

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-ACTION SELF-IMPROVEMENT FOR NEURAL COMBINATORIAL OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Self-improvement has emerged as a state-of-the-art paradigm in Neural Combinatorial Optimization (NCO), where models iteratively refine their policies by generating and imitating high-quality solutions. Despite strong empirical performance, existing methods face key limitations. Training is computationally expensive, as policy updates require sampling numerous candidate solutions per instance to extract a single expert trajectory. More fundamentally, these approaches fail to exploit the structure of combinatorial problems involving the coordination of multiple agents, such as vehicles in min-max routing or machines in scheduling. By supervising on single-action trajectories, they fail to exploit agent-permutation symmetries, where distinct sequences of actions yield identical solutions, hindering generalization and the ability to learn coordinated behavior.

We address these challenges by extending self-improvement to operate over joint multi-agent actions. Our model architecture predicts complete agent-task assignments jointly at each decision step. To explicitly leverage symmetries, we employ a set-prediction loss, which supervises the policy on multiple expert assignments for any given state. This approach enhances sample efficiency and the model’s ability to learn coordinated behavior. Furthermore, by generating multi-agent actions in parallel, it drastically accelerates the solution generation phase of the self-improvement loop. Empirically, we validate our method on several combinatorial problems, demonstrating consistent improvements in the quality of the final solution and a reduced generation latency compared to standard self-improvement.

1 INTRODUCTION

End-to-end constructive Neural Combinatorial Optimization (NCO) has emerged as a powerful framework for solving combinatorial optimization (CO) problems by casting them as sequential Markov Decision Processes (MDPs), where a neural policy constructs solutions step by step (Bengio et al., 2021). Reinforcement Learning (RL)-based methods have proven especially effective in this setting, enabling models to learn solution strategies through interaction rather than relying on pre-existing expert data (Bello et al., 2017; Kool et al., 2019; Kwon et al., 2020; Kim et al., 2022).

Despite their flexibility, traditional RL approaches in NCO face significant challenges. The sparse reward signals inherent to combinatorial optimization – where a meaningful objective is available only upon solution completion – have largely limited training to the REINFORCE algorithm (Williams, 1992) and variants (Kool et al., 2019; Kim et al., 2022; Kwon et al., 2020). Since these methods require backpropagation through the entire solution trajectory, the resulting high memory requirements and risk of gradient instability have encouraged a “heavy-encoder, light-decoder” architectural paradigm. In this setup, a static representation of the initial problem is generated once and used for all subsequent decisions. This becomes a critical bottleneck, as it fails to reflect the evolving problem state, often resulting in suboptimal decisions in the later stages of solution construction (Drakulic et al., 2023; Luo et al., 2024). Recently, self-improvement methods have offered a compelling solution to these issues (Pirnay & Grimm, 2024; Corsini et al., 2024). During training, these algorithms generate numerous solutions for a given problem instance, identify the best-performing trajectory, and use it as a pseudo-expert example for imitation learning. Because the policy is trained on individual state-action pairs along this expert trajectory, it enables the use of more powerful, decoder-only architectures that can dynamically re-encode the state at each step.

054 However, this next-token prediction approach
 055 of self-improvement faces a fundamental limitation
 056 in multi-agent CO problems, where multiple
 057 decision entities (agents) must plan and co-
 058 ordinate their actions to achieve a shared ob-
 059 jective. These problems often exhibit agent-
 060 permutation symmetries, meaning that differ-
 061 ent permutations of agent-task assignments can
 062 yield identical solutions. For example, in ve-
 063 hicle routing, assigning driver 1 to location A
 064 and then driver 2 to location B leads to the
 065 same overall route as the reverse assignment order
 066 (Figure 1). However, by supervising the
 067 policy on a single “best” next action per state,
 068 self-improvement implicitly enforces an arbi-
 069 trary agent order and treats the remaining symmet-
 070 ric choices as errors. This reduces sample ef-
 071 ficiency and limits the model’s ability to learn coordi-
 072 nation in multi-agent settings, thus limiting
 073 generalization performance.

074 To address these limitations, this paper introduces MACSIM – a **Multi-ACtion Self-Improvement**
 075 Method. MACSIM extends the self-improvement paradigm by incorporating a multi-agent policy
 076 that predicts joint assignments for all agents in parallel at each decision step. To explicitly lever-
 077 age problem symmetries, we employ a set-prediction loss, which allows the policy to learn from
 078 multiple equivalent expert assignments for a given state. This design promotes agent coordination,
 079 improves sample efficiency, and significantly accelerates solution generation. We demonstrate the
 080 effectiveness of MACSIM on several challenging combinatorial optimization tasks spanning both
 081 routing and scheduling domains. Our key contributions are as follows:

- 082 • We propose MACSIM, a novel learning paradigm for cooperative multi-agent combina-
 083 torial optimization problems that achieves better empirical results with lower solution gener-
 084 ation latency compared to standard self-improvement methods.
- 085 • We develop a new solution generation scheme that models the entire joint-agent action
 086 space in a single forward pass – thus fostering coordination – and avoids conflicts between
 087 agents through an autoregressive sampling algorithm.
- 088 • We introduce a permutation-invariant surrogate loss function for imitation learning on ex-
 089 pert multi-action trajectories, which stabilizes and accelerates the training process.

090 2 RELATED WORKS

091 The application of deep learning to CO problems was pioneered by the Pointer Network (Vinyals
 092 et al., 2015), which was trained via supervised learning to autoregressively construct solutions for
 093 the Traveling Salesman Problem (TSP). This paradigm was quickly adapted to RL, removing the
 094 dependency on optimal solutions as training data and thus improving scalability (Bello et al., 2017;
 095 Nazari et al., 2018). A major architectural advance came with transformer-based policies leveraging
 096 self-attention (Vaswani et al., 2017), leading to substantial performance gains (Kool et al., 2019).

097 A common strategy in these REINFORCE-based methods (Williams, 1992) is to apply a com-
 098 putationally expensive encoder once per problem instance and use the resulting embeddings in a
 099 lightweight, iterative decoder. While efficient, this “encode-once” approach has been shown to gen-
 100 eralize poorly to out-of-distribution instances (Manchanda et al., 2022). In response, recent works
 101 have explored alternative strategies, such as re-encoding the state at each decoding step (Drakulic
 102 et al., 2023; Luo et al., 2024), learning a diverse set of policies to improve performance at test time
 103 (Grinsztajn et al., 2023; Hottung et al., 2025), or abandoning autoregressive decoding entirely in
 104 favor of heatmap-based (Joshi et al., 2019; Fu et al., 2021; Qiu et al., 2022; Ye et al., 2023) or
 105 diffusion-based methods (Sun & Yang, 2023; Li et al., 2023; 2024).

106 Self-improvement learning has recently emerged as a powerful training paradigm that bypasses the
 107 need for expert solutions (Corsini et al., 2024; Pirnay & Grimm, 2024). Inspired by elite sampling
 108 from cross-entropy methods (Boer et al., 2005), these approaches sample multiple solution trajec-

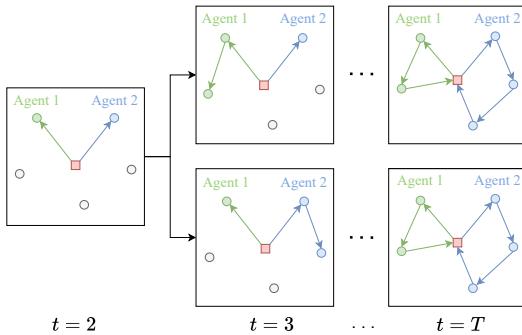


Figure 1: Example for agent-permutation symmetry. Both trajectories have the same solution.

108 tories, identify the best-performing one as a “pseudo-expert” and train the policy to imitate this
 109 target via next-token prediction. However, this approach assumes a unique optimal action per step,
 110 which is often violated in CO problems that exhibit symmetries (Cappart et al., 2023). In such cases,
 111 forcing the model to follow a single sequence reduces solution diversity and impairs generalization.
 112

113 Several lines of research have focused explicitly on exploiting symmetries. POMO (Kwon et al.,
 114 2020) and Sym-NCO (Kim et al., 2022) leverage the cyclic symmetry of the TSP by training on
 115 rollouts from all possible starting nodes and using their averaged returns to compute a low-variance
 116 baseline. More recently, DPN (Zheng et al., 2024) generalized this concept to multi-agent problems
 117 like the min-max VRP, where the order of agent routes is permutation-invariant. DPN samples
 118 multiple agent orderings and computes an agent-permutation-symmetric baseline, which reduces
 119 gradient variance and accelerates convergence by avoiding redundant learning.
 120

121 We extend self-improvement to explicitly leverage these structural symmetries in multi-agent CO
 122 problems. In contrast to PARCO, which resolves conflicts post-hoc, and DPN, which reduces vari-
 123 ance through permutation-invariant baselines, MACSIM generates coordinated and conflict-free as-
 124 signments directly and learns with a set-based loss, leading to more robust symmetry-aware policies.
 125

126 3 PRELIMINARIES

127 NCO typically involves a reformulation of the respective CO problem into a Markov Decision
 128 Process (MDP), where a solution τ to a problem instance x is constructed over a finite horizon
 129 $t = 1, \dots, T$. The current configuration of the problem at time step t is encoded in the state
 130 $s_t \in \mathcal{S}$, which typically represents all information in a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}, w\}$, with N nodes \mathcal{V} ,
 131 edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ and edge weights $w : \mathcal{E} \rightarrow \mathbb{R}$ (Khalil et al., 2017). At each step, a policy π_θ
 132 with learnable weights θ selects an action $a_t \in \mathcal{V}$ based on s_t , and the transition function ψ updates
 133 the state to s_{t+1} (Khalil et al., 2017). Due to the sequential structure of MDPs, NCO commonly
 134 adopts autoregressive (AR) policies that generate actions step by step, conditioned on prior deci-
 135 sions. Classical approaches trained via REINFORCE typically encode only the initial state s_0 using
 136 a graph neural network, while the policy operates autoregressively from this encoding. In contrast,
 137 self-improvement methods enable training at the action level, allowing the policy to encode inter-
 138 mediate states s_t and use decoder-only architectures defined as $P(\tau | x; \theta) = \prod_{t=1}^T \pi_\theta(a_t | s_t)$.
 139

140 In this work, we specifically target CO problems that can be framed as a cooperative multi-agent
 141 MDP (MMDP or Markov Game) with M agents sharing a common reward (Boutilier, 1996). Agents
 142 correspond to decision entities executing tasks, such as machines in scheduling problems or vehicles
 143 in routing. The state s_t of the problem can be defined by a bipartite graph $\mathcal{G} = \{\mathcal{V}, \mathcal{M}, \mathcal{E}, w\}$, where
 144 \mathcal{V} is the set of nodes (tasks), \mathcal{M} is the set of agents, and edges $\mathcal{E} \subseteq \mathcal{M} \times \mathcal{V}$ denote feasible agent-task
 145 assignments, each associated with a cost $w : \mathcal{E} \rightarrow \mathbb{R}$.
 146

147 At each step t , the policy π_θ maps the state s_t to a bipartite matching $\mathbf{a}_t = \{a_t^k\}_{k=1}^M$ between agent
 148 and tasks. Each element $a_t^k = (m_k, v_k)$ denotes the assignment of task v_k to agent m_k , where no
 149 two agents can be assigned to the same task. Given this matching, the problem transitions from s_t
 150 to s_{t+1} according to a transition function $\psi : \mathcal{S} \times \mathcal{V} \times \mathcal{M} \rightarrow \mathcal{S}$, until a solution τ is obtained.
 151 The transition function is assumed order-invariant, meaning it depends only on the final matching
 152 \mathbf{a}_t , not on the order in which assignments are produced. Agents receive a shared reward observed
 153 only at terminal states, where the return $R(\tau, x)$ equals the negative value of the CO objective for
 154 the complete solution.
 155

156 4 MULTI-ACTION SELF-IMPROVEMENT

157 4.1 MULTI-AGENT POLICY

158 The permutation invariance of the transition function with respect to joint agent-task assignments
 159 induces symmetries over agent orderings. Standard self-improvement typically ignores this structure
 160 by assuming a single best action per time-step. In contrast, our approach leverages these agent-
 161 permutation symmetries by learning a policy that generates complete joint agent-task assignments
 162 \mathbf{a}_t instead of single next actions $a_t = (m, v)$. To this end, MACSIM utilizes a multi-agent policy
 163 that directly maps the current state s_t to a joint agent-action assignment \mathbf{a}_t . This policy first encodes
 164

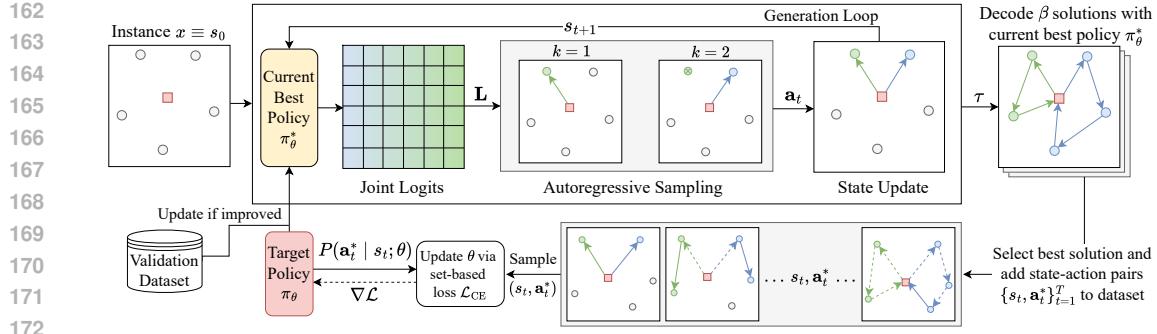


Figure 2: Overview of MACSIM. It generates joint agent-action logits in parallel through a multi-agent policy and autoregressively samples from them to generate complete agent-task assignments. The policy is used to sample β solutions, where the best serves as training example. A set-based loss function is used to train the policy on pseudo-expert multi-agent actions for a given state.

the bipartite input graph \mathcal{G} into agent embeddings $\mathbf{H}_{\mathcal{M}} \in \mathbb{R}^{M \times d}$ and task embeddings $\mathbf{H}_{\mathcal{V}} \in \mathbb{R}^{N \times d}$. Based on these embeddings, it computes a matrix of unnormalized logits $\mathbf{L} \in \mathbb{R}^{M \times N}$, where each entry $L_{m,v}$ represents the compatibility score for assigning task v to agent m . For full architectural details of the policy network, we refer the reader to Appendix B.

While the idea of multi-agent policies in NCO is not novel, existing approaches either sample only once from the resulting joint-distribution (Liu et al., 2024), thus discarding learned inter-agent correlations as well as potential efficiency gains through multi-step prediction. Or, they assume independence across agents by normalizing \mathbf{L} per agent and sampling independently from the resulting marginal distributions. However, this independence assumption does not hold, leading to suboptimal coordination and conflicts, where agents happen to select the same action. PARCO (Berto et al., 2024) resolves conflicts by a post-hoc resolution mechanism, prioritizing agents with larger log-probabilities while leaving others idle. Yet, since agents are modeled independently through different marginal distributions, effective coordination does not take place.

4.2 MULTI-ACTION GENERATION

To address this, we introduce an autoregressive sampling procedure, that utilizes the joint-logits \mathbf{L} from the neural policy to sequentially sample agent-action pairs from their joint distribution without replacement. To this end, the probability of generating a specific sequence \mathbf{a}_t is factorized using the chain rule of probability:

$$P(\mathbf{a}_t | \mathbf{L}) = \prod_{k=1}^M P(m_{t,k}, v_{t,k} | \mathbf{a}_t^{<k}, \mathbf{L}) \quad (1)$$

where $\mathbf{a}_t^{<k} = ((m_{t,1}, v_{t,1}), \dots, (m_{t,k-1}, v_{t,k-1}))$ denotes the sequence of previous assignments in the construction of \mathbf{a}_t . This formulation casts the selection of each agent-task pair as a step in a sequence, where the choice at step k is conditioned on all prior assignments. Specifically, let \mathcal{M}_k and \mathcal{V}_k be the sets of agents and tasks, respectively, available at step k , with $\mathcal{M}_1 = \mathcal{M}$ and $\mathcal{V}_1 = \mathcal{V}$. At each step $k \in \{1, \dots, M\}$, the policy samples a feasible and available agent-task pair, $(m_k, v_k) \in \mathcal{E}_k \subseteq \mathcal{E}$, where $\mathcal{E}_k = \mathcal{E} \cap (\mathcal{M}_k \times \mathcal{V}_k)$, from a categorical distribution with probabilities proportional to their scores L_{m_k, v_k} :

$$P(a_t^k = (m_k, v_k) | \mathbf{a}_t^{<k}, \mathbf{L}) = \frac{\exp(L_{m_k, v_k})}{\sum_{(m', v') \in \mathcal{E}_k} \exp(L_{m', v'})}, \quad (2)$$

After sampling $a_t^k = (m_k, v_k)$, the sets for the next step are updated via $\mathcal{M}_{k+1} = \mathcal{M}_k \setminus \{m_k\}$ and $\mathcal{V}_{k+1} = \mathcal{V}_k \setminus \{v_k\}$ and the process continues until all agents are assigned to a task. We summarize this sampling process, which guarantees the generation of a valid matching \mathbf{a}_t , in Algorithm 1. The validity of the resulting distribution is formally stated as follows:

Proposition 1. *The function $P(\mathbf{a}_t | \mathbf{L})$ defined by the autoregressive process in Equations 1 and 2 is a valid probability distribution over the space of all possible ordered agent-task matchings.¹*

¹A proof for Proposition 1 can be found in Appendix A.

The injectivity constraint implies that earlier assignments reduce the set of available actions for subsequent agents, making the generation process order-sensitive, even though the final solution is permutation-invariant. Our autoregressive approach explicitly models this dependency: the joint softmax normalization dynamically integrates coordination, since the denominator depends on all remaining agent-task pairs. High logits for a pair (m^*, v^*) implicitly reduce the probability of competing agents choosing the same task, allowing the policy to prioritize favorable assignments and avoid conflicts without relying on heuristics or post hoc conflict resolution, as PARCO does.

Substituting the definition of $P(\mathbf{a}_t | \mathbf{L})$ from Equation (1) into the decoder-only policy of Section 3 yields the following definition of our MACSIM policy:

$$P(\tau | s_t) = \prod_{t=1}^T \pi_\theta(\mathbf{L} | s_t) \prod_{k=1}^M P(a_t^k | \mathbf{a}_t^{<k}, \mathbf{L}) \quad (3)$$

In this formulation, the joint logits \mathbf{L} are computed only once by the computationally expensive neural policy π_θ , after which M actions are generated using a fast autoregressive sampling procedure. As a result, MACSIM can construct solutions significantly faster than fully autoregressive models, as we demonstrate in the experimental section of this paper.

4.3 SKIP TOKEN

The generative model defined by Equation (3) requires each agent to select an action at every decision step. However, enforcing task assignments for all agents at every step can be suboptimal, particularly in problems with strong inter-agent dependencies. In job-shop scheduling, for instance, the set of available jobs for a machine likely changes as other machines schedule operations. In such cases, it may be beneficial for an agent to wait until a more favorable task becomes available.

Therefore, we introduce a dummy action, referred to as the skip token. The skip token is a transient action that can be chosen by any agent at any time, allowing them to wait until the next decision step without modifying the current solution. To encourage efficient solution construction, each use of the skip token incurs a small penalty added to the objective value. Empirically, we find that annealing this penalty toward zero during training yields the best performance. This strategy encourages the policy to increasingly prioritize generating high-quality solutions as training progresses. We examine the effect of the skip token in Table 3 and provide more details and analyses in Appendix D.3.

Technically, the skip token is implemented as a learnable embedding $\mathbf{h}^{\text{skip}} \in \mathbb{R}^d$ which is added to the set of all task embeddings \mathbf{H}_V . Unlike other actions, the skip token can be selected by multiple agents, with the only restriction that at least one agent selects an actual task.

4.4 POLICY LEARNING

We train MACSIM with a two-stage self-improvement framework, similar to Pirnay & Grimm (2024) and Corsini et al. (2024). In the first stage, the current best policy π_θ^* generates $\beta \gg 1$ solutions for each problem instance x . We select the best solution with respect to the objective value plus the penalty term for skip token usage, and add the state-action pairs $((s_1, \mathbf{a}_1^*), \dots, (s_T, \mathbf{a}_T^*))$ corresponding to the solution τ^* to the training dataset. In the second stage, the policy network π_θ is updated via imitation learning on these pseudo-expert trajectories.

Unlike prior work that predicts a single “token” from a partial solution, we aim to maximize the likelihood of the policy producing the entire expert multi-agent action \mathbf{a}_t^* given the state s_t . The corresponding negative log-likelihood (NLL) under our generative process of Equation (1) is:

$$\mathcal{L}_{\text{ML}} = - \sum_{k=1}^M \log P(m_k, v_k | \mathbf{a}_t^{<k}) = - \sum_{k=1}^M \log \left(\frac{\exp(L_{m_k, v_k})}{\sum_{(m', v') \in \mathcal{E}_k} \exp(L_{m', v'})} \right). \quad (4)$$

270 However, direct optimization with \mathcal{L}_{ML} is problematic. As detailed in Appendix E, its primary flaw
 271 is conflicting gradient signals: each term in the sum assumes one assignment is correct at a given
 272 step and consequently penalizes all others, including those that occur later in the expert assignments.
 273

274 A first step to mitigate this issue is to utilize the agent order from the expert assignment. By assuming
 275 a fixed agent order $\mathbf{m}^* = (m_1, \dots, m_M)$ the choice of agent at step k becomes deterministic. Thus,
 276 $P(m_k \mid \mathbf{a}_t^{<k}) = 1$ and the probability $P(v_k, m_k \mid \mathbf{a}_t^{<k})$ can be factorized as $P(v_k \mid m_k, \mathbf{a}_t^{<k})$,
 277 transforming the generative process into a Plackett-Luce (PL) model (Volkovs & Zemel, 2012). Its
 278 NLL computes the loss over the marginal distributions for each agent, preventing gradient conflicts:
 279

$$\mathcal{L}_{\text{PL}} = - \sum_{k=1}^M \log P(v_k \mid m_k, \mathbf{a}_t^{<k}) = - \sum_{k=1}^M \log \frac{\exp(L_{m_k, v_k})}{\sum_{v' \in \mathcal{V}_k} \exp(L_{m_k, v'})}. \quad (5)$$

280 While this improves gradient stability, the loss remains sensitive to the permutation of the expert
 281 sequence. However, every permutation of the assignments in \mathbf{a}^* yields the same solution, which
 282 should be reflected in the loss function. Ideally, this would be achieved by averaging the Plackett-
 283 Luce loss over all possible $M!$ agent orderings, which is computationally intractable. Therefore, we
 284 employ a *surrogate loss* by relaxing the sequential dependence assumption for the loss calculation
 285 and treating each agent-task pair in an expert matching as an independent supervised instance with
 286 conditional probability $P(v \mid m)$. This is justified because the expert data consist only of valid
 287 matchings, making it unnecessary to enforce the injectivity constraint within the loss itself. This
 288 is analogous to bipartite matching in object detection (Carion et al., 2020), where the assignment
 289 between predictions and ground-truth objects is first established algorithmically, and losses are then
 290 computed independently for each matched pair. The resulting surrogate is defined as the cross-
 291 entropy (CE) loss summed over all agents:
 292

$$\mathcal{L}_{\text{CE}} = - \sum_{k=1}^M \log P(v_k \mid m_k) = - \sum_{k=1}^M \log \frac{\exp(L_{m_k, v_k})}{\sum_{v' \in \mathcal{V}} \exp(L_{m_k, v'})}. \quad (6)$$

293 This surrogate is permutation-invariant, computationally efficient, and provides a more robust training
 294 signal as we will validate empirically in the experimental section. Moreover, we provide a
 295 thorough analysis of \mathcal{L}_{CE} in Appendices E and F.
 296

300 5 EXPERIMENTS

301 We assess the effectiveness of MACSIM on representative multi-agent CO problems, spanning rout-
 302 ing and scheduling domains. Specifically, we evaluate MACSIM on two challenging scheduling
 303 problems – the flexible job shop scheduling problem (FJSP) and the flexible flow shop problem
 304 (FFSP) – as well as a common routing problem, the heterogeneous capacitated vehicle routing prob-
 305 lem (HCVRP). We compare MACSIM with common and SOTA solvers for the respective CO prob-
 306 lems and the self-improvement method (**SLIM**) of Corsini et al. (2024); Pirnay & Grimm (2024).²
 307

308 5.1 PROBLEMS

309 **Flexible Job Shop Scheduling Problem.** The FJSP is concerned with scheduling N jobs on M
 310 machines (agents). Each job consists of a sequence of operations that must be executed in a fixed
 311 order. Unlike the classical job shop problem, each operation in FJSP can be processed by a subset
 312 of eligible machines $\mathcal{M}_k \subseteq \mathcal{M}$, with machine-dependent processing times, resulting in a combined
 313 routing (assigning operations to machines) and sequencing problem (ordering operations on each
 314 machine). The common objective is to minimize the makespan of the resulting schedule. The
 315 formal mathematical model and the MMDP formulation of the FJSP are presented in Appendix C.1.
 316

317 To evaluate the performance on the FJSP, we compare MACSIM against several baselines. First,
 318 we include OR-Tools, a state-of-the-art CP-SAT solver widely applied in scheduling (Col & Tep-
 319 pan, 2019). We also benchmark against classical priority dispatching rules – FIFO (First In First
 320 Out), MOR (Most Operations Remaining), and MWKR (Most Work Remaining) – commonly used
 321 in manufacturing scheduling (Montazeri & Wassenhove, 1990). Lastly, we consider learning-based
 322 approaches, including a graph neural network trained via Proximal Policy Optimization (PPO) pro-
 323 posed by Song et al. (2022), and the dual attention model DANIEL (Wang et al., 2023).

²Source code is available at <https://anonymous.4open.science/r/macsim-B23A>

324 **Flexible Flow Shop Scheduling Problem.** The FFSP involves scheduling N jobs that must pass
 325 through S sequential processing stages. The key challenge lies in the flexibility at each stage, which
 326 contains M parallel machines; a job can be processed by any available machine within a stage.
 327 The objective is to determine the assignment and sequence of jobs on machines to minimize the
 328 makespan. A detailed problem formulation for the FFSP is provided in Appendix C.2.

329 We compare MACSIM against traditional baselines – Gurobi (Gurobi Optimization, LLC, 2025),
 330 a Genetic Algorithm (Hejazi & Saghaian, 2005), and Particle Swarm Optimization (Singh & Ma-
 331 hapatra, 2012) – as well as neural baselines: MatNet (Kwon et al., 2021), PolyNet (Hottung et al.,
 332 2025), and PARCO (Berto et al., 2024).

333
 334 **Min-Max Heterogeneous Capacitated Vehicle Routing Problem.** The HCVRP is a challenging
 335 extension of the classical CVRP, designed to capture more realistic logistics and transportation sce-
 336 narios. In HCVRP, a fleet of heterogeneous vehicles, each with distinct capacities and travel costs,
 337 is responsible for serving a set of customer demands. The objective differs from standard CVRP: in-
 338 stead of minimizing the total cost or distance, the goal is to minimize the maximum route length (or
 339 workload) among all vehicles, ensuring a balanced distribution of effort across the fleet. A detailed
 340 mathematical formulation for the min-max HCVRP is provided in Appendix C.3.

341 For the HCVRP, we employ two well-known heuristic baselines: Simulated Annealing (İlhan, 2021)
 342 and SISR (Christiaens & Berghe, 2020), a state-of-the-art heuristic for solving the CVRP and vari-
 343 ants. Neural baselines involve Equity-Transformer (ET) (Son et al., 2024), DRL_{LI} (Li et al., 2022),
 344 2D-Ptr (Liu et al., 2024), and DPN (Zheng et al., 2024).

347 5.2 EXPERIMENTAL RESULTS

348 We present the main empirical results in Table 1, which reports test-set performance of the eval-
 349 uated methods in terms of average objective values (Obj.), gaps to the best-known solutions, and
 350 average inference latency for a single instance. For neural baselines, we report performance under
 351 both greedy ($g.$) and sampling ($s.$) decoding, with the latter evaluated using 1,280 sampled solutions
 352 (more details on the experimental setup can be found in Appendix H). MACSIM consistently out-
 353 performs neural baselines across all problem types and sizes, surpasses all methods on FFSP, and
 354 substantially reduces the gap to OR-Tools on FJSP, even outperforming it on 20×5 instances.

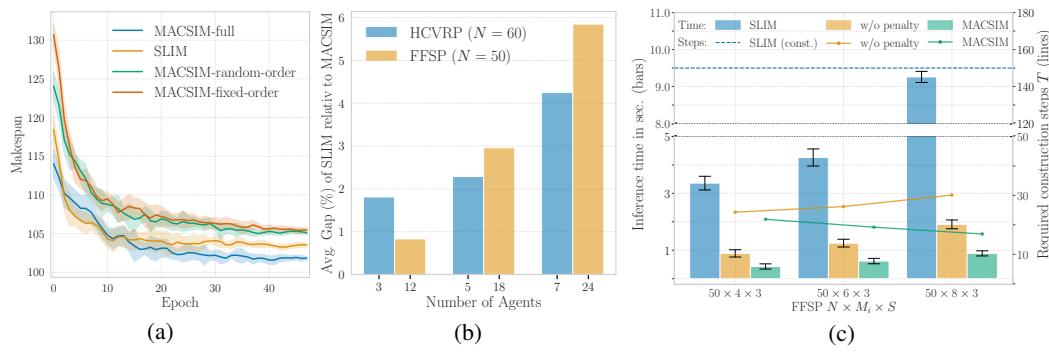
355 Compared to SLIM, the advantage of MACSIM increases with the number of agents, as shown
 356 in Figure 3b for the HCVRP and FFSP. In addition, MACSIM significantly reduces inference time
 357 compared to SLIM. For FFSP 50×4 instances, SLIM requires nearly ten times longer than MACSIM
 358 to generate a solution. This difference grows with the number of agents, as shown in Figure 3c,
 359 which illustrates the number of forward passes needed by each policy to construct a solution and
 360 the resulting inference times. MACSIM requires only a fraction of the construction steps used by
 361 SLIM, and this advantage further increases with the number of agents due to its multi-agent policy.

362 While MACSIM is not necessarily the fastest among the neural solvers evaluated here, slower in-
 363 ference times compared to other methods can be attributed to the fact that, like SLIM, MACSIM
 364 performs step-wise re-encoding of the problem state. As discussed in previous work, this enables
 365 better generalization to out-of-distribution instances (e.g., Luo et al. (2024)). Table 2 validates this
 366 by evaluating models trained on the small FJSP instances of Table 1 on larger instances, where
 367 MACSIM outperforms all neural baselines and even OR-Tools on two out of three instance types.

368 We also conduct an ablation study to assess the impact of MACSIM’s components. First, Figure 3a
 369 evaluates MACSIM with different sequence generation modes. While “MACSIM-full” refers to the
 370 generative model defined by Equation (3) with the sequential sampling algorithm described in Al-
 371 gorithm 1, “MACSIM-random-order” and “MACSIM-fixed-order” denote variants where agents act
 372 in random or fixed order, respectively, given logits L . The results in Figure 3a and table 3 highlight
 373 the effectiveness of the proposed sampling procedure, particularly on instances with many agents.
 374 Moreover, Table 3 confirms the importance of the skip token, which proves especially beneficial
 375 in larger instances where coordination among agents is more challenging. Although the skip token
 376 increases generation latency, it substantially improves solution quality. A more detailed analysis of
 377 the skip token and its penalty is provided in Appendix D where we provide more experiments.

378 Table 1: Test set performance of MACSIM and baselines on FJSP, FFSP, and HCVRP. Best obj.
379 values found by any solver are shown in bold; grey backgrounds indicate the best neural solver.
380

FJSP										
$N \times M$	10 × 5			20 × 5			15 × 10			
Metric	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)	
OR-Tools	96.32	0.00%	1597	188.15	0.03%	1800	143.53	0.00%	1724	
FIFO	119.4	23.96%	0.16	216.08	14.88%	0.32	184.55	28.58%	0.51	
MOR	115.38	19.79%	0.16	214.16	13.85%	0.32	173.15	20.64%	0.51	
MWKR	113.23	17.56%	0.16	209.78	11.53%	0.32	171.25	19.31%	0.50	
PPO (g.)	111.67	15.94%	0.45	211.22	12.29%	1.43	166.92	16.30%	1.35	
DANIEL (g.)	106.71	10.79%	0.45	197.56	5.03%	0.94	161.28	12.37%	1.43	
SLIM (g.)	103.85	7.82%	0.91	194.37	3.33%	1.18	154.32	7.62%	2.74	
MACSIM (g.)	102.21	6.12%	0.44	191.08	1.58%	0.76	149.84	4.40%	1.32	
PPO (s.)	105.59	9.62%	1.11	207.53	10.33%	2.36	160.86	12.07%	6.42	
DANIEL (s.)	101.67	5.55%	0.74	192.78	2.49%	1.87	153.22	6.75%	6.10	
SLIM (s.)	98.74	2.51%	2.32	189.08	0.52%	6.91	149.02	3.82%	20.08	
MACSIM (s.)	97.64	1.37%	0.86	188.10	0.00%	2.28	145.95	1.69%	6.19	
FFSP										
$N \times M_i \times S$	20 × 4 × 3			50 × 4 × 3			100 × 4 × 3			
Metric	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)	
Gurobi (600s)	31.61	31.93%	600	-	-	600	-	-	600	
Genetic Algorithm	31.15	30.01%	21.05	56.92	19.23%	44.82	99.25	13.79%	89.20	
Particle Swarm	29.10	21.45%	46.17	55.10	15.42%	82.46	97.30	11.56%	154	
MatNet (g.)	27.26	13.77%	1.22	51.52	7.92%	2.17	91.58	5.00%	4.97	
PolyNet (g.)	26.71	11.48%	1.69	51.01	6.85%	2.45	91.22	4.59%	5.21	
PARCO (g.)	26.31	9.81%	0.26	51.19	7.23%	0.52	91.29	4.67%	0.89	
SLIM (g.)	26.18	9.27%	0.86	50.01	4.75%	3.36	91.97	5.45%	5.14	
MACSIM (g.)	25.75	7.47%	0.28	49.36	3.39%	0.43	89.88	1.86%	0.96	
MatNet (s.)	25.43	6.14%	3.88	49.68	4.06%	8.91	89.72	2.87%	18.00	
PolyNet (s.)	24.98	4.26%	5.04	49.23	3.12%	9.24	89.21	2.28%	19.29	
PARCO (s.)	24.78	3.42%	0.99	49.27	3.20%	1.97	89.46	2.57%	4.04	
SLIM (s.)	24.19	0.96%	1.55	48.13	0.82%	10.21	89.50	2.61%	19.01	
MACSIM (s.)	23.96	0.00%	0.49	47.74	0.00%	0.91	87.22	0.00%	3.60	
HCVRP										
$N \times M$	60 × 3			80 × 3			100 × 3			
Metric	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)	
SISR	6.57	0.00%	478	8.52	0.00%	750	10.29	0.00%	1084	
Simulated Annealing	7.04	7.15%	382	9.17	7.63%	561	11.13	8.16%	765	
ET (g.)	7.58	15.37%	0.28	9.76	14.55%	0.38	11.74	14.09%	0.45	
DPN (g.)	7.46	13.54%	0.28	9.66	13.38%	0.40	11.48	11.56%	0.46	
DRL _{Li} (g.)	7.43	13.09%	0.34	9.64	13.15%	0.46	11.44	11.18%	0.58	
2D-Ptr (g.)	7.20	9.59%	0.20	9.24	8.45%	0.27	11.12	8.07%	0.31	
SLIM (g.)	7.19	9.44%	0.63	9.25	8.57%	0.87	11.10	7.87%	1.04	
MACSIM (g.)	7.15	8.83%	0.35	9.15	7.39%	0.43	11.02	7.09%	0.78	
ET (s.)	7.14	8.68%	0.52	9.19	7.86%	0.66	11.20	8.84%	1.02	
DPN (s.)	7.03	7.00%	0.55	9.16	7.51%	0.71	11.03	7.19%	1.08	
DRL _{Li} (s.)	6.97	6.09%	0.73	9.10	6.81%	1.10	10.90	5.93%	1.48	
2D-Ptr (s.)	6.82	3.81%	0.32	8.85	3.87%	0.44	10.71	4.08%	0.55	
SLIM (s.)	6.88	4.75%	2.40	8.92	4.69%	3.31	10.81	5.05%	4.09	
MACSIM (s.)	6.76	2.89%	1.65	8.78	3.05%	2.29	10.67	3.69%	2.76	



427 Figure 3: **Left:** Validation performance (makespan) on FJSP 10 × 5 instances during training under
428 different sequence generation strategies. **Middle:** Average performance gap of SLIM relative to
429 MACSIM across varying numbers of agents. **Right:** Inference efficiency comparison, reporting
430 construction steps (lines, right axis) and inference time to generate a solution (bars, left axis).
431

432
433
434
Table 2: Generalization performance of MACSIM and baseline solvers on larger FJSP instance
distributions not seen during training.

<i>N</i> × <i>M</i>	FJSP								
	20 × 10			30 × 10			40 × 10		
Metric	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)
OR-Tools	195.98	3.14%	1800	274.67	0.00%	1800	365.96	0.08%	1800
PPO (g.)	215.78	13.56%	1.91	312.59	13.81%	2.86	416.18	13.81%	3.82
DANIEL (g.)	198.50	4.46%	1.85	281.49	2.48%	2.76	371.45	1.58%	3.81
SLIM (g.)	195.89	3.09%	3.11	281.87	2.62%	4.57	374.13	2.31%	6.03
MACSIM (g.)	192.15	1.12%	1.19	276.01	0.49%	1.71	365.87	0.05%	2.27
PPO (s.)	214.81	13.05%	6.23	308.55	12.33%	12.79	410.76	12.33%	24.54
DANIEL (s.)	193.91	2.05%	6.35	279.20	1.65%	12.37	370.08	1.21%	21.09
SLIM (s.)	194.19	2.19%	28.15	281.42	2.46%	69.97	373.70	2.20%	139.30
MACSIM (s.)	190.02	0.00%	6.79	275.48	0.29%	14.12	365.67	0.00%	27.13

446
Table 3: Ablation study on MACSIM components
447

FJSP				
<i>N</i> × <i>M</i>	10 × 5	15 × 10		
Metric	Obj.	Time	Obj.	
MACSIM-full (s.)	97.64	0.86	145.95	6.19
w/o AR-sampling				
fixed (s.)	98.97	0.76	155.13	3.97
random (s.)	98.66	0.78	150.72	4.15
w/o skip-token (s.)	98.69	0.75	159.65	3.89

446
Table 4: Comparison of Loss Functions
447

<i>N</i> × <i>M</i>	FJSP		FFSP	
	10 × 5	20 × 5	20 × 12	50 × 12
Metric	Obj.	Obj.	Obj.	Obj.
\mathcal{L}_{SA} (s.)	98.81	189.18	24.29	49.58
\mathcal{L}_{ML} (s.)	98.13	188.97	24.15	49.02
\mathcal{L}_{PL} (s.)	97.99	188.81	24.08	47.90
\mathcal{L}_{CE} (s.)	97.64	188.10	23.96	47.74

456
Finally, Table 4 compares the loss functions from Section 4.4, along with the single-agent cross-
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338<br

486 REPRODUCIBILITY STATEMENT
487

488 To facilitate reproducibility of our results, we provide complete access to our implementation, model
489 weights, and training configurations. The source code is available at <https://anonymous.4open.science/r/macsim-B23A>, and the trained model weights along with all config-
490 uration files used in our experiments can be found at https://osf.io/5z2aj/?view_only=783b0bb138e64431a681fd36452ea710. Detailed descriptions of model archi-
491 tectures, training procedures, and experimental setups are provided in the main paper and appendix.
492 These resources together ensure that our experiments can be independently reproduced.
493

494 REFERENCES
495

496 Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
497 optimization with reinforcement learning. *arXiv preprint arXiv:1611.09940*, 2017.

498 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
499 mization: a methodological tour d’horizon. *European Journal of Operational Research*, 290(2):
500 405–421, 2021.

501 Federico Berto, Chuanbo Hua, Laurin Luttmann, Jiwoo Son, Junyoung Park, Kyuree Ahn,
502 Changhyun Kwon, Lin Xie, and Jinkyoo Park. Parco: Learning parallel autoregressive policies
503 for efficient multi-agent combinatorial optimization. *arXiv preprint arXiv:2409.03811*, 2024.

504 Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
505 Wang, Haoran Ye, Minsu Kim, Sanghyeon Choi, et al. RL4CO: an extensive reinforcement
506 learning for combinatorial optimization benchmark. In *Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining* V. 2, pp. 5278–5289, 2025.

507 Pieter-Tjerk De Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tutorial on the
508 cross-entropy method. *Annals of Operations Research*, 134:19–67, 2005.

509 Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In *TARK*,
510 volume 96, pp. 195–210, 1996.

511 Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. *Annals of Opera-
512 tions Research*, 41(3):157–183, 1993.

513 Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
514 Veličković. Combinatorial optimization and reasoning with graph neural networks. *Journal of
515 Machine Learning Research*, 24(130):1–61, 2023.

516 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
517 Sergey Zagoruyko. End-to-end object detection with transformers. In *European Conference
518 on Computer Vision*, pp. 213–229. Springer, 2020.

519 Jan Christiaens and Greet Vanden Berghe. Slack induction by string removals for vehicle routing
520 problems. *Transportation Science*, 54(2):417–433, 2020.

521 Giacomo Da Col and Erich C. Teppan. Industrial size job shop scheduling tackled by present day
522 CP solvers. In *Principles and Practice of Constraint Programming: 25th International Confer-
523 ence, CP 2019, Stamford, CT, USA, September 30 – October 4, 2019, Proceedings*, pp. 144–160.
524 Springer-Verlag, 2019. doi: 10.1007/978-3-030-30048-7_9.

525 Andrea Corsini, Angelo Porrello, Simone Calderara, and Mauro Dell’Amico. Self-labeling the job
526 shop scheduling problem. In *Advances in Neural Information Processing Systems*, volume 37,
527 pp. 105528–105551, 2024.

528 Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisim-
529 ulation quotienting for efficient neural combinatorial optimization. In *Advances in Neural Infor-
530 mation Processing Systems*, volume 36, pp. 77416–77429, 2023.

531 William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL <https://github.com/Lightning-AI/lightning>.

540 Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
 541 large TSP instances. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35
 542 No. 8, pp. 7474–7482, 2021.

543

544 Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Win-
 545 ner takes it all: Training performant RL populations for combinatorial optimization. In *Advances
 546 in Neural Information Processing Systems*, volume 36, pp. 48485–48509, 2023.

547 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2025. URL <https://www.gurobi.com>.

548

549

550 Seyed Reza Hejazi and S. Saghafian. Flowshop-scheduling problems with makespan criterion: a
 551 review. *International Journal of Production Research*, 43(14):2895–2929, 2005.

552

553 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint
 554 arXiv:1606.08415*, 2016.

555 André Hottung, Mridul Mahajan, and Kevin Tierney. Polynet: Learning diverse solution strategies
 556 for neural combinatorial optimization. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.),
 557 *International Conference on Representation Learning*, volume 2025, pp. 80417–80435, 2025.

558

559 Johann Hurink, Bernd Jurisch, and Monika Thole. Tabu search for the job-shop scheduling problem
 560 with multi-purpose machines. *Operations Research Spektrum*, 15(4):205–215, 1994.

561 İlhan İlhan. An improved simulated annealing algorithm with crossover operator for capacitated
 562 vehicle routing problem. *Swarm and Evolutionary Computation*, 64:100911, 2021.

563

564 Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
 565 technique for the travelling salesman problem. *arXiv preprint arXiv:1906.01227*, 2019.

566

567 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial op-
 568 timization algorithms over graphs. In *Advances in Neural Information Processing Systems*, vol-
 569 ume 30, 2017.

570 Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
 571 binatorial optimization. In *Advances in Neural Information Processing Systems*, volume 35, 2022.

572

573 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 574 arXiv:1412.6980*, 2015.

575 Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems! In
 576 *International Conference on Learning Representations*, 2019.

577

578 Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
 579 Pomo: Policy optimization with multiple optima for reinforcement learning. In *Advances in
 580 Neural Information Processing Systems*, volume 33, pp. 21188–21198, 2020.

581

582 Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
 583 encoding networks for neural combinatorial optimization. In *Advances in Neural Information
 584 Processing Systems*, volume 34, pp. 5138–5149, 2021.

585 Jingwen Li, Yining Ma, Ruize Gao, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Deep
 586 reinforcement learning for solving the heterogeneous capacitated vehicle routing problem. *IEEE
 587 Transactions on Cybernetics*, 52(12):13572–13585, 2022. doi: 10.1109/TCYB.2021.3111082.

588

589 Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2T: From distribution learning in training
 590 to gradient search in testing for combinatorial optimization. In *Advances in Neural Information
 591 Processing Systems*, volume 36, pp. 50020–50040, 2023.

592

593 Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast T2T: Optimization
 594 consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
 In *Advances in Neural Information Processing Systems*, volume 37, pp. 30179–30206, 2024.

594 Qidong Liu, Chaoyue Liu, Shaoyao Niu, Cheng Long, Jie Zhang, and Mingliang Xu. 2D-Ptr:
 595 2D array pointer network for solving the heterogeneous capacitated vehicle routing problem. In
 596 *Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems*,
 597 pp. 1238–1246, 2024.

598 Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
 599 heavy decoder: Toward large scale generalization. In *Advances in Neural Information Processing
 600 Systems*, volume 36, 2024.

601 Laurin Luttmann and Lin Xie. Neural combinatorial optimization on heterogeneous graphs: An
 602 application to the picker routing problem in mixed-shelves warehouses. In *Proceedings of the
 603 International Conference on Automated Planning and Scheduling*, volume 34, pp. 351–359, 2024.

604 Laurin Luttmann and Lin Xie. Learning to solve the min-max mixed-shelves picker-routing problem
 605 via hierarchical and parallel decoding. *arXiv preprint arXiv:2502.10233*, 2025.

606 Sahil Manchanda, Sofia Michel, Darko Drakulic, and Jean-Marc Andreoli. On the generalization of
 607 neural combinatorial optimization heuristics. In *Joint European Conference on Machine Learning
 608 and Knowledge Discovery in Databases*, pp. 426–442. Springer, 2022.

609 Mrn Montazeri and L. N. Van Wassenhove. Analysis of scheduling rules for an FMS. *The Interna-
 610 tional Journal of Production Research*, 28(4):785–802, 1990.

611 Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takáć. Reinforcement
 612 learning for solving the vehicle routing problem. In *Advances in Neural Information Processing
 613 Systems*, volume 31, 2018.

614 Cemal Özgüven, Lale Özbakır, and Yasemin Yavuz. Mathematical models for job-shop scheduling
 615 problems with routing and process plan flexibility. *Applied Mathematical Modelling*, 34(6):1539–
 616 1548, 2010.

617 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 618 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 619 high-performance deep learning library. In *Advances in Neural Information Processing Systems*,
 620 volume 32, 2019.

621 Jonathan Pirnay and Dominik G. Grimm. Self-improvement for neural combinatorial optimization:
 622 Sample without replacement, but improvement. *Transactions on Machine Learning Research*,
 623 2024. ISSN 2835-8856.

624 Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
 625 optimization problems. In *Advances in Neural Information Processing Systems*, volume 35,
 626 pp. 25531–25546, 2022.

627 Manas Ranjan Singh and S. S. Mahapatra. A swarm optimization approach for flexible flow shop
 628 scheduling with multiprocessor tasks. *The International Journal of Advanced Manufacturing
 629 Technology*, 62:267–277, 2012.

630 Jiwoo Son, Minsu Kim, Sanghyeok Choi, Hyeonah Kim, and Jinkyoo Park. Equity-Transformer:
 631 Solving NP-Hard Min-Max Routing Problems as Sequential Generation with Equity Context. In
 632 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38 No. 18, pp. 20265–
 633 20273, 2024.

634 Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling via graph
 635 neural network and deep reinforcement learning. *IEEE Transactions on Industrial Informatics*,
 636 19(2):1600–1610, 2022.

637 Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
 638 tion. In *Advances in Neural Information Processing Systems*, volume 36, pp. 3706–3731, 2023.

639 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 640 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-
 641 mation Processing Systems*, volume 30, 2017.

648 Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In *Advances in Neural*
649 *Information Processing Systems*, volume 28, 2015.
650

651 Maksims Volkovs and Richard Zemel. Efficient sampling for bipartite matching problems. In *Ad-*
652 *vances in Neural Information Processing Systems*, volume 25, 2012.
653

654 Runqing Wang, Gang Wang, Jian Sun, Fang Deng, and Jie Chen. Flexible job shop scheduling via
655 dual attention network-based reinforcement learning. *IEEE Transactions on Neural Networks and*
656 *Learning Systems*, 35(3):3091–3102, 2023.
657

658 Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
659 learning. *Machine Learning*, 8:229–256, 1992.
660

661 Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. DeepACO: Neural-enhanced ant
662 systems for combinatorial optimization. In *Advances in Neural Information Processing Systems*,
663 volume 36, pp. 43706–43728, 2023.
664

665 Zhi Zheng, Shunyu Yao, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Ke Tang. DPN:
666 decoupling partition and navigation for neural solvers of min–max vehicle routing problems. In
667 *Proceedings of the 41st International Conference on Machine Learning*, ICML’24. JMLR.org,
668 2024.
669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A PROOF OF PROPOSITION 1**
 703

704 **Proposition 1.** *The probability $P(\mathbf{a}_t \mid \mathbf{L})$ of generating a specific sequence of agent-task assignments defined by*

$$707 \quad P(\mathbf{a}_t \mid \mathbf{L}) = \prod_{k=1}^M \frac{\exp(L_{m_k, v_k})}{\sum_{(m', v' \in \mathcal{E}_k)} \exp(L_{m', v'})} \quad (7)$$

710 *is a valid probability distribution over the space of all possible ordered agent-task matchings.*

712 *Proof.* To establish that $P(\mathbf{a} \mid \mathbf{L})$ is a valid probability distribution over the space \mathcal{A}_{seq} of all ordered sequences of M agent-task assignments, we demonstrate that it satisfies two axioms: (i) non-negativity and (ii) normalization.

716 **Non-negativity.** Each term in Equation (7) is mapped into the probability simplex via the softmax function $f : \mathbb{R}^{\mathcal{E}_k} \rightarrow \Delta(|\mathcal{E}_k|)$ applied to the set of available agent-task pairs $\mathcal{E}_k = \mathcal{E} \cap (\mathcal{M}_k \times \mathcal{V}_k)$. By definition of the probability simplex, the softmax yields non-negative values that sum to one. Thus, each conditional probability $P(a_k \mid \mathbf{a}^{<k}, \mathbf{L})$ is non-negative, and the total probability $P(\mathbf{a} \mid \mathbf{L})$, as a product of non-negative terms, is also non-negative for any $\mathbf{a} \in \mathcal{A}_{\text{seq}}$, satisfying the non-negativity axiom.

722 **Normalization.** To verify normalization, we demonstrate that the sum of probabilities over the 723 entire sample space is unity. We expand this sum by expressing it as a nested sum over all possible 724 choices at each step of the sequence generation. Using the notation $\mathcal{E}(\mathbf{a}^{<k})$ for the set of available 725 choices at step k given the history $\mathbf{a}^{<k}$ we have:

$$727 \quad \sum_{\mathbf{a} \in \mathcal{A}_{\text{seq}}} P(\mathbf{a} \mid \mathbf{L}) = \sum_{\mathbf{a} \in \mathcal{A}_{\text{seq}}} \prod_{k=1}^M P(a_k \mid \mathbf{a}^{<k}, \mathbf{L})$$

$$730 \quad = \sum_{a_1 \in \mathcal{E}} \sum_{a_2 \in \mathcal{E}(a_1)} \dots \sum_{a_M \in \mathcal{E}(\mathbf{a}^{<M})} \prod_{k=1}^M P(a_k \mid \mathbf{a}^{<k}, \mathbf{L})$$

$$733 \quad = \sum_{a_1 \in \mathcal{E}} P(a_1 \mid \mathbf{L}) \sum_{a_2 \in \mathcal{E}(a_1)} P(a_2 \mid a_1, \mathbf{L}) \dots \sum_{a_M \in \mathcal{E}(\mathbf{a}^{<M})} P(a_M \mid \mathbf{a}^{<M}, \mathbf{L})$$

736 Consider the sum over all possible assignments for any given history $\mathbf{a}^{<k}$. By substituting the 737 definition from Equation 2, we have:

$$739 \quad \sum_{a_k \in \mathcal{E}(\mathbf{a}^{<k})} P(a_k = (m_k, v_k) \mid \mathbf{a}^{<k}, \mathbf{L}) = \sum_{(m_k, v_k) \in \mathcal{E}(\mathbf{a}^{<k})} \frac{\exp(L_{m_k, v_k})}{\sum_{(m', v') \in \mathcal{E}(\mathbf{a}^{<k})} \exp(L_{m', v'})}$$

$$742 \quad = \frac{\sum_{(m_k, v_k) \in \mathcal{E}(\mathbf{a}^{<k})} \exp(L_{m_k, v_k})}{\sum_{(m', v') \in \mathcal{E}(\mathbf{a}^{<k})} \exp(L_{m', v'})}$$

$$744 \quad = 1$$

746 Since $\sum_{a_k \in \mathcal{E}(\mathbf{a}^{<k})} P(a_k \mid \mathbf{a}^{<k}, \mathbf{L}) = 1$ for any $1 \leq k \leq M$, the marginalized sum collapses:

$$748 \quad \sum_{\mathbf{a} \in \mathcal{A}_{\text{seq}}} P(\mathbf{a} \mid \mathbf{L}) = 1 \times \dots \times 1 = 1.$$

750 Thus, the normalization property is satisfied. Since both axioms hold, $P(\mathbf{a} \mid \mathbf{L})$ is a valid probability 751 distribution. \square
 752

753
 754
 755

756 **B MACSIM POLICY**
757

758 As defined in Section 3, the problems tackled
759 by MACSIM can be formulated as MMDPs,
760 whose states are bipartite graphs consisting of
761 agent and task nodes. MACSIM therefore re-
762 quires an architectural policy backbone, that is
763 capable of encoding such graph structure effec-
764 tively. Our policy is strongly motivated by re-
765 lated works of Kwon et al. (2021); Luttmann
766 & Xie (2024; 2025), who define such architec-
767 tures in the realm of NCO.

768 First, the policy employed in our paper projects
769 the different node-types (agents and tasks) from
770 their distinct feature spaces into a mutual em-
771 bedding space of dimensionality d using type-
772 specific transformations \mathbf{W}_{ϵ_i} for node i of type
773 ϵ_i . The features used to represent agents and
774 tasks for the respective problems can be found
775 in Appendix C.

776 Given the initial embeddings $\mathbf{H}_{\mathcal{M}}^0$ and $\mathbf{H}_{\mathcal{V}}^0$
777 for agents and tasks, respectively, we use sev-
778 eral layers of self- and cross-attention to en-
779 able message passing between all nodes in the
780 graph. While self-attention is applied indepen-
781 dently to agent and task embeddings follow-
782 ing the Transformer architecture Vaswani et al.
783 (2017), cross-attention allows message passing
784 between agent and task nodes.

785 Formally, to perform cross-attention we com-
786 pute a matrix of attention scores \mathbf{A} using agent
787 embeddings as queries \mathbf{Q} and task embeddings
788 as keys \mathbf{K} :

$$789 \mathbf{A} = \frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d_k}}$$

790 where

$$792 \mathbf{Q} = \mathbf{W}^{\mathbf{Q}} \mathbf{H}_{\mathcal{M}}^{l-1}, \quad \mathbf{K} = \mathbf{W}^{\mathbf{K}} \mathbf{H}_{\mathcal{V}}^{l-1}$$

793 and $\mathbf{W}^{\mathbf{Q}}$ and $\mathbf{W}^{\mathbf{K}} \in \mathbb{R}^{d_k \times d}$ are weight matrices learned per attention head³ and d_k is the per-
794 head embedding dimension. The resulting attention scores $\mathbf{A} \in \mathbb{R}^{M \times N}$ can be interpreted as the
795 (learned) compatibility of an agent m and a task v . Similar to MatNet Kwon et al. (2021), we fuse
796 these learned attention scores with the edge weights $w : \mathcal{E} \rightarrow \mathbb{R}$. In FFSP, for instance, the weight w
797 of an edge connecting an agent and a task node corresponds to the duration of the respective job on
798 that specific machine. Formally, we concatenate the attention score and the matrix of edge weights
799 and feed the resulting score vector through a multi-layer perceptron $\text{MLP} : \mathbb{R}^{M \times N \times 2} \rightarrow \mathbb{R}^{M \times N}$,
800 with a single hidden layer comprising of d units and GELU activation function Hendrycks & Gimpel
801 (2016). Further, we pass the transpose of the attention scores and of the supply matrix \mathbf{A}^\top , $\mathbf{E}^\top \in$
802 $\mathbb{R}^{N \times M}$ through a second MLP to obtain the reverse compatibility $\mathbf{A}_{\mathcal{V} \rightarrow \mathcal{M}}$ of tasks v on agents m :

$$803 \mathbf{A}_{\mathcal{M} \rightarrow \mathcal{V}} = \text{MLP}_{\mathcal{M}}([\mathbf{A} || \mathbf{E}]), \quad \mathbf{A}_{\mathcal{V} \rightarrow \mathcal{M}} = \text{MLP}_{\mathcal{V}}([\mathbf{A}^\top || \mathbf{E}^\top]), \quad (8)$$

804 The resulting attention scores are then used to compute the embeddings for the nodes of the res-
805 pective type:

$$807 \mathbf{H}'_{\mathcal{M}} = \text{softmax}(\mathbf{A}_{\mathcal{M} \rightarrow \mathcal{V}}) \mathbf{V}_{\mathcal{V}}, \quad \mathbf{V}_{\mathcal{V}} = \mathbf{W}_{\mathcal{V}}^{\mathbf{V}} \mathbf{H}_{\mathcal{V}}^{l-1} \quad (9)$$

$$808 \mathbf{H}'_{\mathcal{V}} = \text{softmax}(\mathbf{A}_{\mathcal{V} \rightarrow \mathcal{M}}) \mathbf{V}_{\mathcal{M}}, \quad \mathbf{V}_{\mathcal{M}} = \mathbf{W}_{\mathcal{M}}^{\mathbf{V}} \mathbf{H}_{\mathcal{M}}^{l-1} \quad (10)$$

809 ³For succinctness, we omit the layer and head enumeration

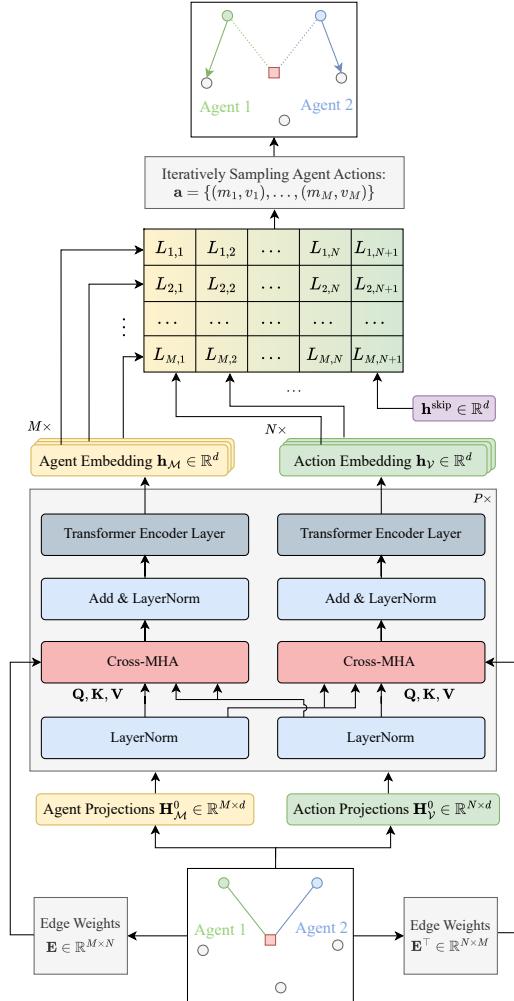


Figure 4: MACSIM Policy

As in Vaswani et al. (2017), $\mathbf{H}'_{\mathcal{M}}$ and $\mathbf{H}'_{\mathcal{V}}$ are then augmented through skip connections and layer normalization, before being passed to the self-attention layer, yielding the agent and task embeddings $\mathbf{H}_{\mathcal{M}}^l$ and $\mathbf{H}_{\mathcal{V}}^l$, respectively, of the current layer l .

Given the final agent and task embeddings $\mathbf{H}_{\mathcal{M}}$ and $\mathbf{H}_{\mathcal{V}}$, respectively, the policy utilized in MAC-SIM uses a multiple-pointer mechanism similar to Berto et al. (2024):

$$\mathbf{L} = c \cdot \tanh \left(\frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \right), \quad \mathbf{Q} = \mathbf{W}_{\text{Dec}}^{\mathbf{Q}} \mathbf{H}_{\mathcal{M}}, \quad \mathbf{K} = \mathbf{W}_{\text{Dec}}^{\mathbf{K}} (\mathbf{H}_{\mathcal{V}} || \mathbf{h}^{\text{skip}}) \quad (11)$$

with learnable parameters $\mathbf{W}_{\text{Dec}}^{\mathbf{Q}}$ and $\mathbf{W}_{\text{Dec}}^{\mathbf{K}} \in \mathbb{R}^{d \times d}$, and c is a scale parameter, set to 10 following Bello et al. (2017) to enhance exploration.

C PROBLEM DEFINITIONS

C.1 FLEXIBLE JOB SHOP SCHEDULING PROBLEM

The Flexible Job Shop Scheduling Problem (FJSP) is a highly complex, NP-hard optimization problem and a generalization of the classical Job Shop Scheduling Problem (JSP). The problem concerns scheduling a set of N jobs on M machines. Each job consists of a sequence of operations that must be processed in a specific order. The critical distinction from the classical JSP is the “flexibility”: each operation can be processed by any machine from a given subset of capable machines. This introduces two interdependent decision layers: a routing problem (assigning each operation to a suitable machine) and a sequencing problem (determining the order of operations on each machine). The FJSP can be modeled as a multi-agent CO problem, where each machine acts as an agent responsible for building its own schedule. In an autoregressive framework, a decision is made at each step to assign and schedule the next operation, considering machine availability and job precedence constraints. The ultimate goal is typically to find a schedule that minimizes the makespan, i.e., the time required to complete all operations for all jobs.

C.1.1 MATHEMATICAL MODEL

We present a common mixed-integer linear programming (MILP) model for the FJSP, based on the formulation described by Özgüven et al. (2010):

Indices

- j, l Job index
- i, h Operation index
- k Machine index

Parameters

- N Number of jobs
- M Number of machines
- O_j Set of operations for job j
- M_{ij} Set of machines capable of processing operation i of job j
- p_{ijk} Processing time of operation i of job j on machine k
- B A very large positive number (for big-M constraints)

Decision variables

- C_{\max} The makespan (maximum completion time)
- c_{ij} Completion time of operation i of job j
- x_{ijk} $\begin{cases} 1 & \text{if operation } i \text{ of job } j \text{ is assigned to machine } k \\ 0 & \text{otherwise} \end{cases}$
- y_{jilkh} $\begin{cases} 1 & \text{if op } (j, i) \text{ precedes op } (l, h) \text{ on machine } k \\ 0 & \text{otherwise} \end{cases}$

864 **Objective:**

865

866
$$\min C_{max} \quad (12)$$

867

868

869

870

Subject to:

871

872
$$C_{max} \geq c_{ij} \quad \forall j, \forall i \in O_j \quad (13)$$

873

874

$$\sum_{k \in M_{ij}} x_{ijk} = 1 \quad \forall j, \forall i \in O_j \quad (14)$$

875

876

$$c_{ij} - \sum_{k \in M_{ij}} p_{ijk} x_{ijk} \geq c_{(i-1)j} \quad \forall j, \forall i \in O_j, i > 1 \quad (15)$$

877

878

$$c_{ij} - c_{lh} + B(1 - y_{jilkh}) \geq p_{ijk} - B(2 - x_{ijk} - x_{lkh}) \quad \forall j, l, i, h, k \text{ s.t. } j < l \quad (16)$$

879

880

$$c_{lh} - c_{ij} + B \cdot y_{jilkh} \geq p_{lkh} - B(2 - x_{ijk} - x_{lkh}) \quad \forall j, l, i, h, k \text{ s.t. } j < l \quad (17)$$

881

882

$$c_{ij} \geq \sum_{k \in M_{ij}} p_{ijk} x_{ijk} \quad \forall j, \forall i \in O_j, i = 1 \quad (18)$$

883

The objective function in equation 12 minimizes the makespan. The makespan itself is defined by constraint set equation 13 as being greater than or equal to the completion time of every operation. Constraint set equation 14 is the assignment constraint, ensuring that each operation is assigned to exactly one machine from its set of eligible machines. The chronological sequence of operations within the same job is enforced by constraint set equation 15, which states that an operation (j, i) cannot be completed before the completion of its predecessor $(j, i-1)$ plus its own processing time. For the first operation of a job, constraint set equation 18 ensures its completion time is at least its processing time. Constraint sets equation 16 and equation 17 are the core disjunctive constraints that prevent a machine from processing more than one operation at a time. For any two operations (j, i) and (l, h) assigned to the same machine k , these “big-M” constraints ensure that one must finish before the other begins. The binary variable y_{jilkh} determines their relative order.

894 C.1.2 MULTI-AGENT MDP

895

To solve the FJSP with MACSIM, we cast it as a multi-agent Markov decision process (MDP) as defined in Section 3. In this formulation, we define the **state** of the FJSP at construction step t as a bipartite graph, where machines correspond to the set of agents \mathcal{M} and jobs/operations to the set of tasks \mathcal{V} . An edge $(m, v) \in \mathcal{E}$ exists if machine m can process the next operation of job v , with processing time $w(m, v)$. At each step, each agent m chooses an **action** $a^m = v$ from the set of admissible edges (m, v) (or the skip token), which assigns job v ’s next operation to machine m . The joint action $\mathbf{a}_t = \{a^m_t\}_{m \in \mathcal{M}}$ induces a deterministic **transition** to s_{t+1} , which updates the schedule, the job progress, and machine queues. The **reward** is 0 for all intermediate steps, with a final terminal reward of the negative makespan ($-C_{max}$) shared between all agents.

905 C.2 FLEXIBLE FLOW SHOP PROBLEM

906

The flexible flow shop problem (FFSP) is a challenging and extensively studied optimization problem in production scheduling, involving N jobs that must be processed by a total of M machines divided into $i = 1 \dots S$ stages, each with multiple machines ($M_i > 1$). Jobs follow a specified sequence through these stages, but within each stage, any available machine can process the job, with the key constraint that no machine can handle more than one job simultaneously. The FFSP can naturally be viewed as a multi-agent CO problem by considering each machine as an agent that constructs its own schedule. Adhering to autoregressive CO, agents construct the schedule sequentially, selecting one job (or no job) at a time. The job selected by a machine (agent) at a specific stage in the decoding process is scheduled at the earliest possible time, that is, the maximum of the time the job becomes available in the respective stage (i.e., the time the job finished on prior stages) and the machine becoming idle. The process repeats until all jobs for each stage have been scheduled, and the ultimate goal is to minimize the makespan, i.e., the total time required to complete all jobs.

17

918 C.2.1 MATHEMATICAL MODEL
919

920 We use the model outlined in Kwon et al. (2021) to define the FFSP:

921 **Indices**922 i Stage index
923 j, l Job index
924 k Machine index in each stage
925926 **Parameters**927 N Number of jobs
928 S Number of stages
929 M_i Number of machines in stage i
930 B A very large number
931 p_{ijk} Processing time of job j in stage i on machine k
932933 **Decision variables**934 c_{ij} Completion time of job j in stage i
935 x_{ijk} $\begin{cases} 1 & \text{if job } j \text{ is assigned to machine } k \text{ in stage } i \\ 0 & \text{otherwise} \end{cases}$
936 y_{ilj} $\begin{cases} 1 & \text{if job } l \text{ is processed earlier than job } j \text{ in stage } i \\ 0 & \text{otherwise} \end{cases}$
938939 **Objective:**
940

941
$$\min \left(\max_{j=1..n} \{c_{Sj}\} \right) \quad (19)$$

942
943

944 **Subject to:**
945

946
$$\sum_{k=1}^{M_i} x_{ijk} = 1 \quad i = 1, \dots, S; j = 1, \dots, N \quad (20)$$

947
948
949

950
$$y_{iij} = 0 \quad i = 1, \dots, S; j = 1, \dots, N \quad (21)$$

951
952
953

954
$$\sum_{j=1}^N \sum_{l=1}^N y_{ilj} = \sum_{k=1}^{M_i} \max \left(\sum_{j=1}^n (x_{ijk}) - 1, 0 \right) \quad i = 1, \dots, S \quad (22)$$

955

956
$$y_{ilj} \leq \max \left(\max_{k=1 \dots M_i} \{x_{ijk} + x_{ilk}\} - 1, 0 \right) \quad i = 1, \dots, S; j, l = 1, \dots, N \quad (23)$$

957

958
$$\sum_{l=1}^N y_{ilj} \leq 1 \quad i = 1, \dots, S; j = 1, \dots, N \quad (24)$$

959
960

961
$$\sum_{j=1}^N y_{ilj} \leq 1 \quad i = 1, \dots, S; l = 1, \dots, N \quad (25)$$

962
963

964
$$c_{1j} \geq \sum_{k=1}^{M_1} p_{1jk} \cdot x_{1jk} \quad j = 1, \dots, N \quad (26)$$

965
966

967
$$c_{ij} \geq c_{i-1j} + \sum_{k=1}^{M_i} p_{ijk} \cdot x_{ijk} \quad i = 2, 3, \dots, S; j = 1, \dots, N \quad (27)$$

968
969

970
$$c_{ij} + B(1 - y_{ilj}) \geq c_{il} + \sum_{k=1}^{M_i} p_{ijk} \cdot x_{ijk} \quad i = 1, \dots, S; j, l = 1, \dots, N \quad (28)$$

971

972 Here, the objective function equation 19 minimizes the makespan of the resulting schedule, that is,
 973 the completion time of the job that finishes last. The schedule has to adhere to several constraints:
 974 First, constraint set equation 20 ensures that each job is assigned to exactly one machine at each
 975 stage. Constraint sets equation 21 through equation 25 define the precedence relationships between
 976 jobs within a stage. Specifically, constraint set equation 21 ensures that a job has no precedence
 977 relationship with itself. Constraint set equation 22 ensures that the total number of precedence rela-
 978 tionships in a stage equals $N - M_i$ minus the number of machines with no jobs assigned. Constraint
 979 set equation 23 dictates that precedence relationships can only exist among jobs assigned to the same
 980 machine. Additionally, constraint sets equation 24 and equation 25 restrict a job to having at most
 981 one preceding job and one following job.

982 Moving on, constraint set equation 26 specifies that the completion time of a job in the first stage
 983 must be at least as long as its processing time in that stage. The relationship between the completion
 984 times of a job in consecutive stages is described by constraint set equation 27. Finally, constraint set
 985 equation 28 ensures that no more than one job can be processed on the same machine at the same
 986 time.

987 C.2.2 MULTI-AGENT MDP

988 We formulate the FFSP as a multi-agent MDP. At construction step t , the **state** is represented by
 989 a bipartite graph: jobs form the task set \mathcal{V} , and machines grouped by production stages form the
 990 agent set \mathcal{M} . Within each stage, an edge $(m, v) \in \mathcal{E}$ exists if machine m at that stage is eligible to
 991 process the next pending operation of job v , with processing time $w(m, v)$. At each step, each agent
 992 $m \in \mathcal{M}$ selects an **action** $a^m = v$ from its admissible edges (m, v) , assigning the corresponding
 993 job operation to that machine. The joint action \mathbf{a}_t induces a deterministic **transition** to s_{t+1} by
 994 updating the partial schedule, machine queues, and job progression across stages. Intermediate
 995 steps yield zero **reward**, while the terminal state provides a reward equal to the negative makespan
 996 shared between all agents.

997 C.3 MIN-MAX HETEROGENEOUS CAPACITATED VEHICLE ROUTING PROBLEM

1000 The min-max heterogeneous capacitated vehicle routing problem (HCVRP) is an NP-hard combi-
 1001 natorial optimization problem, representing a significant extension of the classic Capacitated Vehicle
 1002 Routing Problem (CVRP). The problem involves designing a set of optimal routes for a hetero-
 1003 geneous fleet of vehicles, stationed at a central depot, to serve a geographically dispersed set of
 1004 customers, each with a specific demand. The heterogeneity implies that vehicles may differ in their
 1005 capacities and costs. The primary objective of the HCVRP is to minimize the length (or cost, or
 1006 duration) of the longest single route in the solution, rather than the total length of all routes. This
 1007 “Min-Max” criterion is crucial for applications where the balance of workload between drivers is a
 1008 priority.

1009 C.3.1 MATHEMATICAL MODEL

1010 We present a three-index vehicle flow formulation for the HCVRP, adapted from standard VRP
 1011 models as described in works such as Li et al. (2022):

1012 Indices

1013 i, j Node indices (customers and depot)
 1014 k Vehicle index

1015 Sets

1016 L Set of N customers, indexed $1, \dots, N$
 1017 V Set of all nodes, $V = L \cup \{0\}$, where 0 is the depot
 1018 K Set of vehicles

1019 Parameters

1020 d_i Demand of customer $i \in L$
 1021 Q_k Capacity of vehicle $k \in K$
 1022 c_{ijk} Cost (e.g. travel time) for vehicle k to travel between nodes i and j

1026

Decision variables

1027

 C_{max} The maximum route length (the objective)

1028

1029

 x_{ijk} $\begin{cases} 1 & \text{if vehicle } k \text{ travels directly from node } i \text{ to node } j \\ 0 & \text{otherwise} \end{cases}$

1030

1031

 u_{ik} Continuous variable representing the load of vehicle k after visiting node i

1032

1033

Objective:

1034

1035

$$\min C_{max} \quad (29)$$

1036

1037

1038

1039

Subject to:

1040

1041

1042

1043

$$C_{max} \geq \sum_{i \in V} \sum_{j \in V, i \neq j} c_{ijk} x_{ijk} \quad \forall k \in K \quad (30)$$

1044

1045

$$\sum_{k \in K} \sum_{i \in V, i \neq j} x_{ijk} = 1 \quad \forall j \in L \quad (31)$$

1046

1047

1048

$$\sum_{i \in V, i \neq h} x_{ihk} = \sum_{j \in V, j \neq h} x_{hjk} \quad \forall h \in L, \forall k \in K \quad (32)$$

1049

1050

1051

$$\sum_{j \in L} x_{0jk} \leq 1 \quad \forall k \in K \quad (33)$$

1052

1053

1054

$$u_{ik} - u_{jk} + Q_k x_{ijk} \leq Q_k - d_j \quad \forall i, j \in L, i \neq j, \forall k \in K \quad (34)$$

$$d_i \sum_{j \in V} x_{jik} \leq u_{ik} \leq Q_k \sum_{j \in V} x_{jik} \quad \forall i \in L, \forall k \in K \quad (35)$$

1055

The objective function eq. (29) minimizes the maximum route cost C_{max} . C_{max} is defined by constraint set equation 30, which ensures it is greater than or equal to the calculated cost of every individual route, using the vehicle-specific cost parameter c_{ijk} .

1056

1057

1058

Constraint set equation 31 guarantees that each customer is visited exactly once by one vehicle. The vehicle flow conservation is handled by two sets of constraints. First, constraint set equation 32 ensures that if a vehicle enters a customer node, it must also depart from it. Second, constraint set equation 33 ensures that each vehicle can leave the depot at most once; combined with constraint set equation 32, this also implies that any vehicle that serves customers must return to the depot.

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

Finally, constraint sets equation 34 and equation 35 are the Miller-Tucker-Zemlin constraints, which simultaneously prevent subtours and enforce vehicle capacity limits. The continuous variable u_{ik} tracks the cumulative load of vehicle k . Constraint set equation 34 establishes a valid sequence for load accumulation, while constraint set equation 35 binds the load variable for each customer visit, ensuring it is positive only if the customer is on vehicle k 's route and that it never exceeds the vehicle's capacity Q_k .

1070

1071

C.3.2 MULTI-AGENT MDP

1072

1073

1074

1075

1076

1077

1078

1079

We formulate the HCVRP as a multi-agent MDP where each vehicle is modeled as an agent. The **state** at construction step t consists of a graph with customer nodes \mathcal{V} and vehicles \mathcal{M} , where each customer $v \in \mathcal{V}$ has a remaining demand $d_{t,v}$, and each vehicle $m \in \mathcal{M}$ has residual capacity $c_{t,m}$ and a current position on the graph. At each step, each vehicle m selects an **action** $a^m = v$ corresponding to the next customer to visit, a return to the depot, or a stay at the current location, subject to feasibility given its residual capacity and route status. The joint action a_t determines the **transition** to s_{t+1} by updating vehicle positions, capacities, and customer demands. The shared **reward** is sparse: intermediate steps yield zero reward, while the final reward is defined as the negative of the maximum travel cost among all agents $-C_{max}$.

Table 5: Generalization performance on public FJSP benchmark instances.

FJSP												
Metric	Brandimarte			Hurink (rdata)			Hurink (edata)			Hurink (vdata)		
	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)
OR-Tools	174.20	0.99%	1447	935.80	0.16%	1397	1028.93	0.00%	899	919.60	0.00%	639
MWKR	201.70	16.52%	0.49	1053.10	12.72%	0.52	1219.01	18.47%	0.52	952.01	3.52%	0.52
PPO (g.)	198.50	15.07%	1.25	1030.83	10.33%	1.4	1182.08	14.88%	1.4	954.33	3.78%	1.37
DANIEL (g.)	184.40	6.90%	1.3	1031.63	10.42%	1.37	1175.53	14.25%	1.37	944.85	2.75%	1.36
SLIM (g.)	195.12	13.11%	2.16	1011.15	8.23%	2.28	1170.45	13.75%	2.29	937.04	1.90%	2.28
MACSIM (g.)	185.80	7.71%	1.12	992.10	6.19%	0.87	1168.97	13.61%	0.85	937.07	1.90%	1.04
PPO (s.)	190.30	10.32%	4.13	985.33	5.46%	4.81	1116.68	8.53%	4.87	930.80	1.22%	4.72
DANIEL (s.)	180.80	4.81%	4.12	978.28	4.71%	4.73	1119.73	8.82%	4.73	925.40	0.63%	4.77
SLIM (s.)	191.20	10.84%	30.75	963.55	3.13%	30.81	1117.50	8.61%	30.82	924.07	0.49%	33.12
MACSIM (s.)	177.30	2.78%	9.78	957.92	2.53%	6.84	1094.85	6.41%	7.05	923.17	0.39%	8.83

D MORE EXPERIMENTS

D.1 PUBLIC BENCHMARK DATASET FOR FJSP

In addition to the synthetic FJSP instances used in Tables 1 and 2, we analyze the generalization capabilities of MACSIM on two well-known FJSP benchmarks. First, the Brandimarte benchmark comprises 10 benchmark cases ranging from 10–20 jobs with 3–15 operations each, processed on 4–15 machines with varying machine flexibility (Brandimarte, 1993). Second, the benchmark from Hurink et al. (1994) contains 120 instances ranging from 6–30 jobs and 6–15 machines, with the number of operations per job matching the machine count. These are categorized into three groups based on machine flexibility:

- edata: Few operations may be assigned to more than one machine.
- rdata: Most of the operations may be assigned to some machines.
- vdata: All operations may be assigned to several machines.

The aggregated results for these 4 benchmarks are presented in Table 5. For each instance type, we report results for the best-performing model selected from the models trained on the instance sizes reported in Table 1. MACSIM consistently outperforms all other neural baselines and substantially narrows the gap to the state-of-the-art CP-SAT solver, OR-Tools.

D.2 INCREASING THE NUMBER OF AGENTS IN FFSP

We further evaluate all solvers for the FFSP on instances with an increasing number of agents while keeping the number of jobs fixed. Specifically, we consider instances with $N = 50$ jobs processed across $S = 3$ stages, each containing $M_i = 4, 6$, and 8 machines, for a total of $M = 12, 18$, and 24 machines, respectively. The results in Table 6 reveal a widening performance gap between standard self-improvement (SLIM) and MACSIM, highlighting the importance of exploiting agent symmetries during training. These symmetries become more pronounced in problems with more agents, making coordination increasingly challenging. MACSIM consistently produces policies that achieve superior coordination as the number of agents grows.

D.3 ANALYSIS OF THE SKIP TOKEN

In Figure 5a, we evaluate the effect of the skip token and its associated penalty on solution quality. The skip token proves essential for achieving high-quality solutions. However, introducing a penalty on its usage initially skews training towards solutions with fewer skip tokens, which results in slightly worse performance compared to MACSIM without the penalty. By annealing the penalty towards zero via an exponential decay, the model ultimately reaches solutions of equal quality while requiring significantly fewer construction steps (forward passes through π_θ), as confirmed in Figure 5b. The different penalty schedules reported in Figure 5b are visualized in Figure 5c.

Although we found that the policy is largely insensitive to the specific form of penalty decay, we adopt an exponential decay because it naturally prevents the penalty from reaching exactly zero. If the penalty were to reach zero, the model would immediately resume increasing its use of the skip

Table 6: Test set performance on FFSP instances with varying number of agents.

FFSP									
$N \times M_i \times S$	50 \times 4 \times 3			50 \times 6 \times 3			50 \times 8 \times 3		
Metric	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)	Obj.	Gap	Time (s.)
Shortest Job First	56.94	19.27%	0.37	38.01	23.65%	0.25	29.39	27.45%	0.25
Genetic Algorithm	56.92	19.23%	44.33	38.26	24.46%	47.12	29.05	25.98%	50.95
Particle Swarm Opt.	55.1	15.42%	82.74	36.83	19.81%	85.43	28.06	21.68%	89.01
MatNet (g.)	51.52	7.92%	2.17	34.82	13.27%	2.42	27.52	19.34%	2.65
PARCO (g.)	51.19	7.23%	0.52	32.88	6.96%	0.50	24.89	7.94%	0.44
SLIM (g.)	50.01	4.75%	2.28	32.99	7.32%	3.01	25.04	8.59%	3.87
MACSIM (g.)	49.36	3.39%	0.43	32.23	4.85%	0.59	24.45	6.03%	0.61
MatNet (s.)	49.68	4.06%	8.91	33.45	8.82%	9.23	26.00	12.75%	9.81
PARCO (s.)	49.27	3.20%	1.97	31.60	2.80%	1.89	23.59	2.30%	1.68
SLIM (s.)	48.13	0.82%	8.87	31.65	2.96%	9.64	24.41	5.85%	10.6
MACSIM (s.)	47.74	0.00%	0.91	30.74	0.00%	1.65	23.06	0.00%	1.78

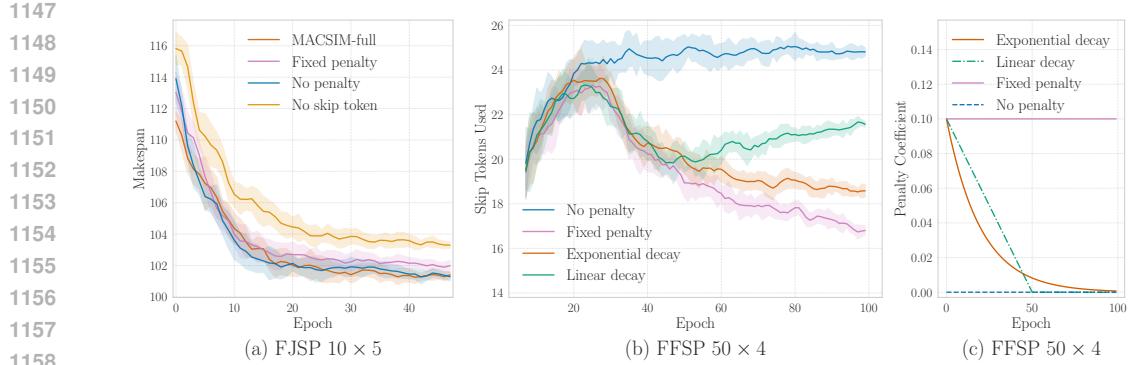


Figure 5: **Left:** Training curves for MACSIM with and without skip token as well as different penalties. **Middle:** Effect of different penalty strategies on the number of skip tokens used. **Right:** Skip token penalty coefficient for different strategies over the course of training.

token as shown in Figure 5b. Maintaining a penalty slightly above zero ensures that, when multiple solutions have equal objective values during training data generation, the skip token usage serves as a meaningful tie-breaking criterion for the expert data selection. As such, a very small penalty still serves as an effective regularizer during the later stages of training.

Moreover, Figure 5b illustrates how the model learns to regulate skip token usage. At the start of training, the model employs the skip token at a relatively low rate. It then rapidly increases its usage, recognizing that deferring a decision in FFSP can unlock better scheduling opportunities for machines. As training progresses, the model reduces unnecessary skips to avoid the penalty, returning to nearly the same skip frequency as at the beginning. Crucially, however, the model has now learned to distinguish when deferring an assignment is beneficial and when it is not.

D.4 TRAINING DYNAMICS ANALYSIS

Figure 6 offers additional insight into the training behavior of MACSIM relative to SLIM across FFSP instances of increasing size. Beyond final performance metrics, these curves highlight fundamental differences in stability and efficiency. As the problem size grows from $N = 20$ to $N = 100$ jobs, SLIM exhibits increasingly unstable training dynamics, with pronounced oscillations in validation performance. In contrast, MACSIM maintains smooth and monotonic convergence. This contrast suggests that SLIM’s single-action supervision becomes insufficient for complex coordination tasks, while MACSIM’s set-based loss provides more reliable and stable gradient signals.

The comparison of wall-clock training times (right y-axis) further demonstrates that MACSIM’s efficiency advantages extend to the training process itself. MACSIM trains nearly an order of magnitude faster per epoch while still achieving superior final performance. This consistent efficiency gain across problem sizes, coupled with its robustness on larger instances where SLIM becomes unstable, provides strong empirical evidence that the joint-action framework effectively overcomes scalability limitations in self-improvement for multi-agent combinatorial optimization.

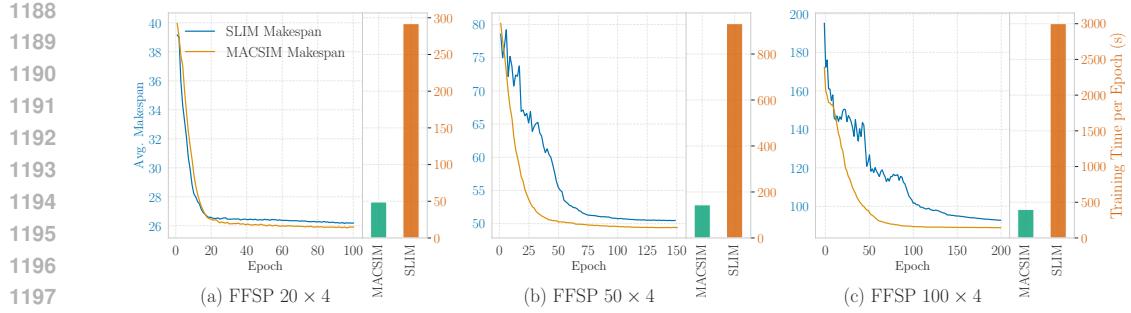


Figure 6: Wall-clock training time per epoch (right axis) and evolution of the average makespan on the validation set of FFSP instances with $N = 20, 50$, and 100 jobs (left axis). As the problem size increases, SLIM’s training becomes progressively unstable, whereas MACSIM maintains stability and converges while being nearly an order of magnitude faster to train.

D.5 SCALABILITY ANALYSIS

A key concern in neural combinatorial optimization is scalability to large problem instances. In this section, we provide a comprehensive analysis demonstrating that MACSIM’s design choices – training on single state-action pairs and amortizing re-encoding costs over multiple actions – yield substantial scalability advantages over both traditional RL-based NCO methods and standard self-improvement approaches.

Comparison with RL-based NCO. Traditional RL-based NCO methods like MatNet (Kwon et al., 2021) train via REINFORCE, which requires backpropagation through entire solution trajectories. This necessitates storing activations for all T decoding steps, leading to memory consumption that scales linearly with solution length. In contrast, MACSIM’s self-improvement paradigm trains on individual state-action pairs, requiring only single-step gradients.

We empirically validate this advantage by comparing memory consumption and training efficiency between MACSIM and MatNet on FFSP instances of increasing size. For memory analysis, we use a batch size of 1 for both methods and record peak GPU memory consumption during training. For training time analysis, we use the maximum feasible batch size for each method on a single NVIDIA A100 GPU with 40GB VRAM and measure wall-clock time per epoch (1,000 instances).

Results are presented in Table 7. For $N = 100$ jobs, MatNet consumes approximately 1 GB of memory, which increases to roughly 13 GB for $N = 500$, corresponding to a $13\times$ increase. In contrast, MACSIM increases from only 702 MB to just under 2 GB – less than a $3\times$ increase. This dramatic difference in memory scaling enables MACSIM to use significantly larger batch sizes (64 vs. 8 for $N = 500$), directly translating to faster training: MatNet’s training time grows from 6.4 minutes per epoch at $N = 100$ to 264 minutes at $N = 500$, while MACSIM only increases from 5.1 minutes to 63 minutes.

These results demonstrate that MACSIM’s state-action pair training paradigm provides a fundamental scalability advantage over trajectory-based RL methods, enabling efficient training on problem sizes where traditional approaches become prohibitively expensive.

Table 7: Memory consumption and training time comparison between MatNet (RL-based) and MACSIM on FFSP instances of increasing size. Fraction columns show MACSIM’s cost relative to MatNet.

$N \times M_i \times S$	FFSP					
	Peak Memory (GB)			Training Time (min/epoch)		
	MatNet	MACSIM	Fraction	MatNet	MACSIM	Fraction
$100 \times 4 \times 3$	1.47	0.71	0.48	6.43	5.12	0.79
$250 \times 4 \times 3$	4.12	1.24	0.30	31.12	15.60	0.50
$500 \times 4 \times 3$	12.87	1.95	0.15	264.41	63.62	0.24

1242 **Comparison with Standard Self-Improvement.** While standard self-improvement methods like
 1243 SLIM share MACSIM’s advantage of state-action pair training, they employ step-wise re-encoding
 1244 with fully autoregressive decoding, thus computing new embeddings for every single action. MAC-
 1245 SIM amortizes this computational cost by generating M agent actions from a single encoding step.
 1246

1247 Figure 3c in the main paper demonstrates this advantage across FFSP instances of varying size.
 1248 For $N = 50$ jobs with $M = 24$ agents, MACSIM requires approximately 10 construction steps to
 1249 generate a complete solution, while SLIM requires 150 steps. This translates directly to wall-clock
 1250 time as shown in Figure 6: MACSIM trains in approximately 400 seconds per epoch compared to
 1251 SLIM’s 3,000 seconds – almost an order of magnitude faster.
 1252

1253 **Combined Advantage: Scaling to large multi-agent Problems.** The combination of (1) state-
 1254 action pair training and (2) multi-action generation creates a powerful synergy for scaling to large
 1255 multi-agent problems:
 1256

- Memory efficiency from state-action pair training enables large batch sizes during training
- Computational efficiency from amortized re-encoding significantly reduces training time by a factor proportional the number of agents
- Training stability from the permutation-invariant loss ensures reliable convergence even as coordination complexity increases

1262 Together, these properties position MACSIM as a highly scalable approach for large-scale multi-
 1263 agent combinatorial optimization.
 1264

1265 D.6 RUNTIME PROFILING AND EFFICIENCY ANALYSIS

1267 To isolate the source of MACSIM’s computational efficiency, we perform a decomposition of inference
 1268 latency into two distinct components: (i) **policy evaluation**, which encompasses the forward
 1269 pass of the neural network $\pi_\theta(\mathbf{L} \mid s_t)$ to generate logits, and (ii) **sampling**, which refers to the
 1270 discrete selection of actions from the distribution $P(\mathbf{L})$.
 1271

1272 We compare the baseline SLIM against MACSIM on the Flexible Flow Shop Problem (FFSP). We
 1273 fix the problem size to $N = 50$ jobs across $S = 3$ stages and vary the number of parallel machines
 1274 per stage, denoted as $M_i \in \{4, 6, 8\}$. This results in total agent counts of $M = 12, 18$, and 24 ,
 1275 respectively.
 1276

1277 **Table 8: Inference time decomposition.** Times are reported as milliseconds for a single solution
 1278 construction, averaged over 100 instances. The *Policy* column measures the cumulative time spent in
 1279 neural network forward passes, while *Sampling* measures the time spent selecting discrete actions.
 Percentages indicate the relative contribution to total latency.
 1280

$N \times M_i \times S$	FFSP			
	MACSIM		SLIM	
	Policy	Sampling	Policy	Sampling
$50 \times 4 \times 3$	234.44 (65%)	125.02 (35%)	3119.36 (96%)	120.12 (4%)
$50 \times 6 \times 3$	319.73 (71%)	133.45 (29%)	3966.12 (97%)	120.40 (3%)
$50 \times 8 \times 3$	568.44 (79%)	155.64 (21%)	8844.75 (99%)	121.01 (1%)

1288 **Policy.** As shown in Table 8, inference in SLIM is overwhelmingly dominated by policy evalua-
 1289 tion, which accounts for over 96% of total runtime. This bottleneck arises because SLIM operates
 1290 as a single-action sequential predictor: for a problem requiring N total assignments, SLIM must
 1291 execute the encoder-decoder stack N times.
 1292

1293 In contrast, MACSIM reduces the policy evaluation time by a factor of 12 to 16. This speedup is
 1294 a direct consequence of the multi-agent architecture defined in Equation (3), where the joint logit
 1295 matrix \mathbf{L} is computed once to construct M actions. By enabling all M agents to act based on a single
 1296 forward pass, MACSIM effectively amortizes the expensive neural computation over M decisions.
 1297 Consequently, the end-to-end speedup ranges from approximately 9 to 11 across these settings.
 1298

1296 **Sampling.** Notably, the absolute time spent on sampling remains comparable between the two
 1297 methods (e.g., ≈ 125 ms vs. ≈ 120 ms for the $50 \times 3 \times 4$ instance), though MACSIM exhibits a
 1298 slight increase as agent count grows. It is important to note that the total count of sampled actions
 1299 in MACSIM is slightly higher than in SLIM, due to the incorporation of the *skip token*. While
 1300 this mechanism increases the total volume of discrete samples required to complete a solution, the
 1301 sampling cost remains negligible relative to the massive reduction in policy evaluation steps.

E LOSS FUNCTION GRADIENT ANALYSIS

1305 Here, we provide a detailed analysis of the gradients for the four loss functions discussed and eval-
 1306 uated in the main text: the single-agent cross-entropy loss (evaluating only a single action $a_t^m \in \mathbf{a}_t$ at
 1307 a time) akin to SLIM, the multi-agent cross-entropy loss (\mathcal{L}_{CE}), the loss derived from the Plackett-
 1308 Luce formulation (\mathcal{L}_{PL}), and the loss corresponding to the Maximum Likelihood Estimation (MLE)
 1309 of the generative model of Equation (3), denoted \mathcal{L}_{ML} . This analysis highlights the sources of insta-
 1310 bility and bias in \mathcal{L}_{SA} , \mathcal{L}_{ML} , and \mathcal{L}_{PL} , justifying our use of \mathcal{L}_{CE} as a permutation-invariant surrogate.

E.1 SINGLE-AGENT CROSS-ENTROPY LOSS

1312 This loss mimics standard self-improvement methods which are trained in a “next-token prediction”
 1313 fashion as described by Pirnay & Grimm (2024). Given state s_t and any pseudo-expert action
 1314 $(m^*, v^*) \in \mathbf{a}_t^*$, the model’s task under this loss is to predict this single pair from the entire, static
 1315 pool of all possible agent-task assignments, \mathcal{E} . The loss is the negative log-likelihood of selecting
 1316 the single expert pair (m^*, v^*) from the set of all pairs \mathcal{E} :

$$\mathcal{L}_{\text{SA}} = -\log \frac{\exp(L_{m^*, v^*})}{\sum_{(m, v) \in \mathcal{E}} \exp(L_{m, v})} \quad (36)$$

1319 and the gradient for any logit $L_{i,j}$ in the logits matrix is given by:

$$\frac{\partial \mathcal{L}_{\text{SA}}}{\partial L_{i,j}} = \frac{\exp(L_{i,j})}{\sum_{(m, v) \in \mathcal{E}} \exp(L_{m, v})} - \mathbb{I}(i = m^*, j = v^*) \quad (37)$$

1324 where $\mathbb{I}(\cdot)$ is the indicator function.

1325 **Conflicting and Spurious Gradients.** The core problem arises from the global softmax normal-
 1326 ization. At each step, the gradient update for the target pair (m_k^*, v_k^*) is defined in competition with
 1327 *all other available pairs* in \mathcal{E} . This setup effectively designates a single pair as positive while treat-
 1328 ing the remaining $M - 1$ correct assignments as negatives. Consequently, the model is explicitly
 1329 penalized for predicting other parts of the ground-truth solution: for every correct pair not chosen as
 1330 the target, the gradient contributes a positive update that suppresses its logit. The resulting signal is
 1331 inherently contradictory, preventing the model from converging toward a consistent joint policy.

1332 This flaw is particularly evident in forced-choice scenarios. When an agent m has only one valid
 1333 task v^* at step k , no genuine decision is required. Nevertheless, \mathcal{L}_{ML} still yields a non-zero loss,
 1334 producing spurious gradients that penalize unrelated logits $L_{i,j}$ with $i \neq m$. Such unnecessary
 1335 updates destabilize optimization by introducing noise unrelated to the actual decision process.

1336 **Vanishing Gradients.** The softmax denominator is calculated over the entire set \mathcal{E} , which can
 1337 contain thousands of possible actions. This makes the probability of the single target action infinites-
 1338 imally small, leading to a vanishing gradient problem even more severe than that of the sequential
 1339 MLE loss (\mathcal{L}_{ML}). This effectively makes training infeasible for large problem sizes.

E.2 MLE LOSS

1340 Unlike the single-agent formulation, the MLE loss computes a softmax over the *remaining* feasible
 1341 pairs at each step k , with \mathcal{E}_k denoting the available pairs. The gradient for $L_{i,j}$ aggregates contribu-
 1342 tions across agents:

1350

$$\frac{\partial \mathcal{L}_{\text{ML}}}{\partial L_{i,j}} = \sum_{k=1}^M \frac{\exp(L_{i,j})}{\sum_{(a,b) \in \mathcal{E}_k} \exp(L_{a,b})} - \mathbb{I}(i = m_k^*, j = v_k^*) \quad (38)$$

1354 Similar to \mathcal{L}_{SA} , the global softmax normalization in \mathcal{L}_{ML} leads to **conflicting and spurious gradient signals**. Since the loss is a sum over all agents, the final gradient for any correct assignment becomes an inefficient and contradictory sum of one large negative update and many small positive updates (penalties). Also, similar to \mathcal{L}_{SA} , this loss formulation suffers from **vanishing gradients**, especially for decisions made early in the sequence when the action space is at its largest. This effectively stalls the learning process, making it very difficult for the model to learn meaningful policies for large problems.

1361

E.3 PLACKETT-LUCE LOSS

1362 The Plackett-Luce model addresses the global competition issue by conditioning the choice of a task
 1363 on a specific agent at each step. If agent $i = m_k$ is assigned at step k , the softmax is computed only
 1364 over the set of available tasks $\mathcal{V}_k = \mathcal{V} \setminus \{v_1, \dots, v_{k-1}\}$. The gradient for agent i 's logit $L_{i,j}$ is:

1367

$$\frac{\partial \mathcal{L}_{\text{PL}}}{\partial L_{i,j}} = \frac{\exp(L_{i,j})}{\sum_{j' \in \mathcal{V}_k} \exp(L_{i,j'})} - \mathbb{I}(j = v_k) \quad (39)$$

1370

1371 **Permutation-Induced Bias.** While \mathcal{L}_{PL} resolves the conflicting gradient issue of \mathcal{L}_{ML} , it remains
 1372 sensitive to the arbitrary order of the expert permutation. This bias arises directly from the structure
 1373 of the gradient. For an agent acting early in a sequence, the set of available actions \mathcal{V}_k is large,
 1374 leading to a large normalization term in its softmax calculation. At the beginning of training, this
 1375 large denominator yields a very small initial probability $P(v_k|i)$ for the expert action. Since a
 1376 smaller probability results in a gradient with a larger magnitude, the optimization process is forced to
 1377 drive the corresponding logit to a significantly higher magnitude. In contrast, a late-sequence agent
 1378 starts with a higher probability and thus a smaller gradient magnitude, requiring a less substantial
 1379 increase in its logit value. Consequently, the model dedicates capacity to learning an artificial, agent-
 1380 specific confidence level, where the scale of the output logits becomes entangled with the agent's
 1381 position in the training sequence.

1382

E.4 SET CROSS-ENTROPY LOSS

1383

1384 To avoid the issues of sequential modeling, the multi-agent cross-entropy loss (\mathcal{L}_{CE}) treats each
 1385 agent's assignment as an independent classification problem. Each agent i predicts its task $v^*(i)$
 1386 from the complete set of tasks \mathcal{V} . The gradient for agent i 's logit $L_{i,j}$ depends only on its own
 1387 logits:

1388

$$\frac{\partial \mathcal{L}_{\text{CE}}}{\partial L_{i,j}} = \frac{\exp(L_{i,j})}{\sum_{j' \in \mathcal{V}} \exp(L_{i,j'})} - \mathbb{I}(j = v^*(i)) \quad (40)$$

1389

1390 where $v^*(i)$ is the expert-assigned task for agent i .

1391

1392 This decoupled formulation provides a stable and robust learning signal. Every correct pair (i, v_i^*)
 1393 is reinforced individually, without interference or competition from the assignments of other agents.
 1394 This elegant structure entirely circumvents the conflicting gradients of \mathcal{L}_{ML} and the permutation
 1395 bias of \mathcal{L}_{PL} , making it a superior objective for learning multi-agent assignment policies. Figure 6
 1396 validates the superiority of MACSIM trained with \mathcal{L}_{CE} over SLIM that uses a single-agent loss \mathcal{L}_{SA} ,
 1397 especially for larger instances.

1398

F THEORETICAL JUSTIFICATION FOR SET-BASED LOSS IN MACSIM

1399

F.1 TRAINING–INFERENCE MISMATCH

1400

1401

1402

1403

The surrogate loss in equation 6 offers a tractable and stable method for training. While the generative model in equation 3 couples assignments through a one-to-one matching constraint, the set-based cross-entropy loss simplifies this by treating each expert agent-task pair as an independent

classification problem. This is justified because the training process only observes *valid matchings*, allowing for clean, per-agent supervision. The result is a permutation-invariant learning signal that provides stable gradients, avoiding the conflicts and biases inherent in more complex objectives like direct Maximum Likelihood Estimation (MLE) as shown in Appendix E.

This independent loss signal does not prevent the model from learning coordination. Inter-agent dependencies are captured implicitly by the policy’s architecture, where self- and cross-attention mechanisms compute the joint logit matrix \mathbf{L} with full context. At inference, the autoregressive sampling algorithm then acts as a hard constraint enforcer, translating these context-aware logits into a valid, conflict-free assignment. This combination of a stable surrogate for training and a structurally-aware process for inference proves highly effective. Empirically, this approach significantly outperforms training with an exact MLE or Plackett-Luce loss (Table 4), confirming its practical advantages.

In the following, we provide a formal justification for using the set-based cross-entropy loss, \mathcal{L}_{CE} . We prove that it is a sound proxy for the ideal (but intractable) permutation-invariant objective.

F.2 FORMAL JUSTIFICATION FOR THE SURROGATE LOSS

Setup. We introduce shorthand notation for softmax normalization and marginals. For agent m and its expert-assigned task $v^*(m)$, we use:

$$Z_m = \sum_{v \in \mathcal{V}} \exp(L_{m,v}), \quad p_m(v) = \frac{\exp(L_{m,v})}{Z_m}, \quad p_m := p_m(v^*(m)).$$

During generation, the policy samples agents in some order σ (a permutation of $\{1, \dots, M\}$) with prior $w(\sigma)$, where $\sum_{\sigma} w(\sigma) = 1$. At step k , agent $m_k = \sigma(k)$ selects a task from the remaining set $\mathcal{V}_k(\sigma) \subseteq \mathcal{V}$. The normalizer for the softmax function is given as:

$$S_k(\sigma) = \sum_{v \in \mathcal{V}_k(\sigma)} \exp(L_{\sigma(k),v}).$$

The probability of producing the unordered matching \mathbf{a}^* is

$$P_{\text{perm}}(\mathbf{a}^*) = \sum_{\sigma} w(\sigma) \prod_{k=1}^M \frac{\exp(L_{\sigma(k),v^*(\sigma(k))})}{S_k(\sigma)}.$$

The *ideal loss* is $\mathcal{L}_{\text{ideal}} = -\log P_{\text{perm}}(\mathbf{a}^*)$, while the surrogate loss is the set cross-entropy $\mathcal{L}_{\text{CE}} = -\sum_{m=1}^M \log p_m$.

Theorem 2 (Upper Bound and Tightness). *For any permutation prior $w(\sigma)$:*

1. (Upper Bound) *The surrogate loss upper-bounds the ideal loss:*

$$\mathcal{L}_{\text{CE}} \geq \mathcal{L}_{\text{ideal}}.$$

2. (Gap Bound) *With $r_m = (1 - p_m)/p_m$:*

$$0 \leq \mathcal{L}_{\text{CE}} - \mathcal{L}_{\text{ideal}} \leq \sum_{m=1}^M \log(1 + r_m).$$

If $p_m \geq 1 - \varepsilon$ for all m , then

$$\mathcal{L}_{\text{CE}} - \mathcal{L}_{\text{ideal}} \leq M \log\left(1 + \frac{\varepsilon}{1-\varepsilon}\right) \leq \frac{M\varepsilon}{1-\varepsilon}.$$

Part 1: Proof of the Upper Bound.

Proof. Fix a permutation σ and denote $P(\mathbf{a}^*|\sigma)$ its sequence probability. At each step k ,

$$S_k(\sigma) = \sum_{v \in \mathcal{V}_k(\sigma)} \exp(L_{\sigma(k),v}) \leq \sum_{v \in \mathcal{V}} \exp(L_{\sigma(k),v}) = Z_{\sigma(k)},$$

1458 since $\mathcal{V}_k(\sigma) \subseteq \mathcal{V}$. Thus
 1459

$$1460 \frac{\exp(L_{\sigma(k), v^*(\sigma(k))})}{S_k(\sigma)} \geq \frac{\exp(L_{\sigma(k), v^*(\sigma(k))})}{Z_{\sigma(k)}} = p_{\sigma(k)}.$$

1462 Hence
 1463

$$1464 P(\mathbf{a}^* | \sigma) \geq \prod_{m=1}^M p_m.$$

1465 Taking the expectation over σ preserves this bound:
 1466

$$1467 P_{\text{perm}}(\mathbf{a}^*) = \sum_{\sigma} w(\sigma) P(\mathbf{a}^* | \sigma) \geq \prod_{m=1}^M p_m.$$

1470 Applying $-\log(\cdot)$ yields
 1471

$$\mathcal{L}_{\text{ideal}} \leq \mathcal{L}_{\text{CE}}.$$

□

1474 Part 2: Proof of the Gap Bound.

1475 *Proof.* To bound the gap, we establish an upper bound on $P_{\text{perm}}(\mathbf{a}^*)$. We start by rewriting the
 1477 probability of a single sequence by multiplying and dividing each factor by $Z_{\sigma(k)}$:

$$1478 P(\mathbf{a}^* | \sigma) = \prod_{k=1}^M \left(\frac{\exp(L_{\sigma(k), v^*(\sigma(k))})}{Z_{\sigma(k)}} \cdot \frac{Z_{\sigma(k)}}{S_k(\sigma)} \right) = \left(\prod_{k=1}^M p_{\sigma(k)} \right) \left(\prod_{k=1}^M \frac{Z_{\sigma(k)}}{S_k(\sigma)} \right).$$

1481 Since $v^*(\sigma(k)) \in \mathcal{V}_k(\sigma)$, it must hold that $S_k(\sigma) \geq \exp(L_{\sigma(k), v^*(\sigma(k))})$, and thus:
 1482

$$1483 \frac{Z_{\sigma(k)}}{S_k(\sigma)} \leq \frac{Z_{\sigma(k)}}{\exp(L_{\sigma(k), v^*(\sigma(k))})} = \frac{1}{p_{\sigma(k)}} = 1 + r_{\sigma(k)}.$$

1485 Thus
 1486

$$1487 P(\mathbf{a}^* | \sigma) \leq \left(\prod_{i=1}^M p_i \right) \left(\prod_{i=1}^M (1 + r_i) \right).$$

1488 Averaging over σ preserves the bound, so
 1489

$$1490 P_{\text{perm}}(\mathbf{a}^*) \leq \left(\prod_{m=1}^M p_m \right) \left(\prod_{m=1}^M (1 + r_m) \right).$$

1493 Taking $-\log$ gives
 1494

$$1495 \mathcal{L}_{\text{ideal}} \geq \mathcal{L}_{\text{CE}} - \sum_{m=1}^M \log(1 + r_m),$$

1496 or equivalently
 1497

$$1498 \mathcal{L}_{\text{CE}} - \mathcal{L}_{\text{ideal}} \leq \sum_{m=1}^M \log(1 + r_m).$$

1500 If $p_m \geq 1 - \varepsilon$, then $r_m \leq \frac{\varepsilon}{1-\varepsilon}$, so
 1501

$$1502 \sum_{m=1}^M \log(1 + r_m) \leq M \log\left(1 + \frac{\varepsilon}{1-\varepsilon}\right) \leq \frac{M\varepsilon}{1-\varepsilon}.$$

□

1507 IMPLICATION FOR OPTIMIZATION

1508 Theorem 2 establishes that \mathcal{L}_{CE} is a tractable upper bound on the true symmetric objective. More-
 1509 over, the bound tightens as the policy becomes confident, ensuring that optimization with \mathcal{L}_{CE}
 1510 smoothly transitions from providing stable gradients early to closely approximating the ideal ob-
 1511 jective in later training.

1512 **G DISCUSSING THE INDEPENDENCE ASSUMPTION IN THE SET-BASED LOSS**
 1513

1514 This section analyzes the efficacy of the agent-independent loss function (\mathcal{L}_{CE}) for solving coupled
 1515 multi-agent combinatorial problems. The proposed loss function \mathcal{L}_{CE} treats the assignment of each
 1516 agent m to a task v as an independent classification problem. Letting the total loss be the sum of
 1517 individual agent losses, $\mathcal{L}_{\text{CE}} = \sum_{m=1}^M \mathcal{L}_m(L_{m,:})$, a direct analysis of the gradients (Appendix E.4)
 1518 shows that the loss for a specific agent m yields no direct gradient signal with respect to the logits
 1519 of any other agent:

1520
$$\frac{\partial \mathcal{L}_m}{\partial L_{k,v}} = 0 \quad \forall k \neq m \quad (41)$$

 1521

1522 Consequently, at the output layer, the optimization objective for Agent m is independent of the de-
 1523 cisions of Agent k . Despite this independence at the loss level, MACSIM achieves coordinated
 1524 solutions through the synergy of three distinct mechanisms: **Architectural Coupling**, **Implicit**
 1525 **Constraint Learning**, and **Inference-Time Constraints** enforced via our autoregressive sampling
 1526 approach.

1527 **G.1 MECHANISM 1: ARCHITECTURAL COUPLING**

1528 While the gradients are independent with respect to the logits \mathbf{L} , the agents are coupled via the shared
 1529 model parameters θ . The policy architecture processes the state through a deep encoder utilizing
 1530 multiple layers of self-attention and cross-attention. In this shared latent space, the embedding
 1531 of Agent m , denoted as h_m , is computed by aggregating information from all other agents and
 1532 tasks. As a result, the gradient of Agent m ’s loss with respect to the shared parameters affects the
 1533 representations of all agents:

1534
$$\frac{\partial \mathcal{L}_m}{\partial \theta} \neq 0 \quad (42)$$

 1535

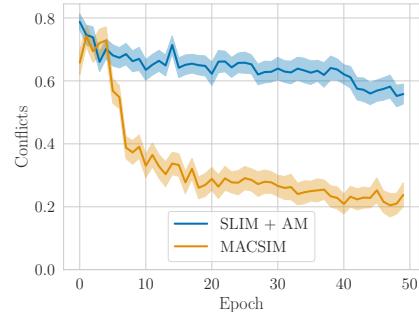
1536 This implies updates to features utilized by Agent k . To minimize \mathcal{L}_{CE} , the encoder learns to produce
 1537 disentangled representations where the features for Agent m align with Task v_m , while the features
 1538 for Agent k align with Task v_k .

1539 **G.2 MECHANISM 2: IMPLICIT CONSTRAINT LEARNING VIA GRADIENT DYNAMICS**

1540 The second coordination mechanism emerges
 1541 from the specific gradient dynamics of the set-
 1542 based loss. As detailed in our gradient analysis
 1543 in Appendix E, single-action supervision (e.g.,
 1544 SLIM) inherently suffers from gradient interfer-
 1545 ence. Because it utilizes a global Softmax over
 1546 all possible agent-task pairs, reinforcing a sin-
 1547 gle target action explicitly degrades the proba-
 1548 bility of valid future actions for other agents.
 1549 This creates conflicting signals that hinder the
 1550 learning of a consistent joint policy. In contrast,
 1551 MACSIM avoids this interference by optimizing
 1552 M independent local losses. For any specific
 1553 agent m , the objective maximizes the logit for
 1554 the assigned task v_m^* while suppressing the log-
 1555 its for all other tasks. Crucially, this set of sup-
 1556 pressed tasks includes all tasks v_k^* assigned to
 1557 other agents $k \neq m$.

1558 Since the expert targets are conflict-free, *exactly one agent receives a positive update for any given*
 1559 *task v , while all $M - 1$ other agents receive negative updates for that same task*, actively reducing
 1560 contention. The policy internalizes global coordination constraints purely through this independent
 1561 contrast.

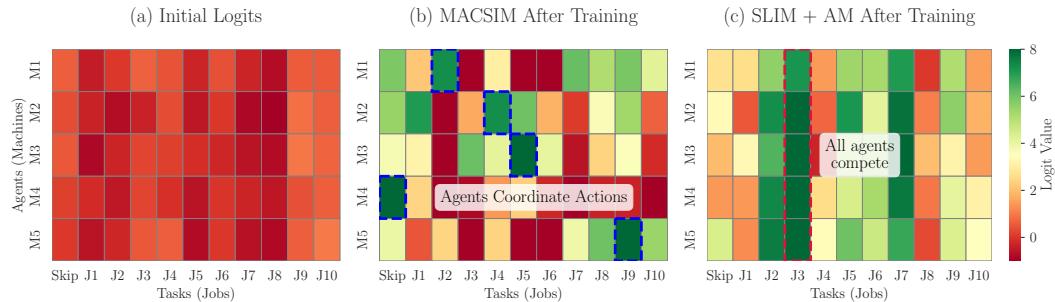
1562 We visualize this effect in Figure 8 and quantify it in Figure 7. Figure 8 compares the logit
 1563 heatmaps of MACSIM against an Attention Model (AM) trained via standard SLIM. After train-
 1564 ing, MACSIM’s logits exhibit a clear “permutation matrix” structure—high values are sparse and



1565 Figure 7: Evolution of the raw conflict rate (per-
 1566 centage of agents that share the same argmax ac-
 1567 tion) during training on FJSP 10×5 instances.

1566 non-overlapping across agents. Conversely, the AM baseline fails to coordinate, frequently assigning
 1567 the highest logit value for a single task to multiple agents simultaneously.
 1568

1569 Furthermore, we analyse the percentage of agents that share the same argmax action of the logits
 1570 during training. As shown in Figure 7, this conflict rate drops precipitously during training for
 1571 MACSIM while staying consistently on a high level for the AM trained via SLIM. This empirically
 1572 validates that the independent loss, when combined with conflict-free expert labels, successfully
 1573 teaches the network to respect injectivity constraints.



1574 (a) Initial Logits (b) MACSIM After Training (c) SLIM + AM After Training
 1575 Agents (Machines) M1 M2 M3 M4 M5
 1576 M1
 1577 M2
 1578 M3
 1579 M4
 1580 M5
 1581 Skip J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
 1582 Tasks (Jobs)
 1583

1584 Figure 8: Comparison of joint logits \mathbf{L} computed on an FJSP 10×5 problem instance by (a) an un-
 1585 trained MACSIM policy, (b) MACSIM after training, and (c) an Attention Model trained by SLIM.
 1586

1587 G.3 MECHANISM 3: INFERENCE-TIME CONSTRAINTS

1590 The third layer of coordination occurs during the solution generation phase. Although the loss is
 1591 calculated independently, the inference process defined in Algorithm 1 explicitly couples the agents
 1592 via autoregressive sampling from the flattened joint logits. Because we sample without replacement,
 1593 an agent that is highly confident (possessing a high logit value) exerts a “soft” suppression on all
 1594 other agents. Specifically, if Agent m has a high probability for Task v , it is statistically likely
 1595 to be sampled early in the sequence. Once (m, v) is added to the solution, task v is masked. This
 1596 mechanism effectively converts confidence into priority. An agent that was reinforced multiple times
 1597 during training to take a specific action will exhibit a sharp probability peak. In our AR-sampling
 1598 algorithm, this confident agent will take precedence, thereby preventing other agents from making a
 1599 conflicting choice.

1600 The ablation study in Table 3 validates that the policy implicitly learns to rank agents: replacing our
 1601 logit-dependent sampling order with a fixed or random order significantly degrades performance,
 1602 particularly for instances with a larger number of agents, proving that the learned confidence hierar-
 1603 chy is essential for resolving complex inter-agent conflicts.

1604 H EXPERIMENTAL DETAILS AND RESOURCES

1605 H.1 FJSP

1606 H.1.1 HYPERPARAMETERS

1607 We train MACSIM on the FJSP for 50 epochs using 4,000 randomly generated instances per epoch.
 1608 For each training instance x the current best policy π_θ^* is used to sample $\beta = 128$ solutions, where
 1609 the best serves as training example. Within the training loop, we sample pseudo expert state-
 1610 assignment pairs in batches of size 2,000 from the generated training dataset and use the Adam
 1611 optimizer Kingma & Ba (2015) with a learning rate of 10^{-4} , which we alter during training using a
 1612 cosine annealing scheme. The embedding dimension d is set to 256, transformer layers use 8 heads
 1613 and we set the number of encoder layers P to 4. Also, we use a dropout rate of 10%.

1614 H.1.2 DATASETS

1615 **Train data generation.** We train MACSIM on FJSP instances of size 10×5 , 20×5 , and 15×10 ,
 1616 following the generation scheme and parameters described in Song et al. (2022).
 1617

1620
 1621 **Testing.** Testing on the instance-types reported in Tables 1 and 2 is performed on 1000 separate test
 1622 instances provided by Song et al. (2022). Further, we test MACSIM on public benchmark datasets
 1623 (see Appendix D.1 for details).

1624 **H.2 FFSP**

1625 **H.2.1 HYPERPARAMETERS**

1626 In each epoch, we train the models using 1,000 randomly generated instances for which we sample
 1627 $\beta = 128$ solutions and put the best into the training dataset. During training, we sample pseudo
 1628 expert state-assignment pairs in batches of size 1,000 from the generated training dataset and use the
 1629 Adam optimizer Kingma & Ba (2015) with a learning rate of 10^{-4} , which we alter during training
 1630 using a cosine annealing scheme. Same as for the FJSP, the embedding dimension d is set to 256 and
 1631 we set the number of encoder layers P to 4. Also, we use the same dropout rate of 10%. However,
 1632 following Kwon et al. (2021) we use 16 heads in the attention layers. We train models corresponding
 1633 to environments with 20 jobs for 100, with 50 jobs for 150 and with 100 jobs for 200 epochs.

1634 **H.2.2 DATASETS**

1635 **Train data generation.** We follow the instance generation scheme outlined in Kwon et al. (2021)
 1636 and sample processing times for job-machine pairs independently from a uniform distribution within
 1637 the bounds $[2, 10]$. For the FFSP instance types shown in Table 1 we also use the same instance sizes
 1638 as Kwon et al. (2021) with $N = 20, 50$ and 100 jobs and $M = 12$ machines which are spread evenly
 1639 over $S = 3$ stages. To test for agent sensitivity in the FFSP, we fix the number of jobs to $N = 50$
 1640 but alter the number of agents for the last three instance types shown in Table 1. Still, we use $S = 3$
 1641 for this experiment, but alter the number of machines per stage to $M_i = 6, 8$ and 10 , yielding a total
 1642 of 18, 24 and 30 agents, respectively.

1643 **Testing.** Testing on the instance-types reported in Table 1 is performed on 1000 separate test in-
 1644 stances provided by Kwon et al. (2021). For the instance types reported in Table 6, test instances are
 1645 generated randomly according to the above generation scheme.

1646 **H.3 HCVRP**

1647 **H.3.1 HYPERPARAMETERS**

1648 We train MACSIM on the HCVRP for 200 epochs. In each epoch, we train the models using 1,000
 1649 randomly generated instances for which we sample $\beta = 200$ solutions. Within the training loop
 1650 we sample pseudo expert state-assignment pairs in batches of size 1,000 from the generated training
 1651 dataset and use Adam with a learning rate of 10^{-4} , which we alter during training using a cosine
 1652 annealing scheme. The embedding dimension d is set to 256, dropout rate is 10%, transformer layers
 1653 use 16 heads and we set the number of encoder layers P to 4.

1654 **H.3.2 DATASETS**

1655 **Train data generation.** We apply the instance generation scheme and seed used by Liu et al.
 1656 (2024). The authors follow the standard procedure in NCO literature and sample coordinates for
 1657 the N customer locations and the depot from the unit square. The demand of customer locations is
 1658 sampled i.i.d. from $\mathcal{U}(1, 10)$ and the capacity for each vehicle from $\mathcal{U}(20, 41)$. The speed of each
 1659 vehicle is uniformly distributed within the range $\mathcal{U}(0.5, 1.0)$.

1660 **Testing.** Testing is performed on the 1280 instances per $N \times M$ test setting from Liu et al. (2024).
 1661 Neural baselines in Table 1 were trained with the specific number of nodes N and number of agents
 1662 M they were tested on.

1674 H.4 HARDWARE AND SOFTWARE
1675
1676 H.4.1 HARDWARE
1677
1678 We experiment on a workstation equipped with 2 INTEL(R) XEON(R) GOLD 6338 CPUs and 8
1679 NVIDIA A100 graphic cards with 80 GB of VRAM each. Each training run uses a single A100.
1680
1681 H.4.2 SOFTWARE
1682
1683 Our code base is implemented in Python 3.10. Neural policies are implemented in PyTorch 2.8
1684 (Paszke et al., 2019) and training algorithms are defined as PyTorch Lightning Modules (Falcon &
1685 The PyTorch Lightning team, 2019). Environment implementations are based on or inspired by the
1686 RL4CO library (Berto et al., 2025). The operating system is Ubuntu 24.04 LTS.
1687
1688 H.5 USE OF LARGE LANGUAGE MODELS
1689
1690 Large language models (LLMs) were used in this work solely as a general-purpose writing assistant.
1691 Their role was limited to polishing phrasing, improving clarity, and correcting grammar in drafts of
1692 the manuscript. All research ideas, analyses, results, and interpretations were generated and verified
1693 by the authors. The content produced by LLMs was carefully reviewed, edited, and integrated by
1694 the authors to ensure accuracy and adherence to academic standards.
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727