Large-Scale Constraint Generation
Can LLMs Parse Hundreds of Constraints?

Anonymous ACL submission

Abstract

Recent research has explored the constrained
generation capabilities of Large Language
Models (LLMs) when explicitly prompted by
few task-specific requirements. In contrast, we
introduce Large-Scale Constraint Generation
(LSCG), a new problem that evaluates whether
LLMs can parse a large, fine-grained, generic
list of constraints. To examine the LLMs’ abil-
ity to handle an increasing number constraints,
we create a practical instance of LSCG, called
Words Checker. In Words Checker, we evaluate
the impact of model characteristics (e.g., size,
family) and steering techniques (e.g., Simple
Prompt, Chain of Thought, Best of N) on per-
formance. In addition, we propose FoCusNet, a
small and dedicated model that parses the orig-
inal list of constraints into a smaller subset to
help the LLM focus on relevant constraints. Ex-
periments reveal that existing solutions suffer a
significant performance drop as the number of
constraints increases, with FoCusNet showing
at least an 8-13% accuracy boost.

1 Introduction

Instructions are prompts or directives, written in
natural language, that guide the model to perform
a specific task (Ouyang et al., 2022). The recent lit-
erature has extensively studied the ability of Large
Language Models (LLMs) to follow instructions
requiring complex reasoning (Wang et al., 2023),
focusing on multiple requirements and for multi-
ple rounds (He et al., 2024c¢,b), and even dealing
with long texts (Bai et al., 2024; Li et al., 2024).
To address the real-world urgency for controllable
outputs (Liu et al., 2024a; Hassan et al., 2024),
researchers have also investigated whether LLMs,
provided with clear indications of the expected an-
swer, could support constrained generation (e.g.,
“the answer must contain exactly N words”) (Sun
et al., 2023; Yao et al., 2024; Xia et al., 2024).

In this paper, we take a step further in defining
instruction-following tasks. In particular, instead

Simple Prompt
Chain of Thoughts

Z5E Best of 3
X FoCusNet

80 1

R

RS

Y
o
X

>

28

I

9.
O
X2

QO
O
D%

X2
&
X2

X

XK

Accuracy (%)

039,
0%,
A’Q’

N
o

5
S

<
924

Q
S

Q
Q
X2

<
X2

K2

500
|Forbidden Words|

Figure 1: FoCusNet significantly outperforms typical
LLM inference methods on the proposed Words Checker
task (DeepSeek-RI-Distill-Llama-8B). Red numbers in-
dicate differences compared to 100-word scenario.

of the few task-specific indications the literature
has used so far, we focus on scenarios with a high
number of fine-grained but general constraints that
the model must respect to generate a valid answer.
Consider the example in Fig. 2. The model faces
a social task (e.g., “be a good visitor in an Islamic
country”), and can access a comprehensive travel
guide with generic information on how to achieve
the goal (i.e., long list of constraints). Could the
LLM, with the sole aid of the generic travel guide
and no other explicit instruction, realise that “invit-
ing a Muslim for a beer after prayer” (Naous et al.,
2024) is not a good way to solve the task?

We call this new framework Large-Scale Con-
straint Generation (LSCG). LSCG examines
whether LLMs can replicate humans’ practical in-
telligence (Sternberg, 1986), i.e., the ability to inter-
pret and adapt to the context. In particular, facing
LSCG the model is not tasked to solve complex
reasoning problems, but rather i) to consult broad
and generic guidelines (e.g., travel guide, but also
updated documentation while coding (Wang et al.,
2024; Deng et al., 2024)), ii) to identify the require-
ments relevant for the specific problem, and iii) to
apply them to derive a valid solution.

As it is currently unclear whether and how
LLMs’ capabilities could scale with the hundreds

2.Constraints Interpreting

3.0utput

Task:

a
“How to be a good visitor m
in an Islamic country?” E-

Constraints:

“Task:

Constraints:

How to be a good visitor in an Islamic country?

History and cultural background, How to get there, Landmarks,
Cultural sites, ...,

LLM

Invite a Muslim

Local customs and etiquette” fora beer

“History and cultural background, o b)
How to get there, - 0\,
Landmarks, Cultural sites, — 4’@’ |E L]
GUIDE
L L toms and etif FocusNat

“Task:
How to be a good visitor in an Islamic country?
Relevant Constraints:

“Local customs and etiquette”

@ s‘s
v @

InV|te a Muslim
M foratea

Figure 2: In LSCG, the model must generate a valid answer while adhering to an input task and a long list
of constraints. In the example, this can be done either by (a) directly interpreting the concatenated task and
constraints or (b) using a FoCusNet to extract relevant constraints. The first approach may lead to inappropriate

responses (e.g., offering beer to a Muslim (Naous et al.,

(if not thousands) of constraints that a travel guide
or some code documentation could provide, we
implement a concrete instance of LSCG, Words
Checker. We design Words Checker as a simple
problem, not requiring particular reasoning skills,
to explicitly study how the performance of LLMs
while solving the task is affected by the number of
constraints. In Words Checker, the model is given
as input a list of forbidden words and a sample sen-
tence. The task is to classify the sentence as valid
(i.e., does not contain forbidden words) or invalid
(i.e., contains at least one forbidden word).

We create different instances of Words Checker
with increasingly larger lists of forbidden words
(e.g., 100, 500 and 100). Then, we systemati-
cally evaluate how features such as model fam-
ily — Meta’s LLama (Grattafiori et al., 2024) vs.
Deepseek’s R1 (DeepSeek-Al et al., 2025)), size —
8B vs. 70B, and Test Steering Strategies (TSS)—
Simple Prompt, Chain of Thought (Wei et al.,
2022b; Lightman et al., 2024) and Best of N (Chen
et al., 2024b; Madaan et al., 2023) affect the results.

Furthermore, inspired by Retrieval Augmented
Generation (RAG) (Lewis et al., 2020) and the re-
cent literature (Cobbe et al., 2021; Shi et al., 2024),
we propose FoCusNet (Focused Constraints Net),
a lightweight and customizable model to parse the
originally large list of constraints into a smaller
set of constraints relevant to the task, helping the
LLM to better focus. In Words Checker, FoCus-
Net is a ~ 300k parameters model that we train
to determine whether a set of words is present in
a sentence. During inference, it preprocesses the
long list of forbidden words and parses it into a
smaller set of potential suspects, allowing the LLM
to focus more effectively on meaningful instances.

The results of a distilled 8B LLM in Words

Checker, shown in Fig. 1, are striking: traditional
Test Steering Strategies, including simple prompt-

2024)), while the second ensures valid answers.

ing, suffer a drastic performance drop — down to
~ 27.8% accuracy. Manual analysis reveals that
the model often processes words individually, los-
ing focus, and sometimes conflating its reasoning
process with the actual task. For example, it may
incorrectly assert that a word is present simply be-
cause it appears in a self-generated list. Our ap-
proach proves the most robust, leveraging the syn-
ergy between two models. FoCusNet, trained to
detect the presence of words with accuracy 90%,
effectively narrows the search space (i.e., average
of 30 suspicious words out of 1000). The LLM,
in turn, benefits from this reduced scope, filtering
out false positives from FoCusNet and improving
overall accuracy. In sum, our contributions are:

— Large-Scale Constraint Generation: A novel
problem to evaluate the ability of current LLMs to
automatically parse a large number of constraints
and identify the relevant ones.

— Words Checker: A practical example of
LSCG where the model identifies invalid sentences
as the number of forbidden words increases. We
systematically experiment 2 models (LLama and
R1I), 2 model sizes (8B and 70B), and 3 TSS
(prompt-based, CoT, Best of N).

— FoCusNet: A small dedicated model that
works in conjunction with the LL.M, helping it to
better focus on relevant constraints.

— Code and Datasets: To reproduce Words
Checker and FoCusNet and help the community
benchmarking LSCG.

2 Related Work

Instruction-Following abilities of LLLMs. The
challenge of constraining textual generation has
been studied since the early days of NLP (Hu et al.,
2017), but the rise of LLMs has dramatically in-
creased expectations beyond merely “producing
plausible text” (Brown et al., 2020; Wei et al.,

2022a). Modern LLMs are expected to follow
complex instructions, handle multiple constraints
across interactions (He et al., 2024c,b), and process
long texts (Bai et al., 2024; Li et al., 2024). Yet,
this problem remains unsolved. Studies show that
LLMs struggle with adherence to rules (Mu et al.,
2024), format following varies widely across do-
mains (Xia et al., 2024), open-source models are
still behind closed source solutions (Wang et al.,
2023) and smaller models still perform poorly in
structured tasks (Wang et al., 2025). Most of the
previous evaluations assume interactive chat-like
settings, with few clear user instructions specific
to the required task. In contrast, we contribute to
this line of research by examining how LLMs per-
form when given an extensive list of fine-grained
yet generic requirements to satisfy.

Instruction Tuning. Given these challenges, in-
struction tuning might seem like a natural can-
didate for improving adherence to complex and
fine-grained constraints. Prior work has high-
lighted its role in enhancing generalization capa-
bilities (Chung et al., 2022; Mishra et al., 2022;
Thoppilan et al., 2022), and even a small set of
high-quality instructions can lead to performance
gains (Zhou et al., 2023; Chen et al., 2024a). How-
ever, despite well-established guidelines for craft-
ing such instructions (Zhao et al., 2024; He et al.,
2024a; Zhang et al., 2024), instruction tuning re-
mains costly and resource-intensive. This makes it
unsuitable for large-scale applications that require
customization (Chang et al., 2016; Zhang and Chen,
2020), continuous knowledge updates (Lewis et al.,
2020), or, like our example in Fig. 1, cultural adap-
tation (Adilazuarda et al., 2024; Kotek et al., 2023).
Instead, we argue that LLLMs should, like humans,
handle unfamiliar constraints by leveraging exter-
nal knowledge sources while relying on their rea-
soning abilities to interpret and respond accord-
ingly. Consequently, we do not employ instruction
tuning to further specialize our models.

Test Steering Strategies. Rather than modifying
a model through instruction tuning, an alternative
approach is to guide LLM outputs at inference us-
ing test-time steering strategies. These methods
enhance rule adherence without the cost and inflex-
ibility of fine-tuning. Prior research has explored
various controlled generation techniques to enforce
constraints (Hu et al., 2018). LLMs have shown
strong performance with simple interventions like
Chain-of-Thought (CoT) prompting (Wei et al.,
2023). However, studies suggest that such methods

alone may be insufficient for handling fine-grained,
hard constraints (Sun et al., 2023). To address
this, researchers have investigated best-of-K selec-
tion (Nakano et al., 2022; Stiennon et al., 2020),
where multiple independent samples are generated,
scored, and ranked to select the most suitable out-
put. Other approaches include rejection-sampling-
based methods (Liu et al., 2024b), reward-model-
guided decoding (Yang and Klein, 2021; Deng and
Raffel, 2023), and constraint-aware streaming al-
gorithms (Krause et al., 2021; Liu et al., 2021).
Building on this body of work, we assess the rule-
following capabilities of LLMs using various test-
time steering strategies.
Auxiliary Modules for LLMs. In this paper, we
present FoCusNet, a modular support model that
enhances LLMs’ ability to follow constraints. Un-
like base model modifications, FoCusNet acts as
an auxiliary module that identifies and prioritizes
relevant constraints, guiding the LLM’s generation
process. It provides an intermediate solution be-
tween resource-heavy instruction tuning and sim-
pler test-time steering methods, which, while more
efficient, may struggle with complex tasks.
Similar approaches using specialized support
models for LLMs have been explored in vari-
ous text generation tasks. For example, retrieval-
augmented generation (RAG) (Lewis et al., 2020;
Shi et al., 2024) improves LLM responses by in-
corporating external knowledge, while classifier-
based safeguards promote responsible generation
(Sharma et al., 2025). Furthermore, researchers
have also developed classifier-based content mod-
eration systems (Chi et al., 2024; Inan et al., 2023;
Rebedea et al., 2023) and output filtering tech-
niques to address jailbreak vulnerabilities (Kim
et al., 2024),

3 Large-Scale Constraint Generation

In this Section, we formally define LSCG, relate
Test Steering Strategies techniques with LSCG and
finally introduce FoCusNet.

3.1 Formal Definition

In constrained generation, LLMs autoregressively
generate an output sequence y according to an input
task ¢ and a set of constraints ¢ = {c1, c2,...,cc}.
LSCG is a specific case of constrained generation
characterized by a large number of constraints (i.e.,
C > 100). We suppose both ¢, and the constraints
¢; with ¢ € C to be string-based. Although this

Table 1: Summary of how different steering solutions
produces the final query ¢ = e(t) || p(c).

Test steering ~ Enhance - e(t) Parse - p(c)
Simple Prompt t allel - lec
Chain of Though tlg alel e
Best of N thy yillya - [l yn
FoCusNet t]g fa(c)

assumption does not cover the most general case
(see Sect. 6), it is sufficient to model real-world sce-
narios such as the travel guide and documentation
examples of Sect. 1.

We define the LLM input query: q = e(t) ||
p(c), where || is the concatenation. Specifically,
here e and p are Test Steering Strategies that can
be applied to improve model performance: e is
a function that enhance the definition of the task,
while p helps parsing the constraints. We provide
more details in the next section.

We represent the LLM as a function fy : ¢ — y.
This means that the LLM generates an answer ¥y as
y = fo(q) according to its pre-trained weights 6. A
model-generated answer y is valid for a given query
q if it correctly solves the task ¢ while adhering to
the constraints c.

3.2 Ecxisting Test Steering Strategies

Here, we list the most prominent TSS previously
identified in the literature and examine how they
apply in our formulation. We provide a summary
in Tab 1.

Simple Prompt. As both ¢ and c are text-based,
a natural approach is to simply concatenate them:
g=tlecilleal -1l cc

Chain of Thought (CoT). To enhance the reason-
ing capabilities of the LLM, we modify ¢ by ap-
pending a guide phrase g, such as “Think step by
step’iq =t gllerllezll - | co.

Best of N. Finally, to improve the interpretation
of the C' constraints, we can involve a panel of N
judges (e.g., independent runs of the model), each
performing CoT reasoning independently, followed
by a recap step to produce the final answer. For-
mally, let y = fuo(t || g [e | e2 || - | cc)
denote the answer of the nth judge, where n € N.
Then, we can aggregate all the responses into a
refined query: ¢ =t [yy | y2 || -~ [| -

3.3 FoCusNet

Definition. Here, the goal is to learn an approxi-
mation of p(c) : ¢ — k to reduce the large set of C
constraints ¢ to a more compact subset k € K of
relevant constraints. To do that, we introduce a ded-

icated model, FoCusNet. Specifically, we define
FoCusNet as a function f, with learnable parame-
ters ¢, trained on task-specific data to filter relevant
constraints. Once trained, FoCusNet applies this
filtering as k = f4(c), which yields the final query
formulation: ¢ =1t || g || k ||

Training FoCusNet. We train FoCusNet to per-
form a binary classification task over individual
constraints. Specifically, FoCusNet operates on
triplets (¢, s,l). Here, ¢ = {c1,c2,...,cpr} is a
subset of M constraints from c; s is a text-based
instance where the constraint is satisfied or vio-
lated, and [€ {0, 1} is a label indicating whether
the constraint is violated (1) or not (0). For ex-
ample, consider Fig. 2. The set of constraints is
{c1 =“Respect local customs and etiquette when
visiting an Islamic country”}; the instance is s =
“Invite a Muslim for a beer”; the corresponding
label [is violated (I = 1).

Inference with FoCusNet. During inference, Fo-
CusNet receives as input the tuple of constraints
and task (c, t) and generates a relevance mask,
m = {my,ma,...,mc} with m; € {0,1} and
i € C. The mask determines which constraints are
relevant for the task. Applying the mask yields the
reduced set: k = {¢; | m; = 1,Vi € C}.

As in any alerting system, FoCusNet aims at
compromising recall and precision. ldeally, we
would like FoCusNet to reduce the number of false
positives, i.e., irrelevant constraints mistakenly in-
cluded. In fact, a large number of false positives
leads to a larger and noisy set k. At the same time,
it is essential to minimize false negatives, as exclud-
ing relevant constraints could hinder the LLM’s
ability to generate valid outputs.

4 Methodology

In this section, we discuss the engineering of Words
Checker and, consequently, FoCusNet’s training.

4.1 Words Checker

Problem Definition. Words Checker is an instance
of LSCG, where an LLM must classify a sentence
as valid or invalid based on a dynamically pro-
vided list of forbidden words. Formally, given a
sentence S = (wi, ws,. .., w,) and a set of forbid-
den words F' = {wy1,wy2,. .., Wep}, the model
must determine whether .S contains any word mor-
phologically related to an element of F'. A sentence
is classified as invalid if Jwy; € F such that wy;
is a root or morphological variant of any w; € S,

1.Pre-trained Encoder

2.Contrastive Loss

3.Random Forest

Embeddings:
® sentence

Embeddings:

® sentence A dim light shines on the dark sky.

& cer A agg. words
M word
fly.
dark

ount cloud sky fl(. :
= f
2 \r

shine cloud| £, A‘__--ﬁ(l)

airplane; fly A =

u]
Airplane flying in the clouds InfoNCE Loss

ski
wm The athlete skied a snowy mount. fl(.)
athlete:
| |

airplane

Airplane flying in the clouds

A dim light shines on the dark sky.
MK N Input triplets RF Training
InfoNCE Loss \ f;(w))
“ (4, @)) (10 o)
e (A, @) /) AN
CC & A, @) © o o
athlete,
ACT (4, r@),%) ® \. / /
Vo A, rm,%¢) © ©0 o<l> o
mcu’ntyl InfoNCE Loss (A fl(.)sX) V
A& e
The athlete skied a snowy mount. o

Figure 3: Training pipeline of FoCusNet for Words Checker. The model receives as input a batch of sentences
and words. In Phase 1, FoCusNet uses a frozen pre-trained model to map the input into sentences (circles) and
words (squares) embeddings. Then, in Phase 2, FoCusNet learns to refine the sentence embeddings (f,) and to
aggregate the words embeddings (f,, f») with a InfoNCE contrastive loss. Eventually, in Phase 3 FoCusNet train
a Random Forest to discriminate positive and negative examples.

and valid otherwise. For example, given the sen-
tence “The athlete skied a snowy mountain” and
= {ski}, the output should be invalid, since

“skied” is a morphological variant of “ski”. In con-
trast, for “The bathroom has recently been cleaned”
and F' = {restroom}, the output should be valid,
as no word in .S morphologically relates to “re-
stroom”.
Ratio behind Words Checker. We explicitly de-
sign Words Checker to study the impact of an
increasing number of forbidden words on LLM
performance. Therefore, unlike other constrained
generation problems, this task does not require
complex reasoning. Instead, we engineer Words
Checker as a simple problem that an advanced,
morphologically aware string-matching algorithm —
without concern for synonyms — could potentially
solve. In summary, Words Checker serves as an
in vitro study on LSCG. At the same time, Words
Checker has practical applications. Consider a sce-
nario where S is an LLM-generated response y in
a conversation, and F' consists of words the user
explicitly wants to avoid (e.g., when paraphrasing
text, for secret keeping, etc.,).
Testing Dataset. To construct a dataset for Words
Checker, we use the CommonGen (Lin et al., 2020)
benchmark, originally designed for traditional con-
strained text generation. Each entry in Common-
Gen consists of a sentence and a variable-sized list
of W words that are morphologically present in it.
For example, an entry may contain “The athlete
skied a snowy mountain” with the corresponding
words [“ski”, “snow”’].

We derive our dataset from two partitions of
CommonGen, namely the challenge train sample
and challenge validation sample'. For these parti-

'The test partitions of CommonGen do not contain refer-
ence sentences.

tions, W ranges from 1 to 4. Given a pool size of
candidate forbidden words |F'|, we: i) construct a
vocabulary from all CommonGen partitions, and ii)
iterate over the selected partitions to generate valid
and invalid samples. To create an invalid example,
we retain W CommonGen words and randomly
sample |F'| — TV additional vocabulary words. For
a valid example, we select |F'| random words en-
suring that none is morphologically present in the
sentence.

We generate four versions of Words Checker,
each containing 1000 sentences, with increasing
constraint complexity: F' = {10,100, 500, 1000}.
We generate balanced datasets, with approximately
equal support for both classes. Notice that the 1000
sentences are the same across all scenarios.

4.2 FoCusNet for Words Checker

Model Description. In the practical scenario of
Words Checker, we train FoCusNet to recognize
whether a sentence S contains a set of words
W = {wi,ws,...,w,}. The training pipeline,
summarised in Fig. 3, is divided into three phases:

Phase I: We use a frozen pre-trained sentence
encoder to obtain the initial embeddings for the
sentence (eg) and the words ({€w, , €wsyy - - -, €y, })-

Phase 2 Next, we refine these embeddings
through two learnable projection layers. The sen-
tence embeddings are refined with a linear layer
fx : es — ég, where ég is the refined sentence
embedding. We aggregate the word embeddings
into a single refined embedding e, using an atten-
tion mechanism (Bahdanau, 2014). Specifically,
given the embeddings ey, €y, - - - 5 €y » WE COM-
pute ey, as:

N

Ew = Zf'y(ewi) : f)\(ewi)

=1

Intuitively, we use this aggregation layer and
focus on more words simultaneously to give the
model a broader understanding of the context in
which the words are used. For example, with
{W1 = “mount”, “ski”’} and Wy ={“mount”,
“lake”}, the model understands that “mount” be-
longs to both winter- and spring-like scenarios.

We train the layers x, v, and A using the In-
JoNCE loss (Oord et al., 2018), which encourages
higher cosine similarities for sentences and words
that appear in the same set WW. Specifically, two
sentences S7 and Sy from the same batch are con-
sidered positive examples if they share the same
set of words, and negative otherwise.

Phase 3: After training the encoder and projec-
tion layers, we concatenate the refined sentence
embedding ég and the word embedding e,; into a
final embedding ey = ég || ;3. This concatenated
embedding is then fed into a Random Forest classi-
fier, which determines whether the words encoded
in e, appear in the sentence S or not.

The last two phases of the training pipeline draw
inspiration from the Supervised Contrastive Loss
paper (Khosla et al., 2020), and are designed to
learn high-quality embeddings.

Training Dataset. To train FoCusNet, we use
the remaining frain and validation partitions from
CommonGen. Since more than 80% of the sen-
tences contain a list of three specific words, we
apply synthetic augmentation to the dataset. Given
a sentence (e.g., "The athlete skied a snowy moun-
tain") with three contained words (e.g.,“athlete”,
“ski”, “mountain’), we randomly select subsets of
one (e.g.,"“mountain”) or two words (e.g.,“athlete”,
“ski”). The original sentence remains a valid pos-
itive sample for each subset. This enhancement
allows the model to learn from training examples
with varying numbers of words contained, enhanc-
ing its generalizability. As we further discuss in
Sect.6, note that such augmentations, which exploit
logical dependencies, are not specific to this task
but generalise across various fields. For example,
returning to the example in Fig.2, adopting the ap-
propriate behaviour (e.g., “inviting a Muslim for
tea rather than beer”) not only aligns with the task
“How to be a good visitor” but is also consistent
with “How to effectively socialize” and “How to
spend quality time with locals while travelling”.

Eventually, the final dataset contains ~ 220k la-
belled examples of sentences and contained words.

S Experiments

In this section, we present the results of traditional
Test Steering Strategies and FoCusNet in Words
Checker. While we provide some qualitative in-
sights, our primary focus is on reporting quantita-
tive metrics (e.g., accuracy, precision, and recall).
A more detailed qualitative analysis, including an
examination of specific model responses, can be
found in Appendix A.

5.1 Experiments Settings

LLMs Inference. To deploy the LLMs in our
Words Checker experiments, we use S GLangZ,
an open-source framework that facilitates effi-
cient model downloading and deployment. Specif-
ically, we select four models from SGLang’s
library: Meta-Llama-3.3-8B-Instruct and Meta-
Llama-3.3-70B-Instruct from the LLaMA fam-
ily (Grattafiori et al., 2024), as well as the more re-
cent DeepSeek-R1-Distill-Llama-8B and DeepSeek-
RI-Distill-Llama-70B from DeepSeek (DeepSeek-
Al etal., 2025). The deployment of the 70B models
required four NVIDIA RTX A6000 GPUs, whereas
the 8B models ran efficiently on a single A6000
GPU. When prompting the models, we set the tem-
perature t to 0.2 for the Simple Prompt strategy and
increase it to 0.4 for more sophisticated TSS. The
exact prompts used are provided in Appendix A.
When using the Best of N strategy, we set N=3.
Training FoCusNet. For the contrastive loss
training of FoCusNet, we perform a hyper-
parameter search using 4-fold cross-validation
(K = 4), ensuring that all examples sharing
the same word list are assigned to the same
fold to prevent data leakage. We explore em-
bedding sizes {64, 128,256,512}, learning rates
{1e=4,2.5¢74,5¢7*}, and InfoNCE loss tempera-
tures {0.05,0.1, 0.2}, training for 30 epochs. The
best configuration, determined by averaging valida-
tion results, consists of an embedding size of 128,
a learning rate of 2.5¢~%, a temperature of 0.05,
and 24 training epochs, using all-mpnet-base-v2>
as the pre-trained encoder. After selecting the best
encoder, we train a random forest where each sen-
tence is paired with a positive (words contained in
the sentence) and a negative example (words not
contained). A hyperparameter search yields an op-
timal configuration of 200 trees, a maximum depth

thtps://docs.sglang.ai/index.html
3https://huggingface.co/sentence—transformers/
all-mpnet-base-v2

https://docs.sglang.ai/index.html
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

Table 2: Results of a DeepSeek-R1-Distill-Llama-8B model using different Test Steering Strategies as the number
of forbidden words | F'| increases. The proposed FoCusNet significantly outperforms other TSS methods.

Test Steering Strategies |F1]: 100 |71 500 |7]: 1000
Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.
Simple Prompt 86.99 9725 81.01 70.51 87.62 66.33 62.14 8298 57.52
Chain of Thought 87.70 94.16 83.88 68.20 87.12 63.03 59.90 78.34 56.83
Best of 3 85.60 94.16 80.94 62.70 83.30 58.81 58.40 80.16 55.46
FoCusNet 87.50 79.18 95.76 79.30 81.69 77.78 72.80 84.01 68.26
of 10, and a minimum of three samples per leaf. -o MetaLlama 88 —® Deepseek R1 8B
Metrics. Since Words Checker is a standard binary 100 Meta Llama 708 Deepseek R1 708
classification problem, we evaluate performance PO
using accuracy (overall correctness), precision (the = 901y “u.
proportion of predicted positive sentences that ac- ? 50 | \ TN
tually contain at least one forbidden word), and g l\ Y
recall (the proportion of actual positive sentences é 70 1 \\\ S—
correctly identified). Additionally, for invalid sen- < e Te=Z 3
tences, we assess the model’s parsing ability. To do 601 hai S
s0, we introduce parsing precision and parsing re- 10100 500) o?o o
call. For example, given the sentence “The athlete |Forbidden Words|

skied the snowy mountain,” the set of forbidden
words {snow, mountain, ski}, and the model’s pre-
diction {snow, ski, sun, fun}, the parsing recall is
0.66 (2 out of 3 correct words retrieved), while the
parsing precision is 0.5 (2 out of 4 predicted words
are correct).

5.2 Results

Is Words Checker challenging?. We assess the
effectiveness of a simple prompting strategy and
find that all models, regardless of family or size,
experience a roughly 30% accuracy drop as the
number of forbidden words increases from 10 to
1000 (see Fig. 4). In addition (full table on Ap-
pendix), more forbidden words lead to an increase
in false alarms. For example, with 100 forbidden
words, LLama 70B has a recall of 97% and preci-
sion of 99%, but with 1000 forbidden words, the
recall only decreases to 92%, while the precision
drops to 65%. These results show that, despite
simplicity, Words Checker remains challenging for
basic prompting strategies, suggesting that more
advanced Test Steering Strategies are needed.
FoCusNet vs. Traditional TSS Limitations. We
assess the impact of advanced Test Steering Strate-
gies, like Chain of Thought and Best of 3, on Words
Checker using Deepseek’s R1-8B model and com-
pare the results with FoCusNet.

Observe the results of Tab. 2. With 100 for-
bidden words, all methods show similar accuracy.
Traditional TSS has better recall, while FoCusNet
is more precise. Chain of Thought provides mini-

Figure 4: Accuracies with a “Simple Prompt” strategy
as the number of forbidden words increases.

mal improvement over Simple Prompt, suggesting
that the LLM is already following a "Think Step by
Step" strategy. The Best of 3 strategy does not help,
as, for this simple task, too many opinions lead the
final LLM to overthink — even more accentuated
in the following scenario. Despite this, the LLM
performs adequately in this case, which serves as
our reference as we further increase the number of
forbidden words.

With 500 forbidden words, the recall is similar
for both traditional Test Steering Strategies and
FoCusNet, but FoCusNet achieves +9% higher ac-
curacy due to its better precision. Both Chain of
Thought and Best of 3 degrade the performance
of Simple Prompt. We find that forcing the model
to reason more in simple tasks hinders its perfor-
mance, as the LLM enters repetitive loops, lead-
ing to issues such as: i) confusion between its
thought process and the original task, ii) overthink-
ing (e.g.,, “Should I accept synonyms?” or “Do plu-
rals count?”), and iii) hallucination of non-existent
words. Contrarily, by focusing on smaller subsets
of relevant words (3 for 100 forbidden words, 14
for 500, 30 for 1000), FoCusNet helps the LLM
stay on task and reduce false alarms while main-
taining a good recall.

Eventually, with 1000 forbidden words the issues
observed in the 500-word case are amplified, and

B |F|:100

== |F|:500

=2 |F|:1000

228

~
o
L

200 200

[=2]
(=]
L

ul
o
L

150 4

N
o
L

100 4

50 1
I 20
0 - T T

|Invalid Sentences|
w
o
\
o
o

% of Invalid Sentences
S
@

-
o
L

13
9
3 13
0001 21000
T - T - T

B 68 C 4444

) w »
S S S

% of Invalid Sentences
S

o
L

0.0 25.0 33.3 50.0 66.7 75.0 100.0
|W| Parsing Precision (%)

0.0 25.0 33.3 50.0 66.7 75.0 100.0
Parsing Recall (%)

Figure 5: Analysis of recalls and precisions of FoCusNet per invalid sentences

traditional Test Steering Strategies only performs
10% better than random guessing — remember that
the problem is balanced. Although FoCusNet per-
formance also declines, it still performs similarly
to the 70B-Llama model (68% precision for Fo-
CusNet vs 66% for Llama), which is promising
given the ~ 10 times smaller LLM we used here.

Parsing skills of LLM + FoCusNet. Lastly, we
conduct a deeper evaluation of our solution, utiliz-
ing FoCusNet to enhance the LLM’s performance.
While the original task was a binary classification
— determining whether a sentence was valid or in-
valid — we now refine our analysis with a more
granular approach. Specifically, for invalid sen-
tences, we assess parsing precision by measuring
the proportion of predicted words that are actually
present in the sentence. Additionally, we evaluate
parsing recall by examining how many of the true
forbidden words (W) the LLM correctly identifies.

Our analysis focuses on approximately 500 in-
valid sentences, meaning sentences that contain at
least one forbidden word (|| > 1). This selec-
tion allows us to evaluate the detector’s ability to
identify relevant anomalies.

The results are shown in Fig. 5, with subfigures
B and C providing key insights. These subfigures
plot the percentage of invalid sentences (y-axis)
against parsing precision and recall (x-axis). For
example, they show that when using the list of
relevant words identified by FoCusNet, the LLM
achieves a parsing precision of 100% for 68% of
invalid sentences. Both distributions exhibit a tri-
modal pattern, with peaks at 0%, 50%, and 100%.
This pattern arises because most invalid sentences
in the test dataset contain either one or two forbid-
den words (as seen in subfigure A).

Although the number of “perfect predictions”
(both precise and accurate) consistently exceeds
the number of “bogus predictions™ (0% precision
and recall), increasing the number of candidate
words (| F'|) negatively impacts performance. No-
tably, the scenarios with |F'| = 100 and |F'| = 500

contain the same set of invalid sentences. This
means that the true forbidden words (I¥) in these
sentences remain unchanged. For them, FoCusNet
always makes the same predictions, irrespective of
F'. However, as the pool of forbidden candidate
words (F') grows, FoCusNet may introduce false
positives into the list of relevant words returned
to the LLM. These false alarms mislead the LLM,
causing it to make more mistakes, thereby reducing
overall performance.

6 Conclusions

This paper introduces Large-Scale Constraint Gen-
eration (LSCG), a new constrained generation prob-
lem where Large Language Models (LLMs) must
adhere to a large number of constraints. We de-
signed Words Checker as a controlled testbed of
LSCG in which the model classifies sentences as
valid or invalid based on an increasingly large list
of forbidden words.

Our experiments evaluated models from various
families and sizes, testing traditional Test Steering
Strategies and introducing FoCusNet, a customiz-
able support module for LLMs. The results high-
light a significant performance drop across all mod-
els as the number of constraints increases. Stan-
dard TSS approaches not only fail to mitigate this
decline but often lead models to overthink and hal-
lucinate constraints. In contrast, FoCusNet proves
to be the most resilient, consistently improving con-
straint adherence by narrowing the model’s focus.

Despite FoCusNet ’s own limitations, its effec-
tiveness in reducing failure rates suggests a promis-
ing direction for addressing LSCG. With its sim-
plicity and strong initial results, this study lays the
groundwork for future research in constraint-aware
LLM reasoning. By defining LSCG and offering
open-source implementations of Words Checker
and FoCusNet, we aim to inspire the community
to explore and benchmark solutions to this critical
challenge.

Limitation

In this section, we outline the limitations of the
present work.

First, while we provide examples of alternative
use cases, we focus solely on a specific instance of
Large-Scale Constraint Generation, namely Words
Checker. To better isolate the impact of an in-
creasing number of constraints, we deliberately
designed Words Checker to minimize the role of
the LLM reasoning. Although we believe that this
problem has been largely overlooked in prior re-
search, our analysis remains partial, addressing
only the complexity of scenarios involving: i) mul-
tiple constraints and ii) constraints that require in-
terpretation.

Second, our proposed model, FoCusNet, relies
on sufficient task-specific data to perform well.
This dependency may limit the applicability of Fo-
CusNet in scenarios where task data are scarce.
In the paper, we suggested that augmenting ex-
isting datasets through contrastive loss and logi-
cal dependencies between constraints and input
could mitigate this issue. Additionally, as a task-
specific model, FoCusNet does not require exten-
sive generalization, and minor "benign overfitting"
is acceptable. Future work should further explore
the trade-off between data availability and perfor-
mance, possibly extending the analysis to contexts
beyond Words Checker.

Moreover, while we present FoCusNet as a
generic add-on module for LLMs, its architecture
has only been evaluated within the Words Checker
context. More research is needed to assess its gen-
eralizability and explore how different weight ar-
chitectures might affect its performance.

Finally, our work has concentrated solely on
textual constraints. However, in many real-
world tasks, constraints may span multiple modal-
ities (Chi et al., 2024; Inan et al., 2023). Future
research could address the challenges posed by the
large number of constraints in different modalities.
In this regard, FoCusNet could offer valuable flexi-
bility, as it could be adapted with modality-specific
architectures to better address these challenges.

References

Muhammad F. Adilazuarda, Sagnik Mukherjee, and
Pradhyumna et al. Lavania. 2024. Towards measur-
ing and modeling "culture" in llms: A survey. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, Miami,

Florida, USA. Association for Computational Lin-
guistics.

Dzmitry Bahdanau. 2014. Neural machine translation
by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Yushi Bai, Xin Lv, and Jiajie et al. Zhang. 2024. Long-
bench: A bilingual, multitask benchmark for long
context understanding. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics, Bangkok, Thailand. Association
for Computational Linguistics.

Tom Brown, Benjamin Mann, and Nick et al. Ryder.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems.

Shuo Chang, F. Maxwell Harper, and Loren G. Terveen.
2016. Crowd-based personalized natural language
explanations for recommendations. In Proceedings
of the 10th ACM Conference on Recommender Sys-
tems, New York, NY, USA. Association for Comput-
ing Machinery.

Lichang Chen, Shiyang Li, and Jun Yan et al. 2024a.
Alpagasus: Training a better alpaca with fewer data.
In The Twelfth International Conference on Learning
Representations.

Xinyun Chen, Maxwell Lin, and Nathanael et al.
Sch"arli. 2024b. Teaching large language models
to self-debug. In The Twelfth International Confer-
ence on Learning Representations.

Jianfeng Chi, Ujjwal Karn, and Hongyuan et al. Zhan.
2024. Llama Guard 3 Vision: Safeguarding Human-
Al Image Understanding Conversations. arXiv
preprint arXiv:2411.10414.

Hyung Won Chung, Le Hou, and Shayne et al. Longpre.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Karl Cobbe, Vineet Kosaraju, and Mohammad et al.
Bavarian. 2021. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168.

DeepSeek-Al, Daya Guo, and Dejian et al. Yang. 2025.
Deepseek-r1: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Gelei Deng, Yi Liu, and V’ictor et al. Mayoral-Vilches.
2024. Pentestgpt: Evaluating and harnessing large
language models for automated penetration testing.
In 33rd USENIX Security Symposium, Philadelphia,
PA. USENIX Association.

Haikang Deng and Colin Raffel. 2023. Reward-
augmented decoding: Efficient controlled text gener-
ation with a unidirectional reward model. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 11781-11791,
Singapore. Association for Computational Linguis-
tics.

Aaron Grattafiori, Abhimanyu Dubey, and Abhinav et al.
Jauhri. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Ahmed E. Hassan, Dayi Lin, and Gopi K. et al. Rajba-
hadur. 2024. Rethinking software engineering in the
era of foundation models: A curated catalogue of
challenges in the development of trustworthy fmware.
In Companion Proceedings of the 32nd ACM Inter-
national Conference on Software Engineering, New
York, NY, USA. Association for Computing Machin-
ery.

Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and
Yanghua Xiao. 2024a. From complex to simple: En-
hancing multi-constraint complex instruction follow-
ing ability of large language models. arXiv preprint
arXiv:2404.15846.

Qianyu He, Jie Zeng, and Qianxi et al. He. 2024b. From
complex to simple: Enhancing multi-constraint com-
plex instruction following ability of large language
models. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pages 10864—
10882.

Qianyu He, Jie Zeng, and Wenhao et al. Huang. 2024c.
Can large language models understand real-world
complex instructions? In Proceedings of the Thirty-
Eighth AAAI Conference on Artificial Intelligence.
AAAI Press.

Zhiting Hu, Zichao Yang, and Xiaodan et al. Liang.
2017. Toward controlled generation of text. In Pro-
ceedings of the 34th International Conference on
Machine Learning. PMLR.

Zhiting Hu, Zichao Yang, and Xiaodan et al. Liang.
2018. Toward controlled generation of text. arXiv
preprint arXiv:1703.00955.

Hakan Inan, Kartikeya Upasani, and Jianfeng et al. Chi.
2023. Llama Guard: LLM-based Input-Output Safe-
guard for Human-AI Conversations. arXiv preprint
arXiv:2312.06674.

Prannay Khosla, Piotr Teterwak, and Chen et al. Wang.
2020. Supervised contrastive learning. Advances in
neural information processing systems, 33.

Taeyoun Kim, Suhas Kotha, and Aditi Raghunathan.
2024. Testing the Limits of Jailbreaking De-
fenses with the Purple Problem. arXiv preprint.
ArXiv:2403.14725 [cs].

Hadas Kotek, Rikker Dockum, and David Sun. 2023.
Gender bias and stereotypes in large language models.
In Proceedings of The ACM Collective Intelligence
Conference, New York, NY, USA. Association for
Computing Machinery.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. GeDi: Genera-
tive Discriminator Guided Sequence Generation. In

10

Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4929-4952, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459—
9474. Curran Associates, Inc.

Mo Li, Songyang Zhang, and Yunxin et al. Liu. 2024.
Needlebench: Can llms do retrieval and reason-
ing in 1 million context window? arXiv preprint
arXiv:2407.11963.

Hunter Lightman, Vineet Kosaraju, and Yuri et al. Burda.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Bill Yuchen Lin, Ming Shen, and Wangchunshu et al.
Zhou. 2020. CommonGen: A constrained text gener-
ation challenge for generative commonsense reason-
ing. In Automated Knowledge Base Construction.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics, Online.
Association for Computational Linguistics.

Michael X. Liu, Frederick Liu, and Alexander J. et al.
Fiannaca. 2024a. "we need structured output": To-
wards user-centered constraints on large language
model output. In Extended Abstracts of the CHI Con-
ference on Human Factors in Computing Systems,
New York, NY, USA. Association for Computing
Machinery.

Tiangi Liu, Yao Zhao, and Rishabh Joshi et al. 2024b.
Statistical rejection sampling improves preference op-
timization. In The Twelfth International Conference
on Learning Representations.

Aman Madaan, Niket Tandon, and Prakhar et al. Gupta.
2023. Self-refine: Iterative refinement with self-
feedback. In Thirty-seventh Conference on Neural
Information Processing Systems.

Swaroop Mishra, Daniel Khashabi, and Chitta et al.
Baral. 2022. Cross-task generalization via natural
language crowdsourcing instructions. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics.

Norman Mu, Sarah Chen, and Zifan et al. Wang. 2024.
Can LLMs follow simple rules? arXiv preprint
arXiv:2311.04235.

https://doi.org/10.48550/arXiv.2403.14725
https://doi.org/10.48550/arXiv.2403.14725
https://doi.org/10.48550/arXiv.2403.14725
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://openreview.net/forum?id=xbjSwwrQOe
https://openreview.net/forum?id=xbjSwwrQOe
https://openreview.net/forum?id=xbjSwwrQOe

Reiichiro Nakano, Jacob Hilton, and Suchir et al. Bal-
aji. 2022. WebGPT: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Tarek Naous, Michael J. Ryan, and Wei et al. Xu. 2024.
Having beer after prayer? measuring cultural bias
in large language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics, Bangkok, Thailand. Association
for Computational Linguistics.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Long Ouyang, Jeff Wu, and Xu et al. Jiang. 2022. Train-
ing language models to follow instructions with hu-
man feedback. In Proceedings of the 36th Interna-
tional Conference on Neural Information Processing
Systems, Red Hook, NY, USA. Curran Associates
Inc.

Traian Rebedea, Razvan Dinu, and Makesh et al. Sreed-
har. 2023. NeMo Guardrails: A Toolkit for Control-
lable and Safe LLM Applications with Programmable
Rails. arXiv preprint arXiv:2310.10501.

Mrinank Sharma, Meg Tong, Jesse Mu, Jerry Wei, and
et al. 2025. Constitutional classifiers: Defending
against universal jailbreaks across thousands of hours
of red teaming. arXiv preprint arXiv:2501.18837.
ArXiv:2501.18837 [cs].

Weijia Shi, Sewon Min, and Michihiro et al. Yasunaga.
2024. REPLUG: Retrieval-augmented black-box lan-
guage models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics.

Robert J. Sternberg. 1986. Beyond iq: A triarchic the-
ory of human intelligence. British Journal of Educa-
tional Studies, 34(2):205-207.

Nisan Stiennon, Long Ouyang, and Jeffrey et al. Wu.
2020. Learning to summarize with human feedback.
In Advances in Neural Information Processing Sys-
tems.

Jiao Sun, Yufei Tian, and Wangchunshu et al. Zhou.
2023. Evaluating large language models on con-
trolled generation tasks. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, Singapore. Association for Com-
putational Linguistics.

Romal Thoppilan, Daniel De Freitas, and Jamie et al.
Hall. 2022. LaMDA: Language models for dialog
applications. arXiv preprint arXiv:2201.08239.

Changjie Wang, Mariano Scazzariello, and Alireza et al.
Farshin. 2024. Netconfeval: Can llms facilitate net-
work configuration? Proceedings of the ACM on
Networking, 2(CoNEXT?2).

11

Yizhong Wang, Hamish Ivison, and Pradeep et al.
Dasigi. 2023. How far can camels go? exploring
the state of instruction tuning on open resources. In
Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Zhaoyang Wang, Jinqi Jiang, and Huichi et al.
Zhou. 2025. Verifiable format control for large
language model generations. arXiv preprint
arXiv:2502.04498.

Jason Wei, Yi Tay, and Rishi et al. Bommasani. 2022a.
Emergent abilities of large language models. arXiv
preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv
preprint. ArXiv:2201.11903 [cs].

Jason Wei, Xuezhi Wang, and Dale et al. Schuurmans.
2022b. Chain-of-thought prompting elicits reasoning
in large language models. In Proceedings of the
36th International Conference on Neural Information
Processing Systems.

Congying Xia, Chen Xing, and Jiangshu et al. Du.
2024. Fofo: A benchmark to evaluate Ilms’ format-
following capability. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics, Bangkok, Thailand. Association
for Computational Linguistics.

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics.

Shunyu Yao, Howard Chen, and Austin W. et al. Hanjie.
2024. Collie: Systematic construction of constrained
text generation tasks. In The Twelfth International
Conference on Learning Representations.

Qi Zhang, Yiming Zhang, Haobo Wang, and Junbo
Zhao. 2024. RECOST: External knowledge guided
data-efficient instruction tuning. In Findings of the
Association for Computational Linguistics: ACL
2024, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Yongfeng Zhang and Xu Chen. 2020. Explainable rec-
ommendation: A survey and new perspectives. Foun-
dations and Trends in Information Retrieval, 14(1):1—
101.

Hao Zhao, Maksym Andriushchenko, Francesco Croce,
and Nicolas Flammarion. 2024. Long is more for
alignment: a simple but tough-to-beat baseline for in-
struction fine-tuning. In Proceedings of the 41st Inter-
national Conference on Machine Learning, ICML 24,
JMLR.org.

Chunting Zhou, Pengfei Liu, and Puxin Xu et al. 2023.
LIMA: Less is more for alignment. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903
https://openreview.net/forum?id=KBMOKmX2he

A Appendix

A.1 LLM prompts

We here provide the prompts we used for the LLM
inference:

Simple Prompt.“Check if the following sen-
tence contains one of the following set of words.
Only answer True or False. Ensure to in-
clude your final answer into <answer></answer>.
For instance, if the sentence contains one
of the words, answer <answer>True</answer>;
<answer>False</answer> otherwise.”

Chain of Thought.“Your task is to check if
the sentence contains one of the following set
of words. Answer True or False. Please,
make sure to think step by step. Ensure to in-
clude your final answer into <answer></answer>.
For instance, if the sentence contains one
of the words, answer <answer>True</answer>;
<answer>False</answer> otherwise.”

Best of 3.

— For the judges, we use: “Check if the follow-
ing sentence contains one of the following set of
words. Do not include your reasoning process in
the answer; Provide a short explanation (at most
100 words) to justify your answer. Conclude your
sentence with <answer>your answer</answer>,
where your answer is either True or False.”

— For the final verdict: “Give me your
final opinion over the verdicts of a jury of
{args.n_rounds} LLMs. When prompted the fol-
lowing message: <message> A jury of LLMs
answered: <answer> What is your final ver-
dict? Just answer True or False: Ensure to in-
clude your final answer into <answer></answer>.
For instance, if the sentence contains one
of the words, answer <answer>True</answer>;
<answer>False</answer> otherwise.”

A.2 Examples of LLMs answers

We here report some of the erroneous answers the
LLM might return.

Hallucinations. Here, the model thinks that the
word “dog” is present in the list of forbidden words
when processing the sentence “dressed my dog up
as a pirate”. However, the word is not present —
even if the conviction of the model would suggest
SO.

Ovethinking #1. Here, the LLM, prompted to
“Think Step by Step”, initially gets the correct an-
swer — i.e., none of the words is present in the
sentence. However, it is unsure about the answer,

12

and in a second pass it eventually self-convince that
all words are present.

Overthinking #2. This is an example from the
Best of 3 strategy. Two support models agree that
the sentence does not contain any words. However,
the third model advocates for the devil, saying that
“adorn” is actually a synonym for “dress”, and that,
therefore, the sentence shall be labelled as invalid.
The final judge model trust this third model — as it
can provide a convincing explanation — and (erro-
neously) triggers the alert.

Hallucination

Okay, so I need to figure out which words from the given list are in the
sentence: "dressed my dog up as a pirate." The task is to report all the
words that are contained in the sentence. If none are found, I should
just list an empty list.

First, I'1l read the sentence carefully: "dressed my dog up as a pirate." I
need to identify all the individual words in this sentence and see which
ones match any from the provided list.

Let me break down the sentence word by word. The first word is "dressed." I
should check if "dressed" is in the list of words. Looking through the
list, I don't see "dressed" there. So that's one word not present.

Next is "my." Checking the list, "my" isn't there either. Moving on.

The third word is "dog." I'll look for "dog" in the list. Hmm, I don't see it
either. So "dog" isn 't present.

Then we have "up." Scanning the list, "up" isn't listed. So that's another
word not found.

The next word is "as." Checking the list, "as" isn't there. So that's not
present.

Finally , "a pirate." So "a" and "pirate." Checking the list, "a" isn't there,

but "pirate" is in the list. Wait, let me double—-check. The list
includes "pirate" as one of the words. So "pirate" is present.

" non

Wait, but the sentence says "as a pirate ," so "a" is part of that phrase, but

a" isn't in the list. So only "pirate" is in the list.

Let me go through the list again to make sure I didn't miss any. The words
provided are quite extensive, but I only found "pirate" in the sentence.

So, the only word from the list that's in the sentence is "pirate."
</think >

<answer> True </answer>

Overthinking

Okay, so I've got this task where I need to check which words from a given
list are present in a specific sentence. The sentence is: "winners podium
with numerals on the sky". The words provided are quite a long list, so

I need to make sure I go through each one carefully.

First, I'1l read the sentence again to understand the context. It mentions "
winners", "podium", "numerals", and "sky". I need to see which of the

given words match any of these terms or are related in meaning.

Looking at the list of words, I'Il go through them one by one. Starting with

"headlamp" — doesn't seem relevant. "Success" — maybe, but the sentence
doesn 't explicitly mention success. "Wrestle" — no, that's unrelated. "
Crease" — not here. "Poultry" — definitely not. "Softball" — nope. "Rodeo
" — no. "Bait" - not present. "Therapy" — doesn't fit. "Whistle" — no. "
Navigate" — not in the sentence. "Aim" - maybe, but not directly. "Attach
" — no. "Melody" - no. "Mock" - no. "Pasture" — no. "Pass" - possibly,
but not directly. "College" — no. "Header" — no. "Walker" — no. "Resident
" — no. "Calm" - maybe, but not in context. "Tiger" — no. "Hunter" - no.
"Ambush" - no. "Motorboat" — no. "Position" — maybe, but not clearly. "
Squeeze" — no. "Lease" — no. "Bubble" - no. "Wrap" - no. "Bounce" - no. "
Teller" — no. "Pattern" — no. "Headquarters" — no. "Brightness" — no. "
Ballroom" — no. "Birth" — no. "Statue" — no. "Submarine" — no. "Kiss" -
no. "Indoor" - no. "Entry" — no. "Exhibition" - no. "Proceed" - maybe,
but not directly. "Prey" - no. "Puffin" - no. "Friend" - no. "Swoop" - no
"Asteroid" - no. "Flag" - no. "Hamburger" — no. "Stool" - no. "Beg" -

13

no. "Resource" — no. "Electricity" — no. "Backseat" — no. "Anxiety" - no.

"Shadow" — no. "Lego" — no. "Uniform" - no. "Earn" — no. "Shepherd" - no

"Marathon" - no. "Liquid" - no. "Theme" - no. "Bomber" - no. "
Thanksgive" — no. "Request" — no. "Resistance" — no. "Climb" - no. "
Cantilever" — no. "Bag" - no. "Push" - no. "Projector" — no. "Undergo" -
no. "Accompany" — no. "Characteristic" — no. "Nursery" — no. "Salt" - no.
"Mull" - no. "Workman" - no. "Sunset" — no. "Engrave" - no. "Slice" - no

"Crop" — no. "Clarinet" — no. "Kill" - no. "Blouse" — no. "Purple" - no

"Disappoint” — no. "Segment" — no. "Shoal" - no. "Memo" - no. "Cite" -
no. "Hope" - no. "Deforestation" - no. "Dial" — no. "Tree" — no. "
Militant" - no.

"

Wait, I think I might have missed "podium". Let me check again. Yes, "podium'
is in the sentence. So that's one word. Also, "winners" is another. "
Numerals" is there too. "Sky" is mentioned as well. Let me make sure none
of the other words are in the sentence. "With" is a preposition, but it'
s not listed as a word to check. So the words in the sentence that match
the list are winners, podium, numerals, and sky.

Wait, but the original list includes "sky" as one of the words. So I should
include that. So the words are winners, podium, numerals, and sky.

</think >

<answer> True </answer>

14

Overthinking #2

Give me your final opinion over the verdicts of a jury of 3 LLMs.

When prompted the following message: Task: Check if the following sentence
contains one of the following set of words. Do not include your reasoning
process in the anser; Provide a short explanation (at most 100 words) to
justify your answer. Conclude your sentence with <answer>your answer </
answer >, where your answer is either True or False.

Sentence: dressed my dog up as a pirate

Words: [massage, container, length, hairstyle , mountain, lesson, shop,
boutique , glider, iron, steal, orangutan, overall, blur, lava, equestrian
, exert, hear, scuba, slice, manufacturing, personality , decor, cemetery,
plantation , ear, excite, argue, inscription , cook, deity, pallet,
skyline , hose, chromosome, awning, contrail , brand, right, medina,
catwalk , sheer, berth, lamb, complain, impress, ignore, onion, thrive,
smell , guitarist, effect, header, aim, ask, dome, panini, headdress,
table , adorn, evacuate, sparkle, girlfriend , synchrony, export, tag, puff
, school, fiddle, queue, beam, medal, intensify , distance, alm, bullfight
, midair, mangrove, bless, wall, mow, universe, candle, galaxy, reel,
soar, worship, sneeze, gallop, clank, chimney, helmet, allow, leather,
embrace, iceberg, lantern, stride , vacation, wallow]

A jury of LLMs answered:

Judge 0: <think>

Okay, so I need to check if the sentence "dressed my dog up as a pirate"
contains any of the given words. Let me go through each word one by one
to make sure I don't miss any.

First , the sentence is about dressing a dog as a pirate. So, the main
elements are dressing, dog, pirate. Now, looking at the list of words, I
see words like "adorn," which means to decorate or dress up. That's a
possibility because the sentence is about dressing the dog.

Next, I'll check the other words to be thorough. "Container" doesn't fit here
"Length" and "hairstyle" are unrelated. "Mountain," "lesson," "shop," "
boutique ," "glider ," "iron," "steal ," "orangutan," "overall ," "blur," "
lava ," "equestrian ," "exert," "hear," "scuba," "slice," "manufacturing,"
"personality ," "decor," "cemetery," "plantation ," "ear," "excite ," "argue
," "inscription ," "cook," "deity ," "pallet," "skyline," "hose," "
chromosome ," "awning," "contrail ," "brand," "right," "medina," "catwalk,"
"sheer ," "berth ," "lamb," "complain," "impress," "ignore," "onion," "
thrive ," "smell ," "guitarist ," "effect," "header," "aim," "ask," "dome,"
"panini ," "headdress ," "table ," "adorn," "evacuate ," "sparkle," "
girlfriend ," "synchrony," "export," "tag," "puff," "school," "fiddle ," "
queue ," "beam," "medal," "intensify ," "distance ," "alm," "bullfight ," "
midair ," "mangrove," "bless ," "wall," "mow," "universe ," "candle," "
galaxy ," "reel ," "soar," "worship," "sneeze," "gallop," "clank," "chimney
" "helmet," "allow ," "leather ," "embrace," "iceberg," "lantern ," "stride
," "vacation ," "wallow."

Wait, 1 already found "adorn" as a possible match. Let me make sure there's
no other word that might fit. "Adorn" is the only one that relates to
dressing or decorating something. The sentence is about dressing the dog,
so "adorn" fits perfectly. The other words don't seem to connect at all.
So, the sentence does contain one of the specified words.

</think >

The sentence contains the word "adorn," which means to decorate or dress
something . Since the sentence is about dressing a dog as a pirate, "adorn
" fits the context. <answer>True </answer>

Judge 1: <think>

Alright, so I need to check if the sentence "dressed my dog up as a pirate"
contains any of the given words. Let me go through each word one by one.
First, I'1l read the sentence carefully. It says the user dressed their
dog up like a pirate. So, the main actions here are dressing and being a
pirate .

Looking at the list of words, I see words like 'dress' or 'clothing ' aren't

15

present. The sentence mentions 'dog' and 'pirate ', but those aren't in
the list either. I'll go through each word from the list to make sure I

don't miss anything. Words like 'massage', 'container ', 'length', '
hairstyle ' — none of these are in the sentence. 'Mountain', 'lesson', '
shop', 'boutique' - nope. 'Glider', 'iron', 'steal ', 'orangutan' - still
nothing. 'Overall', 'blur', 'lava', 'equestrian', 'exert', 'hear', 'scuba
", 'slice ', 'manufacturing ', 'personality ', 'decor', 'cemetery', '
plantation ', 'ear', 'excite', 'argue', 'inscription ', 'cook', 'deity', '
pallet ' 'skyline ', 'hose', 'chromosome', 'awning', 'contrail ', ‘'brand',
'right ', 'medina', 'catwalk', 'sheer', 'berth', 'lamb', 'complain', '
impress ', ‘'ignore ', 'onion', 'thrive', 'smell', 'guitarist', ‘'effect', '
header ', 'aim', 'ask', 'dome', 'panini', 'headdress', 'table', 'adorn', '
evacuate ', 'sparkle', 'girlfriend ', 'synchrony', ‘'export', 'tag', 'puff',

"school ', 'fiddle ', 'queue', 'beam', 'medal', 'intensify ', 'distance' !
alm', 'bullfight ', 'midair', 'mangrove', 'bless', 'wall', 'mow', '
universe ', 'candle', 'galaxy', 'reel', 'soar', 'worship', 'sneeze',6 '
gallop ', ‘'clank', 'chimney', 'helmet', ‘'allow', 'leather ', 'embrace', '
iceberg ', 'lantern ', 'stride ', 'vacation', 'wallow'

After going through each word, I don't see any that match the sentence. The

sentence uses 'dressed' and 'dog', but those aren't in the list. The
closest might be 'adorn', but that's not present either. So, the sentence
doesn 't contain any of the specified words.

</think >

<answer>False </answer>

Judge 2: <think>

Okay, so I need to check if the sentence "dressed my dog up as a pirate"
contains any of the given words. Let me list out the words first to make
sure I don't miss any. The words are: massage, container, length,
hairstyle , mountain, lesson, shop, boutique, glider, iron, steal,
orangutan, overall, blur, lava, equestrian, exert, hear, scuba, slice,
manufacturing , personality , decor, cemetery, plantation, ear, excite,
argue , inscription, cook, deity, pallet, skyline, hose, chromosome,
awning , contrail , brand, right, medina, catwalk, sheer, berth, lamb,
complain, impress, ignore, onion, thrive, smell, guitarist, effect,
header, aim, ask, dome, panini, headdress, table, adorn, evacuate,
sparkle , girlfriend , synchrony, export, tag, puff, school, fiddle, queue,
beam, medal, intensify , distance, alm, bullfight, midair, mangrove,
bless , wall, mow, universe, candle, galaxy, reel, soar, worship, sneeze,
gallop, clank, chimney, helmet, allow, leather, embrace, iceberg, lantern
, stride , vacation, wallow.

Hmm, the sentence is about dressing a dog as a pirate. So, the main elements
are "dog," "dress," "pirate." Now, looking through the list, I don't see
"dog" listed , so that's a point against it. But wait, the words are about
checking if any of them are present in the sentence, not necessarily the
other way around.

Wait, the sentence is "dressed my dog up as a pirate." So the words used are
"dressed ," "my," "dog," "up," "as," "a," "pirate." None of those words
are in the provided list. Let me double—-check the list again. The words
are all nouns, I think. So "dressed" is a verb, "dog" is a noun, but "dog
" isn't in the list. So the sentence doesn't contain any of the specified
words. Therefore , the answer should be False.

</think >

<answer>False </answer>

What is your final verdict? Just answer True or False: Ensure to enclude your
final answer into <answer></answer>. For instance, if the sentence
contains one of the words, answer <answer>True </answer >; <answer>False </
answer> otherwise.

(Pdb) answer_critic

'<think >\nAlright, so I need to determine if the sentence "dressed my dog up
as a pirate" contains any of the specified words. Let me go through each
word in the list to see if any match.\n\nFirst, the sentence is about
dressing a dog as a pirate. The key elements are "dress," "dog," and
pirate ." Now, looking at the list of words provided: massage, container,
length , hairstyle , mountain, lesson, shop, boutique, glider, iron, steal,
orangutan , overall, blur, lava, equestrian, exert, hear, scuba, slice,

"

16

manufacturing , personality , decor, cemetery, plantation, ear, excite,
argue , inscription, cook, deity, pallet, skyline, hose, chromosome,
awning , contrail , brand, right, medina, catwalk, sheer, berth, lamb,
complain, impress, ignore, onion, thrive, smell, guitarist, effect,
header, aim, ask, dome, panini, headdress, table, adorn, evacuate,
sparkle , girlfriend , synchrony, export, tag, puff, school, fiddle, queue,
beam, medal, intensify , distance, alm, bullfight, midair, mangrove,
bless , wall, mow, universe, candle, galaxy, reel, soar, worship, sneeze,
gallop, clank, chimney, helmet, allow, leather, embrace, iceberg, lantern
, stride , vacation, wallow.\n\nAfter reviewing each word, I notice that "
adorn" is present in the list. The word "adorn" means to decorate or
dress something. Since the sentence is about dressing a dog, "adorn" fits
the context. Therefore, the sentence does contain one of the specified
words .\n<answer>True </answer >'

17

	Introduction
	Related Work
	Large-Scale Constraint Generation
	Formal Definition
	Existing Test Steering Strategies
	FoCusNet

	Methodology
	Words Checker
	FoCusNet for Words Checker

	Experiments
	Experiments Settings
	Results

	Conclusions
	Appendix
	LLM prompts
	Examples of LLMs answers

