its own schedule. Adhering to autoregressive CO, agents construct the schedule sequentially,
selecting one job (or no job) at a time. The job selected by a machine (agent) at a specific stage in
the decoding process is scheduled at the earliest possible time, that is, the maximum of the time the
job becomes available in the respective stage (i.e., the time the job finished on prior stages) and the
machine becoming idle. The process repeats until all jobs for each stage have been scheduled, and
the ultimate goal is to minimize the makespan, i.e., the total time required to complete all jobs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.2.1 MATHEMATICAL MODEL

We use the model outlined in Kwon et al. (2021) to define the FFSP:

Indices
i Stage index
j, l Job index
k Machine index in each stage

Parameters
N Number of jobs
S Number of stages
Mi Number of machines in stage i
B A very large number
pijk Processing time of job j in stage i on machine k

Decision variables
cij Completion time of job j in stage i

xijk

{
1 if job j is assigned to machine k in stage i
0 otherwise

yilj

{
1 if job l is processed earlier than job j in stage i
0 otherwise

Objective:

min

(
max
j=1..n

{cSj}
)

(19)

Subject to:
Mi∑
k=1

xijk = 1 i = 1, . . . , S; j = 1, . . . , N (20)

yiij = 0 i = 1, . . . , S; j = 1, . . . , N (21)

N∑
j=1

N∑
l=1

yilj =

Mi∑
k=1

max

 n∑
j=1

(xijk)− 1, 0

 i = 1, . . . , S (22)

yilj ≤ max

(
max

k=1...Mi

{xijk + xilk} − 1, 0

)
i = 1, . . . , S; j, l = 1, . . . , N (23)

N∑
l=1

yilj ≤ 1 i = 1, . . . , S; j = 1, . . . , N (24)

N∑
j=1

yilj ≤ 1 i = 1, . . . , S; l = 1, . . . , N (25)

c1j ≥
m1∑
k=1

p1jk · x1jk j = 1, . . . , N (26)

cij ≥ ci−1j +

Mi∑
k=1

pijk · xijk i = 2, 3, . . . , S; j = 1, . . . , N (27)

cij +B(1− yilj) ≥ cil +

Mi∑
k=1

pijk · xijk i = 1, . . . , S; j, l = 1, . . . , N (28)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Here, the objective function equation 19 minimizes the makespan of the resulting schedule, that is,
the completion time of the job that finishes last. The schedule has to adhere to several constraints:
First, constraint set equation 20 ensures that each job is assigned to exactly one machine at each
stage. Constraint sets equation 21 through equation 25 define the precedence relationships between
jobs within a stage. Specifically, constraint set equation 21 ensures that a job has no precedence
relationship with itself. Constraint set equation 22 ensures that the total number of precedence rela-
tionships in a stage equalsN−Mi minus the number of machines with no jobs assigned. Constraint
set equation 23 dictates that precedence relationships can only exist among jobs assigned to the same
machine. Additionally, constraint sets equation 24 and equation 25 restrict a job to having at most
one preceding job and one following job.

Moving on, constraint set equation 26 specifies that the completion time of a job in the first stage
must be at least as long as its processing time in that stage. The relationship between the completion
times of a job in consecutive stages is described by constraint set equation 27. Finally, constraint set
equation 28 ensures that no more than one job can be processed on the same machine at the same
time.

C.2.2 MULTI-AGENT MDP

We formulate the FFSP as a multi-agent MDP. At construction step t, the state is represented by
a bipartite graph: jobs form the task set V , and machines grouped by production stages form the
agent set M. Within each stage, an edge (m, v) ∈ E exists if machine m at that stage is eligible to
process the next pending operation of job v, with processing time w(m, v). At each step, each agent
m ∈ M selects an action am = v from its admissible edges (m, v), assigning the corresponding
job operation to that machine. The joint action at induces a deterministic transition to st+1 by
updating the partial schedule, machine queues, and job progression across stages. Intermediate
steps yield zero reward, while the terminal state provides a reward equal to the negative makespan
shared between all agents.

C.3 MIN-MAX HETEROGENEOUS CAPACITATED VEHICLE ROUTING PROBLEM

The min-max heterogeneous capacitated vehicle routing problem (HCVRP) is an NP-hard combina-
torial optimization problem, representing a significant extension of the classic Capacitated Vehicle
Routing Problem (CVRP). The problem involves designing a set of optimal routes for a hetero-
geneous fleet of vehicles, stationed at a central depot, to serve a geographically dispersed set of
customers, each with a specific demand. The heterogeneity implies that vehicles may differ in their
capacities and costs. The primary objective of the HCVRP is to minimize the length (or cost, or
duration) of the longest single route in the solution, rather than the total length of all routes. This
“Min-Max” criterion is crucial for applications where the balance of workload between drivers is a
priority.

C.3.1 MATHEMATICAL MODEL

We present a three-index vehicle flow formulation for the HCVRP, adapted from standard VRP
models as described in works such as Li et al. (2022):

Indices
i, j Node indices (customers and depot)
k Vehicle index

Sets
L Set of N customers, indexed 1, . . . , N
V Set of all nodes, V = L ∪ {0}, where 0 is the depot
K Set of vehicles

Parameters
di Demand of customer i ∈ L
Qk Capacity of vehicle k ∈ K
cijk Cost (e.g. travel time) for vehicle k to travel between nodes i and j

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Decision variables
Cmax The maximum route length (the objective)

xijk

{
1 if vehicle k travels directly from node i to node j
0 otherwise

uik Continuous variable representing the load of vehicle k after visiting node i

Objective:

minCmax (29)

Subject to:

Cmax ≥
∑
i∈V

∑
j∈V,i̸=j

cijkxijk ∀k ∈ K (30)

∑
k∈K

∑
i∈V,i̸=j

xijk = 1 ∀j ∈ L (31)

∑
i∈V,i̸=h

xihk =
∑

j∈V,j ̸=h

xhjk ∀h ∈ L, ∀k ∈ K (32)

∑
j∈L

x0jk ≤ 1 ∀k ∈ K (33)

uik − ujk +Qkxijk ≤ Qk − dj ∀i, j ∈ L, i ̸= j, ∀k ∈ K (34)

di
∑
j∈V

xjik ≤ uik ≤ Qk

∑
j∈V

xjik ∀i ∈ L, ∀k ∈ K (35)

The objective function eq. (29) minimizes the maximum route cost Cmax. Cmax is defined by
constraint set equation 30, which ensures it is greater than or equal to the calculated cost of every
individual route, using the vehicle-specific cost parameter cijk.

Constraint set equation 31 guarantees that each customer is visited exactly once by one vehicle. The
vehicle flow conservation is handled by two sets of constraints. First, constraint set equation 32
ensures that if a vehicle enters a customer node, it must also depart from it. Second, constraint set
equation 33 ensures that each vehicle can leave the depot at most once; combined with constraint
set equation 32, this also implies that any vehicle that serves customers must return to the depot.

Finally, constraint sets equation 34 and equation 35 are the Miller-Tucker-Zemlin constraints, which
simultaneously prevent subtours and enforce vehicle capacity limits. The continuous variable uik
tracks the cumulative load of vehicle k. Constraint set equation 34 establishes a valid sequence
for load accumulation, while constraint set equation 35 binds the load variable for each customer
visit, ensuring it is positive only if the customer is on vehicle k’s route and that it never exceeds the
vehicle’s capacity Qk.

C.3.2 MULTI-AGENT MDP

We formulate the HCVRP as a multi-agent MDP where each vehicle is modeled as an agent. The
state at construction step t consists of a graph with customer nodes V and vehicles M, where each
customer v ∈ V has a remaining demand dt,v , and each vehicle m ∈ M has residual capacity
ct,m and a current position on the graph. At each step, each vehicle m selects an action am = v
corresponding to the next customer to visit, a return to the depot, or a stay at the current location,
subject to feasibility given its residual capacity and route status. The joint action at determines the
transition to st+1 by updating vehicle positions, capacities, and customer demands. The shared
reward is sparse: intermediate steps yield zero reward, while the final reward is defined as the
negative of the maximum travel cost among all agents −Cmax.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Generalization performance on public FJSP benchmark instances.

FJSP
Brandimarte Hurink (rdata) Hurink (edata) Hurink (vdata)

Metric Obj. Gap Time (s.) Obj. Gap Time (s.) Obj. Gap Time (s.) Obj. Gap Time (s.)
OR-Tools 174.20 0.99% 1447 935.80 0.16% 1397 1028.93 0.00% 899 919.60 0.00% 639
MWKR 201.70 16.52% 0.49 1053.10 12.72% 0.52 1219.01 18.47% 0.52 952.01 3.52% 0.52
PPO (g.) 198.50 15.07% 1.25 1030.83 10.33% 1.4 1182.08 14.88% 1.4 954.33 3.78% 1.37
DANIEL (g.) 184.40 6.90% 1.3 1031.63 10.42% 1.37 1175.53 14.25% 1.37 944.85 2.75% 1.36
SLIM (g.) 195.12 13.11% 2.16 1011.15 8.23% 2.28 1170.45 13.75% 2.29 937.04 1.90% 2.28
MACSIM (g.) 185.80 7.71% 1.12 992.10 6.19% 0.87 1168.97 13.61% 0.85 937.07 1.90% 1.04
PPO (s.) 190.30 10.32% 4.13 985.33 5.46% 4.81 1116.68 8.53% 4.87 930.80 1.22% 4.72
DANIEL (s.) 180.80 4.81% 4.12 978.28 4.71% 4.73 1119.73 8.82% 4.73 925.40 0.63% 4.77
SLIM (s.) 191.20 10.84% 30.75 963.55 3.13% 30.81 1117.50 8.61% 30.82 924.07 0.49% 33.12
MACSIM (s.) 177.30 2.78% 9.78 957.92 2.53% 6.84 1094.85 6.41% 7.05 923.17 0.39% 8.83

D MORE EXPERIMENTS

D.1 PUBLIC BENCHMARK DATASET FOR FJSP

In addition to the synthetic FJSP instances used in Tables 1 and 2, we analyze the generalization
capabilities of MACSIM on two well-known FJSP benchmarks. First, the Brandimarte benchmark
comprises 10 benchmark cases ranging from 10–20 jobs with 3–15 operations each, processed on
4–15 machines with varying machine flexibility (Brandimarte, 1993). Second, the benchmark from
Hurink et al. (1994) contains 120 instances ranging from 6–30 jobs and 6–15 machines, with the
number of operations per job matching the machine count. These are categorized into three groups
based on machine flexibility:

• edata: Few operations may be assigned to more than one machine.
• rdata: Most of the operations may be assigned to some machines.
• vdata: All operations may be assigned to several machines.

The aggregated results for these 4 benchmarks are presented in Table 5. For each instance type, we
report results for the best-performing model selected from the models trained on the instance sizes
reported in Table 1. MACSIM consistently outperforms all other neural baselines and substantially
narrows the gap to the state-of-the-art CP-SAT solver, OR-Tools.

D.2 INCREASING THE NUMBER OF AGENTS IN FFSP

We further evaluate all solvers for the FFSP on instances with an increasing number of agents while
keeping the number of jobs fixed. Specifically, we consider instances with N = 50 jobs processed
across S = 3 stages, each containing Mi = 4, 6, and 8 machines, for a total of M = 12, 18,
and 24 machines, respectively. The results in Table 6 reveal a widening performance gap between
standard self-improvement (SLIM) and MACSIM, highlighting the importance of exploiting agent
symmetries during training. These symmetries become more pronounced in problems with more
agents, making coordination increasingly challenging. MACSIM consistently produces policies that
achieve superior coordination as the number of agents grows.

D.3 ANALYSIS OF THE SKIP TOKEN

In Figure 5a, we evaluate the effect of the skip token and its associated penalty on solution qual-
ity. The skip token proves essential for achieving high-quality solutions. However, introducing a
penalty on its usage initially skews training towards solutions with fewer skip tokens, which results
in slightly worse performance compared to MACSIM without the penalty. By annealing the penalty
towards zero via an exponential decay, the model ultimately reaches solutions of equal quality while
requiring significantly fewer construction steps (forward passes through πθ), as confirmed in Fig-
ure 5b. The different penalty schedules reported in Figure 5b are visualized in Figure 5c.

Although we found that the policy is largely insensitive to the specific form of penalty decay, we
adopt an exponential decay because it naturally prevents the penalty from reaching exactly zero. If
the penalty were to reach zero, the model would immediately resume increasing its use of the skip

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Test set performance on FFSP instances with varying number of agents.

FFSP
N ×Mi × S 50× 4× 3 50× 6× 3 50× 8× 3

Metric Obj. Gap Time (s.) Obj. Gap Time (s.) Obj. Gap Time (s.)
Shortest Job First 56.94 19.27% 0.37 38.01 23.65% 0.25 29.39 27.45% 0.25
Genetic Algorithm 56.92 19.23% 44.33 38.26 24.46% 47.12 29.05 25.98% 50.95
Particle Swarm Opt. 55.1 15.42% 82.74 36.83 19.81% 85.43 28.06 21.68% 89.01
MatNet (g.) 51.52 7.92% 2.17 34.82 13.27% 2.42 27.52 19.34% 2.65
PARCO (g.) 51.19 7.23% 0.52 32.88 6.96% 0.50 24.89 7.94% 0.44
SLIM (g.) 50.01 4.75% 2.28 32.99 7.32% 3.01 25.04 8.59% 3.87
MACSIM (g.) 49.36 3.39% 0.43 32.23 4.85% 0.59 24.45 6.03% 0.61
MatNet (s.) 49.68 4.06% 8.91 33.45 8.82% 9.23 26.00 12.75% 9.81
PARCO (s.) 49.27 3.20% 1.97 31.60 2.80% 1.89 23.59 2.30% 1.68
SLIM (s.) 48.13 0.82% 8.87 31.65 2.96% 9.64 24.41 5.85% 10.6
MACSIM (s.) 47.74 0.00% 0.91 30.74 0.00% 1.65 23.06 0.00% 1.78

0 10 20 30 40
Epoch

100

102

104

106

108

110

112

114

116

M
ak

es
p

an

(a) FJSP 10× 5

MACSIM-full

Fixed penalty

No penalty

No skip token

20 40 60 80 100
Epoch

14

16

18

20

22

24

26
S

ki
p

T
ok

en
s

U
se

d

(b) FFSP 50× 4

No penalty

Fixed penalty

Exponential decay

Linear decay

0 50 100
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
en

al
ty

C
oe

ffi
ci

en
t

(c) FFSP 50× 4

Exponential decay

Linear decay

Fixed penalty

No penalty

Figure 5: Left: Training curves for MACSIM with and without skip token as well as different
penalties. Middle: Effect of different penalty strategies on the number of skip tokens used. Right:
Skip token penalty coefficient for different strategies over the course of training.

token as shown in Figure 5b. Maintaining a penalty slightly above zero ensures that, when multiple
solutions have equal objective values during training data generation, the skip token usage serves as
a meaningful tie-breaking criterion for the expert data selection. As such, a very small penalty still
serves as an effective regularizer during the later stages of training.

Moreover, Figure 5b illustrates how the model learns to regulate skip token usage. At the start of
training, the model employs the skip token at a relatively low rate. It then rapidly increases its
usage, recognizing that deferring a decision in FFSP can unlock better scheduling opportunities
for machines. As training progresses, the model reduces unnecessary skips to avoid the penalty,
returning to nearly the same skip frequency as at the beginning. Crucially, however, the model has
now learned to distinguish when deferring an assignment is beneficial and when it is not.

D.4 TRAINING DYNAMICS ANALYSIS

Figure 6 offers additional insight into the training behavior of MACSIM relative to SLIM across
FFSP instances of increasing size. Beyond final performance metrics, these curves highlight funda-
mental differences in stability and efficiency. As the problem size grows from N = 20 to N = 100
jobs, SLIM exhibits increasingly unstable training dynamics, with pronounced oscillations in val-
idation performance. In contrast, MACSIM maintains smooth and monotonic convergence. This
contrast suggests that SLIM’s single-action supervision becomes insufficient for complex coordina-
tion tasks, while MACSIM’s set-based loss provides more reliable and stable gradient signals.

The comparison of wall-clock training times (right y-axis) further demonstrates that MACSIM’s
efficiency advantages extend to the training process itself. MACSIM trains nearly an order of mag-
nitude faster per epoch while still achieving superior final performance. This consistent efficiency
gain across problem sizes, coupled with its robustness on larger instances where SLIM becomes
unstable, provides strong empirical evidence that the joint-action framework effectively overcomes
scalability limitations in self-improvement for multi-agent combinatorial optimization.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Epoch

26

28

30

32

34

36

38

40

A
v
g.

M
ak

es
p

an

(a) FFSP 20× 4

SLIM Makespan

MACSIM Makespan

M
A

C
S

IM

S
L

IM

0

50

100

150

200

250

300

0 25 50 75 100 125 150
Epoch

50

55

60

65

70

75

80

(b) FFSP 50× 4 M
A

C
S

IM

S
L

IM

0

200

400

600

800

0 50 100 150 200
Epoch

100

120

140

160

180

200

(c) FFSP 100× 4 M
A

C
S

IM

S
L

IM

0

500

1000

1500

2000

2500

3000

T
ra

in
in

g
T

im
e

p
er

E
p

oc
h

(s
)

Figure 6: Wall-clock training time per epoch (right axis) and evolution of the average makespan on
the validation set of FFSP instances with N = 20, 50, and 100 jobs (left axis). As the problem size
increases, SLIM’s training becomes progressively unstable, whereas MACSIM maintains stability
and converges while being nearly an order of magnitude faster to train.

D.5 SCALABILITY ANALYSIS

A key concern in neural combinatorial optimization is scalability to large problem instances. In
this section, we provide a comprehensive analysis demonstrating that MACSIM’s design choices –
training on single state-action pairs and amortizing re-encoding costs over multiple actions – yield
substantial scalability advantages over both traditional RL-based NCO methods and standard self-
improvement approaches.

Comparison with RL-based NCO. Traditional RL-based NCO methods like MatNet (Kwon
et al., 2021) train via REINFORCE, which requires backpropagation through entire solution trajec-
tories. This necessitates storing activations for all T decoding steps, leading to memory consumption
that scales linearly with solution length. In contrast, MACSIM’s self-improvement paradigm trains
on individual state-action pairs, requiring only single-step gradients.

We empirically validate this advantage by comparing memory consumption and training efficiency
between MACSIM and MatNet on FFSP instances of increasing size. For memory analysis, we use
a batch size of 1 for both methods and record peak GPU memory consumption during training. For
training time analysis, we use the maximum feasible batch size for each method on a single NVIDIA
A100 GPU with 40GB VRAM and measure wall-clock time per epoch (1,000 instances).

Results are presented in Table 7. For N = 100 jobs, MatNet consumes approximately 1 GB of
memory, which increases to roughly 13 GB for N = 500, corresponding to a 13× increase. In
contrast, MACSIM increases from only 702 MB to just under 2 GB – less than a 3× increase. This
dramatic difference in memory scaling enables MACSIM to use significantly larger batch sizes (64
vs. 8 for N = 500), directly translating to faster training: MatNet’s training time grows from 6.4
minutes per epoch at N = 100 to 264 minutes at N = 500, while MACSIM only increases from
5.1 minutes to 63 minutes.

These results demonstrate that MACSIM’s state-action pair training paradigm provides a fundamen-
tal scalability advantage over trajectory-based RL methods, enabling efficient training on problem
sizes where traditional approaches become prohibitively expensive.

Table 7: Memory consumption and training time comparison between MatNet (RL-based) and
MACSIM on FFSP instances of increasing size. Fraction columns show MACSIM’s cost relative to
MatNet.

FFSP

N ×Mi × S
Peak Memory (GB) Training Time (min/epoch)

MatNet MACSIM Fraction MatNet MACSIM Fraction
100× 4× 3 1.47 0.71 0.48 6.43 5.12 0.79
250× 4× 3 4.12 1.24 0.30 31.12 15.60 0.50
500× 4× 3 12.87 1.95 0.15 264.41 63.62 0.24

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Comparison with Standard Self-Improvement. While standard self-improvement methods like
SLIM share MACSIM’s advantage of state-action pair training, they employ step-wise re-encoding
with fully autoregressive decoding, thus computing new embeddings for every single action. MAC-
SIM amortizes this computational cost by generating M agent actions from a single encoding step.

Figure 3c in the main paper demonstrates this advantage across FFSP instances of varying size.
For N = 50 jobs with M = 24 agents, MACSIM requires approximately 10 construction steps to
generate a complete solution, while SLIM requires 150 steps. This translates directly to wall-clock
time as shown in Figure 6: MACSIM trains in approximately 400 seconds per epoch compared to
SLIM’s 3,000 seconds – almost an order of magnitude faster.

Combined Advantage: Scaling to large multi-agent Problems. The combination of (1) state-
action pair training and (2) multi-action generation creates a powerful synergy for scaling to large
multi-agent problems:

• Memory efficiency from state-action pair training enables large batch sizes during training

• Computational efficiency from amortized re-encoding significantly reduces training time
by a factor proportional the number of agents

• Training stability from the permutation-invariant loss ensures reliable convergence even as
coordination complexity increases

Together, these properties position MACSIM as a highly scalable approach for large-scale multi-
agent combinatorial optimization.

D.6 RUNTIME PROFILING AND EFFICIENCY ANALYSIS

To isolate the source of MACSIM’s computational efficiency, we perform a decomposition of infer-
ence latency into two distinct components: (i) policy evaluation, which encompasses the forward
pass of the neural network πθ(L | st) to generate logits, and (ii) sampling, which refers to the
discrete selection of actions from the distribution P (L).

We compare the baseline SLIM against MACSIM on the Flexible Flow Shop Problem (FFSP). We
fix the problem size to N = 50 jobs across S = 3 stages and vary the number of parallel machines
per stage, denoted as Mi ∈ {4, 6, 8}. This results in total agent counts of M = 12, 18, and 24,
respectively.

Table 8: Inference time decomposition. Times are reported as milliseconds for a single solution
construction, averaged over 100 instances. The Policy column measures the cumulative time spent in
neural network forward passes, while Sampling measures the time spent selecting discrete actions.
Percentages indicate the relative contribution to total latency.

FFSP

N ×Mi × S
MACSIM SLIM

Policy Sampling Policy Sampling
50× 4× 3 234.44 (65%) 125.02 (35%) 3119.36 (96%) 120.12 (4%)
50× 6× 3 319.73 (71%) 133.45 (29%) 3966.12 (97%) 120.40 (3%)
50× 8× 3 568.44 (79%) 155.64 (21%) 8844.75 (99%) 121.01 (1%)

Policy. As shown in Table 8, inference in SLIM is overwhelmingly dominated by policy evalua-
tion, which accounts for over 96% of total runtime. This bottleneck arises because SLIM operates
as a single-action sequential predictor: for a problem requiring N total assignments, SLIM must
execute the encoder-decoder stack N times.

In contrast, MACSIM reduces the policy evaluation time by a factor of 12 to 16. This speedup is
a direct consequence of the multi-agent architecture defined in Equation (3), where the joint logit
matrix L is computed once to constructM actions. By enabling allM agents to act based on a single
forward pass, MACSIM effectively amortizes the expensive neural computation over M decisions.
Consequently, the end-to-end speedup ranges from approximately 9 to 11 across these settings.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Sampling. Notably, the absolute time spent on sampling remains comparable between the two
methods (e.g., ≈ 125 ms vs. ≈ 120 ms for the 50 × 3 × 4 instance), though MACSIM exhibits a
slight increase as agent count grows. It is important to note that the total count of sampled actions
in MACSIM is slightly higher than in SLIM, due to the incorporation of the skip token. While
this mechanism increases the total volume of discrete samples required to complete a solution, the
sampling cost remains negligible relative to the massive reduction in policy evaluation steps.

E LOSS FUNCTION GRADIENT ANALYSIS

Here, we provide a detailed analysis of the gradients for the four loss functions discussed and evalu-
ated in the main text: the single-agent cross-entropy loss (evaluating only a single action amt ∈ at at
a time) akin to SLIM, the multi-agent cross-entropy loss (LCE), the loss derived from the Plackett-
Luce formulation (LPL), and the loss corresponding to the Maximum Likelihood Estimation (MLE)
of the generative model of Equation (3), denoted LML. This analysis highlights the sources of insta-
bility and bias in LSA, LML, and LPL, justifying our use of LCE as a permutation-invariant surrogate.

E.1 SINGLE-AGENT CROSS-ENTROPY LOSS

This loss mimics standard self-improvement methods which are trained in a “next-token prediction”
fashion as described by Pirnay & Grimm (2024). Given state st and any pseudo-expert action
(m∗, v∗) ∈ a∗t , the model’s task under this loss is to predict this single pair from the entire, static
pool of all possible agent-task assignments, E . The loss is the negative log-likelihood of selecting
the single expert pair (m∗, v∗) from the set of all pairs E :

LSA = − log
exp(Lm∗,v∗)∑

(m,v)∈E exp(Lm,v)
(36)

and the gradient for any logit Li,j in the logits matrix is given by:

∂LSA

∂Li,j
=

exp(Li,j)∑
(m,v)∈E exp(Lm,v)

− I(i = m∗, j = v∗) (37)

where I(·) is the indicator function.

Conflicting and Spurious Gradients. The core problem arises from the global softmax normal-
ization. At each step, the gradient update for the target pair (m∗

k, v
∗
k) is defined in competition with

all other available pairs in E . This setup effectively designates a single pair as positive while treat-
ing the remaining M − 1 correct assignments as negatives. Consequently, the model is explicitly
penalized for predicting other parts of the ground-truth solution: for every correct pair not chosen as
the target, the gradient contributes a positive update that suppresses its logit. The resulting signal is
inherently contradictory, preventing the model from converging toward a consistent joint policy.

This flaw is particularly evident in forced-choice scenarios. When an agent m has only one valid
task v∗ at step k, no genuine decision is required. Nevertheless, LML still yields a non-zero loss,
producing spurious gradients that penalize unrelated logits Li,j with i ̸= m. Such unnecessary
updates destabilize optimization by introducing noise unrelated to the actual decision process.

Vanishing Gradients. The softmax denominator is calculated over the entire set E , which can
contain thousands of possible actions. This makes the probability of the single target action infinites-
imally small, leading to a vanishing gradient problem even more severe than that of the sequential
MLE loss (LML). This effectively makes training infeasible for large problem sizes.

E.2 MLE LOSS

Unlike the single-agent formulation, the MLE loss computes a softmax over the remaining feasible
pairs at each step k, with Ek denoting the available pairs. The gradient for Li,j aggregates contribu-
tions across agents:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

∂LML

∂Li,j
=

M∑
k=1

exp(Li,j)∑
(a,b)∈Ek

exp(La,b)
− I(i = m∗

k, j = v∗k) (38)

Similar to LSA, the global softmax normalization in LML leads to conflicting and spurious gra-
dient signals. Since the loss is a sum over all agents, the final gradient for any correct assignment
becomes an inefficient and contradictory sum of one large negative update and many small positive
updates (penalties). Also, similar to LSA, this loss formulation suffers from vanishing gradients,
especially for decisions made early in the sequence when the action space is at its largest. This effec-
tively stalls the learning process, making it very difficult for the model to learn meaningful policies
for large problems.

E.3 PLACKETT-LUCE LOSS

The Plackett-Luce model addresses the global competition issue by conditioning the choice of a task
on a specific agent at each step. If agent i = mk is assigned at step k, the softmax is computed only
over the set of available tasks Vk = V \ {v1, . . . , vk−1}. The gradient for agent i’s logit Li,j is:

∂LPL

∂Li,j
=

exp(Li,j)∑
j′∈Vk

exp(Li,j′)
− I(j = vk) (39)

Permutation-Induced Bias. While LPL resolves the conflicting gradient issue of LML, it remains
sensitive to the arbitrary order of the expert permutation. This bias arises directly from the structure
of the gradient. For an agent acting early in a sequence, the set of available actions Vk is large,
leading to a large normalization term in its softmax calculation. At the beginning of training, this
large denominator yields a very small initial probability P (vk|i) for the expert action. Since a
smaller probability results in a gradient with a larger magnitude, the optimization process is forced to
drive the corresponding logit to a significantly higher magnitude. In contrast, a late-sequence agent
starts with a higher probability and thus a smaller gradient magnitude, requiring a less substantial
increase in its logit value. Consequently, the model dedicates capacity to learning an artificial, agent-
specific confidence level, where the scale of the output logits becomes entangled with the agent’s
position in the training sequence.

E.4 SET CROSS-ENTROPY LOSS

To avoid the issues of sequential modeling, the multi-agent cross-entropy loss (LCE) treats each
agent’s assignment as an independent classification problem. Each agent i predicts its task v∗(i)
from the complete set of tasks V . The gradient for agent i’s logit Li,j depends only on its own
logits:

∂LCE

∂Li,j
=

exp(Li,j)∑
j′∈V exp(Li,j′)

− I(j = v∗(i)) (40)

where v∗(i) is the expert-assigned task for agent i.

This decoupled formulation provides a stable and robust learning signal. Every correct pair (i, v∗i)
is reinforced individually, without interference or competition from the assignments of other agents.
This elegant structure entirely circumvents the conflicting gradients of LML and the permutation
bias of LPL, making it a superior objective for learning multi-agent assignment policies. Figure 6
validates the superiority of MACSIM trained with LCE over SLIM that uses a single-agent loss LSA,
especially for larger instances.

F THEORETICAL JUSTIFICATION FOR SET-BASED LOSS IN MACSIM

F.1 TRAINING–INFERENCE MISMATCH

The surrogate loss in equation 6 offers a tractable and stable method for training. While the gen-
erative model in equation 3 couples assignments through a one-to-one matching constraint, the set-
based cross-entropy loss simplifies this by treating each expert agent-task pair as an independent

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

classification problem. This is justified because the training process only observes valid matchings,
allowing for clean, per-agent supervision. The result is a permutation-invariant learning signal that
provides stable gradients, avoiding the conflicts and biases inherent in more complex objectives like
direct Maximum Likelihood Estimation (MLE) as shown in Appendix E.

This independent loss signal does not prevent the model from learning coordination. Inter-agent
dependencies are captured implicitly by the policy’s architecture, where self- and cross-attention
mechanisms compute the joint logit matrix L with full context. At inference, the autoregressive
sampling algorithm then acts as a hard constraint enforcer, translating these context-aware logits
into a valid, conflict-free assignment. This combination of a stable surrogate for training and a
structurally-aware process for inference proves highly effective. Empirically, this approach sig-
nificantly outperforms training with an exact MLE or Plackett-Luce loss (Table 4), confirming its
practical advantages.

In the following, we provide a formal justification for using the set-based cross-entropy loss, LCE.
We prove that it is a sound proxy for the ideal (but intractable) permutation-invariant objective.

F.2 FORMAL JUSTIFICATION FOR THE SURROGATE LOSS

Setup. We introduce shorthand notation for softmax normalization and marginals. For agent m
and its expert-assigned task v∗(m), we use:

Zm =
∑
v∈V

exp(Lm,v), pm(v) =
exp(Lm,v)

Zm
, pm := pm(v∗(m)).

During generation, the policy samples agents in some order σ (a permutation of {1, . . . ,M}) with
prior w(σ), where

∑
σ w(σ) = 1. At step k, agent mk = σ(k) selects a task from the remaining set

Vk(σ) ⊆ V . The normalizer for the softmax function is given as:

Sk(σ) =
∑

v∈Vk(σ)

exp(Lσ(k),v).

The probability of producing the unordered matching a∗ is

Pperm(a
∗) =

∑
σ

w(σ)

M∏
k=1

exp(Lσ(k),v∗(σ(k))

Sk(σ)
.

The ideal loss is Lideal = − logPperm(a
∗), while the surrogate loss is the set cross-entropy LCE =

−∑M
m=1 log pm.

Theorem 2 (Upper Bound and Tightness). For any permutation prior w(σ):

1. (Upper Bound) The surrogate loss upper-bounds the ideal loss:

LCE ≥ Lideal.

2. (Gap Bound) With rm = (1− pm)/pm:

0 ≤ LCE − Lideal ≤
M∑

m=1

log(1 + rm).

If pm ≥ 1− ε for all m, then

LCE − Lideal ≤M log
(
1 + ε

1−ε

)
≤ Mε

1−ε .

Part 1: Proof of the Upper Bound.

Proof. Fix a permutation σ and denote P (a∗|σ) its sequence probability. At each step k,

Sk(σ) =
∑

v∈Vk(σ)

exp(Lσ(k),v) ≤
∑
v∈V

exp(Lσ(k),v) = Zσ(k),

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

since Vk(σ) ⊆ V . Thus

exp(Lσ(k),v∗(σ(k)))

Sk(σ)
≥ exp(Lσ(k),v∗(σ(k)))

Zσ(k)
= pσ(k).

Hence

P (a∗|σ) ≥
M∏

m=1

pm.

Taking the expectation over σ preserves this bound:

Pperm(a
∗) =

∑
σ

w(σ)P (a∗|σ) ≥
M∏

m=1

pm.

Applying − log(·) yields
Lideal ≤ LCE.

Part 2: Proof of the Gap Bound.

Proof. To bound the gap, we establish an upper bound on Pperm(a
∗). We start by rewriting the

probability of a single sequence by multiplying and dividing each factor by Zσ(k):

P (a∗|σ) =
M∏
k=1

(
exp(Lσ(k),v∗(σ(k)))

Zσ(k)
· Zσ(k)

Sk(σ)

)
=

(
M∏
k=1

pσ(k)

)(
M∏
k=1

Zσ(k)

Sk(σ)

)
.

Since v∗(σ(k)) ∈ Vk(σ), it must hold that Sk(σ) ≥ exp(Lσ(k),v∗(σ(k))), and thus:

Zσ(k)

Sk(σ)
≤ Zσ(k)

exp(Lσ(k),v∗(σ(k)))
= 1

pσ(k)
= 1 + rσ(k).

Thus

P (a∗|σ) ≤
(

M∏
i=1

pi

)(
M∏
i=1

(1 + ri)

)
.

Averaging over σ preserves the bound, so

Pperm(a
∗) ≤

(
M∏

m=1

pm

)(
M∏

m=1

(1 + rm)

)
.

Taking − log gives

Lideal ≥ LCE −
M∑

m=1

log(1 + rm),

or equivalently

LCE − Lideal ≤
M∑

m=1

log(1 + rm).

If pm ≥ 1− ε, then rm ≤ ε
1−ε , so

M∑
m=1

log(1 + rm) ≤M log
(
1 + ε

1−ε

)
≤ Mε

1−ε .

IMPLICATION FOR OPTIMIZATION

Theorem 2 establishes that LCE is a tractable upper bound on the true symmetric objective. More-
over, the bound tightens as the policy becomes confident, ensuring that optimization with LCE
smoothly transitions from providing stable gradients early to closely approximating the ideal ob-
jective in later training.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

G DISCUSSING THE INDEPENDENCE ASSUMPTION IN THE SET-BASED LOSS

This section analyzes the efficacy of the agent-independent loss function (LCE) for solving coupled
multi-agent combinatorial problems. The proposed loss function LCE treats the assignment of each
agent m to a task v as an independent classification problem. Letting the total loss be the sum of
individual agent losses, LCE =

∑M
m=1 Lm(Lm,:), a direct analysis of the gradients (Appendix E.4)

shows that the loss for a specific agent m yields no direct gradient signal with respect to the logits
of any other agent:

∂Lm

∂Lk,v
= 0 ∀k ̸= m (41)

Consequently, at the output layer, the optimization objective for Agent m is independent of the de-
cisions of Agent k. Despite this independence at the loss level, MACSIM achieves coordinated
solutions through the synergy of three distinct mechanisms: Architectural Coupling, Implicit
Constraint Learning, and Inference-Time Constraints enforced via our autoregressive sampling
approach.

G.1 MECHANISM 1: ARCHITECTURAL COUPLING

While the gradients are independent with respect to the logits L, the agents are coupled via the shared
model parameters θ. The policy architecture processes the state through a deep encoder utilizing
multiple layers of self-attention and cross-attention. In this shared latent space, the embedding
of Agent m, denoted as hm, is computed by aggregating information from all other agents and
tasks. As a result, the gradient of Agent m’s loss with respect to the shared parameters affects the
representations of all agents:

∂Lm

∂θ
̸= 0 (42)

This implies updates to features utilized by Agent k. To minimize LCE, the encoder learns to produce
disentangled representations where the features for Agent m align with Task vm, while the features
for Agent k align with Task vk.

G.2 MECHANISM 2: IMPLICIT CONSTRAINT LEARNING VIA GRADIENT DYNAMICS

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

C
on

fli
ct

s

SLIM + AM

MACSIM

Figure 7: Evolution of the raw conflict rate (per-
centage of agents that share the same argmax ac-
tion) during training on FJSP 10× 5 instances.

The second coordination mechanism emerges
from the specific gradient dynamics of the set-
based loss. As detailed in our gradient analysis
in Appendix E, single-action supervision (e.g.,
SLIM) inherently suffers from gradient interfer-
ence. Because it utilizes a global Softmax over
all possible agent-task pairs, reinforcing a sin-
gle target action explicitly degrades the proba-
bility of valid future actions for other agents.
This creates conflicting signals that hinder the
learning of a consistent joint policy. In contrast,
MACSIM avoids this interference by optimizing
M independent local losses. For any specific
agent m, the objective maximizes the logit for
the assigned task v∗m while suppressing the log-
its for all other tasks. Crucially, this set of sup-
pressed tasks includes all tasks v∗k assigned to
other agents k ̸= m.

Since the expert targets are conflict-free, exactly one agent receives a positive update for any given
task v, while all M − 1 other agents receive negative updates for that same task, actively reducing
contention. The policy internalizes global coordination constraints purely through this independent
contrast.

We visualize this effect in Figure 8 and quantify it in Figure 7. Figure 8 compares the logit
heatmaps of MACSIM against an Attention Model (AM) trained via standard SLIM. After train-
ing, MACSIM’s logits exhibit a clear ”permutation matrix” structure—high values are sparse and

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

non-overlapping across agents. Conversely, the AM baseline fails to coordinate, frequently assign-
ing the highest logit value for a single task to multiple agents simultaneously.

Furthermore, we analyse the percentage of agents that share the same argmax action of the logits
during training. As shown in Figure 7, this conflict rate drops precipitously during training for
MACSIM while staying consistently on a high level for the AM trained via SLIM. This empirically
validates that the independent loss, when combined with conflict-free expert labels, successfully
teaches the network to respect injectivity constraints.

Skip J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
Tasks (Jobs)

M
1

M
2

M
3

M
4

M
5

A
ge

n
ts

(M
ac

h
in

es
)

(a) Initial Logits

Skip J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
Tasks (Jobs)

M
1

M
2

M
3

M
4

M
5

Agents Coordinate Actions

(b) MACSIM After Training

Skip J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
Tasks (Jobs)

M
1

M
2

M
3

M
4

M
5

All agents
compete

(c) SLIM + AM After Training

0

2

4

6

8

L
og

it
V

al
u

e

Figure 8: Comparison of joint logits L computed on an FJSP 10× 5 problem instance by (a) an un-
trained MACSIM policy, (b) MACSIM after training, and (c) an Attention Model trained by SLIM.

G.3 MECHANISM 3: INFERENCE-TIME CONSTRAINTS

The third layer of coordination occurs during the solution generation phase. Although the loss is
calculated independently, the inference process defined in Algorithm 1 explicitly couples the agents
via autoregressive sampling from the flattened joint logits. Because we sample without replacement,
an agent that is highly confident (possessing a high logit value) exerts a “soft” suppression on all
other agents. Specifically, if Agent m has a high probability for Task v, it is statistically likely
to be sampled early in the sequence. Once (m, v) is added to the solution, task v is masked. This
mechanism effectively converts confidence into priority. An agent that was reinforced multiple times
during training to take a specific action will exhibit a sharp probability peak. In our AR-sampling
algorithm, this confident agent will take precedence, thereby preventing other agents from making a
conflicting choice.

The ablation study in Table 3 validates that the policy implicitly learns to rank agents: replacing our
logit-dependent sampling order with a fixed or random order significantly degrades performance,
particularly for instances with a larger number of agents, proving that the learned confidence hierar-
chy is essential for resolving complex inter-agent conflicts.

H EXPERIMENTAL DETAILS AND RESOURCES

H.1 FJSP

H.1.1 HYPERPARAMETERS

We train MACSIM on the FJSP for 50 epochs using 4,000 randomly generated instances per epoch.
For each training instance x the current best policy π∗

θ is used to sample β = 128 solutions, where
the best serves as training example. Within the training loop, we sample pseudo expert state-
assignment pairs in batches of size 2,000 from the generated training dataset and use the Adam
optimizer Kingma & Ba (2015) with a learning rate of 10−4, which we alter during training using a
cosine annealing scheme. The embedding dimension d is set to 256, transformer layers use 8 heads
and we set the number of encoder layers P to 4. Also, we use a dropout rate of 10%.

H.1.2 DATASETS

Train data generation. We train MACSIM on FJSP instances of size 10×5, 20×5, and 15×10,
following the generation scheme and parameters described in Song et al. (2022).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Testing. Testing on the instance-types reported in Tables 1 and 2 is performed on 1000 separate test
instances provided by Song et al. (2022). Further, we test MACSIM on public benchmark datasets
(see Appendix D.1 for details).

H.2 FFSP

H.2.1 HYPERPARAMETERS

In each epoch, we train the models using 1,000 randomly generated instances for which we sample
β = 128 solutions and put the best into the training dataset. During training, we sample pseudo
expert state-assignment pairs in batches of size 1,000 from the generated training dataset and use the
Adam optimizer Kingma & Ba (2015) with a learning rate of 10−4, which we alter during training
using a cosine annealing scheme. Same as for the FJSP, the embedding dimension d is set to 256 and
we set the number of encoder layers P to 4. Also, we use the same dropout rate of 10%. However,
following Kwon et al. (2021) we use 16 heads in the attention layers. We train models corresponding
to environments with 20 jobs for 100, with 50 jobs for 150 and with 100 jobs for 200 epochs.

H.2.2 DATASETS

Train data generation. We follow the instance generation scheme outlined in Kwon et al. (2021)
and sample processing times for job-machine pairs independently from a uniform distribution within
the bounds [2, 10]. For the FFSP instance types shown in Table 1 we also use the same instance sizes
as Kwon et al. (2021) withN = 20, 50 and 100 jobs andM = 12 machines which are spread evenly
over S = 3 stages. To test for agent sensitivity in the FFSP, we fix the number of jobs to N = 50
but alter the number of agents for the last three instance types shown in Table 1. Still, we use S = 3
for this experiment, but alter the number of machines per stage to Mi = 6, 8 and 10, yielding a total
of 18, 24 and 30 agents, respectively.

Testing. Testing on the instance-types reported in Table 1 is performed on 1000 separate test in-
stances provided by Kwon et al. (2021). For the instance types reported in Table 6, test instances are
generated randomly according to the above generation scheme.

H.3 HCVRP

H.3.1 HYPERPARAMETERS

We train MACSIM on the HCVRP for 200 epochs. In each epoch, we train the models using 1,000
randomly generated instances for which we sample β = 200 solutions. Within the training loop
we sample pseudo expert state-assignment pairs in batches of size 1,000 from the generated training
dataset and use Adam with a learning rate of 10−4, which we alter during training using a cosine
annealing scheme. The embedding dimension d is set to 256, dropout rate is 10%, transformer layers
use 16 heads and we set the number of encoder layers P to 4.

H.3.2 DATASETS

Train data generation. We apply the instance generation scheme and seed used by Liu et al.
(2024). The authors follow the standard procedure in NCO literature and sample coordinates for
the N customer locations and the depot from the unit square. The demand of customer locations is
sampled i.i.d. from U(1, 10) and the capacity for each vehicle from U(20, 41). The speed of each
vehicle is uniformly distributed within the range U(0.5, 1.0).

Testing. Testing is performed on the 1280 instances per N ×M test setting from Liu et al. (2024).
Neural baselines in Table 1 were trained with the specific number of nodes N and number of agents
M they were tested on.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

H.4 HARDWARE AND SOFTWARE

H.4.1 HARDWARE

We experiment on a workstation equipped with 2 INTEL(R) XEON(R) GOLD 6338 CPUs and 8
NVIDIA A100 graphic cards with 80 GB of VRAM each. Each training run uses a single A100.

H.4.2 SOFTWARE

Our code base is implemented in Python 3.10. Neural policies are implemented in PyTorch 2.8
(Paszke et al., 2019) and training algorithms are defined as PyTorch Lightning Modules (Falcon &
The PyTorch Lightning team, 2019). Environment implementations are based on or inspired by the
RL4CO library (Berto et al., 2025). The operating system is Ubuntu 24.04 LTS.

H.5 USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used in this work solely as a general-purpose writing assistant.
Their role was limited to polishing phrasing, improving clarity, and correcting grammar in drafts of
the manuscript. All research ideas, analyses, results, and interpretations were generated and verified
by the authors. The content produced by LLMs was carefully reviewed, edited, and integrated by
the authors to ensure accuracy and adherence to academic standards.

32

	Introduction
	Related Works
	Preliminaries
	Multi-Action Self-Improvement
	Multi-Agent Policy
	Multi-Action Generation
	Skip Token
	Policy Learning

	Experiments
	Problems
	Experimental Results

	Conclusion
	Proof of Proposition 1
	MACSIM Policy
	Problem Definitions
	Flexible Job Shop Scheduling Problem
	Mathematical Model
	Multi-Agent MDP

	Flexible Flow Shop Problem
	Mathematical Model
	Multi-Agent MDP

	Min-Max Heterogeneous Capacitated Vehicle Routing Problem
	Mathematical Model
	Multi-Agent MDP

	More Experiments
	Public Benchmark Dataset for FJSP
	Increasing the number of agents in FFSP
	Analysis of the Skip Token
	Training Dynamics Analysis
	Scalability Analysis
	Runtime Profiling and Efficiency Analysis

	Loss Function Gradient Analysis
	Single-Agent Cross-Entropy Loss
	MLE Loss
	Plackett-Luce Loss
	Set Cross-Entropy Loss

	Theoretical Justification for Set-Based Loss in MACSIM
	Training–Inference Mismatch
	Formal Justification for the Surrogate Loss

	Discussing the Independence Assumption in the Set-Based Loss
	Mechanism 1: Architectural Coupling
	Mechanism 2: Implicit Constraint Learning via Gradient Dynamics
	Mechanism 3: Inference-Time Constraints

	Experimental Details and Resources
	FJSP
	Hyperparameters
	Datasets

	FFSP
	Hyperparameters
	Datasets

	HCVRP
	Hyperparameters
	Datasets

	Hardware and Software
	Hardware
	Software

	Use of Large Language Models

