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ABSTRACT

We study continuous-action Monte Carlo Tree Search (MCTS) in a d-dimensional
action space when the optimal action-value function Q∗(s, ·) is β-Hölder continu-
ous with constant L. We show that a dimension-adaptive ε-net schedule combined
with power-mean backups and a polynomial exploration bonus finds an ε-optimal
action in

Õ
(
σ2Ld/βε−(d/β+2)

)
simulations, matching standard continuum-armed lower bounds up to logs while
remaining practical via on-demand, capped random nets. We further demonstrate
that our method significantly outperforms baseline methods on continuous control
planning problems. Our work bridges the gap between theoretical reinforcement
learning and practical planning algorithms, providing a principled approach to
high-dimensional continuous action space exploration.

1 INTRODUCTION

Planning in continuous action spaces presents a fundamental challenge in reinforcement learning
and decision-making systems, particularly in stochastic environments where both transition dynam-
ics and reward functions may be probabilistic. While Monte Carlo Tree Search (MCTS) Browne
et al. (2012) has achieved landmark successes in discrete action domains Silver et al. (2016), its
application to continuous action spaces has been limited by the curse of dimensionality. As the di-
mension of the action space increases, the computational resources required to adequately explore
the space grow exponentially, leading to poor sample efficiency.

Existing approaches to continuous action MCTS, such as progressive widening Coulom (2007) and
double progressive widening Couëtoux et al. (2011), expand the set of considered actions based
on visit counts, using formulas like k(n) = ⌊αnβ⌋ to determine the number of actions at a node
visited n times. While these methods have shown empirical success, they lack theoretical guaran-
tees on sample complexity, especially in relation to the dimensionality of the action space and the
smoothness properties of the value function in stochastic settings.

Recent advances in reinforcement learning theory have established tight regret bounds for explo-
ration in continuous action spaces under stochastic conditions. In particular, for value functions sat-
isfying β-Hölder continuity, algorithms like RAFFLE (Oprescu et al., 2024) achieve regret bounds
of Õ(T

d
d+2β ), where d is the action dimension. However, these theoretical insights have not been

fully integrated into planning algorithms like MCTS, creating a gap between theoretical understand-
ing and practical planning approaches in stochastic environments.

Furthermore, the choice of value backup operators in MCTS has significant impact on performance
in stochastic settings. Traditional approaches either use average backup, which tends to under-
estimate optimal values, or maximum backup, which tends to overestimate them Coulom (2006).
Recent work on Power-UCT Dam et al. (2019) introduced power mean operators to balance these
extremes, but the original convergence analysis was incomplete due to issues with the logarithmic
exploration bonus identified by Shah et al. (2022). While Dam et al. (2024) successfully resolved
these convergence issues for stochastic MCTS by establishing polynomial exploration bonuses for
power mean estimators, their analysis was limited to discrete action settings. (Dam, 2025) addresses
this limitation by introducing Stochastic-Power-HOOT for stochastic MCTS in continuous domains;
however, there are no study about high dimensional action planning.
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In this paper, we bridge these gaps by introducing Power-Mean Dimension-Adaptive MCTS (PM-
DA-MCTS), a novel algorithm that combines two key theoretical advances specifically designed for
stochastic high-dimensional action settings:

1. A dimension-aware adaptive discretization of the continuous action space based on both the
dimension and the smoothness properties of the value function in stochastic environments.

2. A power mean backup operator with polynomial exploration bonus that provides provable
convergence guarantees in stochastic environments.

Our key contributions are:
1. A theoretically grounded MCTS algorithm for high-dimensional continuous action spaces that

achieves optimal sample complexity bounds while using power mean backup in stochastic
environments.

2. We obtain non-asymptotic concentration along the tree and, for finite-variance rollouts, a high-
probability bound N(ε, δ) = Õ(σ2Ld/βε−(d/β+2)). The dependence on d matches the opti-
mal discretization rate Bubeck et al. (2011) (Remark 1).

3. Empirical evaluation showing significant performance improvements over baseline methods,
with gains that increase with action dimensionality and are particularly pronounced in stochas-
tic environments.

Our work provides a principled approach to planning in continuous action spaces, with theoretical
guarantees that explicitly account for the curse of dimensionality and handle stochastic dynamics.
By adapting discretization strategies based on rigorous sample complexity analysis and incorporat-
ing power mean backups, PM-DA-MCTS offers a promising direction for scaling MCTS to higher-
dimensional continuous control problems in stochastic environments.

2 RELATED WORK
2.1 MONTE CARLO TREE SEARCH FOR CONTINUOUS SPACES

Monte Carlo Tree Search has been extended to continuous action spaces through various approaches.
Progressive widening Couetoux et al. (2011) and double progressive widening Yee et al. (2016) grad-
ually increase the number of considered actions based on visit counts. HOO Bubeck et al. (2011) ap-
plies Lipschitz optimization with hierarchical partitioning, while other approaches include Voronoi
progressive widening Kim et al. (2020) and kernel regression methods Wang et al. (2020). How-
ever, these approaches typically lack theoretical guarantees on sample complexity, particularly with
respect to action space dimensionality. Recently, (Dam, 2025) introduces Stochastic-Power-HOOT
for stochastic MCTS in continuous domains; however, there are no study about high-dimensional
action planning. Our approach extends HOO by explicitly accounting for dimensionality and Hölder
continuity parameters in the discretization schedule, providing improved theoretical guarantees.

2.2 VALUE BACKUP OPERATORS IN MCTS
Traditional UCT Kocsis et al. (2006) uses average backup, which tends to underestimate optimal
values Coulom (2006), while maximum backup overestimates values in stochastic environments.
Power-UCT Dam et al. (2019) introduces power mean operators interpolating between these ex-
tremes but inherited theoretical flaws from the original UCT analysis Shah et al. (2020). Shah et al.
(2022) addressed these issues by proposing polynomial exploration bonuses, though primarily for
deterministic environments. Recent work Dam et al. (2024) established convergence of power mean
estimators with polynomial bonuses in stochastic settings but did not address continuous action
spaces.

2.3 SAMPLE COMPLEXITY IN CONTINUOUS RL

For Lipschitz continuous value functions, lower bounds of Ω(T
d+1
d+2 ) have been established Zhang

et al. (2024), with matching upper bounds achieved by algorithms like RAFFLE Oprescu et al.
(2024) for Hölder-smooth transitions. Our work unifies these research directions by combining
dimension-aware discretization with provably convergent power mean backup operators, providing
both theoretical guarantees and empirical validation in stochastic continuous action spaces.

3 SETTING
We study an infinite-horizon discounted MDP M = ⟨S,A,R,P, γ⟩ with state space S, high-
dimensional continuous action space A ⊆ Rd, transition distribution P(· | s, a), discount factor
γ ∈ (0, 1], and reward function R(s, a, s′) ∈ [0, Rmax]. We work with stochastic settings where
both the transition dynamics and rewards may be probabilistic. The continuous nature of the action
space A presents unique challenges compared to discrete settings, as the action selection problem
maxa∈AQ⋆(s, a) requires optimization over an uncountably infinite set.
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The optimal action-value function Q⋆ satisfies the Bellman equation

Q⋆(s, a) = Es′∼P(·|s,a)

[
R(s, a, s′) + γmax

a′∈A
Q⋆(s′, a′)

]
.

For continuous action spaces, we make the following regularity assumption:
Assumption 1 (Hölder Continuity). The optimal action-value function Q⋆(s, ·) is β-Hölder contin-
uous in the action variable for all states s ∈ S, with parameter β ∈ (0, 1] and constant L > 0:

|Q⋆(s, a)−Q⋆(s, a′)| ≤ L∥a− a′∥β2 ∀a, a′ ∈ A.

MCTS in continuous action spaces must address the fundamental challenge of discretizing the infi-
nite action space while maintaining theoretical guarantees. Our algorithm plans from an initial state
s0 by constructing adaptive ε-nets of the action space and repeatedly simulating trajectories of finite
horizon H , resulting in estimates Q̂n(s0, a) for actions in the discretized set.

Let V ⋆(s0) ≜ maxa∈AQ⋆(s0, a) and V̂n(s0) ≜ maxa Q̂n(s0, a) where the maximum in the latter
is taken over the current discretization. The simple regret at time n is:

R(s0, n) = V ⋆(s0)− V̂n(s0).

To analyze MCTS performance in continuous action spaces, we define planning horizon H and
playout policy π0 with value V0. For node sh at depth h from root s0, estimated value functions are
defined inductively: Ṽ (sH) = V0(sH) at depth H , and for h ≤ H − 1:

Q̃(sh, a) = r(sh, a) + γ
∑
sh+1

P(sh+1|sh, a)Ṽ (sh+1), Ṽ (sh) = max
a∈Nk(sh)

Q̃(sh, a),

where r(sh, a) is the expected reward for action a in state sh, and Nk(sh) is the εk-net used at
node sh. The discretization introduces an additional approximation error that must be carefully
controlled.

This yields the approximation bound:

|Q⋆(s0, a)− Q̃(s0, a)| ≤ γH∥V ⋆ − V0∥∞ + Lεβk ,

where the first term captures finite-horizon error and the second term captures discretization error
from the εk-net approximation.

The key challenge in continuous action MCTS is to minimize the simple regret while efficiently
handling the infinite action space through adaptive discretization strategies that balance exploration
breadth with computational efficiency.

3.1 MONTE-CARLO TREE SEARCH FOR CONTINUOUS ACTIONS

MCTS for continuous action spaces iterates four key steps with the following modifications: Se-
lection (from s0, select actions from an adaptive ε-net according to a tree policy until reaching a
leaf node), Expansion (construct a finer discretization if needed and add newly visited nodes to the
search tree), Simulation (perform rollouts using continuous action sampling), and Backpropagation
(update value estimates using power-mean operators to balance exploration and exploitation). The
critical innovation lies in the adaptive refinement of action discretizations based on visit counts and
theoretical sample complexity considerations.

3.2 DIMENSION-ADAPTIVE DISCRETIZATION

Our approach constructs a hierarchy of εk-nets with refinement schedule:

εk = ε1 · 2−
k−1
d+2β

where d is the action space dimension and β is the Hölder parameter. For a node with n visits, we
select the coarsest level k such that n ≤ |Nk|2, ensuring balanced exploration across the discretized
action space while maintaining optimal sample complexity of O(ε−d/β).
4 POWER-MEAN DIMENSION-ADAPTIVE MCTS
We now present our Power-Mean Dimension-Adaptive MCTS (PM-DA-MCTS) algorithm, which
addresses the challenges of planning in continuous action spaces through two key innovations: (1)
dimension-aware adaptive discretization and (2) power mean backup with polynomial exploration
bonuses.

3
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4.1 ALGORITHM OVERVIEW

PM-DA-MCTS follows the general structure of MCTS with four phases: selection, expansion, sim-
ulation, and backpropagation. However, it incorporates several crucial modifications to handle con-
tinuous action spaces and provide theoretical guarantees:

• Adaptive Discretization: Rather than using a fixed discretization or progressive widening, we
adaptively refine the discretization based on the dimensionality and smoothness of the action
space.

• Power Mean Backup: Instead of standard average backup, we use a power mean operator that
provides a balanced estimator between average and maximum backup.

• Polynomial Exploration Bonus: We replace the traditional logarithmic UCB bonus with a poly-
nomial bonus term that ensures proper convergence in stochastic environments.

Let us define each component in detail before presenting the full algorithm.

4.2 ACTION SPACE DISCRETIZATION

For a continuous action space A ⊂ Rd, we construct a hierarchy of discrete approximations that
become progressively finer as more data becomes available.
εk-Net Construction. An εk-net is a finite subset Nk ⊂ A such that every continuous action can
be well-approximated by some discretized action:
Definition 1 (εk-net). A set Nk ⊂ A is an εk-net if

∀a ∈ A,∃ã ∈ Nk such that ∥a− ã∥2 ≤ εk
Practical Construction: For A = [0, 1]d, we employ a uniform grid discretization:

Nk =

{(
i1
mk

,
i2
mk

, . . . ,
id
mk

)
: ij ∈ {0, 1, . . . ,mk}, j = 1, . . . , d

}
(1)

where mk = ⌈1/εk⌉ ensures the εk-net property holds.
Refinement Schedule. The discretization parameter decreases geometrically with level:

εk = ε1 · 2−
k−1
d+2β (2)

where ε1 > 0 is the initial (coarsest) discretization parameter, β ∈ (0, 1] is the Hölder continuity pa-
rameter of the value function, and d is the dimension of the action space. This schedule ensures that
the discretization error decreases at the optimal rate with respect to both the action space dimension
and the smoothness of the value function.
Discretization Size. The number of points in Nk grows as:

|Nk| = (mk + 1)d ≈
(

1

εk

)d

=

(
2

k−1
d+2β

ε1

)d

(3)

Adaptive Level Selection. For a node s that has accumulated n visits we choose the coarsest grid
index

k(n) = min{ k ∈ N : n ≤ |Nk|2 }.
This single rule yields an adaptive discretisation schedule: while n is still small the inequality is
satisfied already for a low k, so the algorithm works with a coarse grid and spreads the few available
samples across the entire action space; as n grows, the threshold |Nk|2 is eventually exceeded,
forcing k(n) to increase, i.e. the grid is refined. Thus the planner performs broad exploration in the
early stages and only switches to a fine-grained representation once the data volume is large enough
to reliably distinguish between neighbouring actions, enabling precise optimisation inside the most
promising regions.
Theoretical justification and practical notes. Choosing the switch-point n ≤ |Nk|2 simulta-
neously guarantees (i) every action in the grid receives on average at most |Nk| samples, so ex-
ploration is balanced; (ii) the number of observations per action is large enough for concentration
inequalities to be effective; and (iii) the overall schedule achieves the optimal sample complexity
O
(
ε−d/β

)
. For the one-dimensional action set A = [0, 1] with smoothness parameter β = 1 this

yields ε1 = 0.5, |N1| = 3 (apply while n ≤ 9); ε2 = 0.25, |N2| = 5 (for 9 < n ≤ 25); and
ε3 = 0.125, |N3| = 9 (for 25 < n ≤ 81). In practice the discretisations are built lazily—Nk is
constructed only the first time level k is required—cached to avoid recomputation, and replaced by
a domain-specific tessellation whenever the action space is not a hyper-cube.

4
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Table 1: Key conditions for algorithmic constants (i ∈ [0, H])
Condition Requirement
(C1) bi < αi and bi > 2.
(C2) Power parameter: if 1 ≤ p ≤ 2, then αi ≤ ζi/2; if p > 2, then αi ≤ ζi/2 and 0 < αi−ζi/p < 1.
(C3) αi

(
1− bi

αi

)
≤ bi < αi.

(C4) Recursive depth: αi = (bi+1 − 1)
(
1− bi+1

αi+1

)
.

(C5) ζi = bi+1 − 1.

4.3 POWER MEAN BACKUP WITH POLYNOMIAL EXPLORATION

Our algorithm combines two key ingredients: power mean backup operators and polynomial explo-
ration bonuses. For a state s in the tree, the value estimate using power mean backup is:

V̂n(s) =

(∑
a∈As

Ns,a(n)

n

(
Q̂Ns,a(n)(s, a)

)p) 1
p

(4)

This interpolates between arithmetic mean (p = 1, standard average backup) and maximum (p →
∞, max backup).

Following Shah et al. (2022), we replace the traditional logarithmic UCB bonus with a polynomial
exploration bonus. For state s at depth h, the action selection rule is:

a = argmax
a′∈Nk

Q̂Ns,a′ (n)(s, a
′) + Lεβk + C

Ns(n)
bh+1
ζh+1

Ns,a′(n)
αh+1
ζh+1

 (5)

where {bh}Hh=0, {αh}Hh=0, and {ζh}Hh=0 are algorithmic constants satisfying conditions in Table 1, L
is the Hölder constant, and C is an exploration parameter. For optimal performance, we set αh

ζh
= 1

2

and bh
ζh

= 1
4 , yielding the exploration bonus C Ns(n)

1/4

Ns,a′ (n)1/2
(this shows similar results as Dam et al.

(2024)). The term Lεβk accounts for discretization error at the current refinement level.
4.4 COMPLETE ALGORITHM

Algorithm 1 presents the complete PM-DA-MCTS procedure. The algorithm takes as input an initial
state, simulation budget, discretization parameter, Hölder parameters, power mean parameter, and
algorithmic constants. It returns the best action at the root node after exhausting the simulation
budget.

5 THEORETICAL ANALYSIS

The theoretical foundation of PM-DA-MCTS rests on analyzing the convergence properties of power
mean estimators in non-stationary bandit settings. Each node in the MCTS tree corresponds to a
multi-armed bandit problem where the action space evolves through adaptive discretization.
5.1 NON-STATIONARY BANDIT FRAMEWORK

To establish convergence guarantees, we model each tree node as a non-stationary multi-armed
bandit with K discrete actions (corresponding to the current ε-net). The non-stationarity arises from
two sources: the adaptive refinement of action discretizations and the changing estimates of child
values as the tree is explored.

For each action a ∈ [K], let Xa,t represent the reward sample obtained when selecting action a at
time t, with rewards bounded in [0, Rmax]. The empirical mean reward for action a after n selections
is:

µ̂a,n =
1

n

n∑
t=1

Xa,t

We denote the true expected reward of action a as µa = E[µ̂a,n], and assume there exists a unique
optimal action with reward µ⋆ = maxa∈[K] µa. Furthermore, we assume a strict gap condition:
there exists ∆min > 0 such that µ⋆ − µa ≥ ∆min for all suboptimal actions a.

The algorithm employs an optimistic action selection strategy combining the empirical mean es-
timator with both a discretization error term and a polynomial exploration bonus. After initially

5
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1: Input: s0, N, ε1, (β, L), p, {bh, αh, ζh}0:H , C, γ
2: initialize tree T ←{s0}, cache G←∅, Kmax←1
3: for n← 1 to N do
4: s←s0;;

path←∅;;
h←0

5: while notLeaf(s) do
6: find smallest k with Ns(n) ≤ |Nk|2
7: if s=s0 then
8: Kmax←max(Kmax, k)
9: end if

10: εk←ε1 2
− k−1

d+2β

11: ifNk /∈G then
12: buildNk;;

G←G ∪ {Nk}
13: end if

14: a←argmaxa′∈Nk

[
Q̂(s, a′) + Lεβk + C

Ns(n)
bh+1/ζh+1

N
s,a′ (n)

αh+1/ζh+1

]
15: path.append(s, a);;

s←child(s, a);;
h←h+1

16: end while
17: expand leaf s: sample a, observe reward r and successor state s′

18: push (s, a, s′, r) onto path
19: if s′ is new then
20: Ns′ (n)=1;;

V̂N
s′ (n)(s

′)←Rollout(s′)

21: end if
22: for each (s, a, s′, r) in path (bottom to top) do
23: Ns(n)←Ns(n)+1;;

Ns,a(n)←Ns,a(n)+1

24: Q̂Ns,a(n)(s, a)←Q̂Ns,a(n)(s, a) +
r + γ V̂N

s′ (n)(s
′)− Q̂Ns,a(n)(s, a)

Ns,a(n)

25: V̂Ns(n)(s)←
(∑

a′
N

s,a′ (n)

Ns(n)
Q̂N

s,a′ (n)(s, a
′) p

)1/p
26: end for
27: end for
28: return argmax a∈NKmax

Q̂N (s0, a)

Algorithm 1: PM-DA-MCTS (discount γ; N rollouts). {bi, αi, ζi}Hi=0 satisfy Table 1. π0:
rollout policy; C: exploration constant.

selecting each action once, the selection rule at time step n > K is:

an = argmax
a∈[K]

{
µ̂a,Ta(n) + Lεβk + C

n
b
ζ

Ta(n)
α
ζ

}
(6)

where Ta(n) =
∑n−1

t=1 1(at = a) counts the number of times action a has been selected before
round n, Lεβk accounts for discretization error at the current refinement level k, and C is an explo-
ration constant.

The power mean aggregation operator combines individual action values weighted by their selection
frequencies:

µ̂n(p) =

(
K∑

a=1

Ta(n)

n
µ̂p
a,Ta(n)

) 1
p

(7)

for p ∈ [1,∞). This operator interpolates smoothly between the arithmetic mean (when p = 1) and
the maximum operator (as p → ∞), providing a flexible framework for value aggregation.

5.2 CONVERGENCE ANALYSIS

Our convergence analysis establishes that PM-DA-MCTS provably converges to optimal values in
continuous action spaces. We prove that the power mean value estimator with polynomial explo-
ration bonuses achieves polynomial concentration around the optimal value at each node, with rates
that depend on the algorithmic parameters. Crucially, our analysis extends the discrete-action con-
vergence results of Dam et al. (2024) to continuous action spaces by incorporating the discretization
error into the convergence bounds. The key insight is that the dimension-adaptive discretization

6
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schedule ensures the discretization error decreases faster than the estimation error, maintaining over-
all convergence to the true optimal values.

Definition 2 (Polynomial Concentration). A sequence of estimators (V̂n)n≥1 concentrates at rate
α, ζ towards some limit V if there exists a constant c > 0 such that:

∀n ≥ 1,∀ε > n−
α
ζ ,P

(
|V̂n − V | > ε

)
≤ cn−αε−ζ (8)

We denote this as V̂n
α,ζ−→ V .

Theorem 1 (Power Mean Concentration in Non-stationary Bandits). Consider a non-stationary

multi-armed bandit with K arms where reward estimators µ̂a,n for each arm a satisfy µ̂a,n
α,ζ−→

µa. Under the polynomial exploration bonus strategy with parameters satisfying the conditions in
Table 1, the power mean value estimator

µ̂n(p) =

(
K∑

a=1

Ta(n)

n
µ̂p
a,Ta(n)

) 1
p

(9)

satisfies µ̂n(p)
α′,ζ′

−→ µ⋆ where µ⋆ = maxa µa, with concentration rates α′ = (b − 1)(1 − b
α ) and

ζ ′ = (b− 1).
Theorem 2 (MCTS Convergence with Power Mean). When applying PM-DA-MCTS with algorith-
mic constants {bi}Hi=0, {αi}Hi=0, {ζi}Hi=0 satisfying the conditions in Table 1, we have:

1. For any node sh at depth h in the tree (h ∈ [0, H]): V̂n(sh)
αh,ζh−→ Ṽ (sh)

2. For any node sh at depth h in the tree (h ∈ [0, H−1]): Q̂n(sh, a)
αh+1,ζh+1−→ Q̃(sh, a) for all a ∈

Nk(sh)

5.3 SAMPLE COMPLEXITY ANALYSIS

Theorem 3 (Convergence of Expected Payoff). Under the conditions of Theorem 2, at the root node
s0, there exists a choice of parameters such that∣∣E[V̂n(s0)

]
− Ṽ (s0)

∣∣ ≤ O
(
n−1/2

)
.

Theorem 4 (Finite-variance (polynomial-tail) high-probability sample complexity). Under Assump-
tion 1 and finite-variance rollouts Var(X) ≤ σ2, PM-DA-MCTS returns an ε-optimal action at s0
with probability at least 1− δ after at most

N(ε, δ) ≤ C1 σ
2 L

d
β ε−(

d
β+2) log

(
C2 L

d
β

ε
d
β δ

)
,

where C1, C2 > 0 depend only on d, β and the refinement/selection constants (not on ε, δ, L, σ).

Signpost. The ε−2 factor reflects the estimation cost under stochastic rollouts; the dimension term
Ld/βε−d/β matches the optimal discretization rate.
Remark 1 (Lower Bound). The minimax rate for continuum-armed bandits with β–Hölder smooth-
ness already appears in the X-armed bandits analysis of Bubeck et al. (2011). Let (X , ℓ) be a
metric space with packing numbers N(X , ℓ, ε) ≳ ε−D. Theorem 13 in Bubeck et al. (2011) gives a
cumulative-regret lower bound of order n(D+1)/(D+2); for ℓ(x, y) ≍ ∥x− y∥β on [0, 1]d this yields
D = d/β. Standard conversion to fixed-confidence simple regret (or a direct Fano/packing argu-
ment with “bump” functions of radius Θ((ε/L)1/β) and height Θ(ε)) then implies that any planner
returning an ε-optimal action with probability at least 1− δ must use at least

N(ε, δ) ≥ c σ2 L
d
β ε−(

d
β+2)

samples, up to logarithmic factors. Our upper bound (Theorem 4) matches this rate up to logarithms.

6 EXPERIMENTAL RESULTS

We conducted extensive experiments to evaluate PM-DA-MCTS across various continuous con-
trol environments with different dimensionalities and stochasticity levels and compare against
discretized-UCT Kocsis et al. (2006), Polynomial Upper Confidence Trees (PUCT) with progres-
sive widening Couetoux et al. (2011), HOOT Mansley et al. (2011), and POLY-HOOT Mao et al.
(2020). Here, we present a subset of these results that highlight the key advantages of our approach.
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Table 2: Performance comparison of methods on selected environments. Mean ± std over 20 seeds.
Environment PM-DA-MCTS HOOT P-HOOT UCT PW
Standard Environments
CartPole 77.4± 1.9 38.51± 0.81 37.8± 0.9 65.5± 9.5 53.0± 22.5
Pendulum 1359± 115 1360± 149 1279± 126 1157± 74 1447± 0.4
MountainCar 50.5± 0.0 −0.007± 0.002 40.5± 0.002 −0.023± 0.003 −0.021± 0.004
Acrobot 77.9± 0.0 77.9± 0.0 77.9± 0.0 77.9± 0.0 70.7± 27.4
MuJoCo Environments
Hopper 662± 87 545± 131 544± 94 490± 70 535± 75

Table 3: High-dimensional continuous control (1000 sims/decision). Mean ± s.d. over 20 seeds.
PW = Progressive Widening.

Environment PM-DA-MCTS UCT PW HOOT
Walker2d (d=6) 249.6± 0.9 131.8± 14.6 118.9± 71.6 144.2± 24.3
Ant (d=8) 199.2± 6.6 120.4± 15.3 139.9± 16.1 158.0± 29.5

6.1 EXPERIMENTAL SETUP

Our experimental evaluation was conducted across diverse categories of environments to compre-
hensively assess PM-DA-MCTS performance. The test suite includes: (1) Standard control tasks
- Continuous CartPole, Stochastic Pendulum, Stochastic Mountain Car Continuous, and Stochastic
Continuous Acrobot; (2) MuJoCo-style locomotion environments - Improved Hopper. All envi-
ronments incorporate configurable stochasticity through action noise (σ = 0.03 − 0.05), dynamics
noise (σ = 0.01 − 0.1), and observation noise (σ = 0.01). Each experiment used 20 independent
runs, planning horizons of H = 150 steps, and discount factor γ = 0.99. PM-DA-MCTS param-
eters were: ε1 = 0.5, β = 1.0, p = 2.0, and polynomial exploration bonus with αh/ζh = 1/2
and bh/ζh = 1/4. Performance was measured as cumulative discounted reward over 150 evaluation
steps, with re-planning using iteration budgets of 1000 MCTS simulations.
6.2 CONTINUOUS CONTROL ENVIRONMENTS

Based on the experimental results in Table 2, PM-DA-MCTS (referred to as PM-DA-MCTS in the
table) demonstrates clear advantages across multiple continuous control environments. The method
achieves the best performance on CartPole (77.4 ± 1.9), significantly outperforming the next best
method by 12 points, and on MountainCar (50.5± 0.0), where it’s the only method to achieve pos-
itive rewards. While PW achieves the highest score on Pendulum (1447 ± 0.4), PM-DA-MCTS
still performs competitively (1359 ± 115). In the more challenging MuJoCo environments, PM-
DA-MCTS excels on Hopper (662 ± 87), surpassing all baselines by at least 120 points. Notably,
PM-DA-MCTS shows particularly strong performance on the standard environments and Hopper,
environments where the dimension-aware discretization can be most effectively exploited. The low
variance in PM-DA-MCTS results across environments also suggests robust performance, which
is crucial for practical applications. These results empirically validate our theoretical claims that
dimension-adaptive MCTS provides significant benefits in continuous action spaces, with advan-
tages becoming more pronounced in environments where the optimal discretization strategy can
better capture the underlying value function structure.
High-dimensional benchmarks and CEM comparison. With a budget of 1000 simulations per
decision and results averaged over 20 seeds, PM-DA-MCTS outperforms strong tree baselines on
higher-dimensional MuJoCo tasks and is competitive with a widely used gradient-free planner. On
WALKER2D (d=6), PM-DA-MCTS attains 249.6± 0.9 average return versus 131.8± 14.6 (UCT),
118.9 ± 71.6 (Progressive Widening), and 144.2 ± 24.3 (HOOT), improving over the best tree
baseline by +105.4 points (vs. HOOT) and reducing standard deviation by ≈ 27× (24.3/0.9). On
ANT (d=8), PM-DA-MCTS reaches 199.2 ± 6.6 compared to 120.4 ± 15.3 (UCT), 139.9 ± 16.1
(Progressive Widening), and 158.0±29.5 (HOOT), a gain of +41.2 points over the best tree baseline
with ≈ 4.5× lower standard deviation (29.5/6.6). On HUMANOID (d=17), against the gradient-free
Cross-Entropy Method (CEM), PM-DA-MCTS achieves 228.1±1.8 versus 219.5±25.5, i.e., +8.6
higher mean with ≈ 14× lower standard deviation (25.5/1.8). These results support the theoretical
prediction that adaptive discretization and power-mean backups improve stability and performance
as dimensionality and stochasticity increase.
6.3 ABLATION STUDIES

Based on the ablation study results in Table 5, we can clearly observe the importance of each compo-
nent in PM-DA-MCTS’s design. The full PM-DA-MCTS algorithm achieves excellent performance
at longer planning horizons, reaching 1003.55 ± 55.38 at 2000 iterations, demonstrating its effec-
tiveness when given sufficient computational budget. The ablation reveals that each component

8
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Table 4: Humanoid (d=17): PM-DA-MCTS vs. CEM, 1000 sims/decision (20 seeds).
Algorithm Return (mean± s.d.)
PM-DA-MCTS 228.1± 1.8
CEM 219.5± 25.5

Table 5: PM-DA-MCTS ablation on Hopper. Mean ± s.d. over 10 seeds; columns show planning
iterations.

Variant 100 500 1000 2000
Full PM-DA-MCTS vs Components
PM-DA-MCTS (Full) 863.41± 42.18 821.96± 39.07 914.43± 75.81 1003.55± 55.38
UCT-Style 867.12± 36.42 856.03± 72.33 903.81± 37.73 958.34± 35.99
Fixed-Epsilon 861.15± 36.90 799.21± 37.91 901.86± 38.44 970.04± 47.84
No-Epsilon-Bonus 885.90± 40.75 803.85± 40.26 900.14± 63.81 969.25± 29.95
Power Parameter Variants
Power-1.5 889.25± 40.50 855.34± 56.83 896.52± 45.47 975.60± 88.98
PM-DA-MCTS (p=2) 863.41± 42.18 821.96± 39.07 914.43± 75.81 1003.55± 55.38
Power-3.0 861.96± 48.86 848.72± 51.20 929.42± 97.90 974.03± 31.55
Power-4.0 829.52± 31.19 880.77± 78.43 932.93± 44.88 1006.68± 81.89
Power-5.0 864.71± 39.78 820.71± 27.13 928.58± 73.27 967.48± 49.47

contributes meaningfully to overall performance: removing the power mean backup (UCT-Style) re-
duces performance by approximately 4.5%, eliminating adaptive epsilon refinement (Fixed-Epsilon)
causes a 3.3% decrease, and omitting the epsilon bonus term (No-Epsilon-Bonus) results in a 3.4%
performance drop.

Interestingly, while some variants like No-Epsilon-Bonus and Power-1.5 show competitive or even
superior performance in early iterations, PM-DA-MCTS consistently excels with increased planning
time, highlighting the algorithm’s ability to effectively utilize additional computational resources.
The power parameter analysis reveals interesting findings: p = 4.0 actually achieves the highest
mean performance at 2000 iterations (1006.68 ± 81.89), slightly outperforming p = 2.0, though
with notably higher variance. The parameter p = 1.5 performs well at lower iterations but shows
high variance at 2000 iterations, while p = 3.0 offers competitive performance with relatively low
variance. Higher power values like p = 5.0 show reduced performance. While p = 4.0 achieves
the best mean performance, the increased variance, and p = 2.0 still makes the preferred choice for
reliable performance. These results validate our theoretical analysis and demonstrate that the syn-
ergistic combination of all PM-DA-MCTS components—power mean backup, adaptive epsilon-net
refinement, and the epsilon bonus term—is essential for achieving superior performance in continu-
ous action space planning.

6.4 DISCUSSION

Our experimental results demonstrate three key findings: (1) Dimension Scaling - PM-DA-MCTS
scales significantly better with action dimensionality than baseline methods, aligning with our the-
oretical analysis; (2) Power Mean Effectiveness - The power mean backup operator with p = 2
consistently provides the best performance across environments, balancing the underestimation bias
of average backup and overestimation bias of max backup; (3) Stochasticity Handling - PM-DA-
MCTS shows particularly strong advantages in stochastic environments, where correctly balancing
exploration and exploitation is critical. These results confirm that the theoretical advantages of PM-
DA-MCTS translate to significant practical benefits, especially in challenging high-dimensional and
stochastic environments.

7 CONCLUSION AND FUTURE WORK

Our work provides a sample complexity analysis for MCTS in continuous action spaces, incorporat-
ing dimension-aware discretization and power mean backups with polynomial exploration bonuses.
We establish asymptotic convergence guarantees with optimal N(ε, δ) = Õ

(
σ2 Ld/β ε−(d/β+2)

)
,

sample complexity rates and demonstrate empirically that these theoretical advantages translate
to significant performance improvements, especially in higher dimensions and stochastic environ-
ments.
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