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Abstract
We study the problem of parameter-free stochastic
optimization, inquiring whether, and under what
conditions, do fully parameter-free methods ex-
ist: these are methods that achieve convergence
rates competitive with optimally tuned methods,
without requiring significant knowledge of the
true problem parameters. Existing parameter-
free methods can only be considered “partially”
parameter-free, as they require some non-trivial
knowledge of the true problem parameters, such
as a bound on the stochastic gradient norms, a
bound on the distance to a minimizer, etc. In the
non-convex setting, we demonstrate that a simple
hyperparameter search technique results in a fully
parameter-free method that outperforms more so-
phisticated state-of-the-art algorithms. We also
provide a similar result in the convex setting with
access to noisy function values under mild noise
assumptions. Finally, assuming only access to
stochastic gradients, we establish a lower bound
that renders fully parameter-free stochastic con-
vex optimization infeasible, and provide a method
which is (partially) parameter-free up to the limit
indicated by our lower bound.

1. Introduction
Stochastic first-order optimization is a cornerstone of
modern machine learning, with stochastic gradient de-
scent (SGD, Robbins & Monro, 1951) as the go-to method
for addressing statistical learning problems. The tuning of
algorithmic parameters, particularly those associated with
SGD such as the step-size, proves to be a challenging task,
both theoretically and in practice (e.g., Bottou, 2012; Schaul
et al., 2013), especially when the problem parameters are
unknown. The present paper focuses on theoretical aspects
of this challenge.
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Addressing the challenge, a variety of methods emerged
over the years, with the goal of minimizing knowledge
about problem parameters required for tuning, while main-
taining performance competitive with carefully tuned algo-
rithms. These include the so-called adaptive methods, such
as AdaGrad and Adam (e.g., Duchi et al., 2011; Kingma &
Ba, 2015) and their recent theoretical advancements (Reddi
et al., 2018; Tran et al., 2019; Kavis et al., 2019; Alacaoglu
et al., 2020; Faw et al., 2022; Kavis et al., 2022; Attia &
Koren, 2023; Liu et al., 2023), that self-tune learning rates
based on gradient statistics; parameter-free methods (e.g.,
Chaudhuri et al., 2009; Streeter & McMahan, 2012; Luo
& Schapire, 2015; Orabona & Pál, 2021; Carmon & Hin-
der, 2022) that focus primarily on automatically adapting
to the complexity of (i.e., distance to) an optimal solution;
and advanced techniques from the literature on online learn-
ing (Orabona & Pál, 2016; Cutkosky & Orabona, 2018)
that can be used in a stochastic optimization setting via an
online-to-batch reduction. More recently, several works
have achieved advancements in improving practical perfor-
mance, narrowing the gap to finely-tuned methods (Orabona
& Tommasi, 2017; Chen et al., 2020; Ivgi et al., 2023; De-
fazio & Mishchenko, 2023; Mishchenko & Defazio, 2023).

While adaptive and parameter-free methods enjoy strong the-
oretical guarantees, each of the aforementioned approaches
still demands some level of non-trivial knowledge regard-
ing problem parameters. This includes knowledge about
the smoothness parameter and the initial suboptimality for
non-convex adaptive and self-tuning methods, or a bound
on either the stochastic gradient norms or on the distance
to an optimal solution for parameter-free convex (including
online) optimization algorithms. To the best of our knowl-
edge, in the absence of such non-trivial assumptions, no
method in the literature is fully parameter-free, in either the
non-convex or convex, smooth or non-smooth cases.

This paper explores the following question: in what stochas-
tic optimization scenarios, and under what conditions, do
fully parameter-free optimization algorithms exist? In this
context, we note that direct hyperparameter tuning, which
parameter-free self-tuning methods aim to eschew, could
be considered a valid approach for designing parameter-
free algorithms. Consequently, we also examine the ques-
tion: can self-tuning optimization algorithms actually out-
perform direct tuning methods based on simple hyperparam-
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eter search?

We begin our inquiry in the general setting of non-convex
(smooth) optimization. We observe that a simple hyperpa-
rameter search technique for tuning of fixed stepsize SGD re-
sults in a fully parameter-free method with convergence rate
that matches optimally tuned SGD up to poly-logarithmic
factors. While extremely straightforward, this approach out-
performs the state-of-the-art bounds for adaptive methods
in this context (Faw et al., 2022; Kavis et al., 2022; Attia
& Koren, 2023; Liu et al., 2023) that require non-trivial
knowledge on the smoothness parameter and the initial sub-
optimality for optimal tuning.

Moving on to the convex optimization setting, we observe
that a similar hyperparameter search technique can be used
to design a simple and efficient parameter-free algorithm,
provided access to noisy function value queries to the objec-
tive. Under very mild assumptions on the scale of noise in
the value queries, the obtained algorithm is fully parameter-
free with convergence rate matching that of perfectly tuned
SGD (up to poly-log factors), in both the smooth and non-
smooth convex cases. This algorithm thus outperforms ex-
isting results in the literature, albeit under an additional as-
sumption of a reasonably-behaved stochastic function value
oracle. Indeed, an inspection of previous studies in this
context reveals that they neglect access to function values
and only rely on stochastic gradient queries (even though
function value access is often readily available in practical
applications of these methods).

Our last area of focus is therefore the convex optimization
setting with access solely to stochastic gradients (and no
access whatsoever to function values), which emerges as the
only general stochastic optimization setting where achieving
parameter-freeness is potentially non-trivial. Indeed, and
perhaps somewhat surprisingly, we identify in this setting
a limitation to obtaining a fully parameter-free algorithm:
we establish a lower bound showing that any optimization
method cannot be parameter-free unless it is provided with
either the gradient-noise magnitude or the distance to a min-
imizer, each up to a (multiplicative) factor of 𝑂 (

√
𝑇) where

𝑇 is the number of optimization steps. The bound sheds
light on why prior methods require non-trivial knowledge
of problem parameters, yet still leaves room for improve-
ment: state-of-the-art results in this context (e.g., Carmon &
Hinder, 2022; Ivgi et al., 2023) assume knowledge on the
magnitude of the stochastic gradients, whereas our lower
bound only necessitates knowledge on the magnitude of the
noise component in the gradient estimates.

Our final contribution complements the lower bound and in-
troduces a parameter-free method in the convex non-smooth
(Lipschitz) setting, achieving the same rate as of optimally-
tuned SGD, up to poly-log factors and an unavoidable term
prescribed by our lower bound. When given a bound on

the noise in the stochastic gradients accurate up to a 𝑂 (
√
𝑇)

factor, our method becomes fully parameter-free. The same
method achieves a similar parameter-free guarantee in the
setting of convex smooth optimization, nearly matching the
rate of tuned SGD in this case.

1.1. Summary of contributions

To summarize our results in some more detail, let us first
specify the setup of parameter-free optimization slightly
more concretely. In all cases, we consider unconstrained
optimization of an objective function 𝑓 : ℝ𝑑 → ℝ. Rather
than directly receiving the ground-true problem parame-
ters (e.g., smoothness parameter, Lipschitz constant, etc.),
the algorithms are provided with a range (lower and upper
bounds) containing each parameter. We refer to a method
as parameter-free if its convergence rate matches a bench-
mark rate (e.g., that of optimally-tuned SGD), up to poly-
logarithmic factors in the ranges parameters (as well as in
the number of steps 𝑇 and the probability margin 𝛿).

Non-convex setting: fully parameter-free algorithm.
We give a fully parameter-free method with the same conver-
gence rate as tuned SGD up to poly-log factors. Given an ini-
tialization 𝑤1 ∈ ℝ𝑑 , number of queries 𝑇 , probability mar-
gin 𝛿 and a range [𝜂min, 𝜂max] containing the theoretically-
tuned SGD stepsize (the latter can be computed from the
problem parameter ranges), the algorithm produces 𝑤 ∈ ℝ𝑑
such that with probability at least 1 − 𝛿,

∥∇ 𝑓 (𝑤)∥2 ≤
(
𝛽★𝐹★ + 𝜎2

★

𝑇
+𝜎★
√
𝛽★𝐹★√
𝑇

)
poly log

(
𝜂max
𝜂min

, 1
𝛿

)
,

where 𝛽★ is the smoothness parameter, 𝐹★ = 𝑓 (𝑤1) −
min 𝑓 (𝑤), and 𝜎★ is a noise bound of the stochastic gra-
dients. While the algorithm is based on simple observations,
it is fully parameter-free and provides stronger guarantees
with a simpler analysis compared to existing adaptive or
self-tuning methods in this setting.

Convex setting: fully parameter-free algorithm with
noisy function values. Moving to the convex case, we
first consider the canonical setting with access to noisy func-
tion values. We devise a simple parameter-free method,
that given 𝑤1, 𝑇 , 𝛿 and a range [𝜂min, 𝜂max] containing the
theoretically-tuned SGD stepsize, produces 𝑤 ∈ ℝ𝑑 such
that with probability ≥ 1 − 𝛿,

𝑓 (𝑤) − 𝑓 (𝑤★) ≤
(
𝐷★

√︃
𝐺2
★ + 𝜎2

★
√
𝑇

+ 𝜎0√
𝑇

)
poly log

(
𝜂max
𝜂min

, 1
𝛿

)
,

where 𝐺★ is the Lipschitz constant, 𝐷★ = ∥𝑤1 − 𝑤★∥ (𝑤★

is a minimizer of 𝑓 ), and 𝜎0 and 𝜎★ are noise bounds of the
function and gradient oracles respectively. Under very mild
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assumptions on the function values noise 𝜎0, the method
is fully parameter-free and achieves the same rate as tuned
SGD up to poly-log factors.

Convex setting: impossibility without function values.
Next we consider the convex setting without any access
to function values. We establish that without further as-
sumptions, no convex optimization method can be fully
parameter-free while nearly matching the rate of tuned SGD.
We show that for any 𝛼 ∈ [1, 3

4
√
𝑇] and every 𝑇-queries

deterministic algorithm receiving ranges [ 1
𝑎
√
𝑇
𝐷max, 𝐷max],

[ 1
𝑎
√
𝑇
𝜎max, 𝜎max] and known 𝐺★ =

𝜎max
(2𝑇−1) , there exist 𝐷★

and 𝜎★ that belong to the ranges (resp.), a convex and
𝐺★-Lipschitz function 𝑓 with a minimizer 𝑤★ such that
∥𝑤★∥ = 𝐷★, and a 𝜎★-bounded first-order oracle such that
with constant probability, the output of the algorithm, 𝑤,
satisfy

𝑓 (𝑤) − 𝑓 (𝑤★) ≥ 𝐷★(𝐺★ + 𝜎★)𝛼
6
√
𝑇

≥ 𝐷★𝜎max
6𝑇

.

Thus, without non-trivial prior knowledge on the parameter
ranges, no algorithm can match the performance of tuned
SGD and must include a term linear in 𝜎max.

Parameter-free algorithm for the convex non-smooth
setting. Assuming only gradient access, we propose a
method which requires knowledge of 𝐷min, 𝐷max, 𝐺max
and 𝜎max such that 𝐷min ≤ 𝐷★ = ∥𝑤1 − 𝑤★∥ ≤ 𝐷max,
𝐺★ ≤ 𝐺max and 𝜎★ ≤ 𝜎max and produces 𝑤 such that with
probability at least 1 − 𝛿,

𝑓 (𝑤) − 𝑓★ ≤ 𝐶
(
𝐷★(𝐺★ + 𝜎★)√

𝑇
+𝐷★𝜎max

𝑇

)
,

where 𝐶 = poly log( 𝐷max
𝐷min

, 𝐺max, 𝜎max,
𝑇
𝛿
). The method is

parameter-free if 𝜎max is provided up to a tolerance of
𝑂 (
√
𝑇), in which case it achieves the same rate of con-

vergence as tuned SGD up to logarithmic factors. This is
the maximal tolerance possible in light of our lower bound,
which shows that the additional 𝜎max/𝑇 term is unavoidable
without further assumptions.

Parameter-free algorithm for the convex smooth setting.
Assuming that the objective is 𝛽★-smooth rather than Lips-
chitz, the same convex optimization method with parameters
𝐷min, 𝐷max, 𝛽max and 𝜎max such that 𝐷min ≤ 𝐷★ ≤ 𝐷max,
𝛽★ ≤ 𝛽max and 𝜎★ ≤ 𝜎max, produce 𝑤 ∈ ℝ𝑑 such that with
probability at least 1 − 𝛿,

𝑓 (𝑤)− 𝑓★ ≤ 𝐶
(
𝛽★𝐷

2
★

𝑇
+ 𝐷★𝜎★√

𝑇
+ 𝐷★𝜎max

𝑇

)
,

where 𝐶 = poly log(𝐷max,
1

𝐷min
, 𝛽max, 𝜎max,

𝑇
𝛿
). To the best

of our knowledge, this is the first parameter-free method

for stochastic convex and smooth optimization (in the case
where 𝜎★ is provided up to𝑂 (

√
𝑇) tolerance, which is again

required to account for the unavoidable term prescribed by
our lower bound).

1.2. Additional related work

Adaptive stochastic non-convex optimization. A long
line of work focus on the analysis of SGD with AdaGrad-
type stepsizes (Ward et al., 2019; Li & Orabona, 2019;
Kavis et al., 2022; Faw et al., 2022; Attia & Koren, 2023;
Liu et al., 2023), which we refer to as AdaSGD (also known
as AdaGrad-norm, e.g., Ward et al. 2019; Faw et al. 2022).
AdaSGD enjoys high-probability guarantees and rate inter-
polation for small noise (Attia & Koren, 2023; Liu et al.,
2023). Compared to our tuning-based fully parameter-free
method, the analysis of AdaSGD is cumbersome and sub-
optimal without knowing the smoothness and function sub-
optimality.

Parameter-free and adaptive stochastic convex optimiza-
tion methods. Existing methods assume either known
diameter or known stochastic gradient norm bound. As-
suming a known diameter, (Kavis et al., 2019) presented a
method with an (almost) optimal rate for convex optimiza-
tion and an accelerated rate for convex smooth optimization.
It is an open question whether parameter-free acceleration
is possible. Given a a bound of the stochastic gradient norm,
Carmon & Hinder (2022) provided the first method which
achieve the optimal rate up to a double-logarithmic fac-
tor in the diameter range by utilizing an efficient bisection
procedure to find a good SGD stepsize. Ivgi et al. (2023)
introduced a parameter-free method which use dynamic
stepsizes for SGD, and demonstrated strong practical per-
formance. Both methods are parameter-free if the bound of
the stochastic gradients norm is given up to a tolerance of
𝑂 (
√
𝑇), while our method and analysis require only such

bound for the noise of the stochastic gradients; this distinc-
tion is crucial to our guarantee in the convex and smooth
case, where the gradients are unbounded.

Parameter-free deterministic optimization methods.
While our focus here is on parameter-free stochastic opti-
mization, in the context of deterministic optimization several
fully parameter-free methods were previously suggested.
The adaptive Polyak method of Hazan & Kakade (2019)
achieves almost the same rate as tuned gradient descent for
convex Lipschitz and convex smooth problems. For convex
smooth problems, Beck & Teboulle (2009) and Nesterov
(2015) use line-search techniques to obtain the optimal (ac-
celerated) rate. It is also worth mentioning the tuning-free
methods of Defazio & Mishchenko (2023); Mishchenko &
Defazio (2023), which are not fully parameter-free (they
need knowledge of the Lipschitz constant) yet demonstrate
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strong practical performance without tuning.

Parameter-free online convex optimization. In the set-
ting of online convex optimization (OCO), several works
concerned themselves with parameter-free (e.g., McMa-
han & Orabona, 2014; Orabona & Pál, 2016; Cutkosky
& Orabona, 2018; Mhammedi & Koolen, 2020) and scale-
free (e.g., Orabona & Pál, 2018; Mhammedi & Koolen,
2020) methods. The parameter-free OCO literature as-
sume known gradient norm bound and achieve regret
of 𝑂 (∥𝑢∥𝐺max

√︁
𝑇 log∥𝑢∥) where 𝑢, 𝐺max and 𝑇 are an

arbitrary comparator, gradient norm bound and number
of rounds respectively (McMahan & Orabona, 2014).
Cutkosky & Boahen (2016; 2017) established lower bounds
which rule out such regret bounds if both the comparator
and gradient norm bounds are unknown. Sidestepping the
lower bound, several works designed parameter-free meth-
ods (with unknown Lipschitz bound and comparator norm),
suffering an additional𝑂 (∥𝑢∥3𝐺max) term (Cutkosky, 2019;
Mhammedi & Koolen, 2020). Considering online-to-batch
conversions, online parameter-free methods with known
gradient norm bound still require a non-trivial bound of the
stochastic gradient norms, not only the noise bound. Jun
& Orabona (2019) relaxed the bounded gradients assump-
tion using stochastic gradients, but requires a known bound
of the expected gradient norms instead. We note that the
method of Cutkosky (2019) can use crude range bounds
for a guarantee of 𝑂 (𝐷★𝐺★/

√
𝑇 + 𝐷max𝐺★/𝑇3/4), which

is parameter-free when 𝐷max/𝐷min = 𝑂 (𝑇1/4). Diameter
tolerance is a promising future research direction, as most
current studies focus on gradient norm/noise tolerance.

Classical analyses of stochastic gradient descent.
Ghadimi & Lan (2013) were the first to examine stochastic
gradient descent in the smooth non-convex setting and ob-
tain tight convergence. They demonstrated that a properly
tuned SGD with 𝑇 steps achieves a rate of 𝑂 (1/𝑇 + 𝜎/

√
𝑇)

under the assumption of uniformly bounded variance 𝜎2; Ar-
jevani et al. (2022) provided a tight lower bound. Assuming
sub-Gaussian noise, Ghadimi & Lan (2013) provided a high-
probability convergence rate of 𝑂 (1/𝑇 + 𝜎2/𝑇 + 𝜎/

√
𝑇) by

amplifying the success probability using multiple runs of
SGD, while Liu et al. (2023) established a similar rate for
a single run of SGD. For the convex setting, Lan (2012)
provided convergence guarantees for stochastic gradient
descent in composite stochastic optimization, establish-
ing a convergence rate of 𝑂 ((𝐺 + 𝜎)/

√
𝑇) for convex and

𝐺-Lipschitz objectives and 𝑂 (1/𝑇 + 𝜎/
√
𝑇) for convex

smooth objectives, assuming uniformly bounded variance
of 𝜎2. Classical non-asymptotic analyses of SGD and mini-
max lower bounds in stochastic optimization trace back to
Nemirovskij & Yudin (1983).

Addendum: concurrent work on parameter-free stochas-
tic optimization. Shortly after the present manuscript first
appeared on arXiv (Attia & Koren, 2024a), other works
appeared which explore similar questions in parameter-free
stochastic optimization. Carmon & Hinder (2024) study the
“price of adaptivity” to uncertainty in problem parameters
in stochastic convex problems, with focus on characterizing
the tight penalty (i.e., poly-logarithmic factors in the bound)
one must pay for being parameter-free. They provide several
lower bounds for different uncertainty scenarios, including
stochastic gradients with bounded norms and stochastic gra-
dients with a bounded second moment, as well as a result
similar to our Theorem 6 that quantifies the price of uncer-
tainty in both diameter and stochastic gradient norms. In
contrast, our primary focus is on studying conditions under
which parameter-free algorithms are possible in various op-
timization scenarios, modulo poly-logarithmic factors in the
convergence bounds.

In an independent work, Khaled & Jin (2024) study
parameter-free optimization in the non-convex and convex
settings and establish a set of results closely related to ours.
For non-convex smooth optimization, they provide an upper
bound similar to our Theorem 1 (they also give a lower
bound for the in-expectation rate of SGD, showing that it
is unattainable by parameter-free methods). For convex
optimization, they prove that full parameter-freeness is in
general impossible, while showing a convergence result that
inversely depends (polynomially) on a certain SNR parame-
ter, that for favorable noise distributions is bounded away
from zero, in which case the algorithm is parameter-free.
Comparing to our lower bound in Theorem 6, we provide a
detailed characterization of the cost of being parameter-free
in this setting, showing how convergence of parameter-free
methods degrades with the degree of uncertainty in the gradi-
ent noise parameter. In terms of upper bounds, we establish
feasibility of parameter-free convex optimization with no
dependence on SNR (that can be arbitrarily small even for
bounded noise distributions), with rates matching our lower
bound up to poly-log factors. In addition, we establish an
analogous upper upper bound for convex smooth problems,
which is, to our knowledge, the first parameter-free result in
this setting.

2. Preliminaries
Notation. Throughout, we use log to denote the base 2
logarithm and log+ (·) ≜ 1 + log(·). 𝑂 and 𝑂 are asymptotic
notations that suppress logarithmic and doubly-logarithmic
factors respectively (in addition to constant factors).

2.1. Optimization setup

Our focus is unconstrained stochastic optimization in 𝑑-
dimensional Euclidean space ℝ𝑑 with the ℓ2 norm, denoted
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∥·∥. We assume a stochastic first-order access to a differen-
tiable objective function 𝑓 : ℝ𝑑 → ℝ through a randomized
oracle O. We will consider two variants of such access,
common to the literature on stochastic optimization:

(i) Stochastic first-order oracle: The oracle O gener-
ates, given any 𝑤 ∈ ℝ𝑑 , unbiased value and gradi-
ent samples for 𝑓 at the point 𝑤, namely O(𝑤) =

( �̃� (𝑤), �̃�(𝑤)) such that for all 𝑤 ∈ ℝ𝑑 , 𝔼[ �̃� (𝑤)] =
𝑓 (𝑤) and 𝔼[�̃�(𝑤)] = ∇ 𝑓 (𝑤). We will make the stan-
dard assumption that �̃� and �̃� have uniformly bounded
noise,1 that is, for some parameters 𝜎0 > 0 and 𝜎★ > 0,

∀ 𝑤 ∈ ℝ𝑑 : Pr( | �̃� (𝑤) − 𝑓 (𝑤) | ≤ 𝜎0) = 1
and Pr(∥�̃�(𝑤) − ∇ 𝑓 (𝑤)∥ ≤ 𝜎★) = 1.

(ii) Stochastic gradient oracle: The oracle O only gen-
erates a stochastic gradient sample with 𝜎★-bounded
noise for 𝑓 given a point 𝑤; namely O(𝑤) = (�̃�(𝑤))
such that for all 𝑤 ∈ ℝ𝑑 , 𝔼[�̃�(𝑤)] = ∇ 𝑓 (𝑤) and

Pr(∥�̃�(𝑤) − ∇ 𝑓 (𝑤)∥ ≤ 𝜎★) = 1.

In this framework, we distinguish between several different
optimization scenarios:

(i) Non-convex setting. In this case we will assume the
objective is not necessarily convex but is 𝛽★-smooth.2

We further assume that the function is lower bounded
by some 𝑓★ ∈ ℝ and denote 𝐹★ ≜ 𝑓 (𝑤1) − 𝑓★ for a
given reference point 𝑤1 ∈ ℝ𝑑 . The goal in the setting
is, given 𝑇 queries to the stochastic oracle and 𝛿 > 0, is
to find a point 𝑤 ∈ ℝ𝑑 such that ∥∇ 𝑓 (𝑤)∥2 ≤ 𝜖 with
probability at least 1−𝛿, for 𝜖 as small as possible (as a
function of the problem parameters 𝛽★, 𝐹★, 𝜎★, 𝜎0 and
𝑇, 𝛿).

(ii) Convex non-smooth setting. Here we assume 𝑓 is
convex, 𝐺★-Lipschitz and admits a minimizer 𝑤★ ∈
arg min𝑤∈ℝ𝑑 𝑓 (𝑤) with value 𝑓★ ≜ 𝑓 (𝑤★). We de-
note 𝐷★ ≜ ∥𝑤1 − 𝑤★∥ for a reference point 𝑤1 ∈ ℝ𝑑 .
The goal is, given 𝑇 queries to the stochastic oracle
and 𝛿 > 0, is to produce a point 𝑤 ∈ ℝ𝑑 such that
𝑓 (𝑤) − 𝑓★ ≤ 𝜖 with probability at least 1 − 𝛿, for 𝜖 as
small as possible (in terms of the problem parameters
𝐺★, 𝐷★, 𝜎★, 𝜎0 and 𝑇, 𝛿).

1The bounded noise assumption is made here for simplicity
and can be relaxed to a sub-Gaussian assumption on the noise; see,
for example, Attia & Koren (2024b) or Appendix C of Attia &
Koren (2023) for further details.

2A function 𝑓 : ℝ𝑑 → ℝ is said to be 𝛽-smooth if
∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥ ≤ 𝛽∥𝑥 − 𝑦∥ for all 𝑥, 𝑦 ∈ ℝ𝑑 . In particular,
this implies that | 𝑓 (𝑦) − 𝑓 (𝑤) − ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) | ≤ 𝛽

2 ∥𝑦 − 𝑥∥
2

for all 𝑥, 𝑦 ∈ ℝ𝑑 .

(iii) Convex and smooth setting. This scenario is identical
to the former, but here we assume that 𝑓 is 𝛽★-smooth
rather than 𝐺★-Lipschitz. The convergence rate 𝜖 is
then given in terms of the parameters 𝛽★, 𝐷★, 𝜎★, 𝜎0
and 𝑇, 𝛿.

2.2. Parameter-free algorithmic setup

Since our focus is on parameter-free optimization, it is
crucial to specify what algorithms in this setting are al-
lowed to receive as input. First, we will always assume
that the number of steps 𝑇 , the failure probability 𝛿 and
the reference point 𝑤1 are given as inputs.3 The remain-
ing problem parameters are not known ahead of time and
thus are not received as inputs; however, we will assume
that algorithms do receive, for each ground-truth parame-
ter, a crude range (i.e., lower and upper bounds) in which
it lies. Namely, for any of the relevant parameters among
𝛽★, 𝐹★, 𝐺★, 𝐷★, 𝜎★, algorithms receive respective ranges
such that 𝛽★ ∈ [𝛽min, 𝛽max], 𝐹★ ∈ [𝐹min, 𝐹max], 𝐺★ ∈
[𝐺min, 𝐺max], 𝐷★ ∈ [𝐷min, 𝐷max], 𝜎★ ∈ [𝜎min, 𝜎max] (a
range for the parameter 𝜎0 is not used in any of our meth-
ods). We refer to a method as parameter-free, with respect
to a well-tuned benchmark algorithm, if its convergence
rate matches that of the benchmark, up to poly-logarithmic
factors in the range parameters as well as in 𝑇 and 1/𝛿. (We
do not include a more formal definition here, since it will
not be required for the statement of any of our results.)

2.3. Tuned benchmarks

Our benchmark rates, for both convex and non-convex
optimization, are those of tuned (fixed stepsize, possibly
projected) Stochastic Gradient Descent (SGD). Starting at
𝑤1 ∈ ℝ𝑑 , the update step of SGD is 𝑤𝑡+1 = 𝑤𝑡 −𝜂𝑔𝑡 , where
𝜂 is the stepsize parameter, 𝑔𝑡 = �̃�(𝑤𝑡 ) is the stochastic
gradient at step 𝑡, evaluated at 𝑤𝑡 . The update of projected
SGD is 𝑤𝑡+1 = ΠΩ (𝑤𝑡 − 𝜂𝑔𝑡 ), where ΠΩ (·) is the Euclidean
projection onto a convex domain Ω ⊆ ℝ𝑑 . With a tuned
stepsize parameter, this method achieves the best known rate
in the non-convex setting and the optimal rate in convex non-
smooth setting (accelerated methods achieve a slightly better
rate in the convex and smooth setting). The benchmark rates
of SGD in the optimization scenarios described above are
detailed in Table 1. Note that SGD is not parameter-free
with respect to tuned SGD, unless the range parameters
are such that the ground-true parameters are known up to a
constant factor.

3A standard doubling trick can be used to handle an unknown
𝑇 while keeping the same rate of convergence up to log-factors.
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Table 1. Benchmark high-probability rates of tuned SGD, ignoring
log-factors.

SETTING BENCHMARK RATE

Non-convex 𝛽★𝐹★
𝑇
+ 𝜎2

★

𝑇
+

√︃
𝛽★𝐹★𝜎

2
★

𝑇
(Ghadimi & Lan, 2013)

Convex, Lipschitz 𝐷★ (𝐺★+𝜎★)√
𝑇

(Lan, 2012)

Convex, smooth 𝛽★𝐷
2
★

𝑇
+ 𝐷★𝜎★√

𝑇
(Lan, 2012)

3. Parameter-Free Non-convex Optimization
We begin with the general non-convex smooth case, pro-
viding a fully parameter-free method which achieves the
same rate of tuned SGD up to poly-logarithmic factors. Our
approach is based on a simple observation that has also been
used in the two-phase SGD approach of Ghadimi & Lan
(2013). Our parameter-free method performs grid search
over multiple SGD stepsizes and for each sequence of SGD
iterations randomly samples a small portion of the iterations.
Then the method picks the solution with the minimal ap-
proximate gradient norm based on stochastic gradients. For
the full algorithm statement see Appendix A. Here we only
states its guarantees.

Theorem 1. Assume that 𝑓 is 𝛽★-smooth and lower
bounded by some 𝑓★ and �̃� is a 𝜎★-bounded unbiased gra-
dient oracle of 𝑓 . Let 𝜂min, 𝜂max > 0 such that

𝜂min ≤ 𝜂★ ≜ min
{

1
2𝛽★ ,

√︂
𝐹★

𝛽★𝜎
2
★𝑇

}
≤ 𝜂max

where 𝐹★ = 𝑓 (𝑤1) − 𝑓★. Then for any 𝛿 ∈ (0, 1
3 ), given

𝑤1, 𝑇 , 𝛿, 𝜂min and 𝜂max, Algorithm 2 performs 𝑇 gradient
queries and produce 𝑤 such that with probability ≥ 1 − 𝛿,

∥∇ 𝑓 (𝑤)∥2 = 𝑂

(
log+ (

𝜂max
𝜂min
) log+ ( 1

𝛿
) (𝛽★𝐹★ + 𝜎2

★ log 1
𝛿
)

𝑇

+
𝜎★

√︃
𝛽★𝐹★ log+ (

𝜂max
𝜂min
) log+ ( 1

𝛿
)

√
𝑇

)
.

First, we note that the rate of Algorithm 2 match the rate of
fully-tuned SGD up to logarithmic factors. Note that valid
𝜂min, 𝜂max can be determined using ranges of the problem pa-
rameters (details at Appendix A). Additionally, the method
produce a single point instead of the obscure average norm
guarantee of SGD, a product of comparing multiple itera-
tions of SGD. Comparing the result to recent advances in
the analysis of adaptive SGD with AdaGrad-like stepsizes
(Faw et al., 2022; Attia & Koren, 2023; Liu et al., 2023),
Algorithm 2 has only logarithmic dependency in the specifi-
cation of the parameters 𝜂min and 𝜂max while adaptive SGD
require tight knowledge of 𝐹★/𝛽★ for tuning or suffer a sub-
optimal polynomial dependency on problem parameters. In
addition, the proof technique of Theorem 1 is simple and

straightforward compared to the cumbersome analysis of
adaptive SGD with AdaGrad-like stepsizes.

Due to the simplicity of the analysis, we defer the full proof
to Appendix A and provide here the general guidelines.
The proof uses standard techniques (which are also used
in the original analysis of Ghadimi & Lan 2013). As 𝜂★ ∈
[𝜂min, 𝜂max], the algorithm’s grid search execute SGD with
some 𝜂′★ ≈ 𝜂★, and with high probability, obtains (among
other candidates) at least one point with a similar guarantee
to tuned SGD. A concentration of the stochastic gradient
norms ensures that we can select a good candidate with high
probability.

4. Parameter-Free Convex Optimization
We proceed to consider convex problems, where the objec-
tive is either convex Lipschitz or convex smooth. The first
result in this section assumes access via a first-order ora-
cle (which includes access to noisy function values), while
later results deal with the case of stochastic gradient oracle
access.

4.1. Optimization with a stochastic first-order oracle

In this setting we assume access using a first-order oracle
O(𝑤) = ( �̃� (𝑤), �̃�(𝑤)) with bounded noise. Stochastic func-
tion value access (with a reasonable level of noise variance)
is often a valid and natural assumption since (i) it is often the
case that stochastic gradients are obtained by random sam-
ples and those can be used for both function and gradient
evaluation; and (ii) the practice of tuning using a validation
set implicitly assume this exact assumption. We present a
fully parameter-free method which utilize the function value
oracle to perform model selection, similar to the use of the
gradient oracle for model selection in Algorithm 2. The
algorithm is detailed in Appendix B and following is its con-
vergence result. Due to the similarities between the method
and Algorithm 2, the proof is also deferred to Appendix B.

Theorem 2. Let 𝑓 : ℝ𝑑 → ℝ be a differentiable,
𝐺★-Lipschitz and convex function, admitting a minimizer
𝑤★ ∈ arg min𝑤∈ℝ𝑑 𝑓 (𝑤). Let �̃� be a 𝜎0-bounded unbi-
ased zero-oracle of 𝑓 and �̃� be a 𝜎★-bounded unbiased
gradient oracle of 𝑓 . Let 𝜂min, 𝜂max > 0 such that 𝜂min ≤
∥𝑤1 − 𝑤★∥/

√︃
(𝐺2

★ + 𝜎2
★)𝑇 ≤ 𝜂max for some 𝑤1 ∈ ℝ𝑑 . Then

Algorithm 3 performs 𝑇 queries and produce 𝑤 such that
with probability at least 1 − 2𝛿,

𝑓 (𝑤) − 𝑓 (𝑤★) = 𝑂
(
𝜎0 log( 1

𝛿
)
√︃

log( 𝜂max
𝜂min
)

√
𝑇

+
∥𝑤1 − 𝑤★∥

√︃
(𝐺2

★ + 𝜎2
★) log( 𝜂max

𝜂min
) log( 1

𝛿
)

√
𝑇

)
.
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Algorithm 3 obtains the same rate of convergence as tuned
SGD up to logarithmic factors and a term of order 𝜎0/

√
𝑇 ,

being parameter-free given the mild assumption that 𝜎0 =

𝑂 (𝐷★(𝐺★ + 𝜎★)). Similarly to Algorithm 2, the inputs
𝜂min, 𝜂max may be replaced by problem parameters ranges
(details at Appendix B). We note that Algorithm 3 achieves
an analogous guarantee for convex smooth objectives (via
a proper setting of 𝜂min, 𝜂max using 𝐷min, 𝐷max, 𝛽min, 𝛽max
and 𝜎min, 𝜎max).

4.2. Optimization with a stochastic gradient oracle

While function value access is a reasonable assumption
which leads to a simple parameter-free method, much of
the existing work on adaptive, self-tuning optimization only
assume access to stochastic gradient queries. In this section
we present a parameter-free method, using only stochas-
tic gradient access, which match the convergence rate of
tuned SGD up to a lower-order term 𝑂 (𝜎max/𝑇) and poly-
logarithmic factors. Our proposed method (Algorithm 1)
is based on tuning the diameter of the projected variant
of Stochastic Gradient Descent with AdaGrad-like step-
sizes method (AdaPSGD). For a given diameter, the update
step of AdaSGD is 𝑤𝑡+1 = Proj𝑤1 ,𝐷

(𝑤𝑡 − 𝜂𝑡𝑔𝑡 ), where
Proj𝑤1 ,𝐷

(·) is the Euclidean projection onto the 𝐷-ball cen-
tered at the initialization 𝑤1, 𝑔𝑡 = �̃�(𝑤𝑡 ) is the stochastic
gradient at step 𝑡, and for some 𝛼 > 0 and 𝛾 ≥ 0,

𝜂𝑡 =
𝛼𝐷√︃

𝛾2 +∑𝑡
𝑠=1∥𝑔𝑠 ∥

2
.

Our method performs multiple runs of AdaPSGD with an
exponential grid of diameters and stops when all iterations
are fully within the 𝐷-ball. The method may be consid-
ered as a middle ground between Carmon & Hinder (2022)
and Ivgi et al. (2023) as it combines tuning and dynamic
stepsizes.

Following is the convergence result of our method.
Theorem 3. Let 𝑓 : ℝ𝑑 → ℝ be a differentiable, 𝐺★-
Lipschitz and convex function, admitting a minimizer 𝑤★ ∈
arg min𝑤∈ℝ𝑑 𝑓 (𝑤). Let �̃� be an unbiased gradient oracle
of 𝑓 with 𝜎★-bounded noise, and let 𝑤1 ∈ ℝ𝑑 . Then Al-
gorithm 1 with parameters 𝐷min ≤ ∥𝑤1 − 𝑤★∥ < 𝐷max,
𝐺max ≥ 𝐺★ and 𝜎max ≥ 𝜎★ performs at most 𝑇 log 𝐷max

𝐷min

gradient queries and produce 𝑤 ∈ ℝ𝑑 such that with proba-
bility at least 1 − 𝛿 log 𝐷max

𝐷min
,

𝑓 (𝑤) − 𝑓 (𝑤★) ≤
(
∥𝑤1 − 𝑤★∥(𝐺★ + 𝜎★)√

𝑇

+ ∥𝑤1 − 𝑤★∥𝜎max
𝑇

)
poly log(𝐺max

𝜎max
, 𝑇, 1

𝛿
).

Observing the convergence rate in Theorem 3, Algorithm 1
achieve the same rate of convergence as fully-tuned SGD

Algorithm 1: Adaptive projected SGD tuning
Input: 𝐷min, 𝐷max, 𝐺max, 𝜎max, 𝑇 and 𝛿
𝐾 ← log 𝐷max

𝐷min

𝛾 ←
√︃

5𝜎2
max log 𝑇

𝛿

𝜃𝑇, 𝛿 ← log 60 log(6𝑇 )
𝛿

𝛼←
(
48 log

(
1 + 2𝐺2

max𝑇+2𝜎2
max𝑇

5𝜎2
max log 𝑇

𝛿

)
+ 32 log(1 + 𝑇) +

128
√︄
𝜃𝑇, 𝛿 log(1 + 𝑇) + 𝜃2

𝑇,𝛿

5 log 𝑇
𝛿

)−1

for 𝑘 ← 1, 2, . . . , 𝐾 do
𝐷𝑘 ← 2𝑘+2𝐷min

𝑤
(𝑘 )
1 , . . . , 𝑤

(𝑘 )
𝑇
← AdaPSGD(𝐷𝑘 , 𝛼, 𝛾, 𝑤1, 𝑇)

if max𝑡≤𝑇 ∥𝑤 (𝑘 )𝑡+1 − 𝑤1∥ < 𝐷𝑘 then
return �̄� (𝑘 ) ← 1

𝑇

∑𝑇
𝑡=1 𝑤

(𝑘 )
𝑡

end
end
return 𝑤1 ⊲ Failure case

up to logarithmic factors and an additional lower order term
of 𝑂 (𝜎★/𝑇).4 Hence, in case the ratio 𝜎max/(𝜎min + 𝐺min)
is 𝑂 (

√
𝑇), Algorithm 1 is parameter-free compared to the

rate of tuned SGD. Previous parameter-free results for SCO
(Carmon & Hinder, 2022; Ivgi et al., 2023) suffer a similar
lower order term, while our result depends only on the
noise bound and not a bound of the norm of stochastic
gradients which encapsulate both a noise and gradient norm
bound, a property that stems from a careful combination of
“decorrelated” stepsizes and martingale analysis instead of
using the crude bound of stochastic gradients norm. (This
point will subsequently prove critical in the convex smooth
case where gradients are not directly bounded.) We also
note that the bisection technique of Carmon & Hinder (2022)
can improve the poly-logarithmic dependency; we abstain
from using such a technique in favour of making the tuning
procedure straightforward and leave improvements of the
logarithmic factors to future work.

The convergence result of Algorithm 1 holds in fact holds
more generally, assuming the gradient and noise bounds are
satisfied only inside a ball of radius 8∥𝑤1 − 𝑤★∥. We will
prove a more general version and Theorem 3 will follow
as a corollary at Appendix C. The refined result will be
relevant later when we use the convergence guarantee for
convex smooth objectives where a global gradient norm
bound does not hold. To that end we define 𝐺8★, 𝜎8★ ∈ ℝ+
as the minimal parameters satisfying, for all 𝑤 ∈ ℝ𝑑 such

4In Theorem 6 we show that such a term is unavoidable with-
out further assumptions and in Appendix D we provide a further
assumption which mitigate the excess term.
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that ∥𝑤 − 𝑤1∥ ≤ 8∥𝑤1 − 𝑤★∥,

∥∇ 𝑓 (𝑤)∥ ≤ 𝐺8★, Pr(∥�̃�(𝑤) − ∇ 𝑓 (𝑤)∥ ≤ 𝜎8★) = 1. (1)

Following is the general version of Theorem 3.

Theorem 4. Let 𝑓 : ℝ𝑑 → ℝ be a differentiable and convex
function, admitting a minimizer 𝑤★ ∈ arg min 𝑓 (𝑤). Let �̃�
be an unbiased gradient oracle of 𝑓 such that 𝜎8★ < ∞
(see Equation (1)), and let 𝑤1 ∈ ℝ𝑑 . Then Algorithm 1
with parameters 𝐷min ≤ ∥𝑤1 − 𝑤★∥ < 𝐷max, 𝐺max ≥ 𝐺8★
and 𝜎max ≥ 𝜎8★, where 𝐺8★ and 𝜎8★ are defined by
Equation (1), performs at most 𝑇 log 𝐷max

𝐷min
gradient queries

and produce 𝑤𝑘 = 1
𝑇

∑𝑇
𝑡=1 𝑤

(𝑘 )
𝑡 for some 𝑘 ∈ [log 𝐷max

𝐷min
]

such that with probability at least 1 − 𝛿 log 𝐷max
𝐷min

, 𝐷𝑘 ≤
8∥𝑤1 − 𝑤★∥ and

𝑓 (𝑤𝑘) − 𝑓★ ≤
1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑤 (𝑘 )𝑡 ) − 𝑓★

= 𝑂

(
𝐶∥𝑤1 − 𝑤★∥

𝑇

(√︄
𝑇∑︁
𝑡=1
∥𝑔 (𝑘 )𝑡 ∥2 + 𝜎max

√︃
log 𝑇

𝛿

))
where 𝐶 = log( 𝑇

𝛿
+ 𝐺max
𝜎max
) and 𝑔 (𝑘 )𝑡 is the observed gradient

at 𝑤 (𝑘 )𝑡 .

The bound of the general version uses the norms of the
observed stochastic gradients instead of the gradient norm
and noise bounds, and a simple translation appearing in
Appendix C yields Theorem 3.

In order to prove Theorem 4, we first provide several in-
termediate results for 𝑇-steps AdaPSGD for some 𝐷 ≤
8∥𝑤1 − 𝑤★∥ at Lemmas 1 to 3 (in which case the bounds
𝐺8★ and 𝜎8★ hold for all the projected domain). We de-
fer their proofs to Appendix C. Differently from common
analyses of projected methods, we are interested in both the
local minimizer inside the 𝐷-ball and the global minimizer
in ℝ𝑑 . To that end, let 𝑤★

𝐷
= arg min𝑤:∥𝑤−𝑤1 ∥≤𝐷 𝑓 (𝑤)

such that ∥𝑤1 − 𝑤★𝐷 ∥ ≤ ∥𝑤1 − 𝑤★∥.5 The first lemma es-
tablishes a convergence guarantee with respect to the global
minimizer given the following two events. The first is that
all the iterates are contained (fully) within the 𝐷-ball, i.e.,
𝐸1 ≜ {max𝑡≤𝑇 ∥𝑤𝑡+1 − 𝑤1∥ < 𝐷}. The second,

𝐸2 ≜

{����� 𝑇∑︁
𝑡=1
(∇ 𝑓 (𝑤𝑡 ) − 𝑔𝑡 ) · (𝑤𝑡 − 𝑤★)

�����
≤ 4(𝐷 + ∥𝑤1 − 𝑤★∥)

√︄
𝜃𝑇, 𝛿

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 + 4𝜃2

𝑇, 𝛿
𝜎2

8★

}
,

is the concentration needed to modify the regret analysis to
a high-probability analysis.

5Such 𝑤★
𝐷

exists since either ∥𝑤1 − 𝑤★∥ ≤ 𝐷 and we may use
𝑤★
𝐷

= 𝑤★, or ∥𝑤1 − 𝑤★𝐷 ∥ ≤ 𝐷 < ∥𝑤1 − 𝑤★∥.

Lemma 1. Under the event 𝐸1 ∩ 𝐸2,

1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 ) − 𝑓 (𝑤★) ≤
(

2𝛾
𝛼
+ 8𝜃𝑇, 𝛿𝜎8★

) ∥𝑤1 − 𝑤★∥ + 𝐷
𝑇

+
(
(∥𝑤1 − 𝑤★∥ + 𝐷) ( 2

𝛼
+ 4

√︁
𝜃𝑇, 𝛿) + 𝛼𝐷

) √︃∑𝑇
𝑡=1∥𝑔𝑡 ∥

2

𝑇
.

The second lemma bounds the distance of the iterates from
the initialization. This lemma will prove useful to show that
𝐸1 holds with high probability for a large enough 𝐷.

Lemma 2. Let 𝛼, 𝛾 as defined by Algorithm 1. Then with
probability at least 1 − 2𝛿, for all 𝑡 ∈ [𝑇],

∥𝑤𝑡+1 − 𝑤1∥ ≤ 2∥𝑤1 − 𝑤★∥ +
1
2
𝐷.

The third lemma lower bounds the probability of 𝐸2. Note
that the concentration bound does not depends on the gra-
dient norm bound, only the observed (noisy) gradients and
the noise bound.

Lemma 3. Pr(𝐸2) ≥ 1 − 2𝛿.

We are ready to prove the main result.

Proof of Theorem 4. Let 𝑤 (𝜏 ) for 𝜏 ∈ [𝐾 +1] be the output
of Algorithm 1 (treating 𝑤1 as 𝑤 (𝐾+1) ). Let

𝑖 = min{𝑘 ∈ [𝐾] : 𝐷𝑘 > 4∥𝑤1 − 𝑤★∥}.

Note that 𝑖 is well defined as 𝐷𝐾 = 4𝐷max > 4∥𝑤1 − 𝑤★∥
and that by minimality of 𝑖, 𝐷𝑖 ≤ 8∥𝑤1 − 𝑤★∥. We define
the events 𝐸 (𝑘 )1 and 𝐸 (𝑘 )2 as the respective 𝐸1 and 𝐸2 events
for the 𝑘’th sequence of AdaPSGD, 𝑤 (𝑘 )1 , . . . , 𝑤

(𝑘 )
𝑇

. From
Lemma 2, with probability at least 1 − 2𝛿, for all 𝑡 ∈ [𝑇],

∥𝑤 (𝑖)
𝑡+1 − 𝑤1∥ ≤ 2∥𝑤1 − 𝑤★∥ +

1
2
𝐷𝑖 < 𝐷𝑖 ,

where the last inequality follows by 𝐷𝑖 > 4∥𝑤1 − 𝑤★∥.
Hence, Pr{𝜏 ≤ 𝑖} ≥ Pr{𝜏 = 𝑖 | 𝜏 ≥ 𝑖} ≥ 1 − 2𝛿. By
Lemma 3, with probability at least 1 − 2𝛿𝐾 (union bound
over all 𝑘 ∈ [𝑖], where 𝑖 ≤ 𝐾), 𝐸 (𝑘 )2 holds for all 𝑘 ∈ [𝑖].
Again using union bound with {𝜏 ≤ 𝑖}, with probability at
least 1− 2𝛿(𝐾 + 1), we also have that {𝜏 ≤ 𝑖}, which means
that both 𝐸 (𝜏 )1 and 𝐸 (𝜏 )2 hold and we can invoke Lemma 1.
Hence, with probability 1 − 2𝛿(𝐾 + 1), Algorithm 1 returns
𝑤 (𝜏 ) for some 𝜏 ≤ 𝑖 for which

1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑤 (𝜏 )𝑡 ) − 𝑓★ ≤
(

2𝛾
𝛼
+ 8𝜃𝑇, 𝛿𝜎8★

) ∥𝑤1 − 𝑤★∥ + 𝐷𝜏
𝑇

+
(
(∥𝑤1 − 𝑤★∥ + 𝐷𝜏) ( 2

𝛼
+ 4

√︁
𝜃𝑇, 𝛿) + 𝛼𝐷𝜏

) √︃∑𝑇
𝑡=1∥𝑔𝑡 ∥

2

𝑇
.
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Using the inequalities 𝐷𝜏 ≤ 𝐷𝑖 ≤ 8∥𝑤1 − 𝑤★∥, 𝜎8★ ≤
𝜎max, and a standard application of Jensen’s inequality,

𝑓 (𝑤 (𝜏 ) ) − 𝑓★ = 𝑂

((
𝛾

𝛼𝜎max
+ 𝜃𝑇, 𝛿

) ∥𝑤1 − 𝑤★∥𝜎max
𝑇

+
(
( 1
𝛼
+

√︁
𝜃𝑇, 𝛿) + 𝛼

) ∥𝑤1 − 𝑤★∥
√︃∑𝑇

𝑡=1∥𝑔
(𝜏 )
𝑡 ∥2

𝑇

)
.

We conclude by substituting 𝛾, noting that 𝛼 ≤ 1,√︁
𝜃𝑇, 𝛿 , 𝜃𝑇, 𝛿 , 𝛼

−1 = 𝑂
(
log

(
𝑇
𝛿
+ 𝐺max
𝜎max

) )
. □

4.3. Convex and smooth stochastic optimization

In this setting we assume that the objective is smooth rather
then Lipschitz. We prove that Algorithm 1 also achieve
the same rate of convergence as tuned SGD for smooth
objectives, up to logarithmic factors and a lower-order term.

Theorem 5. Let 𝑓 : ℝ𝑑 → ℝ be a 𝛽★-smooth and convex
function, admitting a minimizer 𝑤★ ∈ arg min 𝑓 (𝑤). Let
�̃� be an unbiased gradient oracle of 𝑓 and let 𝑤1 ∈ ℝ𝑑 .
Then Algorithm 1 with parameters 𝐷min ≤ ∥𝑤1 − 𝑤★∥ <
𝐷max, 𝐺max ≥ 9𝛽★∥𝑤1 − 𝑤★∥ and 𝜎max ≥ 𝜎8★, where
𝜎8★ is defined by Equation (1), performs at most 𝑇 log 𝐷max

𝐷min
gradient queries and produce 𝑤 such that with probability
at least 1 − 𝛿 log 𝐷max

𝐷min
, 𝐷𝑘 ≤ 8∥𝑤1 − 𝑤★∥ and

𝑓 (𝑤) − 𝑓★ = 𝑂

(
𝐶2𝛽★∥𝑤1 − 𝑤★∥2

𝑇
+ 𝐶∥𝑤1 − 𝑤★∥𝜎8★√

𝑇

+ 𝜎max
𝐶∥𝑤1 − 𝑤★∥

√︃
log 𝑇

𝛿

𝑇

)
,

where 𝐶 = log( 𝑇
𝛿
+ 𝐺max
𝜎max
).

The method is parameter-free compared to tuned SGD,
assuming 𝜎max/𝜎min = 𝑂 (

√
𝑇). Previous parameter-free

methods for stochastic convex optimization (Carmon & Hin-
der, 2022; Ivgi et al., 2023) provided only a noiseless guar-
antee for smooth objectives. Attia & Koren (2023) provided
a convergence result for adaptive SGD with AdaGrad-like
stepsizes for convex and smooth objectives, but similarly
to the non-convex case, the method is not parameter-free
compared to tuned SGD.

Theorem 4 requires only a local gradients norm bound, in-
side a ball of radius 8∥𝑤1 − 𝑤★∥. An application of smooth-
ness with the triangle inequality yields that for all 𝑤 such
that ∥𝑤 − 𝑤1∥ ≤ 8∥𝑤1 − 𝑤★∥, ∥∇ 𝑓 (𝑤)∥ ≤ 9𝛽★∥𝑤1 − 𝑤★∥.
Hence, we can apply Theorem 4 and the error incurred by
the bound is merely logarithmic. Using a standard analysis
we can translate the convex rate guarantee to a convex and
smooth rate guarantee. For the full proof see Appendix C.

4.4. Information-theoretic limits to parameter freeness

Both Theorems 4 and 5 suffer an additional term of
𝑂 (∥𝑤1 − 𝑤★∥𝜎max/𝑇) compared to tuned SGD, that pre-
vents them from being fully parameter-free compared to
SGD due to the polynomial dependence on 𝜎max. The fol-
lowing theorem shows that without additional assumptions,
this term is in fact unavoidable and the results of Theorems 4
and 5 are essentially the best one can hope for.
Theorem 6. Let 𝑇 ≥ 4, 𝐷max > 0, 𝜎max > 0, 𝛼 ∈ [1, 3

4
√
𝑇]

and 𝐺★ =
𝜎max
2𝑇−1 . Let A be any deterministic algorithm

which performs𝑇 gradient queries and outputs 𝑤 ∈ ℝ. Then
there exist some 𝐷★ ∈ [𝐷max

𝛼
√
𝑇
, 𝐷max], 𝜎★ ∈ [ 𝜎max

𝛼
√
𝑇
, 𝜎max], a

convex and 𝐺★-Lipschitz function 𝑓 : ℝ→ ℝ which admits
a minimizer 𝑤★ ∈ arg min𝑤∈ℝ 𝑓 (𝑤) such that ∥𝑤★∥ = 𝐷★,
and a 𝜎★-bounded unbiased sub-gradient6 oracle of 𝑓 , �̃�
such that with probability at least 1

4 ,

𝑓 (𝑤) − 𝑓 (𝑤★) ≥ 𝐷★(𝐺★ + 𝜎★)𝛼
6
√
𝑇

≥ 𝐷★𝜎max
6𝑇

.

We remark that the deterministic requirement is made for
simplicity and the argument can be adapted to random-
ized algorithms. To understand the lower bound con-
sider the convergence guarantee of tuned SGD. A standard
in-expectation analysis of SGD with a tuned stepsize of
𝜂 = 𝐷/(𝐺 + 𝜎)

√
𝑇 and an application of Markov’s inequal-

ity shows that with probability at least 3
4 , SGD produce 𝑤

with 𝑓 (𝑤) − 𝑓 (𝑤★) = 𝑂 (𝐷★(𝐺★ + 𝜎★)/
√
𝑇). Hence, when

𝛼 = 𝜔(1), the worst case analysis of SGD is strictly better
than any algorithm with the limited knowledge prescribed in
Theorem 6. In particular, a method cannot be parameter-free
and expect a comparable rate of convergence to SGD unless
one of [𝐷min, 𝐷max], [𝜎min, 𝜎max] has ratio of𝑂 (

√
𝑇) or the

𝐺★ value is outside the range (for example if the noise bound
is small). This lower bound of Theorem 6 indeed appears in
the guarantees of Carmon & Hinder (2022); Ivgi et al. (2023)
in the form of the bound of stochastic gradients norm and
in our Theorem 4. While the term Ω(∥𝑤1 − 𝑤★∥𝜎max/𝑇)
is unavoidable, in Appendix D we show that assuming the
initialization is a “bad enough” approximate minimizer, we
can infer a reasonable bound of 𝜎★ which reduce the lower
bound to a term proportional to the guarantee of tuned SGD.

We defer the proof to Appendix C and provide the general
structure of the proof. The proof is based on constructing
two problem instances which are indistinguishable with con-
stant probability using only 𝑇 queries, where one instance
pretends to be the other using a large 𝜎★ value. The lower
bound is established by showing that no point has good
sub-optimality for both problems.

6The function is of the form 𝐺★ |𝑤 − 𝐷★ |, and smoothing can
be used to support smooth objectives. With a slight abuse of
notation we treat ∇ 𝑓 (𝑤) as some sub-gradient of 𝑓 such that
𝔼[�̃�(𝑤)] = ∇ 𝑓 (𝑤).
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Algorithm 2: Non-convex SGD tuning
Input: 𝑤1, 𝑇 , 𝛿, 𝜂min, 𝜂max (see Equation (2) for replacing 𝜂min, 𝜂max with parameter ranges)
𝑆 ← {}
𝐾 ← log

(
𝜂max
𝜂min

√︃
log+ (

𝜂max
𝜂min
) log+ ( 1

𝛿
)
)

𝑁 ← log 1
𝛿

𝑇 ′ ← 𝑇
𝐾 (1+𝑁 )

for 𝑘 ← 1, 2, . . . , 𝐾 do
𝜂𝑘 ← 2𝑘−1𝜂min

𝑤
(𝑘 )
1 , . . . , 𝑤

(𝑘 )
𝑇
← SGD(𝑤1, 𝜂𝑘 , 𝑇

′)
Uniformly at random select 𝑤 (𝑘 )1 , . . . , 𝑤

(𝑘 )
𝑁

from 𝑤
(𝑘 )
1 , . . . , 𝑤

(𝑘 )
𝑇

𝑆 ← 𝑆 ∪ {𝑤 (𝑘 )1 , . . . , 𝑤
(𝑘 )
𝑛 }

end
return arg min𝑤∈𝑆 ∥

∑𝑇 ′

𝑡=1 �̃�𝑡 (𝑤)∥ ⊲ �̃�𝑡 (𝑤) is an independent stochastic gradient at 𝑤

A. Additional Details for Section 3
In this section we provide the algorithmic statement, additional details and proofs related to Theorem 1. For completeness
we re-state the theorem.

Theorem 1. Assume that 𝑓 is 𝛽★-smooth and lower bounded by some 𝑓★ and �̃� is a 𝜎★-bounded unbiased gradient oracle
of 𝑓 . Let 𝜂min, 𝜂max > 0 such that

𝜂min ≤ 𝜂★ ≜ min
{

1
2𝛽★ ,

√︂
𝐹★

𝛽★𝜎
2
★𝑇

}
≤ 𝜂max

where 𝐹★ = 𝑓 (𝑤1) − 𝑓★. Then for any 𝛿 ∈ (0, 1
3 ), given 𝑤1, 𝑇 , 𝛿, 𝜂min and 𝜂max, Algorithm 2 performs 𝑇 gradient queries

and produce 𝑤 such that with probability ≥ 1 − 𝛿,

∥∇ 𝑓 (𝑤)∥2 = 𝑂

(
log+ (

𝜂max
𝜂min
) log+ ( 1

𝛿
) (𝛽★𝐹★ + 𝜎2

★ log 1
𝛿
)

𝑇

+
𝜎★

√︃
𝛽★𝐹★ log+ (

𝜂max
𝜂min
) log+ ( 1

𝛿
)

√
𝑇

)
.

Note that Algorithm 2 receive 𝜂min, 𝜂max instead of ranges [𝐹min, 𝐹max], [𝛽min, 𝛽max], [𝜎min, 𝜎max]. This is done for fram-
ing the algorithm as a form of stepsize tuning (which in practice requires only two hyperparameters instead of two
hyperparameters per problem parameter) and given the ranges the algorithm will use

𝜂min = min

{
1

2𝛽max
,

√︄
𝐹min

𝛽max𝜎
2
max𝑇

}
and 𝜂max = min

{
1

2𝛽min
,

√︄
𝐹max

𝛽min𝜎
2
min𝑇

}
. (2)

In order to prove the theorem we need the following lemmas , their proofs follow . The first is a standard convergence result
of constant stepsize SGD. Alternatively, one can use the in-expectation analysis of SGD as in the two-phase SGD method of
Ghadimi & Lan (2013).

Lemma 4 (SGD convergence with high probability). Assume that 𝑓 is 𝛽★-smooth and lower bounded by 𝑓★. Then for the
iterates of SGD with 𝜂 ≤ 1/2𝛽★, it holds with probability at least 1 − 𝛿 that

1
𝑇

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 ≤

(
4𝐹★
𝜂
+ 12𝜎2

★ log 1
𝛿

)
1
𝑇
+ 4𝛽★𝜎2

★𝜂,

where 𝐹★ = 𝑓 (𝑤1) − 𝑓★.
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Next is a standard success amplification technique for choosing between candidate solutions SGD; the precise version below
is due to Ghadimi & Lan (2013).
Lemma 5. Given candidates 𝑤1, . . . , 𝑤𝑁 , let 𝑤 = arg min𝑛∈[𝑁 ] ∥

∑𝑇
𝑡=1 �̃�𝑡 (𝑤𝑛)∥ where 𝑔𝑡 (𝑤) for 𝑡 ∈ [𝑇] are independent

stochastic gradients at 𝑤. Then assuming 𝔼[�̃�𝑡 (𝑤)] = ∇ 𝑓 (𝑤) and Pr(∥∇ 𝑓 (𝑤) − �̃�𝑡 (𝑤)∥ ≤ 𝜎) = 1 for any fixed 𝑤, for any
𝛿 ∈ (0, 1), we have with probability at least 1 − 𝛿 that

∥∇ 𝑓 (𝑤)∥2 ≤ 4 min
𝑛∈[𝑁 ]

∥∇ 𝑓 (𝑤𝑛)∥2 +
24(1 + 3 log 𝑁

𝛿
)𝜎2

𝑇
.

We proceed to proving the theorem.

Proof of Theorem 1. To fix the discrepancy between 𝑇 and 𝑇 ′, we denote

𝜂′★ ≜ min


1
2𝛽★

,

√√
𝐹★ log+ (

𝜂max
𝜂min
) log+ ( 1

𝛿
)

𝛽★𝜎
2
★𝑇

 ≥ 𝜂★,
Note that

𝜂1 ≤ 𝜂★ ≤ 𝜂′★ ≤ 𝜂★
√︃

log+ (
𝜂max
𝜂min
) log+ ( 1

𝛿
) ≤ 𝜂max

√︃
log+ (

𝜂max
𝜂min
) log+ ( 1

𝛿
) = 2𝜂𝐾 .

Let 𝜏 = max{𝑘 ∈ [𝐾] : 𝜂𝑘 ≤ 𝜂′★}. 𝜏 is well-defined as 𝜂1 ≤ 𝜂′★. Hence, since 2𝜂𝐾 ≥ 𝜂′★, 𝜂𝜏 ∈ (𝜂′★/2, 𝜂′★]. Thus, by
Lemma 4, with probability at least 1 − 𝛿,

1
𝑇 ′

𝑇 ′∑︁
𝑡=1
∥∇ 𝑓 (𝑤 (𝜏 )𝑡 )∥2 ≤

(
4𝐹★
𝜂𝜏
+ 12𝜎2

★ log 1
𝛿

)
1
𝑇 ′
+ 4𝛽★𝜎2

★𝜂𝜏

≤
(

8𝐹★
𝜂′★
+ 12𝜎2

★ log 1
𝛿

)
1
𝑇 ′
+ 4𝛽★𝜎2

★𝜂
′
★

≤
𝐾 (1 + 𝑁) (16𝛽★𝐹★ + 12𝜎2

★ log 1
𝛿
)

𝑇
+ 12𝐾 (1 + 𝑁)𝜎★

√
𝛽★𝐹★√︃

𝑇 log+ (
𝜂max
𝜂min
) log+ ( 1

𝛿
)
.

By Markov’s inequality, with probability at least 1
2 , a uniformly at random index 𝑘 ∈ [𝑇 ′] satisfy

∥∇ 𝑓 (𝑤 (𝜏 )
𝑘
)∥2 ≤ 2𝔼𝑘 [∥∇ 𝑓 (𝑤 (𝜏 )𝑘 )∥

2] = 2
𝑇 ′

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤 (𝜏 )𝑡 )∥2,

and as we sample log 1
𝛿

random indices, with probability at least 1 − 𝛿 we add at least one point with the above guarantee to
𝑆. Hence, by a union bound with the convergence guarantee, with probability at least 1 − 2𝛿 we add to 𝑆 some 𝑤 (𝜏 )

𝑘
with

∥∇ 𝑓 (𝑤 (𝜏 )
𝑘
)∥2 ≤

𝐾 (1 + 𝑁) (32𝛽★𝐹★ + 24𝜎2
★ log 1

𝛿
)

𝑇
+ 24𝐾 (1 + 𝑁)𝜎★

√
𝛽★𝐹★√︃

𝑇 log+ (
𝜂max
𝜂min
) log+ ( 1

𝛿
)
.

The last step of the algorithm is an application of Lemma 5 (the bounded noise assumption satisfy the sub-Gaussian
requirement of Lemma 5) with the set of 𝐾𝑁 candidates, and we conclude with a union bound that with probability at least
1 − 3𝛿, 𝑤, the output of Algorithm 2 satisfy

∥∇ 𝑓 (𝑤)∥2 ≤
𝐾 (1 + 𝑁) (128𝛽★𝐹★ + 192𝜎2

★ log 𝐾𝑁
𝛿
)

𝑇
+ 96𝐾 (1 + 𝑁)𝜎★

√
𝛽★𝐹★√︃

𝑇 log+ (
𝜂max
𝜂min
) log+ ( 1

𝛿
)

= 𝑂
©«

log+ (
𝜂max
𝜂min
) log+ ( 1

𝛿
) (𝛽★𝐹★ + 𝜎2

★ log 1
𝛿
)

𝑇
+
𝜎★

√︃
𝛽★𝐹★ log+ (

𝜂max
𝜂min
) log+ ( 1

𝛿
)

√
𝑇

ª®®¬.
For each 𝑘 ∈ [𝐾] we perform a single 𝑇 ′-steps SGD execution and 𝑇 ′𝑁 gradient queries to approximate the norm of the
randomly selected points, to a total of 𝑇 = 𝑇 ′𝐾 (1 + 𝑁) queries. We translate the probability of 1 − 3𝛿 to 1 − 𝛿 for the 𝑂
notation, limiting 𝛿 ∈ (0, 1

3 ). □
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A.1. Proof of Lemma 4

In order to prove the lemma we use the following martingale concentration inequality due to Li & Orabona (2020).
Lemma 6 (Lemma 1 of Li & Orabona (2020)). Assume that 𝑍1, 𝑍2, ..., 𝑍𝑇 is a martingale difference sequence with respect
to 𝜉1, 𝜉2, ..., 𝜉𝑇 and 𝔼𝑡

[
exp(𝑍2

𝑡 /𝜎2
𝑡 )

]
≤ exp(1) for all 𝑡, where 𝜎1, . . . , 𝜎𝑇 is a sequence of random variables such that 𝜎𝑡

is measurable with respect to 𝜉1, 𝜉2, . . . , 𝜉𝑡−1. Then, for any fixed 𝜆 > 0 and 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿, it
holds that

𝑇∑︁
𝑡=1

𝑍𝑡 ≤
3
4
𝜆

𝑇∑︁
𝑡=1

𝜎2
𝑡 +

1
𝜆

log
1
𝛿
.

Proof of Lemma 4. From smoothness,

𝑓 (𝑤𝑡+1) ≤ 𝑓 (𝑤𝑡 ) − 𝜂∇ 𝑓 (𝑤𝑡 ) · 𝑔𝑡 +
𝛽★𝜂

2

2
∥𝑔𝑡 ∥2.

Summing for 𝑡 = 1, . . . , 𝑇 and rearranging,

𝑇∑︁
𝑡=1
∇ 𝑓 (𝑤𝑡 ) · 𝑔𝑡 ≤

𝑓 (𝑤1) − 𝑓 (𝑤𝑇+1)
𝜂

+ 𝛽★𝜂
2

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2.

By Lemma 6 with 𝑍𝑡 = ∇ 𝑓 (𝑤𝑡 ) · (∇ 𝑓 (𝑤𝑡 ) − 𝑔𝑡 ), where |𝑍𝑡 | ≤ 𝜎★∥∇ 𝑓 (𝑤𝑡 )∥, and 𝜆 = 1
3𝜎2

★

, with probability at least 1 − 𝛿,

𝑇∑︁
𝑡=1
∇ 𝑓 (𝑤𝑡 ) · (∇ 𝑓 (𝑤𝑡 ) − 𝑔𝑡 ) ≤

1
4

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 + 3𝜎2

★ log 1
𝛿
.

Summing both inequalities and rearranging,

3
4

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 ≤

𝑓 (𝑤1) − 𝑓 (𝑤𝑇+1)
𝜂

+ 𝛽★𝜂
2

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 + 3𝜎2

★ log 1
𝛿
.

Since ∥𝑔𝑡 ∥2 ≤ 2∥∇ 𝑓 (𝑤𝑡 )∥2 + 2𝜎2
★,

3
4

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 ≤

𝑓 (𝑤1) − 𝑓 (𝑤𝑇+1)
𝜂

+ 𝛽★𝜂
𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 + 𝛽★𝜎2

★𝑇𝜂 + 3𝜎2
★ log 1

𝛿
.

As 𝜂 ≤ 1
2𝛽★ , substituting and rearranging,

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 ≤

4( 𝑓 (𝑤1) − 𝑓 (𝑤𝑇+1))
𝜂

+ 4𝛽★𝜎2
★𝑇𝜂 + 12𝜎2

★ log 1
𝛿
.

Dividing by 1
𝑇

and replacing 𝑓 (𝑤𝑇+1) ≥ 𝑓★ we conclude the proof. □

A.2. Proof of Lemma 5

In order to prove Lemma 5 we use the following martingale lemma.
Lemma 7 (Lemma 2.3 of Ghadimi & Lan (2013)). Let 𝑍1, . . . , 𝑍𝑛 ∈ ℝ𝑑 be a martingale difference sequence with respect
to 𝜉1, . . . , 𝜉𝑛. Assuming 𝔼[exp(∥𝑍𝑖 ∥2/𝜎2) | 𝜉1, . . . , 𝜉𝑖−1] ≤ exp(1), for any 𝜆 > 0,

Pr

( 𝑛∑︁
𝑖=1

𝑍𝑖

 ≥ √2(1 + 𝜆)𝜎
√
𝑛

)
≤ exp(−𝜆2/3).

Proof of Lemma 5. Denote �̄�(𝑤) ≜ 1
𝑇

∑𝑇
𝑡=1 �̃�𝑡 (𝑤). Let 𝑘 = arg min𝑛∈[𝑁 ] ∥∇ 𝑓 (𝑤𝑛)∥. Using ∥𝑎 + 𝑏∥2 ≤ 2∥𝑎∥2 + 2∥𝑏∥2 and

the minimality of 𝑤,

∥∇ 𝑓 (𝑤)∥2 ≤ 2∥�̄�(𝑤)∥2 + 2∥𝑔(𝑤) − ∇ 𝑓 (𝑤)∥2 ≤ 2∥�̄�(𝑤𝑘)∥2 + 2∥�̄�(𝑤) − ∇ 𝑓 (𝑤)∥2

≤ 4∥∇ 𝑓 (𝑤𝑘)∥2 + 4∥�̄�(𝑤𝑘) − ∇ 𝑓 (𝑤𝑘)∥2 + 2∥�̄�(𝑤) − ∇ 𝑓 (𝑤)∥2.

14



How Free is Parameter-Free Stochastic Optimization?

Algorithm 3: Convex SGD tuning

Input: 𝑤1, 𝑇 , 𝛿, 𝜂min, 𝜂max (see Eq. treating 0
0 ≜ 0 for replacing 𝜂min, 𝜂max with parameter ranges)

𝑆 ← {}
𝐾 ← log 𝜂max

𝜂min

𝑁 ← log 1
𝛿

𝑇 ′ ← 𝑇
2𝐾𝑁

for 𝑘 ← 1, 2, . . . , 𝐾 do
𝜂𝑘 ← 2𝑘−1𝜂min

√
2𝐾𝑁 ⊲ The

√
2𝐾𝑁 factor fix discrepancy between 𝑇 and 𝑇 ′

for 𝑛← 1, 2, . . . , 𝑁 do
𝑤
(𝑛)
𝑘
← SGD(𝑤1, 𝜂𝑘 , 𝑇

′) ⊲ 𝑤
(𝑛)
𝑘

is the average of the iterates of SGD
𝑆 ← 𝑆 ∪ {𝑤 (𝑛)

𝑘
}

end
end
return arg min𝑤∈𝑆

∑𝑇 ′

𝑡=1 �̃�𝑡 (𝑤) ⊲ �̃�𝑡 (𝑤) is an independent evaluation of �̃� (𝑤)

Let 𝑛 ∈ [𝑁]. By Lemma 7 (note that the bounded noise assumption satisfy the sub-Gaussian condition), for any 𝜆 > 0,

Pr
(
∥�̄�(𝑤𝑛) − ∇ 𝑓 (𝑤𝑛)∥2 ≥

2(1 + 𝜆)2𝜎2

𝑇

)
= Pr

(
∥
𝑇∑︁
𝑡=1
(�̃�𝑡 (𝑤𝑛) − ∇ 𝑓 (𝑤𝑛))∥ ≥

√
2(1 + 𝜆)𝜎

√
𝑇

)
≤ 𝑒−𝜆2/3.

Thus, under a union bound,

Pr
(
∃𝑛 ∈ [𝑁], ∥�̄�(𝑤𝑛) − ∇ 𝑓 (𝑤𝑛)∥2 ≥

2(1 + 𝜆)2𝜎2

𝑇

)
≤ 𝑆 exp(−𝜆2/3).

Setting 𝜆 =

√︃
3 log 𝑁

𝛿
, with probability at least 1 − 𝛿, for all 𝑛 ∈ [𝑁],

∥�̄�(𝑤𝑛) − ∇ 𝑓 (𝑤𝑛)∥2 ≤
4(1 + 𝜆2)𝜎2

𝑇
≤

4(1 + 3 log 𝑁
𝛿
)𝜎2

𝑇
.

Thus, with probability at least 1 − 𝛿.

∥∇ 𝑓 (𝑤)∥2 ≤ 4∥∇ 𝑓 (𝑤𝑘)∥2 + 4∥�̄�(𝑤𝑘) − ∇ 𝑓 (𝑤𝑘)∥2 + 2∥�̄�(𝑤) − ∇ 𝑓 (𝑤)∥2

≤ 4∥∇ 𝑓 (𝑤𝑘)∥2 +
24(1 + 3 log 𝑁

𝛿
)𝜎2

𝑇
. □

B. Additional Details for Section 4.1
In this section we provide the algorithmic statement, additional details and proofs related to Theorem 2. For completeness
we re-state the theorem.

Theorem 2. Let 𝑓 : ℝ𝑑 → ℝ be a differentiable, 𝐺★-Lipschitz and convex function, admitting a minimizer 𝑤★ ∈
arg min𝑤∈ℝ𝑑 𝑓 (𝑤). Let �̃� be a 𝜎0-bounded unbiased zero-oracle of 𝑓 and �̃� be a 𝜎★-bounded unbiased gradient oracle of

𝑓 . Let 𝜂min, 𝜂max > 0 such that 𝜂min ≤ ∥𝑤1 − 𝑤★∥/
√︃
(𝐺2

★ + 𝜎2
★)𝑇 ≤ 𝜂max for some 𝑤1 ∈ ℝ𝑑 . Then Algorithm 3 performs 𝑇

queries and produce 𝑤 such that with probability at least 1 − 2𝛿,

𝑓 (𝑤) − 𝑓 (𝑤★) = 𝑂
(
𝜎0 log( 1

𝛿
)
√︃

log( 𝜂max
𝜂min
)

√
𝑇

+
∥𝑤1 − 𝑤★∥

√︃
(𝐺2

★ + 𝜎2
★) log( 𝜂max

𝜂min
) log( 1

𝛿
)

√
𝑇

)
.
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Similarly to Algorithm 2, the inputs 𝜂min, 𝜂max may be replaced by problem parameters ranges by setting

𝜂min =
𝐷min√︁

(𝐺2
max + 𝜎2

max)𝑇
and 𝜂max =

𝐷max√︃
(𝐺2

min + 𝜎
2
min)𝑇

.

Before proving Theorem 2, we need the following standard lemmas , their proofs follow. First is an in-expectation
convergence of SGD.
Lemma 8. Let 𝑓 : ℝ𝑑 → ℝ be a differentiable, 𝐺★-Lipschitz and convex function, admitting a minimizer 𝑤★ ∈
arg min𝑤∈ℝ𝑑 𝑓 (𝑤) and let �̃� : ℝ𝑑 → ℝ𝑑 be a 𝜎★-bounded unbiased gradient oracle of 𝑓 . Given some 𝑤1 ∈ ℝ𝑑 ,
the iterates of 𝑇-steps SGD with stepsize 𝜂 > 0 satisfy

𝔼

[
𝑓

(
1
𝑇

𝑇∑︁
𝑡=1

𝑤𝑡

)
− 𝑓 (𝑤★)

]
≤ ∥𝑤1 − 𝑤★∥2

2𝜂𝑇
+
𝜂(𝐺2

★ + 𝜎2
★)

2
.

The second is a candidate selection lemma based on stochastic function value access.
Lemma 9. Let 𝑓 : ℝ𝑑 → ℝ and �̃� a zero-order oracle of 𝑓 such that

∀ 𝑤 ∈ ℝ𝑑 : 𝔼[ �̃� (𝑤)] = 𝑓 (𝑤) and Pr( | �̃� (𝑤) − 𝑓 (𝑤) | ≤ 𝜎0) = 1

for some 𝜎0 > 0. Given candidates 𝑤1, . . . , 𝑤𝑁 , let

𝑤 = arg min
𝑛∈[𝑁 ]

1
𝑇

𝑇∑︁
𝑡=1

�̃�𝑡 (𝑤𝑛),

where �̃�𝑡 (𝑤𝑛) for 𝑡 ∈ [𝑇] are independent function evaluations at 𝑤𝑛. Then for any 𝛿 ∈ (0, 1), with probability at least
1 − 𝛿,

𝑓 (𝑤) ≤ min
𝑛∈[𝑁 ]

𝑓 (𝑤𝑠) +

√︄
8𝜎2

0 log 2𝑁
𝛿

𝑇
.

We proceed to prove the convergence result.

Proof of Theorem 2. For each pair (𝑘, 𝑛), 𝑇 ′ gradient queries are made for the SGD and additional 𝑇 ′ function queries for
the selection step. Hence, 𝑇 = 2𝐾𝑁𝑇 ′ queries are performed. By the condition of 𝜂min and 𝜂max, there is some 𝜏 ∈ [𝐾]
such that

𝜂𝜏 ∈
(
∥𝑤1 − 𝑤★∥

2
√︃
(𝐺2

★ + 𝜎2
★)𝑇 ′

,
∥𝑤1 − 𝑤★∥√︃
(𝐺2

★ + 𝜎2
★)𝑇 ′

]
.

Applying Markov’s inequality to Lemma 8 with 𝜂𝜏 , for all 𝑛 ∈ [𝑁], with probability at least 1
2 ,

𝑓

(
𝑤
(𝑛)
𝜏

)
− 𝑓 (𝑤★) ≤ ∥𝑤1 − 𝑤★∥2

𝜂𝜏𝑇
′ + 𝜂𝜏 (𝐺2

★ + 𝜎2
★) ≤

3∥𝑤1 − 𝑤★∥
√︃
𝐺2
★ + 𝜎2

★
√
𝑇 ′

.

Hence, by a union bound, with probability at least 1 − 𝛿, 𝑆 contains some 𝑤 (𝑛)𝜏 with the above guarantee. We conclude by a
union bound of the above with Lemma 9 and substituting 𝑇 ′ = 𝑇

2 log(𝐷max/𝐷min ) log(1/𝛿 ) , such that with probability at least
1 − 2𝛿,

𝑓 (𝑤) − 𝑓 (𝑤★) ≤
3∥𝑤1 − 𝑤★∥

√︃
(𝐺2

★ + 𝜎2
★) log( 𝜂max

𝜂min
) log( 1

𝛿
)

√
𝑇

+
𝜎0

√︃
8 log( 2𝐾𝑁

𝛿
) log( 1

𝛿
) log( 𝜂max

𝜂min
)

√
𝑇

= 𝑂
©«
∥𝑤1 − 𝑤★∥

√︃
(𝐺2

★ + 𝜎2
★) log( 𝜂max

𝜂min
) log( 1

𝛿
) + 𝜎0 log( 1

𝛿
)
√︃

log( 𝜂max
𝜂min
)

√
𝑇

ª®®¬. □
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B.1. Proof of Lemma 8

By the update step of SGD,

∥𝑤𝑡+1 − 𝑤★∥2 = ∥𝑤𝑡 − 𝑤★∥2 − 2𝜂𝑔𝑡 · (𝑤𝑡 − 𝑤★) + 𝜂2∥𝑔𝑡 ∥2.

Summing for 𝑡 = 1, . . . , 𝑇 and rearranging,

𝑇∑︁
𝑡=1

𝑔𝑡 · (𝑤𝑡 − 𝑤★) =
∥𝑤1 − 𝑤★∥2 − ∥𝑤𝑇+1 − 𝑤★∥2

2𝜂
+ 𝜂

2

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2.

Note that by the Lipschitz and noise assumptions, 𝔼[∥𝑔𝑡 ∥2] = 𝔼[∥𝑔𝑡 − ∇ 𝑓 (𝑤𝑡 )∥2−2∇ 𝑓 (𝑤𝑡 ) · (∇ 𝑓 (𝑤𝑡 )−𝑔𝑡 )+∥∇ 𝑓 (𝑤𝑡 )∥2] ≤
𝐺2
★ + 𝜎2

★. Taking expectation,

𝔼

[
𝑇∑︁
𝑡=1
∇ 𝑓 (𝑤𝑡 ) · (𝑤𝑡 − 𝑤★)

]
≤ ∥𝑤1 − 𝑤★∥2

2𝜂
+ 𝜂(𝐺

2 + 𝜎2)𝑇
2

.

We conclude by an application of convexity and Jensen’s inequality. □

B.2. Proof of Lemma 9

Let 𝑘 = arg min𝑛∈[𝑁 ] 𝑓 (𝑤𝑛). By the minimality of 𝑤,

𝑓 (𝑤) = 1
𝑇

𝑇∑︁
𝑡=1

�̃�𝑡 (𝑤) +
(
𝑓 (𝑤) − 1

𝑇

𝑇∑︁
𝑡=1

�̃�𝑡 (𝑤)
)
≤ 1
𝑇

𝑇∑︁
𝑡=1

�̃�𝑡 (𝑤𝑘) +
(
𝑓 (𝑤) − 1

𝑇

𝑇∑︁
𝑡=1

�̃�𝑡 (𝑤)
)

= 𝑓 (𝑤𝑘) +
(

1
𝑇

𝑇∑︁
𝑡=1

�̃�𝑡 (𝑤𝑘) − 𝑓 (𝑤𝑘)
)
+

(
𝑓 (𝑤) − 1

𝑇

𝑇∑︁
𝑡=1

�̃�𝑡 (𝑤)
)
.

Let 𝑛 ∈ [𝑁]. By Hoeffding’s inequality, for any 𝜖 > 0,

Pr

(����� 𝑓 (𝑤𝑛) − 1
𝑇

𝑇∑︁
𝑡=1

�̃�𝑡 (𝑤𝑛)
����� ≥ 𝜖

)
≤ 2 exp

(
− 𝜖

2𝑇

2𝜎2
0

)
.

Thus, under a union bound,

Pr

(
∃𝑛 ∈ [𝑁] :

����� 𝑓 (𝑤𝑛) − 1
𝑇

𝑇∑︁
𝑡=1

�̃�𝑡 (𝑤𝑛)
����� ≥ 𝜖

)
≤ 2𝑁 exp

(
− 𝜖

2𝑇

2𝜎2
0

)
.

Setting 𝜖 =
√︃

2𝜎2
0 log 2𝑁

𝛿
/𝑇 , with probability at least 1 − 𝛿, for all 𝑛 ∈ [𝑁],����� 𝑓 (𝑤𝑛) − 1

𝑇

𝑇∑︁
𝑡=1

�̃�𝑡 (𝑤𝑛)
����� ≤

√︄
2𝜎2

0 log 2𝑁
𝛿

𝑇
.

Thus, with probability at least 1 − 𝛿,

𝑓 (𝑤) ≤ 𝑓 (𝑤𝑘) +

√︄
8𝜎2

0 log 2𝑁
𝛿

𝑇
. □

C. Proofs of Section 4
C.1. Proof of Theorem 3

Using the identity ∥𝑢 + 𝑣∥2 ≤ 2∥𝑢∥2 + 2∥𝑣∥2 and the global bounds, for all 𝑤 ∈ ℝ𝑑 ,

∥�̃�(𝑤)∥ ≤ 2∥∇ 𝑓 (𝑤)∥2 + 2∥�̃�(𝑤) − ∇ 𝑓 (𝑤)∥2 ≤ 2𝐺2
★ + 2𝜎2

★.
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By the minimality of 𝐺8★ and 𝜎8★, 𝐺max ≥ 𝐺★ ≥ 𝐺8★ and 𝜎max ≥ 𝜎★ ≥ 𝜎8★, which means that Theorem 4 is applicable.
Combining Theorem 4 with the above inequality, Algorithm 1 produce 𝑤𝑘 such that with probability at least 1 − 𝛿 log 𝐷max

𝐷min
,

𝑓 (𝑤𝑘) − 𝑓★ = 𝑂

(
𝐶∥𝑤1 − 𝑤★∥

𝑇

(√︃
(𝐺2

★ + 𝜎2
★)𝑇 + 𝜎max

√︃
log 𝑇

𝛿

))
.

We conclude by moving from big-𝑂 notation to poly-log notation, replacing the term𝐶

√︃
log 𝑇

𝛿
with poly log(𝐺max

𝜎max
, 𝑇, 1

𝛿
). □

C.2. Proof of Lemma 1

In order to prove the lemma we use the following standard inequality.

Lemma 10. Let 𝑎1, . . . , 𝑎𝑛 ≥ 0. Then

𝑛∑︁
𝑖=1

𝑎𝑖√︃∑𝑖
𝑗=1 𝑎 𝑗

≤ 2

√︄
𝑛∑︁
𝑖=1

𝑎𝑖 . (treating 0
0 ≜ 0)

Proof. Using the identity 𝑎2 − 𝑏2 = (𝑎 − 𝑏) (𝑎 + 𝑏),

𝑛∑︁
𝑖=1

𝑎𝑖√︃∑𝑖
𝑗=1 𝑎 𝑗

=
𝑛∑︁
𝑖=1

(√︃∑𝑖
𝑗=1 𝑎 𝑗 −

√︃∑𝑖−1
𝑗=1 𝑎 𝑗

) (√︃∑𝑖
𝑗=1 𝑎 𝑗 +

√︃∑𝑖−1
𝑗=1 𝑎 𝑗

)
√︃∑𝑖

𝑗=1 𝑎 𝑗

≤ 2
𝑛∑︁
𝑖=1

©«
√√

𝑖∑︁
𝑗=1
𝑎 𝑗 −

√√
𝑖−1∑︁
𝑗=1
𝑎 𝑗

ª®¬ = 2

√︄
𝑛∑︁
𝑖=1

𝑎𝑖 . □

We proceed to prove the lemma.

Proof of Lemma 1. As 𝐸1 holds, max𝑡≤𝑇 ∥𝑤𝑡+1 − 𝑤1∥ < 𝐷 and 𝑤𝑡+1 = 𝑤𝑡 −𝜂𝑡𝑔𝑡 for all 𝑡 ∈ [𝑇] (if a projection is performed
the norm will equal 𝐷). Thus,

∥𝑤𝑡+1 − 𝑤★∥2 = ∥𝑤𝑡 − 𝑤★∥2 − 2𝜂𝑡𝑔𝑡 · (𝑤𝑡 − 𝑤★) + 𝜂2
𝑡 ∥𝑔𝑡 ∥2.

Rearranging and summing for 𝑡 = 1, . . . , 𝑇 ,

𝑇∑︁
𝑡=1

𝑔𝑡 · (𝑤𝑡 − 𝑤★) =
∥𝑤1 − 𝑤★∥2

2𝜂1
− ∥𝑤𝑇+1 − 𝑤

★∥2

2𝜂𝑇
+ 1

2

𝑇∑︁
𝑡=2

(
1
𝜂𝑡
− 1
𝜂𝑡−1

)
∥𝑤𝑡 − 𝑤★∥2 +

1
2

𝑇∑︁
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2.

Let 𝑡′ ∈ arg max𝑡≤𝑇+1∥𝑤𝑡 − 𝑤★∥. Hence,

𝑇∑︁
𝑡=1

𝑔𝑡 · (𝑤𝑡 − 𝑤★) ≤
∥𝑤1 − 𝑤★∥2

2𝜂1
− ∥𝑤𝑇+1 − 𝑤

★∥2

2𝜂𝑇
+ ∥𝑤𝑡

′ − 𝑤★∥2

2

𝑇∑︁
𝑡=2

(
1
𝜂𝑡
− 1
𝜂𝑡−1

)
+ 1

2

𝑇∑︁
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2

=
∥𝑤1 − 𝑤★∥2

2𝜂1
− ∥𝑤𝑇+1 − 𝑤

★∥2

2𝜂𝑇
+ ∥𝑤𝑡

′ − 𝑤★∥2

2

(
1
𝜂𝑇
− 1
𝜂1

)
+ 1

2

𝑇∑︁
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2

≤ ∥𝑤𝑡
′ − 𝑤★∥2 − ∥𝑤𝑇+1 − 𝑤★∥2

2𝜂𝑇
+ 1

2

𝑇∑︁
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2. (∥𝑤1 − 𝑤★∥ ≤ ∥𝑤𝑡 ′ − 𝑤★∥)

Note that by the triangle inequality,

∥𝑤𝑡 ′ − 𝑤★∥2 − ∥𝑤𝑇+1 − 𝑤★∥2 = (∥𝑤𝑡 ′ − 𝑤★∥ − ∥𝑤𝑇+1 − 𝑤★∥)(∥𝑤𝑡 ′ − 𝑤★∥ + ∥𝑤𝑇+1 − 𝑤★∥)
≤ 2∥𝑤𝑡 ′ − 𝑤𝑇+1∥∥𝑤𝑡 ′ − 𝑤★∥ (triangle inequality and def of 𝑡′)
≤ 2∥𝑤𝑡 ′ − 𝑤𝑇+1∥(𝐷 + ∥𝑤1 − 𝑤★∥) (∥𝑤𝑡 ′ − 𝑤★∥ ≤ ∥𝑤𝑡 ′ − 𝑤1∥ + ∥𝑤1 − 𝑤★∥)
≤ 4𝐷 (𝐷 + ∥𝑤1 − 𝑤★∥). (∥𝑤𝑡 ′ − 𝑤𝑇+1∥ ≤ ∥𝑤𝑡 ′ − 𝑤1∥ + ∥𝑤1 − 𝑤𝑇+1∥ ≤ 2𝐷)
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Plugging the above inequality,

𝑇∑︁
𝑡=1

𝑔𝑡 · (𝑤𝑡 − 𝑤★) ≤
2𝐷 (𝐷 + ∥𝑤1 − 𝑤★∥)

𝜂𝑇
+ 1

2

𝑇∑︁
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2.

By Lemma 10 with 𝑎𝑖 = ∥𝑔𝑖 ∥2,

𝑇∑︁
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2 ≤ 2𝛼𝐷

√︄
𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2.

Combining the two inequalities with the inequality of 𝐸2,

𝑇∑︁
𝑡=1
∇ 𝑓 (𝑤𝑡 ) · (𝑤𝑡 − 𝑤★) ≤

2𝐷 (𝐷 + ∥𝑤1 − 𝑤★∥)
𝜂𝑇

+ 𝛼𝐷

√︄
𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2

+ 4(𝐷 + ∥𝑤1 − 𝑤★∥)

√︄
𝜃𝑇, 𝛿

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 + 4𝜎2

8★𝜃
2
𝑡 , 𝛿

≤
(

2(𝐷 + ∥𝑤1 − 𝑤★∥)
𝛼

+ 𝛼𝐷 + 4(𝐷 + ∥𝑤1 − 𝑤★∥)
√︁
𝜃𝑇, 𝛿

)√︄
𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2

+ 2(𝐷 + ∥𝑤1 − 𝑤★∥)𝛾
𝛼

+ 8𝜃𝑇, 𝛿 (𝐷 + ∥𝑤1 − 𝑤★∥)𝜎8★ (
√
𝑎 + 𝑏 ≤

√
𝑎 +
√
𝑏)

=

(
(∥𝑤1 − 𝑤★∥ + 𝐷) ( 2

𝛼
+ 4

√︁
𝜃𝑇, 𝛿) + 𝛼𝐷

)√︄ 𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 +

(
2𝛾
𝛼
+ 8𝜃𝑇, 𝛿𝜎8★

)
(∥𝑤1 − 𝑤★∥ + 𝐷).

Dividing by 𝑇 , we conclude by applying ∇ 𝑓 (𝑤𝑡 ) · (𝑤𝑡 − 𝑤★) ≥ 𝑓 (𝑤𝑡 ) − 𝑓 (𝑤★) due to convexity. □

C.3. Proof of Lemma 2

In order to prove lemma Lemma 2 we use the following lemmas. Their proofs will be presented subsequently. The
first lemma bounds the errors that arise from potential correlation between 𝜂𝑡 and 𝑔𝑡 . To that end we use the following
“decorrelated” stepsize (Attia & Koren, 2023),

𝜂𝑡 ≜
𝛼𝐷√︃

𝛾2 + ∥∇ 𝑓 (𝑤𝑡 )∥2 +
∑𝑡−1
𝑠=1 ∥𝑔𝑠 ∥

2
.

In the noiseless case we could simply replace the lemma with ∇ 𝑓 (𝑤𝑠) · (𝑤𝑠 − 𝑤★𝐷) ≥ 0 due to convexity.

Lemma 11. With probability at least 1 − 𝛿, for any 𝑡 ∈ [𝑇],

−
𝑡∑︁
𝑠=1

𝜂𝑠𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷) ≤
1
𝛼

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 ∥2 +

1
𝛼

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥2

+ 8𝐷

√√
𝜃𝑡 , 𝛿

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥2 +

𝛼2𝐷2𝜎2
8★𝜃

2
𝑡 , 𝛿

𝛾2 ,

where 𝜃𝑡 , 𝛿 = log 60 log(6𝑡 )
𝛿

.

Following is a standard summation lemma of methods with AdaGrad-like stepsizes.

Lemma 12. For any 𝑡 ∈ [𝑇],

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 ∥2 ≤ 𝛼2𝐷2 log

(
1 +

2𝐺2
8★𝑇 + 2𝜎2

8★𝑇

𝛾2

)
.
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The next lemma is similar to Lemma 12, while using decorrelated stepsizes. Here, knowledge of the noise bound is required
to achieve a logarithmic summation.
Lemma 13. Assuming 𝛾2 ≥ 5𝜎2

8★ log 𝑇
𝛿

, with probability at least 1 − 𝛿, for any 𝑡 ∈ [𝑇],
𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥2 ≤ 𝛼2𝐷2 log(1 + 𝑇).

Proof of Lemma 2. As 𝑤𝑠+1 is the projection of 𝑤𝑠 − 𝜂𝑠𝑔𝑠 onto the convex set containing 𝑤★
𝐷

,

∥𝑤𝑠+1 − 𝑤★𝐷 ∥
2 ≤ ∥𝑤𝑠 − 𝑤★𝐷 ∥

2 − 2𝜂𝑠𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷) + 𝜂2
𝑠 ∥𝑔𝑠 ∥2.

Summing for 𝑠 = 1, . . . , 𝑡,

∥𝑤𝑡+1 − 𝑤★𝐷 ∥
2 ≤ ∥𝑤1 − 𝑤★𝐷 ∥

2 − 2
𝑡∑︁
𝑠=1

𝜂𝑠𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷) +
𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 ∥2.

Using lemma Lemma 11, with probability at least 1 − 𝛿, for any 𝑡 ∈ [𝑇],

∥𝑤𝑡+1 − 𝑤★𝐷 ∥
2 ≤ ∥𝑤1 − 𝑤★𝐷 ∥

2 + 16𝐷

√√
𝜃𝑡 , 𝛿

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥2 +

𝛼2𝐷2𝜎2
8★𝜃

2
𝑡 , 𝛿

𝛾2

+ 2
𝛼

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥2 +

(
1 + 2

𝛼

)
𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 ∥2.

Applying Lemmas 12 and 13 under a union bound, with probability at least 1 − 2𝛿, for any 𝑡 ∈ [𝑇],

∥𝑤𝑡+1 − 𝑤★𝐷 ∥
2 ≤ ∥𝑤1 − 𝑤★𝐷 ∥

2 + 16𝛼𝐷2

√︄
𝜃𝑡 , 𝛿 log(1 + 𝑇) +

𝜎2
8★𝜃

2
𝑡 , 𝛿

𝛾2

+ 2𝛼𝐷2 log(1 + 𝑇) + 𝛼(𝛼 + 2)𝐷2 log

(
1 +

2𝐺2
8★𝑇 + 2𝜎2

8★𝑇

𝛾2

)
≤ ∥𝑤1 − 𝑤★𝐷 ∥

2 + 𝐷
2

8
+ 𝐷

2

16
+ 𝐷

2

16
(Defs of 𝛼, 𝛾 at Algorithm 1 and 𝛼 ≤ 1)

= ∥𝑤1 − 𝑤★𝐷 ∥
2 + 1

4
𝐷2.

Thus, using the triangle inequality and the fact that ∥𝑤1 − 𝑤★∥ ≥ ∥𝑤1 − 𝑤★𝐷 ∥,

∥𝑤𝑡+1 − 𝑤1∥ ≤ ∥𝑤𝑡+1 − 𝑤★𝐷 ∥ + ∥𝑤★𝐷 − 𝑤1∥ ≤ 2∥𝑤1 − 𝑤★𝐷 ∥ +
1
2
𝐷 ≤ 2∥𝑤1 − 𝑤★∥ +

1
2
𝐷.

In addition,

∥𝑤𝑡+1 − 𝑤★∥ ≤ ∥𝑤𝑡+1 − 𝑤1∥ + ∥𝑤1 − 𝑤★∥ ≤ 3∥𝑤1 − 𝑤★∥ +
1
2
𝐷. □

C.4. Proof of Lemma 11

Using 𝜂𝑡 we can decompose the term −𝜂𝑠𝑔𝑡 · (𝑤𝑠 − 𝑤★𝐷),

−𝜂𝑠𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷) = −𝜂𝑠𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷) + (𝜂𝑠 − 𝜂𝑠)𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷)
= −𝜂𝑠∇ 𝑓 (𝑤𝑠) · (𝑤𝑠 − 𝑤★𝐷) + 𝜂𝑠 (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★𝐷) + (𝜂𝑠 − 𝜂𝑠)𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷)
≤ 𝜂𝑠 (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★𝐷) + (𝜂𝑠 − 𝜂𝑠)𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷),

where the last inequality follows from convexity. Thus,

−
𝑡∑︁
𝑠=1

𝜂𝑠𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷) ≤
𝑡∑︁
𝑠=1

𝜂𝑠 (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★𝐷) +
𝑡∑︁
𝑠=1
(𝜂𝑠 − 𝜂𝑠)𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷). (3)

The next two lemmas bounds the two sums and concludes the proof of Lemma 11. Their proofs follows.
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Lemma 14. With probability at least 1 − 𝛿, for any 𝑡 ∈ [𝑇],

𝑡∑︁
𝑠=1

𝜂𝑠 (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★𝐷) ≤ 8𝐷

√√
𝜃𝑡 , 𝛿

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥2 +

𝛼2𝐷2𝜎2
8★𝜃

2
𝑡 , 𝛿

𝛾2 .

Lemma 15. For any 𝑡 ∈ [𝑇],
𝑡∑︁
𝑠=1
(𝜂𝑠 − 𝜂𝑠)𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷) ≤

1
𝛼

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 ∥2 +

1
𝛼

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥2.

Combining both into Equation (3) yields the desired inequality. □

C.5. Proof of Lemma 14

While ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥ ≤ 𝜎8★, this bound is too crude for the required martingale analysis. To this end we use the following
empirical Bernstein inequality due to Howard et al. (2021) in order to exploit the relationship between 𝜂𝑡 and ∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 .
Lemma 16 (Corollary 2 of Ivgi et al. (2023)). Let 𝑐 > 0 and 𝑋𝑡 be a martingale difference sequence adapted to F𝑡 such
that |𝑋𝑡 | ≤ 𝑐 with probability 1 for all 𝑡. Then, for all 𝛿 ∈ (0, 1), and �̂�𝑡 ∈ F𝑡−1 such that | �̂�𝑡 | ≤ 𝑐 with probability 1,

Pr

(
∃𝑡 ∈ [𝑇] :

����� 𝑡∑︁
𝑠=1

𝑋𝑠

����� ≥ 4

√︄
𝜃𝑡 , 𝛿

𝑡∑︁
𝑠=1

(
𝑋𝑠 − �̂�𝑠

)2 + 𝑐2𝜃2
𝑡 , 𝛿

)
≤ 𝛿,

where 𝜃𝑡 , 𝛿 = log 60 log(6𝑡 )
𝛿

.

Invoking Lemma 16 with

𝑋𝑠 = 𝜂𝑠 (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★𝐷), �̂�𝑠 = 0 and 𝑐 =
2𝛼𝐷2𝜎8★

𝛾
,

(note the use of 𝐷 ≤ 8∥𝑤1 − 𝑤★∥ to bound ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥ ≤ 𝜎8★) with probability at least 1 − 𝛿, for any 𝑡 ∈ [𝑇],����� 𝑡∑︁
𝑠=1

𝜂𝑠 (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★𝐷)
����� ≤ 4

√√
𝜃𝑡 , 𝛿

𝑡∑︁
𝑠=1

(
𝜂𝑠 (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★𝐷)

)2 +
4𝛼2𝐷4𝜎2

8★𝜃
2
𝑡 , 𝛿

𝛾2 .

By Cauchy-Schwarz inequality and the triangle inequality (∥𝑤𝑠 − 𝑤★𝐷 ∥ ≤ ∥𝑤𝑠 − 𝑤1∥ + ∥𝑤1 − 𝑤★𝐷 ∥ ≤ 2𝐷),(
𝜂𝑠 (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★𝐷)

)2 ≤ 𝜂2
𝑠 ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥2∥𝑤𝑠 − 𝑤★𝐷 ∥

2 ≤ 4𝜂2
𝑠 ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥2𝐷2.

Hence, with probability at least 1 − 𝛿, for any 𝑡 ∈ [𝑇],����� 𝑡∑︁
𝑠=1

𝜂𝑠 (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★𝐷)
����� ≤ 8𝐷

√√
𝜃𝑡 , 𝛿

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥2 +

𝛼2𝐷2𝜎2
8★𝜃

2
𝑡 , 𝛿

𝛾2 . □

C.6. Proof of Lemma 15

Let 𝐺𝑡 =
√︃∑𝑡

𝑠=1∥𝑔𝑠 ∥
2. Thus,

|𝜂𝑠 − 𝜂𝑠 | =
𝛼𝐷 |∥𝑔𝑠 ∥2 − ∥∇ 𝑓 (𝑤𝑠)∥2 |√︃

𝜎2
8★ + 𝐺

2
𝑠

√︃
𝜎2

8★ + ∥∇ 𝑓 (𝑤𝑠)∥
2 + 𝐺2

𝑠−1 (
√︃
𝜎2

8★ + 𝐺
2
𝑠 +

√︃
𝜎2

8★ + ∥∇ 𝑓 (𝑤𝑠)∥
2 + 𝐺2

𝑠−1)
.

By the triangle inequality,

|∥𝑔𝑠 ∥2 − ∥∇ 𝑓 (𝑤𝑠)∥2 |√︃
𝜎2

8★ + 𝐺
2
𝑠 +

√︃
𝜎2

8★ + ∥∇ 𝑓 (𝑤𝑠)∥
2 + 𝐺2

𝑠−1

≤ ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥(∥𝑔𝑠 ∥ + ∥∇ 𝑓 (𝑤𝑠)∥)√︃
𝜎2

8★ + 𝐺
2
𝑠 +

√︃
𝜎2

8★ + ∥∇ 𝑓 (𝑤𝑠)∥
2 + 𝐺2

𝑠−1

≤ ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥.
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Hence, by Cauchy-Schwarz inequality,

𝑡∑︁
𝑠=1
(𝜂𝑠 − 𝜂𝑠)𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷) ≤ 𝛼𝐷

𝑡∑︁
𝑠=1

∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥∥𝑔𝑠 ∥∥𝑤𝑠 − 𝑤★𝐷 ∥√︃
𝜎2

8★ + 𝐺
2
𝑠

√︃
𝜎2

8★ + ∥∇ 𝑓 (𝑤𝑠)∥
2 + 𝐺2

𝑠−1

≤ 2𝛼𝐷2
𝑡∑︁
𝑠=1

∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥∥𝑔𝑠 ∥√︃
𝜎2

8★ + 𝐺
2
𝑠

√︃
𝜎2

8★ + ∥∇ 𝑓 (𝑤𝑠)∥
2 + 𝐺2

𝑠−1

=
2
𝛼

𝑡∑︁
𝑠=1

𝜂𝑠𝜂𝑠 ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥∥𝑔𝑠 ∥,

where the second inequality follows by ∥𝑤𝑠 − 𝑤★𝐷 ∥ ≤ 2𝐷. Using the identity 2𝑎𝑏 ≤ 𝑎2 + 𝑏2,

𝑡∑︁
𝑠=1
(𝜂𝑠 − 𝜂𝑠)𝑔𝑠 · (𝑤𝑠 − 𝑤★𝐷) ≤

1
𝛼

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 ∥2 +

1
𝛼

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥2. □

C.7. Proof of Lemmas 12 and 13

In order to prove the lemmas we need the following standard lemma used in the analysis of AdaGrad-like methods.

Lemma 17. Let 𝑎0 > 0 and 𝑎1, 𝑎2, . . . , 𝑎𝑛 ≥ 0. Then
𝑛∑︁
𝑖=1

𝑎𝑖∑𝑖
𝑗=0 𝑎 𝑗

≤ ln
∑𝑛
𝑖=0 𝑎𝑖

𝑎0
≤ log

∑𝑛
𝑖=0 𝑎𝑖

𝑎0
.

Proof. Using the inequality 1 − 𝑥 ≤ ln(1/𝑥) for 𝑥 > 0,

𝑛∑︁
𝑖=1

𝑎𝑖∑𝑖
𝑗=0 𝑎 𝑗

=
𝑛∑︁
𝑖=1

(
1 −

∑𝑖−1
𝑗=0 𝑎 𝑗∑𝑖
𝑗=0 𝑎 𝑗

)
≤

𝑛∑︁
𝑖=1

ln

(∑𝑖
𝑗=0 𝑎 𝑗∑𝑖−1
𝑗=0 𝑎 𝑗

)
= ln

(∑𝑛
𝑗=0 𝑎 𝑗

𝑎0

)
≤ log

(∑𝑛
𝑗=0 𝑎 𝑗

𝑎0

)
,

where the last inequality holds since ln(∑𝑛
𝑗=0 𝑎 𝑗/𝑎0) ≥ 0. □

Proof of Lemma 12. Using Lemma 17 with 𝑎0 = 𝛾2 and 𝑎𝑖 = ∥𝑔𝑖 ∥2,

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 ∥2 = 𝛼2𝐷2

𝑡∑︁
𝑠=1

∥𝑔𝑠 ∥2

𝛾2 +∑𝑠
𝑘=1∥𝑔𝑘 ∥

2 ≤ 𝛼
2𝐷2 log

(
1 +

∑𝑡
𝑠=1∥𝑔𝑠 ∥

2

𝛾2

)
.

By the inequality ∥𝑢 + 𝑣∥2 ≤ 2∥𝑢∥2 + ∥𝑣∥2, the Lipschitz assumption and the noise assumption, ∥𝑔𝑠 ∥2 ≤ 2𝐺2
8★ + 2𝜎2

8★.
Thus,

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 ∥2 ≤ 𝛼2𝐷2 log

(
1 +

2𝐺2
8★𝑇 + 2𝜎2

8★𝑇

𝛾2

)
. □

Proof of Lemma 13. Using lemma Lemma 6, with probability at least 1 − 𝛿
𝑇

, for 𝜆 = 2
3𝜎2

8★
,

𝑡−1∑︁
𝑠=1
∇ 𝑓 (𝑤𝑠) · (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) ≤

1
2

𝑡−1∑︁
𝑠=1
∥∇ 𝑓 (𝑤𝑠)∥2 +

3
2
𝜎2

8★ log 𝑇
𝛿
.

Thus, with probability at least 1 − 𝛿
𝑇

,

𝑡−1∑︁
𝑠=1
∥𝑔𝑠 ∥2 =

𝑡−1∑︁
𝑠=1
(∥∇ 𝑓 (𝑤𝑠)∥2 + ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥2 − 2∇ 𝑓 (𝑤𝑠) · (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠))

≥
𝑡−1∑︁
𝑠=1
∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥2 − 3𝜎2

8★ log 𝑇
𝛿
,
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and since 𝛾2 ≥ 5𝜎2
8★ log 𝑇

𝛿
and ∥𝑔𝑡 − ∇ 𝑓 (𝑤𝑡 )∥ ≤ 𝜎8★,

𝜂𝑠 ≤
𝛼𝐷√︃

5𝜎2
8★ log 𝑇

𝛿
+∑𝑡−1

𝑠=1 ∥𝑔𝑠 ∥
2
≤ 𝛼𝐷√︃

2𝜎2
8★ log 𝑇

𝛿
+∑𝑡−1

𝑠=1 ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥
2

≤ 𝛼𝐷√︃
𝜎2

8★ +
∑𝑡
𝑠=1∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥

2
.

Hence, under a union bound, with probability at least 1 − 𝛿, for any 𝑡 ∈ [𝑇],

𝜂𝑠 ≤
𝛼𝐷√︃

𝜎2
8★ +

∑𝑡
𝑠=1∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥

2

and using Lemma 17 with 𝑎0 = 𝜎2
8★ and 𝑎𝑖 = ∥𝑔𝑖 − ∇ 𝑓 (𝑤𝑖)∥2,

𝑡∑︁
𝑠=1

𝜂2
𝑠 ∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥2 ≤ 𝛼2𝐷2

𝑡∑︁
𝑠=1

∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥2

𝜎2
8★ +

∑𝑡
𝑠=1∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥

2

≤ 𝛼2𝐷2 log

(
𝜎2

8★ +
∑𝑡
𝑠=1∥𝑔𝑠 − ∇ 𝑓 (𝑤𝑠)∥

2

𝜎2
8★

)
≤ 𝛼2𝐷2 log(1 + 𝑇). □

C.8. Proof of Lemma 3

Let

𝑋𝑠 = (∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★), �̂�𝑠 = 0, and 𝑐 = 𝜎8★(𝐷 + ∥𝑤1 − 𝑤★∥).

Note that by Cauchy-Schwarz inequality and the triangle inequality,

(∇ 𝑓 (𝑤𝑠) − 𝑔𝑠) · (𝑤𝑠 − 𝑤★) ≤ ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥∥𝑤𝑠 − 𝑤★∥ ≤ ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥(∥𝑤𝑠 − 𝑤1∥ + ∥𝑤1 − 𝑤★∥)
≤ 𝜎8★(𝐷 + ∥𝑤1 − 𝑤★∥) = 𝑐,

where we used the assumption that 𝐷 ≤ 8∥𝑤1 − 𝑤★∥ to bound ∥∇ 𝑓 (𝑤𝑠) − 𝑔𝑠 ∥. Applying Lemma 16, with probability at
least 1 − 𝛿, ����� 𝑇∑︁

𝑡=1
(∇ 𝑓 (𝑤𝑡 ) − 𝑔𝑡 ) · (𝑤𝑠 − 𝑤★)

����� ≤ 4(𝐷 + ∥𝑤1 − 𝑤★∥)

√︄
𝜃𝑇, 𝛿

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 ) − 𝑔𝑡 ∥2 + 𝜎2

8★𝜃
2
𝑇, 𝛿
.

Applying Lemma 6 with 𝑍𝑡 = ∇ 𝑓 (𝑤𝑡 ) · (∇ 𝑓 (𝑤𝑡 ) − 𝑔𝑡 ) and 𝜆 = 2
3𝜎2

8★
, with probability at least 1 − 𝛿

𝑇∑︁
𝑡=1
∇ 𝑓 (𝑤𝑡 ) · (∇ 𝑓 (𝑤𝑡 ) − 𝑔𝑡 ) ≤

3𝜎2
8★

4
𝜆

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥ +

log 1
𝛿

𝜆
=

1
2

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥ +

3𝜎2
8★ log 1

𝛿

2
.

Hence,
𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 ) − 𝑔𝑡 ∥2 =

𝑇∑︁
𝑡=1

(
∥𝑔𝑡 ∥2 + 2∇ 𝑓 (𝑤𝑡 ) · (∇ 𝑓 (𝑤𝑡 ) − 𝑔𝑡 ) − ∥∇ 𝑓 (𝑤𝑡 )∥2

)
≤ 3𝜎2

8★ log 1
𝛿
+

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2.

Returning to the previous inequality, with probability at least 1 − 2𝛿 (union bound),����� 𝑇∑︁
𝑡=1
(∇ 𝑓 (𝑤𝑡 ) − 𝑔𝑡 ) · (𝑤𝑠 − 𝑤★)

����� ≤ 4(𝐷 + ∥𝑤1 − 𝑤★∥)

√︄
𝜃𝑇, 𝛿

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 + 𝜃𝑇, 𝛿

(
3 log 1

𝛿
+ 𝜃𝑇, 𝛿

)
𝜎2

8★

≤ 4(𝐷 + ∥𝑤1 − 𝑤★∥)

√︄
𝜃𝑇, 𝛿

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 + 4𝜃2

𝑇, 𝛿
𝜎2

8★

where the last inequality follows by 𝜃𝑇, 𝛿 ≥ log 1
𝛿

. Thus, Pr(𝐸2) ≥ 1 − 2𝛿. □

23



How Free is Parameter-Free Stochastic Optimization?

C.9. Proof of Theorem 5

In order to show that Theorem 4 is applicable we need to show that 𝐺max ≥ 𝐺8★. Let 𝑤 ∈ ℝ𝑑 such that ∥𝑤 − 𝑤1∥ ≤
8∥𝑤1 − 𝑤★∥. Thus, by the smoothness of 𝑓 and the triangle inequality,

∥∇ 𝑓 (𝑤)∥ ≤ 𝛽★∥𝑤 − 𝑤★∥ ≤ 𝛽★(∥𝑤 − 𝑤1∥ + ∥𝑤1 − 𝑤★∥) ≤ 9𝛽★∥𝑤1 − 𝑤★∥ ≤ 𝐺max.

Hence, by Equation (1), 𝐺max ≥ 𝐺8★. Using Theorem 4, with probability at least 1 − 𝛿 log 𝐷max
𝐷min

, we have a sequence
𝑤1, . . . , 𝑤𝑇 with

1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 ) − 𝑓★ ≤ 𝐶
©«

log( 𝑇
𝛿
+ 𝐺max
𝜎max
)∥𝑤1 − 𝑤★∥
𝑇

©«
√︄

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 + 𝜎max

√︃
log 𝑇

𝛿

ª®¬ª®¬ (4)

for some 𝐶 > 0, and for all 𝑡, ∥𝑤𝑡 − 𝑤1∥ ≤ 8∥𝑤1 − 𝑤★∥. By the identity ∥𝑎 + 𝑏∥2 ≤ 2∥𝑎∥2 + 2∥𝑏∥2 and Equation (1),

∥𝑔𝑡 ∥2 ≤ 2∥∇ 𝑓 (𝑤𝑡 )∥2 + 2∥𝑔𝑡 − ∇ 𝑓 (𝑤𝑡 )∥2 ≤ 2∥∇ 𝑓 (𝑤𝑡 )∥2 + 2𝜎2
8★ ≤ 4𝛽★( 𝑓 (𝑤𝑡 ) − 𝑓★) + 2𝜎2

8★.

where the last inequality is due to the following standard smoothness argument. For any 𝑤 ∈ ℝ𝑑 and 𝑤+ = 𝑤 − 1
𝛽★
∇ 𝑓 (𝑤),

by the smoothness of 𝑓 ,

2𝛽★( 𝑓 (𝑤) − 𝑓★) ≥ 2𝛽★( 𝑓 (𝑤) − 𝑓 (𝑤+)) ≥ 2𝛽★(−∇ 𝑓 (𝑤) · (𝑤+ − 𝑤) − 𝛽★
2 ∥𝑤

+ − 𝑤∥2) = ∥∇ 𝑓 (𝑤)∥2.

Hence, by the identities
√
𝑎 + 𝑏 ≤

√
𝑎 +
√
𝑏 and 𝑎𝑏 ≤ 1

2𝜆𝑎
2 + 𝜆2 𝑏

2 for 𝜆 > 0,√︄
𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 ≤

√︄
4𝛽★

𝑇∑︁
𝑡=1
( 𝑓 (𝑤𝑡 ) − 𝑓★) + 𝜎8★

√
2𝑇 ≤ 1

2𝜆

𝑇∑︁
𝑡=1
( 𝑓 (𝑤𝑡 ) − 𝑓★) + 2𝜆𝛽★ + 𝜎8★

√
2𝑇.

Setting 𝜆 = 𝐶∥𝑤1 − 𝑤★∥ log( 𝑇
𝛿
+ 𝐺max
𝜎max
), returning to Equation (4) and rearranging,

1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 ) − 𝑓★ ≤
4𝐶2𝛽★∥𝑤1 − 𝑤★∥2 log2 ( 𝑇

𝛿
+ 𝐺max
𝜎max
)

𝑇
+
√

8𝐶∥𝑤1 − 𝑤★∥𝜎8★ log( 𝑇
𝛿
+ 𝐺max
𝜎max
)

√
𝑇

+ 𝜎max
2𝐶∥𝑤1 − 𝑤★∥ log( 𝑇

𝛿
+ 𝐺max
𝜎max
)
√︃

log 𝑇
𝛿

𝑇
.

We conclude by a standard application of Jensen’s inequality. □

C.10. Proof of Theorem 6

We will define two problem instances ( 𝑓1, �̃�1, 𝐷1, 𝐺1), ( 𝑓2, �̃�2, 𝐷2, 𝐺2), which will be indistinguishable with constant
probability using only 𝑇 gradient queries, where no solution 𝑤 ∈ ℝ can satisfy the convergence bound for both. Let
𝜎1 =

𝜎max
𝛼
√
𝑇

, 𝐷1 = 𝐷max, 𝜎2 = 𝜎max, 𝐷2 =
𝐷max
𝛼
√
𝑇

. We define the two functions,

𝑓1 (𝑤) = 𝐺★ |𝑤 − 𝐷1 | and 𝑓2 (𝑤) = 𝐺★ |𝑤 + 𝐷2 |.

Note that both functions are 𝐺★-Lipschitz and their minimizers satisfy ∥arg min𝑤∈ℝ 𝑓𝑖 (𝑤)∥ ≤ 𝐷𝑖 for 𝑖 ∈ {1, 2}. In addition,
we define the following two first-order oracles,

�̃�1 (𝑤) =


−𝐺★ if 𝑤 ≤ −𝐷2;
𝐺★ if 𝑤 ≥ 𝐷1;
−𝜎1 + 𝐺★ if 𝑤 ∈ (−𝐷2, 𝐷1), w.p. 1

2 +
𝐺★

2(𝜎1−𝐺★) ;
𝜎1 − 𝐺★ if 𝑤 ∈ (−𝐷2, 𝐷1), w.p. 1

2 −
𝐺★

2(𝜎1−𝐺★)
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and

�̃�2 (𝑤) =



−𝐺★ if 𝑤 ≤ −𝐷2;
𝐺★ if 𝑤 ≥ 𝐷1;
𝜎2 + 𝐺★ if 𝑤 ∈ (−𝐷2, 𝐷1), w.p. 1

𝑇
;

−𝜎1 + 𝐺★ if 𝑤 ∈ (−𝐷2, 𝐷1), w.p. 1
2 +

𝐺★

2(𝜎1−𝐺★) −
1

2𝑇 ;
𝜎1 − 𝐺★ if 𝑤 ∈ (−𝐷2, 𝐷1), w.p. 1

2 −
𝐺★

2(𝜎1−𝐺★) −
1

2𝑇 .

Note that the probabilities are within [0, 1] (and sum to 1) since 1
2𝑇 ≤

1
8 as 𝑇 ≥ 4, and for 𝛼 ∈ [1, 3

4
√
𝑇],

𝐺★

2(𝜎1 − 𝐺★)
=

𝜎max/(2𝑇 − 1)
2(𝜎max/𝛼

√
𝑇 − 𝜎max/(2𝑇 − 1))

=
𝛼
√
𝑇

2(2𝑇 − 1 − 𝛼
√
𝑇)
≤ 3𝑇

10𝑇 − 8
≤ 3

8
.

Additionally, for 𝑤 ∈ (−𝐷2, 𝐷1),

𝔼[�̃�1 (𝑤)] = (𝜎1 − 𝐺★)
(

1
2
− 𝐺★

2(𝜎1 − 𝐺★)
− 1

2
− 𝐺★

2(𝜎1 − 𝐺★)

)
= −𝐺★(𝜎1 − 𝐺★)

𝜎1 − 𝐺★
= −𝐺★ = ∇ 𝑓1 (𝑤)

and similarly

𝔼[�̃�2 (𝑤)] =
𝜎2 + 𝐺★
𝑇

− 𝐺★ =
(2𝑇 − 1)𝐺★ + 𝐺★

𝑇
− 𝐺★ = 𝐺★ = ∇ 𝑓2 (𝑤).

Hence, for all 𝑤 ∈ ℝ, 𝔼[�̃�1 (𝑤)] = ∇ 𝑓1 (𝑤), 𝔼[�̃�2 (𝑤)] = ∇ 𝑓2 (𝑤), and with probability 1, as 𝐺★ < 𝜎1 < 𝜎2,

∥�̃�1 (𝑤) − ∇ 𝑓1 (𝑤)∥ ≤ 𝜎1 and ∥�̃�2 (𝑤) − ∇ 𝑓2 (𝑤)∥ ≤ 𝜎2.

We concluded the properties of 𝑓 and �̃� and we move to the lower bound. For 𝑛 ≥ 4,(
1 − 1

𝑛

)𝑛
=

( 𝑛

𝑛 − 1

)−𝑛
≥ 3

4

( 𝑛

𝑛 − 1

)−(𝑛−1)
=

3
4

1(
1 + 1

𝑛−1

)𝑛−1 ≥
1
4
,

where the last inequality follows by(
1 + 1

𝑛 − 1

)𝑛−1
= 2 +

𝑛−1∑︁
𝑘=2

(
𝑛 − 1
𝑘

)
(𝑛 − 1)−𝑘 ≤ 2 +

𝑛−1∑︁
𝑘=2

1
𝑘 (𝑘 − 1) = 2 +

𝑛−1∑︁
𝑘=2

(
1

𝑘 − 1
− 1
𝑘

)
≤ 3.

Hence, with probability at least 1
4 , the 1/𝑇 event of �̃�2 do not occur in any of the 𝑇 queries and the two gradient oracles will

be indistinguishable from each other. Let 𝑤 be the output ofA(𝑇) given that the two oracles return the exact same gradients.
We will assume by contradiction that 𝑤 satisfy a convergence rate better than 𝐷𝑖 (𝐺★ + 𝜎𝑖)𝛼/6

√
𝑇 for each 𝑓𝑖 (𝑖 ∈ {1, 2}

respectively). Thus, as 𝜎1 =
𝐺★ (2𝑇−1)
𝛼
√
𝑇

and 𝛼 <
√
𝑇 ,

𝑓1 (𝑤) − 𝑓1 (𝑤★) = 𝐺★ |𝑤 − 𝐷1 | =
𝐷1 (𝐺★ + 𝜎1)𝛼√

𝑇
· 𝐺★
√
𝑇 |𝑤 − 𝐷1 |

𝐷1 (𝐺★ + 𝜎1)𝛼

=
𝐷1 (𝐺★ + 𝜎1)𝛼√

𝑇
· 𝑇 |𝑤 − 𝐷1 |
𝐷1 (𝛼

√
𝑇 + 2𝑇 − 1)

≥ 𝐷1 (𝐺★ + 𝜎1)𝛼√
𝑇

· |𝑤 − 𝐷1 |
3𝐷1

which implies that 𝑤 > 𝐷1/2 by the convergence assumption. Similarly, as 𝜎2 = 𝐺★(2𝑇 − 1),

𝑓2 (𝑤) − 𝑓2 (𝑤★) = 𝐺★ |𝑤 + 𝐷2 | =
𝐷2 (𝐺★ + 𝜎2)𝛼√

𝑇
· 𝐺★
√
𝑇 |𝑤 + 𝐷2 |

𝐷2 (𝐺★ + 𝜎2)𝛼
=
𝐷2 (𝐺★ + 𝜎2)𝛼√

𝑇
· |𝑤 + 𝐷2 |

2𝐷2
√
𝑇𝛼

which implies that 𝑤 < (𝛼
√
𝑇/3 − 1)𝐷2 by the convergence assumption. But

𝑤 >
𝐷1
2

=
𝛼
√
𝑇𝐷2
2

> (𝛼
√
𝑇/3 − 1)𝐷2 > 𝑤

and we obtain a contradiction. The second inequality of the convergence lower bound follows by (𝐺★ +𝜎)𝛼 ≥ 𝜎max ( 𝛼
2𝑇−1 +

1√
𝑇
) ≥ 𝜎max√

𝑇
for 𝜎 ∈ {𝜎1, 𝜎2}. □
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D. Assumption for Noise Upper Bound
In the convex non-smooth setting, Theorem 6 implies that a stochastic convex optimization method cannot be parameter-free
with respect to all three parameters, diameter, Lipschitz bound and noise bound, while being competitive with tuned SGD.
Next, we observe that while such a term is unavoidable without further assumptions, if a success probability of 1 −𝑂 (𝛿) is
desired, the following reasonable assumption is sufficient.

Assumption: for some 𝛿 ∈ (0, 1) and 𝑐 = 4
√︃

1 + 3 log 1
𝛿

,

𝑓 (𝑤1) − 𝑓★ >
𝑐𝜎★∥𝑤1 − 𝑤★∥√

𝑇
.

In other words, 𝑤1 is a “bad enough” approximate minimizer.

Let us first explain why this is a reasonable assumption. Consider the convergence rate of tuned SGD, which ensures with
probability at least 1 − 𝛿 that

𝑓 (𝑤) − 𝑓★ ≤
𝐶∥𝑤1 − 𝑤★∥(𝐺★ + 𝜎★

√︃
log 1

𝛿
)

√
𝑇

for some constant 𝐶 > 0. In that case, the assumption is weaker then assuming that the above convergence bound is sufficient
to ensure that with probability at least 1 − 𝛿, SGD produce a solution better than 𝑤1 by some constant factor. If we aim to
compete with tuned SGD, it is reasonable to focus on the regime where SGD produce better solutions than the initialization.

We move to analyze what the assumption above yields. Using the assumption and the convexity of the objective,

𝑐𝜎★∥𝑤1 − 𝑤★∥√
𝑇

< 𝑓 (𝑤1) − 𝑓★ ≤ ∇ 𝑓 (𝑤1) · (𝑤1 − 𝑤★) ≤ ∥∇ 𝑓 (𝑤1)∥∥𝑤1 − 𝑤★∥.

Thus,

𝜎★ <
∥∇ 𝑓 (𝑤1)∥

√
𝑇

𝑐
.

So upper bounding ∥∇ 𝑓 (𝑤1)∥ produce an upper bound of 𝜎★. The simplest approach to estimate the gradient at 𝑤1 ∈ ℝ𝑑
is to average 𝑛 stochastic samples. Let 𝑍 = 1

𝑛

∑𝑛
𝑖=1 �̃�𝑖 (𝑤1) where �̃�𝑖 (𝑤1) for 𝑖 ∈ [𝑛] are independent stochastic gradients.

Thus, 𝔼[𝑍] = ∇ 𝑓 (𝑤1). By Lemma 7,

Pr
(
∥𝑍 − ∇ 𝑓 (𝑤1)∥ ≥

√
2(1 + 𝜆)𝜎/

√
𝑛

)
≤ exp(−𝜆2/3).

Let 𝜆 =

√︃
3 log 1

𝛿
. Hence, with probability at least 1 − 𝛿,

∥𝑍 − ∇ 𝑓 (𝑤1)∥ <
√

2(1 +
√︃

3 log 1
𝛿
𝜎)/
√
𝑛 <
√

2(1 +
√︃

3 log 1
𝛿
)∥∇ 𝑓 (𝑤1)∥

√
𝑇/𝑐
√
𝑛.

Setting 𝑛 = 8(1 + 3 log 1
𝛿
)𝑇/𝑐2 = 𝑇

2 , with probability at least 1 − 𝛿,

∥𝑍 ∥
∥∇ 𝑓 (𝑤1)∥

∈ [ 12 ,
3
2 ] .

Hence, using 𝑇
2 steps we can estimate ∥∇ 𝑓 (𝑤1)∥ and obtain a bound

𝜎★ <
∥∇ 𝑓 (𝑤1)∥

√
𝑇

𝑐
≤ 2∥𝑍 ∥

√
𝑇

4
√︃

1 + 3 log 1
𝛿

which holds with probability at least 1 − 𝛿, and such bound is tight enough to make Theorem 6 inapplicable. Further note
that having a bound 𝜎★ ≤ 𝜎max = 𝑂 (𝐺★

√
𝑇), which we obtain with high probability using this technique, is sufficient to

reduce the unavoidable lower order term presented at Theorem 4 to a term proportional to the (almost) optimal rate of tuned
SGD.
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