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ABSTRACT

Neural decoding, a critical component of Brain-Computer Interface (BCI), has
recently attracted increasing research interest. Previous research has focused
on leveraging signal processing and deep learning methods to enhance neural
decoding performance. However, the in-depth exploration of model architectures
remains underexplored, despite its proven effectiveness in other tasks such as
energy forecasting and image classification. In this study, we propose NeuroSketch,
an effective framework for neural decoding via systematic architecture optimization.
Starting with the basic architecture study, we find that CNN-2D outperforms other
architectures in neural decoding tasks and explore its effectiveness from temporal
and spatial perspectives. Building on this, we optimize the architecture from
macro- to micro-level, achieving improvements in performance at each step. The
exploration process and model validations take over 5,000 experiments spanning
three distinct modalities (visual, auditory, and speech), three types of brain signals
(EEG, SEEG, and ECoG), and eight diverse decoding tasks. Experimental results
indicate that NeuroSketch achieves state-of-the-art (SOTA) performance across all
evaluated datasets, positioning it as a powerful tool for neural decoding.

1 INTRODUCTION

Brain-Computer Interface (BCI) technology aims to revolutionize interaction methods by establishing
a direct link between thought and action, enabling more efficient communication (Maiseli et al., 2023).
Neural decoding (Van Gerven et al., 2019) plays a critical role in this process, as it involves inferring
external stimuli, cognitive states, or intentions from brain signals. These signals are typically recorded
using methods such as electroencephalography (EEG) (Teplan, 2002), stereoelectroencephalography
(SEEG) (Talairach, 1974), and electrocorticography (ECoG) (Shenoy et al., 2007), which can be
classified as non-invasive and invasive techniques. EEG, a non-invasive method, records electrical
activity along the scalp and is widely used in both research (Zhang et al., 2021; Altaheri et al.,
2023; Rahman et al., 2021) and clinical settings (Pani et al., 2022; Saminu et al., 2023) due to its
practicality and low cost. In contrast, invasive methods like SEEG and ECoG capture signals from
deeper brain structures, offering higher temporal and spatial resolution compared to non-invasive
methods (Chaddad et al., 2023), and enabling more precise identification of neural activity linked to
specific cognitive functions.

In neural decoding, recorded brain signals are characterized by transient temporal dynamics (King
and Dehaene, 2014) and spatial locality (Mahjoory et al., 2024), representing unique modeling
demands. Traditional time series data, such as weather, electricity consumption, and traffic flow, are
sampled at a relatively low frequency (e.g., minutes or hours) and often exhibit significant periodicity
or trends. However, brain signals require higher temporal resolution to capture the brain’s rapidly
changing states. Even within brain signals, their characteristics can differ significantly across various
scenarios. From a temporal perspective, brain signals typically contain crucial information within
much shorter time frames in neural decoding tasks compared to other scenarios, such as sleep
staging. In sleep staging tasks, brain signals are recorded overnight, with a labeling resolution of 30
seconds for each sleep stage (Phan and Mikkelsen, 2022). In contrast, in the Rapid Serial Visual
Presentation (RSVP) paradigm for image stimulus decoding, relevant information is encoded within
just a few hundred milliseconds (Butts et al., 2007). From a spatial perspective, task-driven neural
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activity in decoding paradigms differ fundamentally from those of pathological neural disorders.
Pathological conditions such as generalized epilepsy exhibit widespread brain activity, resulting in
non-specific neural activations (Stafstrom and Carmant, 2015). In neural decoding tasks, however,
external stimuli evoke localized activations that are typically restricted to functionally specialized
regions and recorded by spatially proximate electrodes. For example, speech stimuli predominantly
activate the left inferior frontal gyrus (Leonard et al., 2024), while visual stimuli engage the visual
cortex (Grill-Spector and Malach, 2004).

Previous work on neural decoding can be broadly categorized into two approaches. The first is signal
processing (Peksa and Mamchur, 2023), which focuses on improving the signal-to-noise ratio and
extracting task-relevant features (Wittevrongel et al., 2020; Proix et al., 2022; Safi and Safi, 2021).
These methods rely on manually defined features, which are time-consuming and highly empirical.
The second approach involves deep learning methods (Angrick et al., 2019; Makin et al., 2020;
Wilson et al., 2020; Willett et al., 2023; Metzger et al., 2023; Zheng et al., 2024). However, current
approaches largely overlook in-depth exploration and modeling of the temporal dynamics and spatial
locality inherent to neural decoding. Therefore, our work aims to explore a framework more suited to
neural decoding tasks through systematic architectural optimization. Such optimizations have already
yielded significant benefits in other tasks (Yu et al., 2022; 2023; Luo and Wang, 2024; Wang et al.,
2025a). For instance, in energy forecasting tasks, ModernTCN (Luo and Wang, 2024) reduces MSE
by 13.9% on ETTm2 (Zhou et al., 2021) compared to convolution-based models by using large kernel
convolutions and a ConvFFN module. In image classification tasks, ConvNeXt (Liu et al., 2022)
surpasses ResNet-50 (He et al., 2016) on ImageNet (Deng et al., 2009) through optimizations in stage
compute ratio and convolutional methods.

Our study is guided by two core questions that aim to systematically investigate how to design an
effective framework for neural decoding:

Q1: Which basic model architecture is best suited to capture temporal and spatial patterns in brain
signals?

Q2: Based on an appropriate architecture, how can we improve neural decoding performance through
macro-to-micro architectural optimization?
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Figure 1: Roadmap of architectural optimization.

As shown in Figure 1, by an-
swering the above questions, we
consistently improve the decod-
ing performance at each opti-
mization step. First, we study
9 basic architectures (CNN (He
et al., 2016), GRU (Chung et al.,
2014), Transformer (Vaswani
et al., 2017), and their variants)
and find that CNN-2D outper-
forms the others. The results
are coherent with the characteris-
tics of neural decoding signals,
since CNN-2D is suitable for
capturing localized patterns from
both temporal and spatial dimen-
sions. Based on CNN-2D, we
design the entire framework us-
ing a macro-to-micro paradigm, analyzing the latent space transformation during forward propagation
and optimizing the calculation of micro components. Through the above step-by-step optimization
process, we propose NeuroSketch, an effective framework for neural decoding. NeuroSketch aligns
with the temporal and spatial characteristics of brain signals in neural decoding tasks, achieving
state-of-the-art performance across eight neural decoding tasks, which can serve as a useful tool for
future research and applications in neuroscience.

In summary, the main contributions of this research are as follows:

1. We propose NeuroSketch, an effective framework that aligns with the temporal and spatial charac-
teristics of brain signals for neural decoding tasks.

2
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2. From the technical perspective, we systematically reexamine the design space and consider several
critical components. Starting with exploring basic architectures, we progressively investigate
architectural design principles from macro- to micro-level.

3. From the experimental perspective, we validate NeuroSketch through over 5,000 experiments across
eight neural decoding tasks related to vision, hearing, and speech, recorded by different types of
brain signals. The experimental results demonstrate that NeuroSketch achieves state-of-the-art
decoding performance across all evaluated datasets.

2 ROADMAP TOWARDS AN EFFECTIVE FRAMEWORK

In this section, we provide a trajectory that outlines the steps towards achieving an effective framework.
The roadmap of our study is essentially focused on answering two key questions mentioned in
Section 1. To begin with, Section 2.1 describes the experimental setup. Then, Section 2.2 addresses
Question 1 through systematic analyses of the basic model architecture, considering both temporal and
spatial perspectives. Building upon the appropriate architecture, Section 2.3 investigates the macro-
level optimization aspect of Question 2, focusing on the latent space transformation. Subsequently,
Section 2.4 explores the micro-level optimization aspect of Question 2, focusing on computation
optimization. Finally, Section 2.5 integrates the above findings and introduces NeuroSketch.

2.1 EXPERIMENT SETUP

To rigorously evaluate our exploration, we conduct nearly 2,000 experiments on eight neural decoding
tasks, spanning three major categories—speech, visual, and auditory decoding—and three types
of brain signals—EEG, SEEG, and ECoG. The overview of each dataset is provided in Table 1,
with further details in Appendix C. Since the network complexity closely correlates with final
performance, the model’s parameter size is kept around 30M by adjusting the model depth and
embedding dimension during the experimental process. Detailed parameter settings and training
setup can be found in Appendix D.1 and Appendix E.

Table 1: Overview of the datasets used in our experiments. We evaluate on six datasets in total.
For Chisco and OpenMIIR, we partition them by task, yielding eight distinct tasks overall.

Categories Datasets Tasks Signal Type

Speech
Du-IN (Zheng et al., 2024) Loud Reading SEEG

Chisco-R (Zhang et al., 2024) Silent Reading EEG
Chisco-I (Zhang et al., 2024) Speech Imagination EEG

Visual
FacesHouses (Miller, 2019) Binary Image Decoding ECoG

ThingsEEG (Gifford et al., 2022) Multi-Class Image Decoding EEG
SEED-DV (Liu et al., 2024a) Video Decoding EEG

Auditory OpenMIIR-P (Stober et al., 2015) Music Perception EEG
OpenMIIR-I (Stober et al., 2015) Music Imagination EEG

2.2 BASIC ARCHITECTURE STUDY

To address Question 1, we investigate the performance of nine commonly used architectures in
neural decoding tasks, selected from four categories: Convolutional Neural Networks (CNNs),
Gated Recurrent Units (GRUs), Transformers, and their hybrids. The input of these models can be
represented as X ∈ RB×C×L, where B denotes the batch size, C denotes the number of channels,
and L denotes the number of time steps. We study two types of CNNs: CNN-1D and CNN-2D.
CNN-1D applies 1D convolutional filters across the temporal dimension, with each filter combining
features from all channels. CNN-2D reshapes the input X to X′ ∈ RB×1×C×L and applies 2D
convolutional filters across both the temporal and channel dimensions. In the case of Vanilla GRU,
the model sequentially processes the input X across the temporal dimension, updating its hidden
state at each time step using both the current input and the previous state. In contrast, the Transformer
processes the input X in parallel using self-attention to capture dependencies across all time steps.
We also consider two Transformer variants: PatchTST(Nie et al., 2023) and iTransformer(Liu et al.,
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2024b). PatchTST divides the input X along the temporal dimension into patches of length P and
stride S, generating a sequence of N patches, where N =

⌊
L−P
S

⌋
+ 2. Then, it processes the

patched input Xp ∈ RB×C×N×P using Transformer layers to capture the relationships between
different patches while maintaining channel independence. In contrast, iTransformer treats channels
as sequence elements and uses self-attention to capture interactions across channels. In addition
to individual models, we explore hybrid architectures that combine multiple approaches, including
CNN-GRU and two CNN-Transformer variants. One variant uses CNN for feature extraction followed
by Transformer layers (Song et al., 2022), while the other integrates both CNN and Transformer
within each module to jointly capture temporal information at different levels (Kim et al., 2022).
CNN-GRU, similar to the first CNN-Transformer variant, employs CNN for initial feature extraction,
with the GRU component then processing the sequential data to capture temporal dependencies.

Table 2: Results of the basic architecture study and subsequent analyses. v1 and v2 refer to the
two hybrid methods discussed above. The ratio shown in the middle of the table (e.g., 4:1) indicates
the proportion of CNN to Transformer layers in each hybrid model. The best results are in bold and
the second best are underlined.

Models
Datasets Du-IN SEED-DV ThingsEEG FacesHouses OpenMIIR-P OpenMIIR-I Chisco-R Chisco-I

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Basic Architecture Study

CNN-1D .451 .446 .061 .054 .202 .191 .799 .796 .973 .973 .968 .968 .104 .071 .100 .073
CNN-2D .647 .641 .063 .058 .184 .177 .886 .885 .981 .980 .982 .982 .127 .113 .114 .095

GRU .353 .343 .025 .001 .040 .037 .774 .773 .146 .046 .136 .039 .123 .091 .117 .086
Transformer .085 .080 .042 .028 .005 .000 .795 .794 .953 .952 .911 .910 .069 .015 .057 .012
PatchTST .060 .051 .038 .029 .006 .001 .845 .838 .906 .904 .766 .760 .050 .005 .050 .005

iTransformer .097 .085 .029 .005 .005 .000 .730 .728 .729 .698 .780 .774 .064 .013 .061 .014
CNN-GRU .416 .409 .057 .049 .172 .166 .803 .801 .957 .954 .943 .942 .092 .064 .087 .063

CNN-Trans v1 .333 .326 .067 .060 .046 .027 .752 .751 .948 .947 .945 .945 .106 .061 .100 .057
CNN-Trans v2 .282 .268 .050 .045 .022 .010 .754 .752 .952 .950 .930 .930 .097 .050 .093 .059

Ratio of CNN and Transformer Layers in Hybrid Architectures

CNN-Trans v1-4:1 .333 .326 .067 .060 .046 .027 .752 .751 .948 .947 .945 .945 .106 .061 .100 .057
CNN-Trans v1-3:2 .115 .091 .069 .057 .010 .001 .696 .694 .904 .901 .916 .914 .094 .036 .090 .041
CNN-Trans v1-2:3 .060 .032 .041 .021 .005 .000 .699 .697 .833 .828 .867 .866 .088 .030 .085 .031
CNN-Trans v1-1:4 .036 .013 .030 .008 .005 .000 .684 .674 .709 .687 .764 .760 .079 .018 .076 .019

CNN-Trans v2-4:1 .282 .268 .050 .045 .022 .010 .754 .752 .952 .950 .930 .930 .097 .050 .093 .059
CNN-Trans v2-3:2 .211 .192 .061 .054 .024 .009 .719 .713 .946 .944 .882 .880 .097 .057 .087 .051
CNN-Trans v2-2:3 .141 .124 .059 .046 .011 .002 .710 .707 .882 .881 .893 .892 .088 .050 .092 .044
CNN-Trans v2-1:4 .047 .033 .035 .019 .008 .001 .722 .720 .822 .814 .839 .837 .094 .047 .084 .041

New Patch Method for Transformers and GRUs

Transformer .085 .080 .042 .028 .005 .000 .795 .794 .953 .952 .911 .910 .069 .015 .057 .012
PatchTST .060 .051 .038 .029 .006 .001 .845 .838 .906 .904 .766 .760 .050 .005 .050 .005

iTransformer .097 .085 .029 .005 .005 .000 .730 .728 .729 .698 .780 .774 .064 .013 .061 .014
Ours .234 .226 .033 .027 .005 .000 .799 .799 .922 .919 .843 .839 .098 .046 .090 .066

GRU .353 .343 .025 .001 .040 .037 .774 .773 .146 .046 .136 .039 .123 .091 .117 .086
Ours .351 .342 .033 .026 .074 .068 .817 .813 .958 .956 .937 .936 .105 .071 .091 .066

Table 2(upper) shows the performance of the 9 basic architectures discussed above. Overall, CNN-
based models, which excel in capturing local patterns, outperform hybrid models on most neural
decoding tasks. Meanwhile, GRU and Transformer-based models, which are better suited for
modeling long-range dependencies, exhibit the lowest performance. This result aligns with the
transient temporal dynamics of brain signals in neural decoding tasks, suggesting that short-range
temporal information is more effective for neural decoding. In CNN-based models, CNN-2D, which
extracts local channel information using convolutional kernels, outperforms CNN-1D, which fuses all
channel information through addition. This performance difference aligns with the spatial locality
observed in neural decoding tasks. Surprisingly, the Transformer-based models perform poorly
on certain datasets, particularly the ThingsEEG dataset, where their best accuracy of 0.6% is only
marginally above the chance level of 0.5%. In order to find out the underlying reasons for the
performance differences, we conduct further analyses from both temporal and spatial perspectives.
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From a temporal perspective, we investigate how short- and long-term temporal information affects
the model performance. We control the short- and long-term information through adjusting the ratio of
CNN and Transformer layers in two hybrid models. From the results in Table 2(middle), we observe
a decline in performance as the proportion of short-term information decreases, demonstrating the
effectiveness of short-range information for neural decoding.
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Figure 2: (a) Comparison of different patch methods. Vanilla GRU and Transformer treat a single
timestamp across all channels as a token; PatchTST treats multiple timestamps of a single channel
as a token; iTransformer treats all timestamps of an entire channel as a token. We propose a simple
but effective patch method that aggregates information of multiple timestamps and channels.(b)
Comparison of different latent space transformation methods. Regarding the number of feature
maps, the step approach increases them gradually, whereas the leap approach increases them rapidly
in the early stages. In terms of their size, the pyramid approach decreases them progressively, while
the pagoda approach decreases them quickly in the early stages. (c) The overall architecture of
NeuroSketch.

From a spatial perspective, based on the effectiveness of CNN-2D, we can similarly apply this finding
to other models, such as GRU and Transformer, to further validate its applicability. We propose a
simple but effective patch method to capture local channel information in Transformers and GRUs.
As shown in Figure 2(a), the input sequence is first divided into patches using a sliding window
approach. Unlike the patch methods proposed in PatchTST and iTransformer, which treat channels
independently or focus on global channel information, we reshape the patches by concatenating
the channel and patch dimensions to preserve the local channel relationships within the same time
window. The results in Table 2(lower) demonstrate that our method achieves highly competitive
performance compared to others. By incorporating our token embedding method, the accuracy of
the Transformer on the Du-IN dataset improved significantly from 8.5% to 23.4%. Additionally,
the accuracy of the GRU on the OpenMIIR dataset’s perception and imagination tasks increased
dramatically from the chance level to 95.8% and 95.7%, respectively, further demonstrating the
effectiveness of spatial locality for neural decoding.

From now on, we will use CNN-2D as our basic architecture.
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2.3 LATENT SPACE TRANSFORMATION

To address the macro optimization aspect of Question 2, we study the latent space transformation
during the forward propagation. For CNN-2D, its latent space representation refers to S ∈ RC×H×W ,
where C denotes the number of feature maps, H and W denote the height and width of feature
maps, respectively. During forward propagation, the network increases the number of feature maps
to capture higher-level information, while reducing the size of feature maps to alleviate redundancy
and improve computational efficiency. Building on this general overview, we will investigate the
transformation of the number (C) and the size (H and W ) of feature maps separately.

Regarding the number of feature maps, the appropriate strategy to increase them is a critical aspect
of neural network design, and this can be achieved through two widely adopted approaches: step
approach and leap approach. As shown in Figure 2(b), The step approach gradually increases the
number of feature maps, allowing feature extraction to advance from low-level to high-level in a
systematic manner. This progression enables the network to concentrate on varying levels of features
effectively. The leap approach takes a more aggressive strategy to rapidly increase the number of
feature maps to the embedding dimension in the early stages, making the model focus on refining and
extracting higher-level features.

Table 3: Results of the latent space transformation and the optimization of calculation. Lower
GFLOPs indicates lower computational cost. The best results are in bold.

Setting GFLOPs
Datasets Du-IN SEED-DV ThingsEEG FacesHouses OpenMIIR-P OpenMIIR-I Chisco-R Chisco-I

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Macro Study: Transformation of the Feature Map Number

Leap Approach 3996 .635 .630 .064 .058 .216 .206 .857 .856 .980 .980 .976 .976 .126 .109 .115 .093
Step Approach 1287 .647 .641 .063 .058 .184 .177 .886 .885 .981 .980 .982 .982 .127 .113 .114 .095

Macro Study: Transformation of the Feature Map Size

Pyramid Approach 1287 .647 .641 .063 .058 .184 .177 .886 .885 .981 .980 .982 .982 .127 .113 .114 .095
Pagoda Approach 758 .701 .698 .059 .053 .204 .197 .911 .910 .973 .973 .986 .985 .128 .116 .116 .096

Micro Study

Vanilla Conv 758 .701 .698 .059 .053 .204 .197 .911 .910 .973 .973 .986 .985 .128 .116 .116 .096
Seperable Conv 492 .704 .699 .061 .051 .181 .176 .915 .915 .979 .979 .985 .985 .118 .107 .111 .098
Group Conv 482 .707 .704 .069 .061 .207 .200 .920 .920 .983 .983 .990 .990 .129 .112 .120 .103

Table 3(upper) compares the performance and computational cost between the step and leap approach.
Surprisingly, the step approach achieves highly competitive performance compared to the leap
approach, while requiring 67.8% fewer FLOPs. For instance, the step approach attains an accuracy of
88.6% on the FacesHouses dataset, to achieve similar accuracy, the leap approach requires three times
more computational cost, while only reaching 85.7% accuracy. This indicates that neural decoding
does not rely solely on high-level neural representations, and that multi-scale feature extraction is
often more effective and efficient.

From now on, we will use the step approach to transform the number of feature maps.

In the forward propagation process, the transformation of the feature map size is achieved through
downsampling. Therefore, we further investigate how downsampling should be distributed throughout
the network. Suppose downsampling is applied only in the final layers. In that case, earlier layers
must process high-resolution feature maps, which significantly increases computational complexity
and undermines the original purpose of downsampling to improve computational efficiency. There-
fore, we study two common strategies: pyramid approach and pagoda approach. As shown in
Figure 2(b), the pyramid approach distributes the downsampling process evenly across the entire
network, gradually reducing the size of the feature maps. This pyramid-like structure enables the
network to retain more detailed features at the cost of increased computational complexity. The
pagoda approach takes a more aggressive strategy by concentrating the downsampling module in
the early stages of the network. This leads to a significant reduction in feature map size early on,
resulting in lower computational costs. Table 3(middle) compares the performance and computational
cost between the pyramid and pagoda approach. The pagoda approach achieves slightly better
accuracy than the pyramid approach, requiring 41.1% fewer FLOPs. Specifically, on the Du-IN
dataset, the pagoda approach attains 70.1% accuracy, whereas the pyramid approach only reaches
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64.7% with a higher computational cost. Additionally, the pagoda approach improves the accuracy
by 2.0% to 20.4% on the ThingsEEG dataset, surpassing CNN-1D’s accuracy of 20.2%, making
it the best-performing architecture. These results demonstrate that excessively extracting detailed
information from the original signal is unnecessary, as brain signals typically have low signal-to-noise
ratios. By applying downsampling early in the network, we can enhance computational efficiency
while improving performance, allowing the model to focus on the most relevant features and reduce
the impact of noise.

From now on, we will use the pagoda approach to transform the size of feature maps.

2.4 OPTIMIZATION OF CALCULATION

To further explore the micro optimization aspect of Question 2, we investigate the core calculation
method of CNNs, the convolution operation. Given Xin ∈ RCin×Hin×Win as the Cin channels input
of height Hin and width Win, the convolution kernel F ∈ RCout×Cin×U×V of height U and width
V slides across the input to compute the output Xout ∈ RCout×Hout×Wout , where Cout, Hout and Wout
refer to the output channels, height and width, respectively. The number of parameters involved
in this convolution operation is Cout × Cin × U × V , representing the learnable weights within the
convolution kernel.

In addition to the vanilla convolution, various variants have been proposed to improve computational
efficiency and model performance, including group convolution (Ioannou et al., 2017) and separable
convolution (Howard, 2017).

Group convolution. Group convolution Fg ∈ RCout×
Cin
G ×U×V divides the input channels Cin and

output channels Cout into G groups. The convolution is then applied separately within each group,
limiting the channel interaction and effectively reducing the parameters by a factor of G compared to
the vanilla convolution.

Separable convolution. Separable convolution breaks down the vanilla 2D convolution into two
distinct operations: depthwise convolution Fd ∈ RCin×U×V for spatial dimensions and pointwise
convolution Fp ∈ RCout×Cin×1×1 for channel dimension. Depthwise convolution is an extreme case
of group convolution, where the number of groups G = Cin = Cout. In this case, each output feature
map corresponds directly to a specific input feature map. To enable channel interactions, a pointwise
convolution is typically applied afterward, where both the kernel height and width are set to 1. In
total, the number of parameters in a separable convolution is 1

Cout
+ 1

UV of that in vanilla convolution.

Here, we examine how performance changes when replacing the vanilla convolution with separable
and group convolution. As shown in Table 3(lower), the group convolution variant achieves slightly
better performance compared to other convolution methods while minimizing computational cost. Be-
sides, the separable convolution variant also shows competitive performance with less computational
cost than vanilla convolution. For example, with 758 GFLOPs, the vanilla convolution gets 5.9%
accuracy on the SEED-DV dataset, while the separable convolution can obtain 6.1% accuracy with
35% fewer GFLOPs. Meanwhile, with nearly identical GFLOPs, the group convolution outperforms
the separable convolution, improving accuracy by 0.8% to 6.9%. The experimental results show that
grouping input and output channels for convolution does not degrade performance in neural decoding
tasks. Channel grouping may be more suitable for aggregating local information while improving
computational efficiency.

We will use group convolution as our core calculation method. This brings us to our final framework,
NeuroSketch.

2.5 PUT IT ALL TOGETHER

After the optimizations mentioned above, we have developed an effective framework, NeuroSketch.
The overall architecture is shown in Figure 2(c). Like CNN-2D, NeuroSketch employs a 2D input
representation, which is then processed by a stem layer to initiate feature extraction. The following
forward propagation process is divided into four stages to progressively capture features from low-
level to high-level, as suggested by the step approach. In each stage, the initial component is
responsible for increasing the number of feature maps. If this component is a downsampling layer, it
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also reduces the spatial resolution of the feature maps by half. Based on the pagoda approach, we
allocate the downsampling layers to the second stage to enhance performance and computational
efficiency. Subsequently, a convolutional block is applied to extract features, comprising group
convolutions, batch normalization, ReLU activation, and pointwise convolution. Following the four
stages, the resulting feature is passed through a generalized mean (GeM) pooling layer (Berman et al.,
2019) that aggregates features along the channel and temporal dimensions. The pooled representation
is then fed into a linear layer for the final classification. Additional details of the architecture and
implementation can be found in Appendix D.2.

3 EXPERIMENTS

In this section, we present a comprehensive evaluation of NeuroSketch based on more than 3,000 ex-
periments. Section 3.1 introduces the datasets, baselines, and experimental settings, while Section 3.2
reports the main results, including analyses across three different modalities: speech decoding, visual
decoding, and auditory decoding.

3.1 EXPERIMENT SETUP

We employ the same datasets described in Section 2 for evaluation. The diverse selection of datasets
ensures a comprehensive evaluation across different neural decoding tasks. We implement two
versions of NeuroSketch with different sizes: NeuroSketch-Base (1.4M parameters) and NeuroSketch-
Large (4.2M parameters). Detailed implementation and configuration are provided in Appendix D.2.
For baselines, we select representative and recent models from various domains, including time-
series models: ModernTCN (Luo and Wang, 2024), MedFormer (Wang et al., 2024); computer
vision backbones: ConvFormer (Yu et al., 2023), CAFormer (Yu et al., 2023); well-known brain
models: DeepConvNet (Schirrmeister et al., 2017), EEGNet (Lawhern et al., 2018); recent brain
models: Conformer (Song et al., 2022), SPaRCNet (Jing et al., 2023); iEEG foundation models:
seegnificant (Mentzelopoulos et al., 2024); and EEG foundation models: CBraMod (Wang et al.,
2025b). We use the official pretrained weights for all foundation models. More details of each
baseline and evaluation setup are introduced in Appendix D.3 and Appendix E.

3.2 RESULTS

Main results. Overall, NeuroSketch consistently achieves state-of-the-art performance across eight
neural decoding tasks. As shown in Figure 3, NeuroSketch outperforms all selected baselines,
underscoring its strong capacity to model brain signals across diverse decoding scenarios. In addition,
we note that NeuroSketch-Base performs similarly to NeuroSketch-Large on all datasets except
Du-IN, where NeuroSketch-Large outperforms NeuroSketch-Base by a substantial margin. We
discuss this phenomenon in detail in Appendix F.1.

ModernTCN

MedFormer

Conformer

DeepConvNet

EEGNet

SPaRCNet

seegnificant

CBraMod

NeuroSketch-Large

NeuroSketch-Base

0.65
2

0.196

0.
87

9

0.98
2

0.977

0.116

0.
10

3

0.047

ConvFormer

CAFormer

0.20
5

0.161

0.053

0.
05

2

0.024

0.
80

0

0.91
50.852

0.091

0.
08

6

0.126

0.
85

3

0.935

0.095

0.0390.50
3

0.96
0

0.35
4

0.
82

6

0.93
7

0.894

0.074

0.
06

9

0.032

Du-IN
SEED-DV

T
h
in

gsE
E
G

Fa
ce

sH
ou

se
s

OpenMIIR
-P

C
h
isco-R

OpenMIIR-I

C
h
is

co
-I

Figure 3: Model performance comparison.

Speech decoding. Table 4 reports the excellent
performance of NeuroSketch on the three speech
decoding tasks. Notably, on the Du-IN dataset,
NeuroSketch-Large surpasses the second-best
baseline, ConvFormer, by 65.5% in accuracy,
underscoring its strength in extracting discrimi-
native features from neural signals. As an iEEG
foundation model, seegnificant performs poorly
on Du-IN (5.3% accuracy), likely because its
single-layer transformer lacks sufficient capac-
ity for this challenging neural decoding task.
Classifying semantic categories while subjects
read or imagine sentences is even more difficult.
However, NeuroSketch achieves the best results,
demonstrating robustness in challenging speech
decoding scenarios. Specifically, compared to
the second-best baseline, Conformer, NeuroSketch-Large improves accuracy by 22.1% on Chisco-R
and NeuroSketch-Base by 9.2% on Chisco-I.
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Table 4: Average classification accuracy (mean ± std across three folds) for models on multiple
neural decoding datasets. Higher throughput indicates faster inference. The best results are in bold.
We use — to denote entries that are not applicable or not evaluated. Due to substantial differences
between iEEG and EEG, we evaluate each pretrained model only on the modality it was pretrained
on, the corresponding cross-modality cells are therefore marked with —. In addition, CBraMod uses
a patch size of 200, whereas ThingsEEG has an input length of 100, so CBraMod cannot be run on
ThingsEEG and is marked —.

Models
Datasets Speech Decoding Visual Decoding Auditory Decoding

Du-IN Chisco-R Chisco-I SEED-DV Things-
EEG

Faces-
Houses

Open-
MIIR-P

Open-
MIIR-I

ConvFormer .394±.005 .086±.001 .080±.004 .024±.000 .151±.003 .820±.013 .975±.005 .976±.002

CAFormer .221±.003 .081±.003 .076±.002 .025±.001 .160±.009 .800±.012 .976±.006 .977±.002

ModernTCN .339±.005 .079±.003 .074±.002 .040±.001 .123±.003 .835±.006 .964±.010 .935±.002

MedFormer .212±.006 .089±.003 .085±.001 .025±.000 .045±.002 .756±.011 .948±.001 .941±.001

DeepConvNet .053±.002 .053±.004 .052±.001 .029±.001 .091±.001 .822±.005 .896±.009 .789±.005

EEGNet .060±.003 .071±.002 .082±.002 .046±.002 .070±.000 .830±.006 .915±.010 .852±.006

Conformer .205±.003 .095±.002 .087±.002 .033±.002 .077±.002 .762±.001 .962±.013 .930±.002

SPaRCNet .026±.001 .005±.000 .005±.000 .026±.001 .189±.001 .805±.007 .969±.007 .948±.005

seegnificant .053±.002 — — — — .831±.006 — —
CBraMod — .084±.002 .077±.001 .026±.002 — — .975±.011 .933±.008

NeuroSketch-Base .472±.006 .111±.001 .103±.002 .045±.002 .196±.002 .879±.008 .981±.010 .970±.002

NeuroSketch-Large .652±.002 .116±.001 .095±.005 .047±.003 .177±.001 .879±.007 .982±.009 .977±.002

Visual decoding. As shown in Table 4, for static image decoding on the FacesHouses dataset,
NeuroSketch-Large outperforms the second-best performing baseline, ModernTCN, with a 5.2%
improvement in accuracy. Furthermore, on the considerably more challenging ThingsEEG dataset,
NeuroSketch-Base achieves competitive performance with the recent brain model, SPaRCNet. Con-
vFormer and CAFormer also demonstrate strong visual decoding performance on the ThingsEEG
datasets. For the highly challenging video decoding task, where most baseline models perform
near the chance level (2.5% accuracy), NeuroSketch-Large demonstrates a clear advantage with
an accuracy of 4.7%. This result highlights its capacity to capture complex neural representations
associated with dynamic visual stimuli.

Auditory decoding. The results in Table 4 show that NeuroSketch achieves state-of-the-art perfor-
mance on both auditory decoding tasks. On the OpenMIIR-P dataset, the EEG foundation model,
CBraMod attains the strongest baseline among brain-domain models (97.5% accuracy), highlighting
the effectiveness of pretraining and its transferability to auditory decoding.

4 CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we conduct an in-depth exploration of model architectures for neural
decoding. By investigating basic architectures, latent space transformation, and computational
methods optimization, we introduce NeuroSketch, an effective framework for neural decoding.
Experimental results demonstrate that NeuroSketch achieves state-of-the-art performance across
eight distinct neural decoding tasks. We hope this research will provide new insights for the neural
decoding community and encourage further exploration of CNN-based architectures.

Limitations and future work. While NeuroSketch shows strong performance, its current design
focuses on supervised learning. Given the favorable scaling behavior observed in Appendix F.1, we
hypothesize that scaling both data and model capacity will yield further gains. Accordingly, we will
explore large-scale pretraining strategies based on NeuroSketch in the future. Additionally, we plan
to incorporate a broader range of neural decoding tasks to enhance the model’s applicability across
diverse neural decoding scenarios.
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5 ETHICS STATEMENT

All datasets used in this study are publicly available. The corresponding dataset links are provided in
Appendix C.1. Consequently, our work does not involve personally sensitive information and does
not pose apparent ethical concerns.

6 REPRODUCIBILITY STATEMENT

We place great importance on ensuring the reproducibility of our work. To this end, details of the
preprocessing of each dataset are provided in Appendix C.2, the detailed model implementation and
configuration are described in Appendix D.2, and the experimental settings are outlined in Appendix E.
The complete experimental results are available at https://anonymous.4open.science/
r/NeuroSketch_Results-BA5B. We will release our code and scripts upon publication,
thereby facilitating transparent and reproducible research for the community.

REFERENCES

Baraka Maiseli, Abdi T. Abdalla, Libe V. Massawe, Mercy Mbise, Khadija Mkocha, Nassor Ally
Nassor, Moses Ismail, James Michael, and Samwel Kimambo. Brain–computer interface: Trend,
challenges, and threats. Brain Informatics, 10(1):20, December 2023. ISSN 2198-4018, 2198-4026.
doi: 10.1186/s40708-023-00199-3.

Marcel A. J. Van Gerven, Katja Seeliger, Umut Güçlü, and Yağmur Güçlütürk. Current Advances in
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we made limited use of a large language model (LLM) to assist with
polishing the writing for grammar and clarity. In addition, the LLM was occasionally employed for
small-scale code completion, such as generating boilerplate functions or suggesting minor syntax
corrections. All core ideas, experimental designs, analyzes, and conclusions were completely
conceived, implemented, and validated by the authors.

B RELATED WORK

Neural decoding. Decoding sensory experiences from neural signals is a central objective in
neuroscience, spanning modalities such as auditory, speech, and visual processing, each with distinct
decoding challenges and objectives. Auditory decoding can be divided into two distinct processes:
auditory perception, which decodes brain activity evoked by external sounds (Stober et al., 2015;
Sonawane et al., 2021), and auditory imagery, which identifies patterns associated with internally
generated mental simulations of sound (Stober et al., 2015; De Borst et al., 2016). Speech decoding
seeks to reconstruct vocal expressions or semantic content directly from neural signals, which can be
conducted at multiple linguistic levels, from syllables (Feng et al., 2023) to words (Zheng et al., 2024)
and entire sentences (Zhang et al., 2024). Visual decoding focuses on reconstructing high-quality
static images (Gaziv et al., 2022; Ahmadieh et al., 2024; Singh et al., 2023) or dynamic videos (Wen
et al., 2018; Liu et al., 2024a) perceived by the human visual system from neural signals.

Framework design. Recent advances in neural architecture design have diverged into two directions:
automated neural architecture search (NAS) and manual design driven by experience. Tan and Le
(2019) utilize NAS to scale all dimensions of depth, width, and resolution through an effective
compound coefficient, leading to a family of models known as EfficientNets. Radosavovic et al.
(2020) further integrate NAS with manual design principles to explore the design space, resulting
in the development of RegNet. Meanwhile, manual architectural innovations revitalize traditional
components. Yu et al. (2022) reveals that instead of a specific token mixer(e.g., attention), the
general architecture of Transformers, termed MetaFormer, is more essential for achieving high
performance. Liu et al. (2022) modernize a standard CNN towards the design of Swin Transformer
through macro- and micro-level optimizations, and ultimately propose a family of pure CNNs dubbed
ConvNeXt.
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C DETAILS OF DATASETS

C.1 DATASET DESCRIPTION

In this study, we use six neural decoding datasets, each associated with specific experimental tasks.
Brief descriptions of each dataset are provided below.

Du-IN (Zheng et al., 2024) focuses on decoding spoken Mandarin words. In each trial, a word is first
displayed in white for 0.5 seconds, then turns green for 2 seconds to prompt articulation. Participants
are instructed to read the word aloud during this cue period. Following this, the word disappears,
and a fixation cross is presented. EEG data are recorded from 12 participants using 7-13 SEEG
electrodes, comprising 72–158 channels. Each participant reads 61 predefined Chinese words, each
word repeated 50 times, while both SEEG and audio signals are recorded simultaneously. In total,
each participant contributes approximately 15 hours of data sampled at 2000 Hz, with around 3 hours
corresponding to task-related activity. These task-related segments are divided into 3000 three-second
trials and subsequently downsampled to 1000 Hz. The dataset is licensed under CC BY 4.0 and is
available at https://huggingface.co/datasets/liulab-repository/Du-IN.

Chisco (Zhang et al., 2024) focuses on decoding silent reading and imagined speech. Data are
collected from three healthy participants using a 125-channel EEG system at a sampling rate of
1000 Hz. The experiment consists of 45 blocks, each comprising 150 trials. Each trial includes a
5-second silent reading phase followed by a 3.3-second imagined speaking phase, with continuous
EEG recording throughout. The stimuli include 6,681 commonly used Chinese sentences (ranging
from 6 to 15 characters) drawn from 39 semantic categories. In each block, 10 trials are randomly
selected for verbal recall. If a participant’s recalled sentence differs from the original by more than
four characters, the trial is marked as incorrect. If two or more errors occur within a block, the
participant takes a rest and repeats the block. The dataset is licensed under CC0 and is available at
https://openneuro.org/datasets/ds005170/versions/1.1.2.

FacesHouses (Miller, 2019) focuses on visual decoding of static images. ECoG signals are recorded
from 14 epilepsy patients using subdural electrode strips implanted over the inferior temporal cortex.
Participants view randomized grayscale images of faces and houses. The sampling rate is 1000 Hz.
Each experiment includes three sessions, each presenting 50 face images and 50 house images for
400 ms, with a 400 ms blank interval between images. The dataset is licensed under CC BY-SA and
is available at https://purl.stanford.edu/zk881ps0522.

ThingsEEG (Gifford et al., 2022) focuses on complex image decoding using a RSVP paradigm.
EEG is recorded from 10 healthy participants using a 64-channel system at 1000 Hz. Stimuli consist
of 16,740 image categories (16,540 for training and 200 for testing). Each training image is shown
four times, while each test image is shown 80 times. Images are presented at a 200-ms stimulus
onset asynchrony (SOA). A target detection task is included to maintain participant engagement. The
decoding analysis is performed on the 200 test images. The dataset is licensed under CC BY 4.0 and
is available at https://osf.io/hd6zk/.

SEED-DV (Liu et al., 2024a) focuses on decoding dynamic video stimuli. EEG is recorded from 20
participants at 1000 Hz while they watch video clips. The stimulus set consists of 1,400 two-second
video clips spanning 40 semantic concepts, with 35 clips per concept. Each participant completed
seven video blocks, with rest intervals between blocks. Each block contains all 40 concepts presented
in a randomized order. Before the start of each block, participants are informed of the target concept
and subsequently watch five video clips corresponding to that concept. The dataset is available after
submitting an application at https://bcmi.sjtu.edu.cn/ApplicationForm/apply_
form/.

OpenMIIR (Stober et al., 2015) focuses on music perception and imagination. EEG signals are
recorded from 10 participants (8 with formal music training) using a 64-channel system at a sampling
rate of 512 Hz. The experiment comprises two sessions, each consisting of five trials. In each trial, 12
musical stimuli were randomly presented under one of four experimental conditions: (1) perception
with auditory cues, (2) imagination with cues, (3) imagination without cues, and (4) imagination
without cues but with feedback. The stimuli encompass two time signatures (3/4 and 4/4) and vary in
tempo from 104 to 212 BPM. Based on lyrical content, the stimuli are further classified into songs
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with lyrics, their corresponding instrumental versions, and purely instrumental pieces. The dataset is
licensed under ODC-PDDL and is available at https://hyper.ai/en/datasets/5591.

C.2 DATA PREPROCESSING

To ensure consistency and comparability, we follow the preprocessing procedures described in the
original publications for each dataset.

For the Du-IN dataset, we followed the preprocessing setup described in the original work. For
each subject, we selected 10 SEEG channels following the original configuration. The signals
were downsampled to 1000 Hz, with each trial spanning 2.5 seconds. The classification targets
corresponded to the 61 predefined Chinese words presented to the participants, with the objective of
decoding spoken content directly from neural activity.

For the Chisco dataset, we examined two tasks: silent reading (denoted as Chisco-R) and imagined
speaking (denoted as Chisco-I). Following the protocol of the original work, we removed three noisy
channels and retained the remaining 122 valid EEG channels. All signals were downsampled to 500
Hz. The input duration was set to 5 seconds for Chisco-R and 3.3 seconds for Chisco-I, aligned
with the respective task lengths. For the classification targets, both datasets were labeled with the 39
predefined semantic categories.

For the FacesHouses dataset, we segmented the continuous ECoG recordings into epochs based on
stimulus markers, retained only face and house trials, and applied channel-wise z-score normalization
to reduce variability across channels. The input data comprised between 31 and 102 channels per
subject, sampled at 1000 Hz with a duration of 400 ms per trial. The classification labels were defined
as a binary distinction between face and house.

For the ThingsEEG dataset, we used the preprocessed data released by the original authors and
defined a visual stimulus classification task. For each subject, we loaded the test set from the original
Things-EEG dataset, which contained images from 200 distinct categories, with each image presented
80 times. This resulted in a recorded signal of shape [200, 80, 17, 100], where 17 was the number of
channels and 100 the number of time steps. These 17 channels were selected from the occipital and
parietal cortex (O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P7, P5, P3, P1, Pz, P2, P4, P6, P8) to focus
on regions most relevant for visual processing. We assigned labels to the corresponding trials and
then reshaped the data into [16000, 17, 100] (i.e., 200 categories × 80 trials), with the corresponding
labels reshaped into [16000]. The data were then randomly shuffled and split into training, validation,
and test sets. Specifically, we used 20% of the data as the test set, while the remaining 80% were
divided into three folds; in each round, one fold was used for validation and the other two for training.
The model input was the EEG segment with shape [17, 100], and the target was a label from one of
the 200 image categories. We conducted this decoding task separately for each subject.

For the SEED-DV dataset, we adopted the first benchmark task from the original SEED-DV study:
40-class classification of fine-grained video concepts, to evaluate dynamic visual stimulus decoding.
Following the preprocessing protocol described in the original work, we downsampled the EEG
signals to 200 Hz, with each trial spanning 2 seconds and containing 62 channels. The classification
labels correspond to the 40 predefined video concepts. To standardize our evaluation pipeline, we
merged data across all blocks for each subject, randomly shuffled the trials, and partitioned them into
training, validation, and test sets.

For the OpenMIIR dataset, we focused on two tasks: perception(denoted as OpenMIIR-P) and
imagination (denoted as OpenMIIR-I). Following the preprocessing protocol of the original work, we
used raw EEG signals sampled at 512 Hz without further downsampling. The data were band-pass
filtered between 0.5–30 Hz, and trials were segmented based on audio onset events, with epochs
defined for each musical stimulus under the corresponding condition. For the perception task,
we used condition 1, while for the imagination task, we aggregated data from conditions 2, 3,
and 4. After segmentation, the continuous recordings for each stimulus were further divided into
non-overlapping windows of length 600 samples across 64 channels. We then applied channel-wise
z-score normalization on each window. The classification labels were defined as the 12 distinct
musical stimuli.
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D DETAILS OF MODELS

D.1 MODELS IN THE ROADMAP EXPLORATION

Here, we provide details of the models used during the optimization process described in Section 2.

Basic architecture study. The model depth and embedding dimension during the basic architecture
study are shown in Table 5. In both the CNN-1D and CNN-2D architectures, the convolution kernel
size is set to 3. In CNN-1D, the number of channels increases from 1 to 64 in the stem layer,
followed by 4 stages, each consisting of 5 layers. The number of channels in these stages increases
progressively from 128 to 256, 512, and finally 1024. In CNN-2D, the channel configuration also
starts from 1 to 64 in the stem layer. This is followed by 4 stages, each containing 4 layers, with
the number of channels increasing from 96 to 192, 384, and 768, respectively. In the CNN-GRU
architecture, the ratio of convolutional layers to GRU layers is set to 3:1. In the CNN-Transformer
architecture, the initial ratio of convolutional layers to Transformer modules is set to 4:1. To fairly
investigate how short- and long-term temporal information impacts model performance, we fix the
total number of layers at 20 and systematically adjust the proportion of Transformer modules. To
systematically evaluate the effectiveness of the proposed patching method, we vary only the data
segmentation approach while keeping the embedding and subsequent self-attention-based feature
extraction pipeline unchanged. All other hyperparameters are fixed to ensure that the observed
performance differences can be attributed to the effectiveness of the patching method.

Table 5: Model configuration for basic architecture study.

Model # Params (M) Number of Layers Hidden Dimension

CNN-1D 30 20 1024
CNN-2D 35 16 768

GRU 25 4 512
Transformer 20 8 512
PatchTST 20 8 512

iTransformer 20 8 512
CNN-GRU 34 16 512

CNN-Transformer 32 20 768
CNN-Transformer v2 36 20 1024

Macro optimization. From a macro perspective, we optimize the transformation of the latent space
during forward propagation. Specifically, we investigate two strategies for increasing the number of
feature maps: the step approach and the leap approach. In the step approach, the number of feature
maps is gradually increased: starting from 1 to 64 through the stem layers, then progressively to 96,
192, 384, and 768 across 4 stages, each containing 4 layers. In contrast, the leap approach increases
the number of feature maps from 1 to 64 in the stem layer, and then directly increases it to 384
using an embedding layer. Subsequently, 16 layers are used to refine high-level features. We also
investigate two strategies for decreasing the size of feature maps: the pyramid approach and the
pagoda approach. In the pyramid approach, a downsampling layer is placed in each of the last three
stages, with a downsampling ratio of 2 at each stage. In contrast, the pagoda approach places three
identical downsampling layers consecutively within the second stage.

Micro optimization. From a micro perspective, we optimize the computation method. Specifically,
we investigate two variants of vanilla convolution: the group convolution and the separable convolu-
tion. For the group convolution, the number of groups is set to 4. For the separable convolution, the
number of groups is set to 1, followed by a pointwise convolution with a kernel size of 1 to aggregate
channel-wise information.

D.2 NEUROSKETCH IMPLEMENTATION

Here, we provide a detailed description of the final NeuroSketch architecture to ensure transparency
and reproducibility. Given an input tensor X of shape RB×C×L, where B is the batch size, C is the
number of channels, and L is the temporal length, we first reshape it to RB×1×3C×L//3 to form a 2D
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representation. The reshaping operation aligns with the subsequent convolutional kernel sizes and
ensures that the temporal structure of the data remains intact in the first stem layer. The reshaped 2D
representation is then passed through a stem stage consisting of four Conv2D–BatchNorm–ReLU
blocks with kernel sizes [3, 3, 3, 3], paddings [1, 1, 1, 1], and strides [2, 1, 1, 2]. The input/output
channels for the four blocks are [1 → 64], [64 → 256], [256 → 64], [64 → 96].

Following the stem stage, there are four feature extraction stages. The input/output channel di-
mensions for these stages are [96 → Dstage 1], [Dstage 1 → Dstage 2], [Dstage 2 → Dstage 3], [Dstage 3 →
Dstage 4]. Each stage contains d blocks with two key components:

1. Patch Embedding: In the first block of each stage, a 2D convolution with kernel size 3 and stride
1 maps the input channels to the output channels, followed by batch normalization. For the first
three blocks of the second stage, we use a stride of 2 to downsample the input; in other cases, the
layer reduces to an identity mapping when no change in resolution is needed.

2. Convolution Module: This component applies grouped 3× 3 convolutions (with the number of
groups equal to G) to efficiently capture local channel-wise dependencies. It is followed by batch
normalization, ReLU activation, and a 1× 1 convolution for feature fusion. The output is added
back to the patch-embedded input via a residual connection.

After the four stage of feature extraction, we obtain a tensor of shape RB×Dstage 4×C′×T ′
, where C ′

and T ′ denote the downsampled channel and temporal dimensions. We then apply GeM pooling
to aggregate it into a representation RB×Dstage 4 , which is finally passed through a linear layer to
produce the class probabilities. We implement two variants of the architecture: NeuroSketch-Base
and NeuroSketch-Large. Their configurations are summarized in Table 6.

Table 6: Detailed model configuration for NeuroSketch-Base and NeuroSketch-Large.

NeuroSketch-Base NeuroSketch-Large

# Params (M) 1.4 4.2
Dstage 1 96 96
Dstage 2 128 144
Dstage 3 160 256
Dstage 4 192 384
d 2 3
G 4 4

D.3 BASELINE MODELS

Here, we introduce the details of the baselines for performance evaluation in Section 3.

ConvFormer and CAFormer (Yu et al., 2023) are two variants of MetaFormer (Yu et al., 2022),
employing different token mixers. ConvFormer uses depthwise separable convolution as its token
mixer. With this design, ConvFormer can be regarded as a pure CNN model that does not rely on
channel or spatial attention mechanisms. CAFormer uses depthwise separable convolution as the
token mixer in the first two stages of the model and self-attention in the last two stages. This design
enables CAFormer to capture local features while better obtaining long-range dependencies.

ModernTCN (Luo and Wang, 2024) is a modernized purely convolutional architecture. It en-
hances the traditional TCN by incorporating depthwise convolutions and convolutional feed-forward
networks (ConvFFNs) into the 1D CNN design. Additionally, it introduces time series–specific
adaptations, such as patchified variable-independent embeddings, to improve suitability for time
series tasks.

MedFormer (Wang et al., 2024) is a multi-granularity patching Transformer specifically designed for
medical time series classification. It effectively captures the features of medical time series through
cross-channel patching, multi-granularity embedding, and a two-stage multi-granularity self-attention
mechanism.
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DeepConvNet (Schirrmeister et al., 2017) is a deep CNN tailored for EEG decoding. It begins with
a temporal convolution to capture frequency-specific patterns, followed by a spatial convolution
across channels to model inter-channel dependencies. A stack of convolution–batch normaliza-
tion–ELU–max pooling blocks with dropout then learns hierarchical spatio-temporal representations,
and a final dense layer performs classification. This end-to-end design avoids handcrafted features
and is effective across BCI tasks.

EEGNet (Lawhern et al., 2018) is a compact CNN tailored for EEG-based BCI. It decouples
frequency and spatial filtering by using temporal convolutions as learnable band-pass filters followed
by depthwise spatial convolutions across channels, and employs separable (pointwise) convolutions
for efficient feature mixing. EEGNet attains strong performance across diverse BCI paradigms
while using fewer than 0.5 million parameters, making it data-efficient and well suited to small EEG
datasets.

ConFormer (Song et al., 2022) is a CNN-Transformer model for EEG signals. The convolution
module learns low-level local features through one-dimensional temporal and spatial convolution
layers, and the self-attention module processes the output of the convolution module to learn global
temporal dependencies.

SPaRCNet (Jing et al., 2023) is a 1D CNN for seizure pattern recognition. Its structure features
dense and transition blocks. Each dense block has four layers of two convolutional layers and two
ELUs, and each transition block contains an ELU, a convolutional layer, and an average pooling
layer.

seegnificant (Mentzelopoulos et al., 2024) is a brain foundation model for cross-subject neural
decoding from SEEG. It tokenizes electrode-wise signals using convolutions, models long-term
temporal dependencies with self-attention, and integrates electrode 3D spatial locations through
positional encoding followed by cross-electrode attention. A unified backbone extracts global neural
representations, while subject-specific task heads enable individualized decoding. Trained on multi-
session SEEG data from 21 participants, seegnificant demonstrates effective behavioral response time
decoding and supports few-shot transfer to new subjects, offering a path toward robust multi-subject
generalization in SEEG analysis.

CBraMod (Wang et al., 2025b) is a brain foundation model for EEG decoding. The model first
segments EEG signals into patches and randomly masks them. After patch encoding and asymmetric
conditional position encoding, it learns spatio-temporal dependencies through the parallel spatial and
temporal attention mechanisms of the cross-Transformer. Finally, it uses the reconstruction head to
reconstruct the masked EEG patches, thereby learning the general representation of EEG signals.

E EXPERIMENTAL SETTINGS

Here, we present the training strategies employed for the models described in Section 2 and Section 3.

E.1 DATA SPLITTING

For Section 2, each subject’s data is split into training, validation, and test sets with a 3:1:1 ratio. For
Section 3, we allocate 20% of the data for testing, and the remaining 80% is used for a 3-fold cross-
validation. Specifically, the remaining data are divided into three equal parts, with each iteration using
one part as the validation set while the other two are combined for training, ensuring a comprehensive
and reliable assessment of the model’s effectiveness.

E.2 DATA AUGMENTATION

To further enhance data diversity, we employ a strong data augmentation strategy comprising the
following techniques:

Random Shift. We define a maximum shift range proportional to the input sequence length. For
each training instance, a shift step is randomly sampled from this range. A positive value indicates
a forward shift of the sequence, whereas a negative value corresponds to a backward shift. This
approach enhances the model’s robustness to uncertainty in stimulus onset times.
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Noise. We generate noise from a standard normal distribution matching the shape of the original data.
The noise is scaled by a predefined standard deviation and added to the input to produce noisy data.
This method improves the model’s resilience to signal perturbations.

Channel Masking. During training, a mask is applied to each channel with the specified probability,
zeroing out the corresponding channel values. This technique reduces over-reliance on specific
channels and promotes better integration of multi-channel information.

Time Masking. Similar to channel masking, we apply masks along the temporal dimension. This
encourages the model to extract features robustly across various time segments and enhances general-
ization.

Mixup. A mixing coefficient λ is sampled from a Beta distribution parameterized by a hyperparameter
α = 0.4. The original sample and a randomly chosen sample are linearly combined using λ, and
their corresponding labels are mixed accordingly. This augmentation method exposes the model to a
broader range of data combinations, thereby improving generalization.

E.3 HYPERPARAMETERS

Table 7: Training hyperparameters.

Hyperparameters Settings

Epoch 100(Chisco), 500(others)
Batch size 64
Seed 42
Optimizer AdamW
Learning rate 1e-3
Weight decay 5e-2
Scheduler Cosine
Warmup ratio 0.1
Early stop ratio 0.2
Random shift probability 0.5
Random shift ratio 0.2
Add noise probability 0.1
Channel masking probability 0.5
Time masking probability 0.5
Mixup probability 0.5

Detailed hyperparameters are shown in Table 7. Across multiple datasets, we observed that decoding
performance typically improves with an increased number of training epochs. Based on this observa-
tion, we set the number of training epochs to 500 in most experiments to fully optimize the model
performance. However, for the Chisco dataset, the accuracy reaches a plateau at around 80 epochs
and shows no further improvement. Therefore, we limit training on Chisco to 100 epochs.

E.4 COMPUTE RESOURCES

We utilized an AMD EPYC 7663 56-core processor and eight NVIDIA A100 GPUs, each with 80
GB of memory. Section 2 outlines 21 distinct models, each evaluated on 84 experiments that together
span the entire set of subjects across eight decoding tasks. In total, this results in 1,764 experiments.
Each experiment is executed on an A100 GPU and requires, on average, one hour of training time.
Section 3 evaluates 12 distinct models, each trained with three cross-validation folds, resulting in
a total of 3,024 experiments. On average, each experiment requires approximately 50 minutes of
training time.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F EXPERIMENTAL ANALYSIS

F.1 SCALING BEHAVIOR

In this section, we analyze the scaling behavior of NeuroSketch. As shown in Table 4, NeuroSketch-
Large achieves a clear performance improvement over NeuroSketch-Base on the Du-IN dataset,
whereas the two models perform comparably on the other datasets. To further investigate this phe-
nomenon, we examine subject-level performance on the Du-IN dataset, with the results summarized
in Table 8. We observe that NeuroSketch-Large outperforms NeuroSketch-Base across all subjects,
although the extent of improvement varies. To intuitively examine the relationship between the
degree of improvement and the difficulty of the samples, we plot a scatter diagram of accuracy
versus improvement (Figure 4). The scatter plot reveals an overall negative correlation between
accuracy and improvement; in other words, the more difficult the samples are to classify, the more
pronounced the effect of scaling becomes. Notably, for subjects with NeuroSketch-Base accuracy
below 5%, NeuroSketch-Large yields relative improvements of over 400%. This indicates that scaling
up NeuroSketch effectively addresses more challenging tasks.

Table 8: Scaling behavior of NeuroSketch on the Du-IN dataset. We report the mean accuracy
together with the standard variance, computed over three distinct cross-validation folds. Additionally,
we indicate the relative improvement in accuracy of NeuroSketch-Large compared to NeuroSketch-
Base.

Subject NeuroSketch-Base NeuroSketch-Large Relative Improvement

1 0.626 ±0.018 0.791 ±0.027 26.37%
2 0.761 ±0.025 0.798 ±0.007 4.95%
3 0.081 ±0.025 0.508 ±0.016 529.34%
4 0.422 ±0.052 0.765 ±0.033 81.36%
5 0.774 ±0.012 0.882 ±0.013 13.90%
6 0.209 ±0.021 0.465 ±0.016 122.49%
7 0.409 ±0.019 0.561 ±0.021 37.28%
8 0.525 ±0.012 0.630 ±0.021 20.00%
9 0.540 ±0.030 0.817 ±0.005 51.36%

10 0.034 ±0.008 0.183 ±0.003 433.01%
11 0.721 ±0.013 0.758 ±0.011 5.09%
12 0.569 ±0.050 0.668 ±0.010 17.39%
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Figure 4: Scatter plot of the scaling behavior of NeuroSketch on the Du-IN dataset. The x axis
denotes the accuracy of NeuroSketch-Base for each subject and the y axis represents the relative
improvement achieved by NeuroSketch-Large.
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F.2 HYPERPARAMETER ANALYSIS

Since the architecture of NeuroSketch is based on the CNN-2D backbone, convolutional operations
play a central role in its performance. To better understand their impact, we conduct a hyperparameter
analysis focusing on two key factors: the kernel size and the number of groups in group convolutions.

Kernel size. Convolutional kernel size directly affects the receptive field and thus controls the extent
of local temporal–spatial dependencies that the model can capture. In NeuroSketch-Large, we adopt
a kernel size of 3 as the default setting, since smaller kernels are generally more effective in capturing
fine-grained dynamics while keeping the parameter overhead low. To further examine the effect of
kernel size, we additionally evaluate larger kernels of 5 and 7 on the Du-IN dataset. The results are
summarized in Table 9.

Table 9: Results of different kernel sizes of NeuroSketch on the Du-IN dataset. Results are
reported as mean and standard deviation, computed across three distinct cross-validation folds.

Kernel Size Accuracy Precision F1 Score

3 0.651 ± 0.005 0.667 ±0.003 0.647 ±0.003
5 0.557 ± 0.005 0.577 ± 0.006 0.550 ± 0.005
7 0.427 ± 0.002 0.456 ± 0.002 0.420 ± 0.003

These results indicate that larger kernel sizes lead to lower decoding accuracy, which aligns with our
claim in Section 1 that neural decoding signals exhibit transient temporal dynamics. Larger kernels
tend to capture longer-range temporal features, which may dilute short-term patterns that are critical
for accurate decoding in this context.

Number of groups. The number of groups in group convolution determines how feature channels
are partitioned and processed, which in turn affects both computational cost and representational
capacity. Increasing the number of groups reduces the computational cost, since fewer channels are
convolved together within each group. In NeuroSketch-Large, we set the default group number to 4.
To further examine the effect of this parameter, we additionally evaluate group numbers of 2, 8, and
16 on the Du-IN dataset. The results are summarized in Table 10.

Table 10: Results of NeuroSketch under different number of groups in the group convolution
on the Du-IN dataset. Results are reported as mean and standard deviation, computed across three
distinct cross-validation folds.

#Group Accuracy Precision F1 Score

2 0.651 ± 0.005 0.667 ±0.003 0.647 ±0.003
4 0.652 ± 0.002 0.666 ±0.003 0.648 ±0.002
8 0.642 ± 0.002 0.658 ±0.003 0.638 ±0.002

16 0.642 ± 0.001 0.656 ±0.003 0.637 ±0.002

The results indicate that setting the group number to 4 provides the most favorable configuration.
Compared with using 2 groups, this setting achieves competitive decoding performance while
reducing the computational cost. At the same time, it clearly outperforms larger group numbers of 8
and 16 in terms of decoding accuracy, highlighting that 4 groups strike an effective balance between
efficiency and representational capacity.
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