

RAG4DMC: RETRIEVAL-AUGMENTED GENERATION FOR DATA-LEVEL MODALITY COMPLETION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Multi-modal datasets are critical for a wide range of applications, but in practice,
012 they often suffer from missing modalities. This motivates the task of Missing
013 Modality Completion (MMC), which aims to reconstruct missing modalities from
014 the available ones to fully exploit multi-modal data. While pre-trained genera-
015 tive models offer a natural solution, directly applying them to domain-specific
016 MMC is often ineffective, and fine-tuning suffers from limitations like limited
017 complete samples, restricted API access, and high cost. To address these is-
018 sues, we propose RAG4DMC, a retrieval-augmented generation framework for
019 data-level MMC. RAG4DMC builds a dual knowledge base from complete in-
020 dataset samples and external public datasets, enhanced with feature alignment and
021 clustering-based filtering to mitigate modality and domain shifts. A multi-modal
022 fusion retrieval mechanism combining intra-modal retrieval with cross-modal fu-
023 sion then provides relevant context to guide generation, followed by a candidate
024 selection mechanism for coherent completion. Extensive experiments on general
025 and domain-specific datasets demonstrate that our method produces more accurate
026 and semantically coherent missing-modality completions, resulting in substantial
027 improvements in downstream image-text retrieval and image captioning tasks.

1 INTRODUCTION

028 Multi-modal datasets have become indispensable in advancing a wide range of applications, includ-
029 ing vision-language understanding, healthcare analysis, and autonomous systems (Yuan et al., 2025;
030 Xu et al., 2023). However, in practice, such datasets often suffer from missing modalities in some
031 samples, due to reasons such as sensor failure, annotation costs, or data corruption (Jiao et al., 2024).
032 This issue motivates the task of **Missing Modality Completion** (MMC) (Ke et al., 2025), i.e., recon-
033 structing or inferring missing modalities from available ones, thereby enabling more complete and
034 effective utilization of multi-modal data.

035 With the remarkable success of pre-trained generative models, a natural approach to this task is
036 to leverage them to generate missing modalities conditioned on the observed ones. Nevertheless,
037 directly applying pre-trained generative models to reconstruct domain-specific missing data often
038 yields unsatisfactory results, due to their limited adaptation to specific domains (Ke et al., 2025).
039 A straightforward remedy is to fine-tune these models using the subset of complete samples in the
040 dataset. However, this strategy faces several challenges: (i) the amount of complete data is usually
041 limited, making fine-tuned models prone to overfitting and losing generality; (ii) many pre-trained
042 generative models are accessible only through restricted inference APIs, preventing effective fine-
043 tuning; and (iii) fine-tuning large models is often costly and resource-intensive.

044 To overcome these limitations, we propose a retrieval-augmented generation (RAG) based frame-
045 work for MMC. RAG combines retrieval from a knowledge base with generative modeling, allow-
046 ing the model to incorporate external, task-relevant information during generation. While RAG has
047 achieved great success in language modeling and downstream NLP tasks, its potential for MMC
048 remains largely underexplored. In adapting RAG to MMC, two key challenges arise: (i) *how to*
049 *construct an effective knowledge base from the available multi-modal data*, and (ii) *how to design*
050 *retrieval strategies that can best augment the generation of missing modalities*.

051 To this end, we propose RAG4DMC, a retrieval-augmented generation framework tailored for data-
052 level MMC. RAG4DMC leverages a *dual-knowledge-base design* that combines an *internal knowl-*

054 *edge base*—built from complete samples in the target dataset—with an *external knowledge base*
 055 constructed from publicly available datasets. While the internal knowledge base provides domain-
 056 specific information, its limited scale motivates the use of external data as a complementary source,
 057 despite domain shifts. To make this integration effective, RAG4DMC encodes all samples into
 058 embeddings and introduces *feature alignment mechanisms* to address the embedding misalignment
 059 between modalities and knowledge bases. Furthermore, a *clustering-based filtering strategy* is ap-
 060 plied to prune irrelevant external samples. On top of the dual knowledge base, RAG4DMC develops
 061 a multi-modal fusion retrieval strategy, which combines intra-modal retrieval with cross-modal re-
 062 ranking to achieve semantically consistent retrieval results. The retrieved information is used to
 063 augment the generative model, which produces multiple candidate completions. Finally, a candidate
 064 selection mechanism identifies the most semantically coherent output to fill in the missing modality.

065 We extensively evaluate RAG4DMC on both general-domain (MSCOCO, Flickr30K) and domain-
 066 specific (RSICD) datasets under various modality missing rates. Downstream models trained on
 067 datasets completed using RAG4DMC exhibit improvements of up to +5.0 Avg R@1 in image–text
 068 retrieval tasks and +5.0 CIDEr in image captioning tasks over those trained on datasets completed
 069 via direct generative completion methods.

070 **The main contributions of this paper are as follows:** (i) To our knowledge, RAG4DMC is the
 071 *first RAG-based approach to achieve multimodal completion at the raw-data level*, generating the
 072 *actual missing modality instead of relying on latent-feature imputation*. (ii) We design an integrated
 073 knowledge base combining internal and external samples, equipped with filtering and alignment, and
 074 propose a two-stage multi-modal fusion retrieval with candidate selection to mitigate modality gaps
 075 and produce semantically faithful generations. (iii) Extensive experiments on MSCOCO, Flickr30K,
 076 and RSICD demonstrate that RAG4DMC consistently outperforms baselines, validating both the
 077 effectiveness and robustness of the proposed approach.

078 079 080 2 RELATED WORK

081 **Strategies for handling missing modalities.** Existing approaches for handling missing modalities
 082 can be broadly categorized into two groups: *non-completion methods* and *completion-based*
 083 *methods*. Non-completion methods avoid explicit imputation and instead rely on fusion strategies
 084 or missing-indicator mechanisms to make predictions directly from the observed modalities (Lang
 085 et al., 2025; Lee et al., 2023; Guo et al., 2024; Zhao et al., 2024; 2025). While effective in certain
 086 scenarios, these methods cannot generate fidelity-guaranteed reusable multimodal samples, which
 087 limits their applicability across diverse tasks. In contrast, completion-based methods address the
 088 issue by reconstructing the missing modalities before downstream processing. These approaches
 089 can be further divided into two subcategories: 1) *Feature-level completion*, which learns to infer
 090 missing features in a shared latent space. For example, MMIN (Zhao et al., 2021) imagines latent
 091 features and Smil Ma et al. (2021) meta-learns extreme missing patterns. 2) *Data-level completion*,
 092 which reconstructs missing modalities directly in the data space. For example, Knowledge Bridger
 093 Ke et al. (2025) leverages structured priors from domain knowledge, GTI-MM (Feng et al., 2024)
 094 steers diffusion with prompts, and DiCMoR (Wang et al., 2023c) aligns cross-modal distributions
 095 via normalising flows. These methods produce more faithful multi-modal datasets that can be fully
 096 reused across diverse downstream tasks, but existing methods still suffer from hallucination, poor
 097 generalization to rare samples, and heavy resource demands (Wang et al., 2023a). The limitations
 098 of existing methods motivate our investigation to RAG-based methods for data-level MMC.

099 **Multimodal Retrieval-Augmented Generation.** Retrieval-Augmented Generation (RAG) has
 100 proven highly effective in NLP for knowledge-grounded text generation and QA (Riedler & Langer,
 101 2024; Lewis et al., 2020; Izacard & Grave, 2020). Recent multimodal extensions adapt RAG to
 102 tasks such as captioning, VQA, and reasoning by retrieving relevant images or texts as additional
 103 context for generation models (Abootorabi et al., 2025; Lin & Byrne, 2022; Zhang et al., 2024). De-
 104 spite these advances, the application of RAG to MMC remains underexplored. The most related
 105 work is MissRAG(Pipoli et al., 2025), which retrieves prototype representations from the training
 106 set to approximate missing inputs. However, MissRAG focuses on feature-level completion at infer-
 107 ence, while our approach operates at the data level, explicitly reconstructing missing modalities and
 generating enriched multi-modal training data.



Figure 1: The workflow of RAG4DMC.

3 METHOD

3.1 PROBLEM STATEMENT

We consider the task of data-level MMC in a multi-modal dataset. Let $\mathcal{D} = \{(x_t^I, x_t^T)\}_{t=1}^N$ denote a dataset containing image (I) and text (T) modalities. In practice, many samples are incomplete, i.e., only x^I or x^T is observed. Our goal is to promote a pre-trained generation model G to complete the missing modality \hat{x} from the available one x based on two complementary knowledge bases:

$$\mathcal{K}_{int} = \{(x_i^I, x_i^T)\}_{i=1}^{N_c} \subset \mathcal{D}, \quad \mathcal{K}_{ext} = \{(x_m^I, x_m^T)\}_{m=1}^M,$$

where \mathcal{K}_{int} contains complete samples from the dataset \mathcal{D} , and \mathcal{K}_{ext} contains paired image–text samples from publicly available datasets (e.g., CC3M, LAION) to provide additional knowledge. For an incomplete sample x , the missing modality is generated as $\hat{x} = G(x, \mathcal{R}(x; \mathcal{K}_{int} \cup \mathcal{K}_{ext}))$, where $\mathcal{R}(\cdot)$ denotes retrieval from the dual knowledge base $\mathcal{K}_{int} \cup \mathcal{K}_{ext}$.

3.2 OVERVIEW

The design of RAG4DMC is illustrated in Fig. 1 (algorithm description is illustrated in Appendix A.1). RAG4DMC follows a retrieval-augmented generation pipeline with three key components. It first constructs a dual knowledge base, where the internal base is built from complete samples in the target dataset and the external base is derived from publicly available datasets to compensate for data scarcity. Since embeddings from different modalities and from internal and external sources are often misaligned, RAG4DMC incorporates feature alignment modules that learn mappings to align representations from different modalities and knowledge bases, and applies a clustering-based filtering strategy to remove irrelevant external samples. Given an incomplete sample, the system then performs a two-stage multi-modal fusion retrieval process that first conducts intra-modal retrieval and subsequently refines candidates via cross-modal re-ranking to ensure semantically consistent matches. The retrieved knowledge is used to guide the generative model, which produces multiple candidate completions. Finally, a candidate selection mechanism identifies the most semantically coherent and high-quality output to reconstruct the missing modality.

3.3 DUAL KNOWLEDGE BASE CONSTRUCTION

To enable effective retrieval-augmented generation, RAG4DMC constructs a unified dual knowledge base that integrates internal complete samples and external public datasets. Relying solely on the internal dataset is often problematic because the number of complete multi-modal samples is limited and cannot sufficiently cover the diversity of missing cases. For example, in a vision–language dataset collected for autonomous driving, only a fraction of scenes may contain both images and detailed textual annotations, making it difficult to reconstruct missing captions for rare traffic scenarios. By incorporating external public datasets such as CC3M or LAION, the knowledge base can

provide broader visual–textual coverage, offering complementary patterns that mitigate the sparsity of internal data. However, directly combining internal and external data introduces three challenges: (i) misalignment between modalities within the same dataset, (ii) noise and irrelevance in external datasets, and (iii) domain shifts across internal and external sources. To address these issues, RAG4DMC employs three key techniques: (i) a cross-modal bidirectional mapping mechanism to reconstruct missing modalities and mitigate modality gaps in the embedding space, (ii) a clustering-based filtering mechanism to prune irrelevant external samples, and (iii) a cross-domain alignment strategy to align internal and external embeddings into a unified semantic space. Together, these components yield a semantically consistent multi-modal knowledge base for subsequent retrieval and generation.

Cross-modal bidirectional mapping. We use fixed pretrained encoders $E_I : \mathcal{X}^I \rightarrow \mathbb{R}^d$ and $E_T : \mathcal{X}^T \rightarrow \mathbb{R}^d$ to extract embeddings only for paired multimodal samples. Let $\mathcal{P}_{int} = \{(x_i^I, x_i^T)\}_{i=1}^{N_c} \subset \mathcal{D}$ and $\mathcal{P}_{ext} = \{(x_m^{I,ext}, x_m^{T,ext})\}_{m=1}^M \subset \mathcal{D}_{ext}$ denote the sets of complete image–text pairs. For these pairs we compute:

$$z_i^I = E_I(x_i^I), \quad z_i^T = E_T(x_i^T) \quad (i \in \mathcal{P}_{int}) \quad (1)$$

$$z_m^{I,ext} = E_I(x_m^{I,ext}), \quad z_m^{T,ext} = E_T(x_m^{T,ext}) \quad (m \in \mathcal{P}_{ext}). \quad (2)$$

To bridge the gap between modalities, we train a lightweight MLP for bidirectional cross-modal mapping. We denote the two directions as $f_{I \rightarrow T} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ and $f_{T \rightarrow I} : \mathbb{R}^d \rightarrow \mathbb{R}^d$, which share parameters:

$$\mathcal{L}_{map} = \frac{1}{|\mathcal{P}_{int}|} \sum_{(x_i^I, x_i^T) \in \mathcal{P}_{int}} \left(\|f_{I \rightarrow T}(z_i^I) - z_i^T\|_2^2 + \|f_{T \rightarrow I}(z_i^T) - z_i^I\|_2^2 \right). \quad (3)$$

This bidirectional cross-modal mapping reconstructs missing modalities in the internal embedding space using available ones, and producing pseudo embeddings for retrieval. As the external knowledge base is subsequently aligned into the internal space, training the MLP on internal pairs suffices for both internal and external samples.

Clustering-based knowledge filtering. External datasets mix relevant and irrelevant information. To reduce noise, we design a clustering-based knowledge filter. For the image modality, we denote the internal and external image embeddings as $\mathbf{z}^{I,int}$ and $\mathbf{z}^{I,ext}$. First, we apply K -means to internal and external embeddings to obtain cluster centroids. For K clusters, we compute cluster centroids as the average embedding:

$$\mu_p^{I,int} = \frac{1}{|c_p^{I,int}|} \sum_{\mathbf{z}_i^{I,int} \in c_p^{I,int}} \mathbf{z}_i^{I,int}, \quad \mu_q^{I,ext} = \frac{1}{|c_q^{I,ext}|} \sum_{\mathbf{z}_m^{I,ext} \in c_q^{I,ext}} \mathbf{z}_m^{I,ext}. \quad (4)$$

where $c_p^{I,int}$ and $c_q^{I,ext}$ denote the sets of embeddings assigned to the p -th internal cluster and q -th external cluster, respectively. Next, we match each external centroid $\mu_q^{I,ext}$ to its closest internal centroid $\mu_p^{I,int}$ based on cosine similarity:

$$p_q^I = \arg \max_p \cos(\mu_q^{I,ext}, \mu_p^{I,int}), \quad (5)$$

where p_q^I denotes the index of the internal centroid $\mu_p^{I,int}$ that is most similar to the external centroid $\mu_q^{I,ext}$. We then define the corresponding centroid-level and instance-level similarities as:

$$s_{\text{cent}}^I = \cos(\mu_q^{I,ext}, \mu_{p_q^I}^{I,int}), \quad s_{\text{inst}}^I = \cos(\mathbf{z}_m^{I,ext}, \mu_{p_q^I}^{I,int}). \quad (6)$$

where $\mathbf{z}_m^{I,ext}$ is an external embedding in the q -th cluster. Clusters and samples are then filtered by thresholding the similarities:

$$C_{\text{keep}}^I = \{c_q^{I,ext} \mid s_{\text{cent}}^I \geq \tau_{\text{cent}}\}, \quad (7)$$

$$\mathcal{Z}_{\text{keep}}^I = \{\mathbf{z}_m^{I,ext} \mid \mathbf{z}_m^{I,ext} \in c_q^{I,ext}, s_{\text{inst}}^I \geq \tau_{\text{inst}}, c_q^{I,ext} \in C_{\text{keep}}^I\}. \quad (8)$$

We first prune clusters with low centroid similarity and then filter instances within the retained ones to improve efficiency and robustness. The same procedure is applied to text (Appendix A.2). Further analysis of imbalanced clusters and the sensitivity of τ_{inst} and τ_{cent} is provided in Appendix A.3.

216 **Cross-domain alignment.** Even after filtering, the internal and retained external embeddings still
 217 reside in different semantic spaces due to domain shifts (see t-SNE visualizations in Appendix A.4).
 218 Inspired by MUSE (Lample et al., 2018), we adopt an orthogonal Procrustes alignment strategy,
 219 performed separately for the image and text modalities using their internal and filtered external
 220 embeddings.

221 For images, let $\{(\mathbf{z}_i^{I,\text{int}}, \mathbf{z}_m^{I,\text{ext}})\}$ denote the mutual nearest neighbor (MNN) pairs identified via
 222 CSLS (analysis in Appendix A.6). Stacking these pairs yields matrices Z_{int}^I and Z_{ext}^I . For texts,
 223 the procedure is analogous, producing Z_{int}^T and Z_{ext}^T . The orthogonal Procrustes problems are then
 224 solved:
 225

$$227 \quad W_I^* = \arg \min_{W \in O(d)} \|Z_{\text{int}}^I - Z_{\text{ext}}^I W\|_F^2, \quad W_T^* = \arg \min_{W \in O(d)} \|Z_{\text{int}}^T - Z_{\text{ext}}^T W\|_F^2, \quad (9)$$

229 where $O(d) = \{W \in \mathbb{R}^{d \times d} \mid W^\top W = I_d\}$ denotes the set of d -dimensional orthogonal matrices.
 230 Each admits a closed-form solution via SVD, with derivation in Appendix A.7. The aligned external
 231 embeddings are then

$$232 \quad \tilde{Z}_{\text{ext}}^I = Z_{\text{ext}}^I W_I^*, \quad \tilde{Z}_{\text{ext}}^T = Z_{\text{ext}}^T W_T^*. \quad (10)$$

233 We iteratively refine W_I^* and W_T^* by alternating between updating MNN pairs using CSLS on the
 234 aligned embeddings and recomputing Eq. 9, until convergence, i.e., until $\|W^{(r)} - W^{(r-1)}\|_F < \epsilon$.
 235

236 After alignment, the internal embeddings remain fixed as the target space, while W_I^* and W_T^* are
 237 applied to all external embeddings of the corresponding modality. Each entry in the knowledge base
 238 thus contains raw data and its aligned multi-modal embeddings:

$$239 \quad \mathcal{K}_{\text{int}} = \{x^I, z^I, x^T, z^T\}, \quad \mathcal{K}_{\text{ext}} = \{x^{I,\text{ext}}, \tilde{z}^{I,\text{ext}}, x^{T,\text{ext}}, \tilde{z}^{T,\text{ext}}\}, \quad (11)$$

$$241 \quad \mathcal{K} = \mathcal{K}_{\text{int}} \cup \mathcal{K}_{\text{ext}}. \quad (12)$$

242 Thus, modality-level mapping within \mathcal{D} and domain-level alignment across datasets together yield
 243 a semantically aligned multimodal knowledge base for retrieval-based completion.
 244

245 3.4 MULTI-MODAL FUSION RETRIEVAL

247 While RAG has shown strong performance in knowledge-intensive tasks, directly extending it to
 248 multimodal missing modality completion poses unique challenges. Conventional approaches of-
 249 ten perform cross-modal retrieval (e.g., retrieving images from text), but the inherent modality gap
 250 severely limits discriminability, even with powerful joint encoders like CLIP. As shown in Ap-
 251 pendix A.4, embeddings of paired image–text samples still occupy distinct subspaces, leading to
 252 mismatched candidates and degraded generation quality. This motivates us to design a retrieval
 253 mechanism that can both preserve the precision of intra-modal similarity and incorporate cross-
 254 modal cues for alignment. To this end, we propose two-stage multi-modal fusion retrieval strategy:
 255 (i) intra-modal top- k retrieval for precise candidate selection, and (ii) multimodal re-ranking with
 256 pseudo-embeddings of the missing modality. This fusion mitigates the modality gap and yields more
 257 semantically aligned candidates for generation. We illustrate the procedure using the case where an
 258 image lacks a corresponding text. Let x_j^I be an unpaired image and $z_j^I = E_I(x_j^I)$. We obtain a
 259 pseudo-text embedding via the learned map:

$$260 \quad \tilde{z}_j^T = f_{I \rightarrow T}(z_j^I). \quad (13)$$

261 We first conduct intra-modal retrieval. For each candidate r in the knowledge base \mathcal{K} with precom-
 262 puted embeddings (z_r^I, z_r^T) , define

$$264 \quad s_{\text{img}}(r) = \cos(z_j^I, z_r^I). \quad (14)$$

265 Let a stable permutation be

$$266 \quad \sigma = \text{argsort}_r (-s_{\text{img}}(r), r). \quad (15)$$

268 The top- k candidate index set is

$$269 \quad \mathcal{A} = \{\sigma(1), \dots, \sigma(k)\}, |\mathcal{A}| = k. \quad (16)$$

270 For each $r \in \mathcal{A}$, compute the fused score
 271

$$272 \quad \text{sim}_{\text{fuse}}(r) = \alpha \cos(z_j^I, z_r^I) + (1 - \alpha) \cos(\hat{z}_j^T, z_r^T). \quad (17)$$

273 Re-rank stably by the fused score:
 274

$$275 \quad \pi = \underset{r \in \mathcal{A}}{\text{argsort}}(-\text{sim}_{\text{fuse}}(r), r), r^* = \pi(1), \quad (18)$$

277 and select the top-1 caption $x_{r^*}^T$. Construct the prompt \mathcal{P} as “*Please write two captions of the image.*
 278 *Caption 1:* “ $x_{r^*}^T$ ”. *Caption 2:*” and generate sample with the original image x_j^I :
 279

$$280 \quad \tilde{x}^T = G_{I2T}(x_j^I, \mathcal{P}). \quad (19)$$

281 The text-only case is symmetric, with detailed formulas provided in Appendix A.5.
 282

283 3.5 GENERATION AND CANDIDATE SELECTION 284

285 Given the retrieved exemplars, RAG4DMC leverages modality-specific generators (e.g., G_{I2T} for
 286 image-to-text and G_{T2I} for text-to-image) to produce multiple candidate completions. This multi-
 287 sample generation increases diversity and reduces the risk of degeneration, but also raises the chal-
 288 lenge of identifying the most faithful and coherent output. To address this, we introduce a candidate
 289 selection mechanism that jointly evaluates semantic consistency and perceptual quality. For image-
 290 only inputs, the caption generator G_{I2T} produces a set of candidate captions $\{\tilde{x}_1^T, \dots, \tilde{x}_n^T\}$. We
 291 score each candidate with a weighted function that balances semantic alignment and linguistic qual-
 292 ity:
 293

$$s_T(\tilde{x}^T) = \lambda_1 \cdot \cos(E_T(\tilde{x}^T), \hat{z}^T) + \lambda_2 \cdot \text{BLEU}(\tilde{x}^T), \quad (20)$$

294 where \hat{z}^T is the pseudo-text embedding derived from the input image and BLEU measures n-gram
 295 overlap with the retrieved exemplar caption $x_{r^*}^T$. For text-only inputs, the image generator G_{T2I} pro-
 296 duces a set of candidate images $\{\tilde{x}_1^I, \dots, \tilde{x}_n^I\}$. Each candidate is evaluated by combining semantic
 297 similarity and perceptual quality:
 298

$$s_I(\tilde{x}^I) = \lambda_1 \cdot \cos(E_I(\tilde{x}^I), \hat{z}^I) - \lambda_2 \cdot \text{NIQE}(\tilde{x}^I), \quad (21)$$

300 where \hat{z}^I is the pseudo-image embedding from the input text, and NIQE is a no-reference image
 301 quality metric (lower is better). The candidate with the highest score is selected as the final comple-
 302 tion for the missing modality.
 303

304 4 EVALUATIONS

305 4.1 EXPERIMENTAL SETUP

306 **Datasets.** We evaluate RAG4DMC on both general-domain and domain-specific datasets. For the
 307 general domain, we adopt MSCOCO (Lin et al., 2014) and Flickr30K (Young et al., 2014). For
 308 the domain-specific setting, we use the RSICD dataset (Lu et al., 2017). From these datasets, we
 309 construct modality-missing dataset. In our experiments, incomplete samples are introduced in the
 310 training phase by applying predefined missing rates to each modality. The evaluation phase is con-
 311 ducted exclusively on complete samples. To support retrieval, we adopt external public datasets as
 312 knowledge bases. Specifically, CC3M (Sharma et al., 2018) serves as the external knowledge base
 313 for MSCOCO and Flickr30K, while NWPU-Caption (Cheng et al., 2022) is used for RSICD. We use
 314 BLIP2 (Li et al., 2023) as the text generator and Stable Diffusion XL 1.0 (Rombach et al., 2022) as
 315 the image generator across all datasets. We provide more detailed dataset splits and implementation
 316 details in the AppendixA.8.
 317

318 **Metrics.** Following prior work (Ke et al., 2025; Jin et al., 2024), we evaluate the quality of the
 319 imputed datasets through their utility in downstream tasks. The underlying rationale is that if the
 320 imputed data preserves semantic fidelity and consistency with the original multimodal samples,
 321 models trained on these datasets should achieve better performance on standard benchmarks. We
 322 consider two representative tasks: (i) **Image–text retrieval**, where we train a CLIP (Radford et al.,
 323 2021) model on the augmented datasets and evaluate retrieval accuracy using Recall@1 and Re-
 324 call@5, consistent with prior studies (Hao et al., 2023; Ke et al., 2025; Jin et al., 2024). (ii) **Image**

324 Table 1: Image–Text Retrieval and Image Captioning results on MSCOCO.
325

326 Method	327 Image–Text Retrieval			328 Image Captioning		
	329 I2T R@1	330 T2I R@1	331 I2T R@5	332 T2I R@5	CIDEr	BERTScore
Complete	48.9	49.6	82.3	81.0	127.9	92.6
Drop-Incomplete	35.4	35.1	69.5	69.3	109.2	92.1
Direct Generation	41.4	43.9	75.4	76.3	112.2	92.2
GTI-MM	41.0	41.7	74.9	74.9	111.0	92.2
Knowledge Bridger	42.5	44.5	76.1	77.5	112.2	92.2
Vanilla-RAG	44.9	44.6	77.9	78.0	113.4	92.3
Combined-RAG	44.8	44.6	77.6	77.7	113.0	92.2
KFA-RAG	45.9	46.4	78.1	78.6	115.8	92.3
RAG4DMC	46.6	47.5	79.0	79.7	117.2	92.5

333 Table 2: Image–Text Retrieval and Image Captioning results on Flickr30K.
334

335 Method	336 Image–Text Retrieval			337 Image Captioning		
	338 I2T R@1	339 T2I R@1	340 I2T R@5	341 T2I R@5	CIDEr	BERTScore
Complete	53.2	52.6	81.3	81.1	71.2	91.7
Drop-Incomplete	45.2	47.4	75.9	75.9	64.8	91.3
Direct Generation	47.1	49.6	76.6	77.8	65.9	91.4
GTI-MM	46.3	48.9	75.6	76.0	65.8	91.4
Knowledge Bridger	47.2	49.8	77.3	78.0	66.0	91.4
Vanilla-RAG	48.3	50.2	77.6	78.3	67.3	91.5
Combined-RAG	48.3	50.2	77.3	78.0	66.9	91.5
KFA-RAG	51.0	52.7	79.2	79.1	68.2	91.6
RAG4DMC	52.9	53.8	80.6	81.5	70.4	91.7

343 **captioning**, where we fine-tune LLaVA (Liu et al., 2023) on the augmented datasets to generate tex-
344 tual descriptions, and measure caption quality using CIDEr (Vedantam et al., 2015) and BERTScore
345 (Zhang et al., 2019), following prior work (Li et al., 2022; Wang et al., 2023b; Zhang et al., 2019).
346 For training, CLIP is optimized with AdamW (learning rate $1e-4$, batch size 16) for 20 epochs.
347 LLaVA is fine-tuned with LoRA adapters using AdamW (learning rate $2e-5$, effective batch size 2)
348 for 2 epochs. All evaluations are conducted on the standard test splits: 1,000 samples for MSCOCO
349 and Flickr30K, and 1,093 samples for RSICD.

350 **Baselines.** Since data-level modality completion based on generative models is largely under-
351 explored, we design the following three categories of baselines: (i) *Naive baselines*: **Drop-**
352 **Incomplete**, discards all samples with missing modalities. (ii) *Direct generative-based methods*:
353 **Direct Generation**, which fills missing modalities using generative models without retrieval ground-
354 ing, **GTI-MM**(Feng et al., 2024), which uses generative models to impute missing visual modalities
355 and designs prompts to control the generation quality, and **Knowledge Bridger** (Ke et al., 2025),
356 which extracts knowledge from the available modalities and then guides a generative model to com-
357 plete the missing ones. (iii) *RAG-based methods*: **Vanilla-RAG**, which builds the knowledge base
358 from internal data only and performs naive cross-modal retrieval; **Combined-RAG**, which builds the
359 knowledge base by directly merging internal and external datasets without filtering or alignment; and
360 **KFA-RAG**, which constructs an integrated knowledge base using the same method in RAG4DMC
361 but performs naive cross-modal retrieval. This design also allows us to dissect the contribution of
362 each component: Combined-RAG vs. Vanilla-RAG highlights the benefit of incorporating external
363 knowledge; KFA-RAG vs. Combined-RAG demonstrates the importance of filtering and alignment
364 in knowledge base construction; and finally, RAG4DMC vs. KFA-RAG validates the effectiveness
365 of our proposed retrieval mechanism.

366 4.2 RESULTS AND ANALYSIS

367 4.2.1 MISSING MODALITY COMPLETION PERFORMANCE

369 We first evaluate the missing modality completion performance on MSCOCO, Flickr30K, and
370 RSICD datasets. Tables 1–3 summarize performance on downstream image–text retrieval and
371 captioning tasks using datasets completed by different methods. It can be observed that removing
372 incomplete samples (*Drop-Incomplete*) leads to substantial performance degradation. For example,
373 Avg R@1 on MSCOCO drops from 49.2 to 35.2, which highlights the necessity of modality comple-
374 tion. Introducing retrieval grounding via *Vanilla-RAG* improves performance (+2.2 Avg R@1, +2.1
375 Avg R@5 on MSCOCO), demonstrating the benefit of exemplar guidance. However, naively adding
376 external data (*Combined-RAG* vs. *Vanilla-RAG*) does not yield gains because of noise and domain
377 mismatch. Filtering and aligning external knowledge (*KFA-RAG* vs. *Combined-RAG*) consistently
378 boosts performance (+1.5 Avg R@1, +0.7 Avg R@5), confirming the effectiveness of our knowl-

378
379
380
381
382
383
384
385
386
387
388
389
Table 3: Image–Text Retrieval and Image Captioning results on RSICD.

Method	Image–Text Retrieval				Image Captioning	
	I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
Complete	10.3	10.3	30.4	30.1	34.0	89.1
Drop-Incomplete	8.2	8.8	25.3	27.9	30.9	88.8
Direct Generation	8.5	9.5	25.9	28.5	32.5	89.0
GTI-MM	8.3	9.1	24.3	27.7	32.1	89.0
Knowledge Bridger	8.6	9.5	26.3	28.9	32.8	89.0
Vanilla-RAG	4.8	5.1	18.5	18.7	19.4	87.8
Combined-RAG	4.8	5.2	18.2	18.8	18.1	87.6
KFA-RAG	5.3	5.6	20.2	20.3	20.6	88.1
RAG4DMC	8.7	9.7	27.6	29.6	33.9	89.1

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
Table 4: Performance of RAG4DMC on MSCOCO under different modality missing rates.

MissRate	Method	Image–Text Retrieval				Image Captioning	
		I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
0.1	Drop-Incomplete	49.3	49.1	80.7	79.7	128.2	92.4
	Direct Generation	50.5	51.3	81.6	81.4	129.7	92.7
	GTI-MM	49.9	49.7	80.9	80.2	128.9	92.6
	Knowledge Bridger	50.9	51.5	81.9	81.9	129.5	92.6
	Vanilla-RAG	51.7	51.8	82.4	82.6	130.4	92.7
	Combined-RAG	51.6	51.8	82.3	82.4	129.7	92.6
	KFA-RAG	52.7	52.9	83.9	83.6	131.7	92.7
0.3	RAG4DMC	53.9	54.1	85.6	85.5	133.8	92.8
	Drop-Incomplete	46.7	46.4	78.7	77.8	120.5	92.4
	Direct Generation	47.9	48.1	80.3	80.6	121.7	92.6
	GTI-MM	47.5	47.8	79.9	80.0	121.1	92.5
	Knowledge Bridger	48.2	49.1	80.5	81.1	121.8	92.6
	Vanilla-RAG	48.3	49.3	81.2	81.5	123.2	92.6
	Combined-RAG	48.1	49.2	80.9	81.5	122.8	92.6
0.5	KFA-RAG	50.2	51.7	82.3	83.0	124.7	92.7
	RAG4DMC	52.3	52.9	84.1	84.4	125.8	92.7
	Drop-Incomplete	42.7	45.6	76.9	78.5	116.9	92.4
	Direct Generation	45.5	45.8	77.2	77.9	118.5	92.4
	GTI-MM	44.3	44.9	76.3	76.6	118.2	92.4
	Knowledge Bridger	45.3	45.8	77.3	78.5	118.6	92.5
	Vanilla-RAG	45.8	46.1	78.3	78.9	119.8	92.5
0.7	Combined-RAG	45.6	46.1	78.0	78.7	119.6	92.5
	KFA-RAG	46.7	47.1	79.4	79.2	121.6	92.5
	RAG4DMC	48.4	47.7	80.1	80.2	123.6	92.6
	Drop-Incomplete	35.4	35.1	69.5	69.3	109.1	92.1
	Direct Generation	41.4	43.9	75.4	76.3	112.2	92.2
	GTI-MM	41.0	41.7	74.9	74.9	111.1	92.2
	Knowledge Bridger	42.5	44.5	76.1	77.5	112.2	92.2
edge processing. Finally, integrating multi-modal fusion retrieval in <i>RAG4DMC</i> further enhances results (Avg R@1 = 47.1, Avg R@5 = 79.4), approaching the oracle upper bound and validating our retrieval design.	Vanilla-RAG	44.9	44.6	77.9	78.0	113.4	92.3
	Combined-RAG	44.8	44.6	77.6	77.7	113.0	92.2
	KFA-RAG	45.9	46.4	78.1	78.6	115.8	92.3
	RAG4DMC	46.6	47.5	79.0	79.7	117.2	92.4

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
15

432 Table 5: Performance of RAG4DMC on MSCOCO with different generation candidate number n .
433

n	Image-Text Retrieval				Image Captioning	
	I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
1	46.6	47.5	79.0	79.7	117.2	92.4
3	47.1	48.0	79.4	79.8	117.9	92.4
5	47.4	48.2	79.8	80.0	119.3	92.5
10	47.7	48.5	80.1	80.3	121.5	92.6

438 Table 6: Performance of RAG4DMC on MSCOCO with different retrieval size k .
439

k	Image-Text Retrieval				Image Captioning	
	I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
3	46.5	46.1	77.7	76.6	109.4	92.1
5	46.6	47.5	79.0	79.7	110.7	92.2
10	47.7	48.5	80.1	80.3	117.2	92.4
15	41.9	42.9	75.0	76.7	104.1	92.5

444 4.3 PERFORMANCE UNDER DIFFERENT MISSING RATES

445
446 To evaluate robustness against different degrees of missing information, we conduct experiments on
447 MSCOCO with modality missing rates ranging from 10% to 70%. As shown in Table 4, all methods
448 experience performance degradation as the missing rate increases, but the decline rates differ signif-
449 icantly. Generation-based methods (*Direct Generation*, *GTI-MM*) deteriorate the fastest, reflecting
450 their reliance on generative filling without sufficient grounding, which amplifies errors when larger
451 portions of data are absent. In contrast, *Vanilla-RAG* demonstrates greater stability by leveraging ex-
452 emplar grounding from internal data, while *KFA-RAG* further enhances robustness by filtering noisy
453 external samples and aligning them with internal exemplars. RAG4DMC consistently surpasses all
454 baselines across missing rates, with particularly pronounced gains under high-missing settings. For
455 example, at 70% missing rate, RAG4DMC improves Avg R@1 by +2.3 over *Vanilla-RAG*, highlight-
456 ing its ability to deliver faithful and reliable completions even in highly incomplete scenarios. These
457 results demonstrate the effectiveness and robustness of RAG4DMC, showing that its integration of
458 modality completion, retrieval grounding, and knowledge filtering enables consistent performance
459 even under severe data scarcity.

460 4.4 IMPACT OF GENERATION CANDIDATE NUMBER

461
462 In RAG4DMC, the generation and candidate selection module introduces a hyperparameter n , which
463 determines the number of generated candidates. To investigate its effect, we conduct experiments
464 on MSCOCO with different n values ($n \in \{1, 3, 5, 10\}$). As shown in Table 5, the performance of
465 RAG4DMC consistently improves as n increases. For example, Avg R@1 of RAG4DMC rises from
466 47.1 at $n = 1$ to 48.1 at $n = 10$, while CIDEr rises from 117.2 to 121.5. This demonstrates that
467 RAG4DMC effectively identifies the best candidate among multiple generations, filtering out noisy
468 outputs and ensuring that diversity translates into real performance gains.

470 4.5 IMPACT OF RETRIEVAL SIZE

471
472 We further investigate the effect of the retrieval hyperparameter k , which controls the number of
473 exemplars retrieved for RAG. As shown in Table 6, increasing k from 3 to 10 steadily improves
474 performance, since a larger candidate pool increases the likelihood of including highly relevant
475 exemplars, enhancing the quality of generation. However, when k becomes too large (e.g., 15),
476 performance slightly degrades, likely due to the introduction of less relevant or noisy exemplars,
477 which can misguide the generator. This suggests that a moderate number of high-quality retrievals
478 strikes a good balance between diversity and precision. We set $k = 10$ in all main experiments based
479 on this trade-off.

480 4.6 SENSITIVITY TO KNOWLEDGE FILTERING THRESHOLDS

481
482 We conducted additional sensitivity experiments by varying τ_{cent} and τ_{inst} within a reasonable range
483 (0.6–0.8). The results (Table 7) show that retrieval and captioning performance remains highly
484 stable: the changes in R@1, R@5, CIDEr, and BERTScore are minimal, indicating that our filtering
485 strategy is robust to these thresholds.

486 Table 7: Performance of RAG4DMC with different filtering thresholds.
487

Filtering Threshold	I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
0.6	46.5	47.1	79.0	79.0	117.0	92.4
0.7	46.6	47.5	79.0	79.7	117.2	92.5
0.8	46.9	47.6	79.6	79.9	117.2	92.5

490 4.7 IMPACT OF EXTERNAL KNOWLEDGE BASE SIZE
491492 To investigate how performance varies with the size of the external knowledge base, we conducted
493 experiments on MSCOCO using external samples ranging from 5k to 15k. As shown in Table 8,
494 the results demonstrate a monotonic improvement as the size of the external KB increases, though
495 with diminishing returns at larger sizes. This suggests that while a larger external KB offers richer
496 exemplars and broader coverage, our method does not depend on extremely large corpora to perform
497 effectively—competitive performance is already achieved with just 5k external samples.
498499 Table 8: Performance of RAG4DMC with different number of external knowledge base samples.
500

Number of External KB	I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
5000	46.0	46.6	78.6	78.8	116.4	92.4
10000	46.6	47.5	79.0	79.7	117.2	92.5
15000	47.1	48.1	79.3	80.1	117.5	92.7

503 4.8 COMPLEXITY ANALYSIS
504505 In Appendix A.9., we provide a detailed theoretical complexity analysis for each component in
506 our pipeline. As shown there, the dominant factors are the number of samples N , the number of
507 clusters k , and the feature dimension d . We supplemented experiments measuring the runtime for
508 each module under varying N , k , and d , on an NVIDIA GeForce RTX 3090 GPU.
509510 As summarized in Table 9, under the largest tested configuration ($N = 1k+10k$, $k = 128$,
511 $d = 1024$), the end-to-end pipeline—including knowledge filtering, cross-domain alignment, and
512 bidirectional MLP training—completes in approximately 629 s (10.48 minutes), while retrieval
513 remains extremely lightweight (0.0031 s). Thus, although the pipeline involves clustering and nearest-
514 neighbor search, the overall computational overhead is clearly manageable in practice. Table 9
515 further breaks down the major sources of computation: (i) K-means is most sensitive to N and k ,
516 consistent with its standard computational behavior; (ii) Cross-domain alignment scales primarily
517 with d , since nearest-neighbor search is performed in the feature space; (iii) Bidirectional MLP
518 training dominates the total runtime but is largely insensitive to N and k , as it operates only on in-
519 ternal feature representations and is mainly driven by d ; (iv) Filtering and retrieval incur negligible
520 cost across all configurations.
521522 Overall, these results demonstrate that the scaling behaviors of all modules are predictable and well
523 controlled. Importantly, none of the components introduce unexpected or prohibitive overhead.
524 Moreover, users may flexibly adjust N , k , and d to trade off between efficiency and accuracy, en-
525 abling deployment under different computational budgets.
526527 Table 9: Time cost (in seconds) of each module under different settings.
528

Configuration	K-means Clustering	Filtering	Cross-Domain Alignment	Cross-Modal Mapping	Multi-Modal Retrieval
$N = 1k + 5k, k = 128, d = 512$	21.43	0.30	0.40	405.17	0.0012
$N = 1k + 10k, k = 128, d = 512$	39.14	0.64	0.55	407.14	0.0014
$N = 1k + 20k, k = 128, d = 512$	112.87	1.35	0.99	406.25	0.0017
$N = 1k + 10k, k = 64, d = 512$	32.98	0.58	0.52	408.95	0.0015
$N = 1k + 10k, k = 256, d = 512$	46.97	0.78	0.54	408.98	0.0015
$N = 1k + 10k, k = 128, d = 768$	53.49	0.82	1.43	499.29	0.0018
$N = 1k + 10k, k = 128, d = 1024$	92.20	0.88	2.01	533.85	0.0031

532 5 CONCLUSION
533534 This paper proposes RAG4DMC, a retrieval-augmented framework for data-level missing modal-
535 ity completion. Our approach leverages a dual knowledge base and multi-modal fusion retrieval
536 with semantic-quality-based candidate selection to generate faithful and semantically coherent com-
537 pletions. Extensive experiments on both general-domain and domain-specific datasets demonstrate
538 that RAG4DMC consistently outperforms existing baselines, significantly improving the training
539 performance of downstream models on image–text retrieval and captioning tasks.
540

540 REFERENCES
541

542 Mohammad Mahdi Abootorabi, Amirhosein Zobeiri, Mahdi Dehghani, Mohammadali Mohammad-
543 khani, Bardia Mohammadi, Omid Ghahroodi, Mahdieh Soleymani Baghshah, and Ehsaneddin
544 Asgari. Ask in any modality: A comprehensive survey on multimodal retrieval-augmented gen-
545 eration. *arXiv preprint arXiv:2502.08826*, 2025.

546 Qimin Cheng, Haiyan Huang, Yuan Xu, Yuzhuo Zhou, Huanying Li, and Zhongyuan Wang. Nwpu-
547 captions dataset and mlca-net for remote sensing image captioning. *IEEE Transactions on Geo-
548 science and Remote Sensing*, 60:1–19, 2022.

549 Tiantian Feng, Daniel Yang, Digbalay Bose, and Shrikanth Narayanan. Can text-to-image model
550 assist multi-modal learning for visual recognition with visual modality missing? In *Proceedings
551 of the 26th International Conference on Multimodal Interaction*, pp. 124–133, 2024.

552 Zirun Guo, Tao Jin, and Zhou Zhao. Multimodal prompt learning with missing modalities for
553 sentiment analysis and emotion recognition. *arXiv preprint arXiv:2407.05374*, 2024.

554 Xiaoshuai Hao, Yi Zhu, Srikanth Appalaraju, Aston Zhang, Wanqian Zhang, Bo Li, and Mu Li. Mix-
555 gen: A new multi-modal data augmentation. In *Proceedings of the IEEE/CVF winter conference
556 on applications of computer vision*, pp. 379–389, 2023.

557 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
558 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
559 neural information processing systems*, 30, 2017.

560 Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
561 domain question answering. *arXiv preprint arXiv:2007.01282*, 2020.

562 Tianzhe Jiao, Chaopeng Guo, Xiaoyue Feng, Yuming Chen, and Jie Song. A comprehensive sur-
563vey on deep learning multi-modal fusion: Methods, technologies and applications. *Computers,
564 Materials & Continua*, 80(1), 2024.

565 Xiaomeng Jin, Jeonghwan Kim, Yu Zhou, Kuan-Hao Huang, Te-Lin Wu, Nanyun Peng, and Heng
566 Ji. Armada: Attribute-based multimodal data augmentation. *arXiv preprint arXiv:2408.10086*,
567 2024.

568 Guanzhou Ke, Shengfeng He, Xiao Li Wang, Bo Wang, Guoqing Chao, Yuanyang Zhang, Yi Xie,
569 and HeXing Su. Knowledge brider: Towards training-free missing multi-modality completion.
570 *arXiv preprint arXiv:2502.19834*, 2025.

571 Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
572 Word translation without parallel data. In *International conference on learning representations*,
573 2018.

574 Jian Lang, Rongpei Hong, Zhangtao Cheng, Ting Zhong, Yong Wang, and Fan Zhou. Redeeming
575 modality information loss: Retrieval-guided conditional generation for severely modality missing
576 learning. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
577 Data Mining* V. 2, pp. 1241–1252, 2025.

578 Yi-Lun Lee, Yi-Hsuan Tsai, Wei-Chen Chiu, and Chen-Yu Lee. Multimodal prompting with missing
579 modalities for visual recognition. In *Proceedings of the IEEE/CVF Conference on Computer
580 Vision and Pattern Recognition*, pp. 14943–14952, 2023.

581 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
582 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
583 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
584 9459–9474, 2020.

585 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
586 training for unified vision-language understanding and generation. In *International conference on
587 machine learning*, pp. 12888–12900. PMLR, 2022.

594 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 595 pre-training with frozen image encoders and large language models. In *International conference*
 596 *on machine learning*, pp. 19730–19742. PMLR, 2023.

597

598 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 599 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 600 *conference on computer vision*, pp. 740–755. Springer, 2014.

601 Weizhe Lin and Bill Byrne. Retrieval augmented visual question answering with outside knowledge.
 602 *arXiv preprint arXiv:2210.03809*, 2022.

603

604 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 605 *in neural information processing systems*, 36:34892–34916, 2023.

606

607 Xiaoqiang Lu, Binqiang Wang, Xiangtao Zheng, and Xuelong Li. Exploring models and data for
 608 remote sensing image caption generation. *IEEE Transactions on Geoscience and Remote Sensing*,
 56(4):2183–2195, 2017.

609

610 Mengmeng Ma, Jian Ren, Long Zhao, Sergey Tulyakov, Cathy Wu, and Xi Peng. Smil: Multimodal
 611 learning with severely missing modality. In *Proceedings of the AAAI conference on artificial*
 612 *intelligence*, volume 35, pp. 2302–2310, 2021.

613

614 Vittorio Pipoli, Alessia Saporita, Federico Bolelli, Marcella Cornia, Lorenzo Baraldi, Costantino
 615 Grana, Rita Cucchiara, Elisa Ficarra, et al. Missrag: Addressing the missing modality challenge
 616 in multimodal large language models. In *Proceedings of the 2025 IEEE/CVF International Con-*
 617 *ference on Computer Vision*, 2025.

618

619 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 620 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 621 models from natural language supervision. In *International conference on machine learning*, pp.
 622 8748–8763. PmLR, 2021.

623

624 Monica Riedler and Stefan Langer. Beyond text: Optimizing rag with multimodal inputs for indus-
 625 trial applications. *arXiv preprint arXiv:2410.21943*, 2024.

626

627 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 628 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 629 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

630

631 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
 632 hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of the 56th*
 633 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 634 2556–2565, 2018.

635

636 Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
 637 description evaluation. In *Proceedings of the IEEE conference on computer vision and pattern*
 638 *recognition*, pp. 4566–4575, 2015.

639

640 Hu Wang, Yuanhong Chen, Congbo Ma, Jodie Avery, Louise Hull, and Gustavo Carneiro. Multi-
 641 modal learning with missing modality via shared-specific feature modelling. In *Proceedings of*
 642 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15878–15887, 2023a.

643

644 Ning Wang, Jiangrong Xie, Hang Luo, Qinglin Cheng, Jihao Wu, Mingbo Jia, and Linlin Li. Ef-
 645 ficient image captioning for edge devices. In *Proceedings of the AAAI conference on artificial*
 646 *intelligence*, volume 37, pp. 2608–2616, 2023b.

647

648 Yuanzhi Wang, Zhen Cui, and Yong Li. Distribution-consistent modal recovering for incomplete
 649 multimodal learning. In *Proceedings of the IEEE/CVF International Conference on Computer*
 650 *Vision*, pp. 22025–22034, 2023c.

651

652 Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey.
 653 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(10):12113–12132, 2023.

648 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
 649 denotations: New similarity metrics for semantic inference over event descriptions. *Transactions*
 650 *of the association for computational linguistics*, 2:67–78, 2014.
 651

652 Yuan Yuan, Zhaojian Li, and Bin Zhao. A survey of multimodal learning: Methods, applications,
 653 and future. *ACM Computing Surveys*, 57(7):1–34, 2025.
 654

655 Tao Zhang, Ziqi Zhang, Zongyang Ma, Yuxin Chen, Zhongang Qi, Chunfeng Yuan, Bing Li, Junfu
 656 Pu, Yuxuan Zhao, Zehua Xie, et al. mr² ag: Multimodal retrieval-reflection-augmented genera-
 657 tion for knowledge-based vqa. *arXiv preprint arXiv:2411.15041*, 2024.
 658

659 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
 660 ing text generation with bert. *arXiv preprint arXiv:1904.09675*, 2019.
 661

662 Jinming Zhao, Ruichen Li, and Qin Jin. Missing modality imagination network for emotion recog-
 663 nition with uncertain missing modalities. In *Proceedings of the 59th Annual Meeting of the As-
 664 sociation for Computational Linguistics and the 11th International Joint Conference on Natural
 665 Language Processing (Volume 1: Long Papers)*, pp. 2608–2618, 2021.
 666

667 Shu Zhao, Xiaohan Zou, Tan Yu, and Huijuan Xu. Reconstruct before query: Continual miss-
 668 ing modality learning with decomposed prompt collaboration. *arXiv preprint arXiv:2403.11373*,
 669 2024.
 670

671 Wenqian Zhao, Kai Yang, Peijin Ding, Ce Na, and Wen Li. Graph attention contrastive learning
 672 with missing modality for multimodal recommendation. *Knowledge-Based Systems*, 311:113035,
 673 2025.
 674

675 A APPENDIX

676 A.1 THE FRAMEWORK OF RAG4DMC

677 A.2 CLUSTERING-BASED KNOWLEDGE FILTERING FOR TEXT EMBEDDINGS

678 For the text modality, the internal and external text embeddings are denoted as $\mathbf{z}^{T,\text{int}}$ and $\mathbf{z}^{T,\text{ext}}$,
 679 and processed analogously to the image modality. We apply K -means to obtain cluster centroids,
 680 computed as the average embedding:
 681

$$682 \mu_p^{T,\text{int}} = \frac{1}{|c_p^{T,\text{int}}|} \sum_{\mathbf{z}_i^{T,\text{int}} \in c_p^{T,\text{int}}} \mathbf{z}_i^{T,\text{int}}, \quad \mu_q^{T,\text{ext}} = \frac{1}{|c_q^{T,\text{ext}}|} \sum_{\mathbf{z}_m^{T,\text{ext}} \in c_q^{T,\text{ext}}} \mathbf{z}_m^{T,\text{ext}}. \quad (22)$$

683 Each external centroid $\mu_q^{T,\text{ext}}$ is matched to its closest internal centroid $\mu_p^{T,\text{int}}$:

$$684 p_q^T = \arg \max_p \cos(\mu_q^{T,\text{ext}}, \mu_p^{T,\text{int}}), \quad (23)$$

685 and we define centroid-level and instance-level similarities as

$$686 s_{\text{cent}}^T = \cos(\mu_q^{T,\text{ext}}, \mu_{p_q^T}^{T,\text{int}}), \quad s_{\text{inst}}^T = \cos(\mathbf{z}_m^{T,\text{ext}}, \mu_{p_q^T}^{T,\text{int}}), \quad (24)$$

687 where $\mathbf{z}_m^{T,\text{ext}} \in c_q^{T,\text{ext}}$. Clusters and instances are then filtered hierarchically: we first prune clusters
 688 with low centroid similarity and then filter embeddings within the retained clusters:
 689

$$690 C_{\text{keep}}^T = \{c_q^{T,\text{ext}} \mid s_{\text{cent}}^T \geq \tau_{\text{cent}}\}, \quad (25)$$

$$691 \mathcal{Z}_{\text{keep}}^T = \{\mathbf{z}_m^{T,\text{ext}} \mid \mathbf{z}_m^{T,\text{ext}} \in c_q^{T,\text{ext}}, s_{\text{inst}}^T \geq \tau_{\text{inst}}, c_q^{T,\text{ext}} \in C_{\text{keep}}^T\}. \quad (26)$$

702 **Algorithm 1** The Framework of Dual Knowledge Base Construction

703

704 **Require:** Internal data \mathcal{D} , external data \mathcal{D}_{ext} ; frozen encoders E_I, E_T ; mapping MLPs
 $f_{I \rightarrow T}, f_{T \rightarrow I}$; number of clusters K ; thresholds $\tau_{\text{cent}}, \tau_{\text{inst}}$; tolerance ϵ

705 **Ensure:** Multi-modal knowledge base \mathcal{K} , trained mapping MLPs $f_{I \rightarrow T}, f_{T \rightarrow I}$

706 1: Construct paired sets: $\mathcal{P}_{\text{int}} = \{(x_i^{I,\text{int}}, x_i^{T,\text{int}})\}, \mathcal{P}_{\text{ext}} = \{(x_m^{I,\text{ext}}, x_m^{T,\text{ext}})\}.$

707 2: **for** $(x_i^{I,\text{int}}, x_i^{T,\text{int}}) \in \mathcal{P}_{\text{int}}$ **do**

708 3: $z_i^{I,\text{int}} \leftarrow E_I(x_i^{I,\text{int}}), z_i^{T,\text{int}} \leftarrow E_T(x_i^{T,\text{int}})$ ▷ Eq. 1

709 4: **end for**

710 5: **for** $(x_m^{I,\text{ext}}, x_m^{T,\text{ext}}) \in \mathcal{P}_{\text{ext}}$ **do**

711 6: $z_m^{I,\text{ext}} \leftarrow E_I(x_m^{I,\text{ext}}), z_m^{T,\text{ext}} \leftarrow E_T(x_m^{T,\text{ext}})$ ▷ Eq. 2

712 7: **end for**

713 8: // Cross-modal bidirectional mapping

714 9: Train $f_{I \rightarrow T}, f_{T \rightarrow I}$ on internal pairs $(z_i^{I,\text{int}}, z_i^{T,\text{int}})$ ▷ Eq. 3

715 10: // Clustering-based knowledge filtering (image modality)

716 11: Run K -means on $\{z_i^{I,\text{int}}\}$ and $\{z_m^{I,\text{ext}}\}$ to obtain centroids $\{\mu_p^{I,\text{int}}\}_{p=1}^K, \{\mu_q^{I,\text{ext}}\}_{q=1}^K$. ▷ Eq. 4

717 12: **for** each external cluster $q = 1, \dots, K$ **do**

718 13: $p_q^I \leftarrow \arg \max_p \cos(\mu_q^{I,\text{ext}}, \mu_p^{I,\text{int}})$ ▷ Eq. 5

719 14: $s_{\text{cent}}^I \leftarrow \cos(\mu_q^{I,\text{ext}}, \mu_{p_q^I}^{I,\text{int}})$ ▷ Eq. 6

720 15: **if** $s_{\text{cent}}^I < \tau_{\text{cent}}$ **then**

721 16: **drop** cluster q

722 17: **else**

723 18: keep cluster q , add to $\mathcal{C}_{\text{keep}}^I$

724 19: **end if**

725 20: **end for**

726 21: **for** each cluster $c_q^{I,\text{ext}} \in \mathcal{C}_{\text{keep}}^I$ **do**

727 22: **for** each sample $z_m^{I,\text{ext}} \in c_q^{I,\text{ext}}$ **do**

728 23: $s_{\text{inst}}^I \leftarrow \cos(z_m^{I,\text{ext}}, \mu_{p_q^I}^{I,\text{int}})$ ▷ Eq. 6

729 24: **if** $s_{\text{inst}}^I < \tau_{\text{inst}}$ **then**

730 25: **drop** $z_m^{I,\text{ext}}$

731 26: **else**

732 27: keep $z_m^{I,\text{ext}}$

733 28: **end if**

734 29: **end for**

735 30: **end for**

736 31: Repeat the same procedure for text embeddings $(z^{T,\text{int}}, z^{T,\text{ext}})$ to obtain $\mathcal{C}_{\text{keep}}^T$ and $\mathcal{Z}_{\text{keep}}^T$. (see
737 Appendix A.2)

738 32: // Cross-domain alignment (Procrustes, modality-specific)

739 33: Build image MNN pairs $\{(z_i^{I,\text{int}}, z_m^{I,\text{ext}})\}$ and text MNN pairs $\{(z_i^{T,\text{int}}, z_m^{T,\text{ext}})\}$ using CSLS.

740 34: Solve $W_I^* = \arg \min_{W \in O(d)} \|Z_{\text{int}}^I - Z_{\text{ext}}^I W\|_F^2, W_T^* = \arg \min_{W \in O(d)} \|Z_{\text{int}}^T - Z_{\text{ext}}^T W\|_F^2$ ▷ Eq. 9

741 35: Iteratively refine W_I^*, W_T^* until convergence $\|W^{(r)} - W^{(r-1)}\|_F < \epsilon$.

742 36: // Knowledge base construction

743 37: Project external embeddings: $\tilde{Z}_{\text{ext}}^I = Z_{\text{ext}}^I W_I^*, \tilde{Z}_{\text{ext}}^T = Z_{\text{ext}}^T W_T^*$ ▷ Eq. 10

744 38: $\mathcal{K}_{\text{int}} = \{x^I, z^I, x^T, z^T\}; \mathcal{K}_{\text{ext}} = \{x^{I,\text{ext}}, \tilde{z}^{I,\text{ext}}, x^{T,\text{ext}}, \tilde{z}^{T,\text{ext}}\}$ ▷ Eq. 11

745 39: $\mathcal{K} = \mathcal{K}_{\text{int}} \cup \mathcal{K}_{\text{ext}}$ ▷ Eq. 12

746 40: **return** $\mathcal{K}, f_{I \rightarrow T}, f_{T \rightarrow I}$

A.3 ANALYSIS OF CLUSTERING-BASED KNOWLEDGE FILTERING

751 **Imbalanced clusters.** In small or imbalanced clusters, outliers may severely bias the centroid μ_c ,
752 rendering centroid-based decisions unreliable. For a cluster c with size $|c|$ and sample embeddings
753 $\{z(x) \mid x \in c\}$, its centroid is μ_c . We compute the average cluster radius as

754
$$u_c = \frac{1}{|c|} \sum_{x \in c} \|z(x) - \mu_c\|_2, \quad (27)$$

755

756 **Algorithm 2** The Workflow of Multi-Modal Fusion Retrieval and Candidate Selection

757 **Require:** Knowledge base \mathcal{K} ; encoders E_I, E_T ; maps $f_{I \rightarrow T}, f_{T \rightarrow I}$; generators G_{I2T}
758 (image \rightarrow text), G_{T2I} (text \rightarrow image); retrieval size k ; fusion weight α ; number of candidates
759 n ; weights λ_1, λ_2
760 **Ensure:** Completed internal dataset $\hat{\mathcal{D}}$

761 1: // **Image \rightarrow Text**
762 2: $z_j^I = E_I(x_j^I)$; $\hat{z}_j^T = f_{I \rightarrow T}(z_j^I)$ ▷ Eq. 13
763 3: **for** candidate r in knowledge base \mathcal{K} **do**
764 4: $s_{\text{img}}(r) \leftarrow \cos(z_j^I, z_r^I)$ ▷ Eq. 14
765 5: **end for**
766 6: $\sigma \leftarrow \text{argsort}_r(-s_{\text{img}}(r), r)$; $\mathcal{A} \leftarrow \{\sigma(1), \dots, \sigma(k)\}$ ▷ Eq. 15–16
767 7: **for** $r \in \mathcal{A}$ **do**
768 8: $\text{sim}_{\text{fuse}}(r) \leftarrow \alpha \cos(z_j^I, z_r^I) + (1 - \alpha) \cos(\hat{z}_j^T, z_r^T)$ ▷ Eq. 17
769 9: **end for**
770 10: $\pi \leftarrow \text{argsort}_{r \in \mathcal{A}}(-\text{sim}_{\text{fuse}}(r), r)$ ▷ Eq. 18
771 11: Reorder \mathcal{A} and select top-1 caption $x_{r^*}^T$
772 12: Build prompt \mathcal{P}
773 13: Generate n caption candidates $\{\tilde{x}_1^T, \dots, \tilde{x}_n^T\} \leftarrow G_{I2T}(x_j^I, \mathcal{P})$ ▷ Eq. 19
774 14: // **Text \rightarrow Image**
775 15: $z_h^T = E_T(x_h^T)$; $\hat{z}_h^I = f_{T \rightarrow I}(z_h^T)$ ▷ Eq. 29
776 16: **for** candidate r in knowledge base \mathcal{K} **do**
777 17: $s_{\text{text}}(r) \leftarrow \cos(z_h^T, z_r^T)$ ▷ Eq. 30
778 18: **end for**
779 19: $\sigma \leftarrow \text{argsort}_r(-s_{\text{text}}(r), r)$; $\mathcal{A} \leftarrow \{\sigma(1), \dots, \sigma(k)\}$ ▷ Eq. 30
780 20: **for** $r \in \mathcal{A}$ **do**
781 21: $\text{sim}_{\text{fuse}}(r) \leftarrow \alpha \cos(z_h^T, z_r^T) + (1 - \alpha) \cos(\hat{z}_h^I, z_r^I)$ ▷ Eq. 31
782 22: **end for**
783 23: Reorder \mathcal{A} and select top-1 image $x_{r^*}^I$
784 24: Generate n image candidates $\{\tilde{x}_1^I, \dots, \tilde{x}_n^I\} \leftarrow G_{T2I}(x_h^T, x_{r^*}^I)$ ▷ Eq. 32
785 25: // **Candidate Selection**
786 26: // Text candidates
787 27: $s_T(\tilde{x}_j^T) = \lambda_1 \cos(E_T(\tilde{x}_j^T), \hat{z}^T) + \lambda_2 \text{BLEU}(\tilde{x}_j^T)$ ▷ Eq. 20
788 28: // Image candidates
789 29: $s_I(\tilde{x}_j^I) = \lambda_1 \cos(E_I(\tilde{x}_j^I), \hat{z}^I) - \lambda_2 \text{NIQE}(\tilde{x}_j^I)$ ▷ Eq. 21
790 30: Select the candidate with the highest score as the final completion
791 31: **return** $\hat{\mathcal{D}}$

791 and let \bar{u} denote the average radius across all clusters. A cluster is regarded as *imbalanced* if $u_c >$
792 $\beta \cdot \bar{u}$, with $\beta = 2$ in our experiments. For such clusters, we adopt more robust representatives instead
793 of plain centroids. Specifically, we use the ν_c , defined as

$$\nu_c = \arg \min_{x \in c} \sum_{y \in c} \|z(x) - z(y)\|_2, \quad (28)$$

794 which is the most central sample in c and less sensitive to outliers.

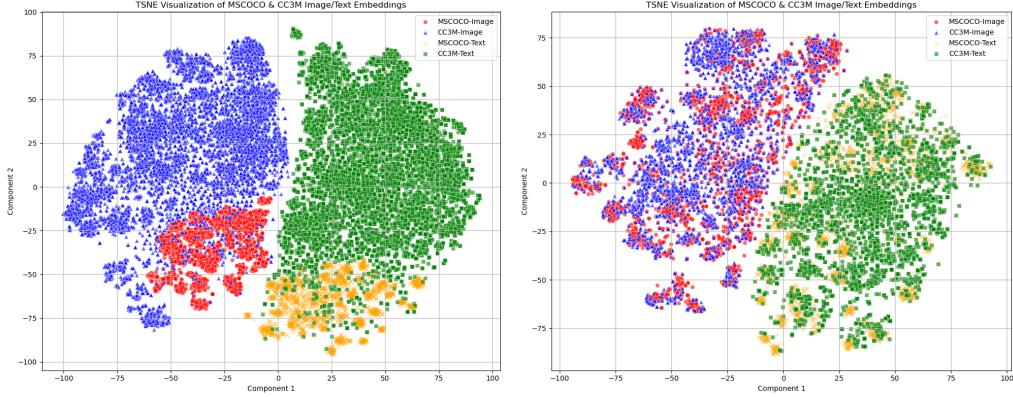
795 **Sensitivity to thresholds.** We further analyze the impact of τ_{cent} and τ_{inst} . If the thresholds are
796 set too high, only very close samples are retained, reducing coverage and harming downstream per-
797 formance. If the thresholds are set too low, many noisy or irrelevant external samples are included,
798 introducing excessive noise and again degrading performance. Our experiments show that per-
799 formance improves as the thresholds increase up to a moderate range, but deteriorates once they are
800 either too strict or too relaxed. Based on this observation, we set both thresholds to 0.7, which
801 provides a stable trade-off between precision and recall.

802 **A.4 VISUALIZATION OF KNOWLEDGE ALIGNMENT**

803 To illustrate the necessity and effectiveness of our knowledge filtering and alignment, we visualize
804 the embeddings of the internal dataset (MSCOCO) and an external dataset (CC3M) using t-SNE
805 before and after alignment.

810 **Before alignment.** As shown in Fig. 2, the embeddings from the two datasets form distinct clusters,
 811 reflecting the domain gap. Although semantically related (both are natural image–text corpora),
 812 the representations are not directly compatible.
 813

814 **After alignment.** As shown in Fig. 2, after applying our knowledge filtering and alignment, the
 815 external embeddings are rotated into the internal space, and semantically similar samples from both
 816 datasets become much closer, indicating successful mitigation of domain shift.
 817



818 Figure 2: t-SNE visualization of MSCOCO and CC3M embeddings before (left) and after (right)
 819 alignment.
 820

834 A.5 MULTI-MODAL RETRIEVAL FOR TEXT-ONLY CASE

836 Given an unpaired text x_h^T , we extract its embedding $z_h^T = E_T(x_h^T)$ and obtain a pseudo-image
 837 embedding via the learned mapping:

$$839 \quad \hat{z}_h^I = f_{T \rightarrow I}(z_h^T). \quad (29)$$

840 We perform intra-modal retrieval over \mathcal{K} by text similarity and take the top- k candidates:
 841

$$842 \quad s_{\text{text}}(r) = \cos(z_h^T, z_r^T), \quad \sigma = \underset{r}{\text{argsort}}(-s_{\text{text}}(r), r), \quad \mathcal{A} = \{\sigma(1), \dots, \sigma(k)\}, \quad |\mathcal{A}| = k. \quad (30)$$

844 For $r \in \mathcal{A}$, we compute a fused score and pick the best exemplar image:
 845

$$846 \quad \text{sim}_{\text{fuse}}(r) = \alpha \cos(z_h^T, z_r^T) + (1 - \alpha) \cos(\hat{z}_h^I, z_r^I), \quad r^* = \underset{r \in \mathcal{A}}{\arg \max} \text{sim}_{\text{fuse}}(r). \quad (31)$$

848 Finally, we feed the text x_h^T and the retrieved reference image $x_{r^*}^I$ into the text-to-image generator
 849 G_{T2I} to produce the completed sample:
 850

$$851 \quad \tilde{x}^I = G_{T2I}(x_h^T, x_{r^*}^I). \quad (32)$$

852 A.6 DETAILS ON PROCRUSTES ALIGNMENT

854 In practice, all filtered external embeddings are considered during mutual nearest neighbor (MNN)
 855 matching. If an external embedding is linked to multiple internal embeddings, we retain only the
 856 pair with the highest CSLS score to ensure a one-to-one mapping. When the internal and external
 857 datasets differ greatly in size, we randomly subsample the larger side to balance the number of pairs
 858 used for alignment. Since Procrustes alignment is based on one-to-one MNN pairs, the number
 859 of effective seed pairs is bounded by the size of the internal dataset. Although this means that at
 860 most $|\mathcal{D}|$ external embeddings are directly used for learning the mapping, having a large external
 861 pool remains beneficial as it increases the chance of finding reliable MNN pairs. After learning the
 862 alignment from these one-to-one pairs, the resulting Procrustes transformation is applied to the entire
 863 external knowledge base, projecting all external embeddings into the internal space for subsequent
 864 retrieval.

864 A.7 THEORETICAL DERIVATION OF ORTHOGONAL ALIGNMENT
865

866 The goal of cross-domain alignment is to map external embeddings $Z_{\text{ext}} \in \mathbb{R}^{n \times d}$ into the internal
867 embedding space $Z_{\text{int}} \in \mathbb{R}^{n \times d}$ while preserving geometric structure. Formally, this corresponds
868 to solving the orthogonal Procrustes problem defined in Eq. 9. For clarity, the following derivation
869 is presented without modality superscripts, but applies equally to both image (Z^I) and text (Z^T)
870 embeddings.

871 **Closed-form solution.** Expanding the Frobenius norm, the optimization is equivalent to
872

$$873 \max_{W \in O(d)} \text{Tr}(W^\top M), \quad \text{where } M = Z_{\text{ext}}^\top Z_{\text{int}}. \\ 874$$

875 Let the singular value decomposition (SVD) of M be
876

$$877 M = U \Sigma V^\top, \\ 878$$

879 with $U, V \in \mathbb{R}^{d \times d}$ orthogonal and $\Sigma \in \mathbb{R}^{d \times d}$ diagonal. The optimal alignment matrix is
880

$$881 W^* = U V^\top, \\ 882$$

883 which yields the aligned external embeddings as given in Eq. 10.
884

885 **Iterative refinement.** Since exact correspondence between Z_{ext} and Z_{int} is unknown, we refine
886 W^* iteratively following (Lample et al., 2018): (i) update mutual nearest neighbor (MNN) pairs
887 using CSLS on the current aligned embeddings; (ii) recompute W^* via the SVD step above; (iii)
888 repeat until convergence, i.e.,

$$889 \|W^{(s)} - W^{(s-1)}\|_F < \epsilon, \\ 890$$

891 for a small threshold ϵ , where s indexes the iteration.
892

893 **Domain-consistent embedding space.** After convergence, internal and external embeddings are
894 merged into a unified space. The internal embeddings remain fixed as the anchor space (standardized
895 by their own mean and scale), while the learned mapping W^* is applied solely to external
896 embeddings, ensuring domain-consistent representations.
897

898 A.8 DATASET SPLITS AND IMPLEMENTATION DETAILS.
899

900 **Dateset Splits.** From MSCOCO, we sample 10k training instances and construct a modality-missing
901 dataset where each modality has a 35% missing rate, resulting in a total missing rate of 70%. For
902 Flickr30K, we use 5k training instances with a 20% missing rate per modality, yielding an overall
903 missing rate of 40%. For RSICD, all 8,743 training samples are utilized with a 20% missing rate per
904 modality, corresponding to a total missing rate of 40%. Since both CC3M and NWPU-Caption are
905 large-scale, we randomly sample 10k entries from each to construct the external knowledge base.
906

907 **Implementation Details.** For knowledge alignment, we cluster embeddings with KMeans ($k =$
908 128), apply thresholds $\tau_{\text{cent}}, \tau_{\text{inst}} = 0.7$, and refine the alignment using Procrustes analysis (5
909 iterations). During knowledge-constrained completion, we retrieve top- $k = 10$ candidates and $\alpha =$
910 0.5 for conditioning. For candidate selection, we set $\lambda_1 = 0.7$ and $\lambda_2 = 0.3$ to balance semantic
911 similarity and quality scores.
912

913 A.9 COMPLEXITY ANALYSIS
914

915 We analyze the asymptotic cost of each component. Let N be the number of entries (per modality)
916 in the knowledge base, d the embedding dimension, K the number of clusters, s the number of
917 alignment refinements, k the retrieval shortlist size, n the number of generated candidates, and
918 $P = |\mathcal{P}_{\text{int}}|$ the number of internal image–text pairs used to train the mapping.
919

920 **Cross-modal mapping** ($f_{I \rightarrow T}, f_{T \rightarrow I}$). Training the lightweight MLPs on P paired samples scales
921 linearly in both P and d . With e epochs (and fixed-width MLP), the cost is $O(e P d^2)$.
922

918 **Knowledge filtering (clustering + thresholding).** K -means over N embeddings per modality
 919 costs $O(NKd)$. Matching cluster centroids and computing centroid/instance similarities add at
 920 most $O(K^2d) + O(Nd)$, so the filtering step remains dominated by $O(NKd)$.
 921

922 **Cross-domain alignment (MNN + Procrustes).** Let N_f be the number of *filtered* embeddings
 923 that enter alignment (per modality). Per refinement step:

924

- 925 • Mutual nearest neighbor (MNN) construction with CSLS requires nearest-neighbor search
 926 across domains: $O(N_f^2d)$.
- 927 • Procrustes: form $M = Z_{\text{ext}}^\top Z_{\text{int}}$ in $O(N_f d^2)$, then SVD on $d \times d$ in $O(d^3)$.

928 With s refinements, the alignment cost is $O(s [N_f^2d + N_f d^2 + d^3])$.

930 **Retrieval-based completion (two-stage retrieval + candidate scoring).** Given a query embed-
 931 ding (image or text): $O(Nd) + O(kd) + O(nd)$.
 932

933 **Overall.** Summing the components yields $O(e P d^2) + O(NKd) + O(s [N_f^2d + N_f d^2 + d^3]) +$
 934 $O(Nd + kd + nd)$. In typical settings with fixed $d \ll N$ and small k, n , the dominant terms are
 935 $O(NKd)$ (filtering), the MNN search inside alignment, and the intra-modal retrieval term.
 936

937 A.10 EXPERIMENTS WITH STRONGER GENERATORS

939 To examine the effect of stronger generation models, we conducted additional experiments using
 940 enhanced image captioning and text-to-image models. As shown in Table 10, upgrading the gener-
 941 ators (e.g., from BLIP2 + Stable Diffusion XL 1.0 to LLaVA-1.5 (Liu et al., 2023) + Juggernaut-XL)
 942 improves the performance of Direct Generation across both retrieval and captioning metrics. Not-
 943 ably, RAG4DMC achieves 49.1 / 49.4 R@1 and 117.9 CIDEr, outperforming the enhanced Direct
 944 Generation baseline by a clear margin. These results demonstrate that while stronger generators
 945 can enhance Direct Generation, RAG4DMC consistently provides additional gains on top of any
 946 generation backbone. This reinforces that our method improves modality completion beyond what
 947 generator quality alone can achieve.

948 Table 10: Performance of Direct Generation and RAG4DMC with different generation models.

949

Method	Generation Models	I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
Direct Generation	Blip2 and Stable Diffusion-XL	41.4	43.9	75.4	76.3	112.2	92.2
Direct Generation	LLaVA-1.5 and Juggernaut-XL	45.8	47.2	78.3	78.0	113.0	92.2
RAG4DMC	Blip2 and Stable Diffusion-XL	46.6	47.5	79.0	79.7	117.2	92.5
RAG4DMC	LLaVA-1.5 and Juggernaut-XL	49.1	49.4	81.7	81.4	117.9	92.6

954 A.11 ABLATION STUDY ON MULTI-MODAL FUSION SCORE

956 To evaluate whether the proposed multi-modal fusion score (sim_{fuse}) provides additional benefits
 957 beyond standard top-k retrieval, we conducted an ablation study comparing three settings: (i) Top-k:
 958 One exemplar is randomly selected from the retrieved top-k candidates and fed into the generator; (ii)
 959 Top-k-all: All k retrieved exemplars are fed into the generator (i.e., no fusion and no selection); (iii)
 960 RAG4DMC: Our proposed fusion score is used to select the best exemplar among the k candidates
 961 and feed it into the generator.

962 As shown in Table 11, Top-k-all performs the worst, likely because feeding all retrieved samples
 963 into the generator introduces excessive or noisy context. Top-k performs better, but RAG4DMC
 964 achieves the best results across all metrics, improving both retrieval (e.g., +0.6 R@1 over Top-k)
 965 and captioning (e.g., +1.0 CIDEr). These results demonstrate that the fused score effectively selects
 966 the most semantically aligned exemplar, yielding consistent performance gains over naive top-k
 967 retrieval strategies.

968 A.12 ABLATION STUDY ON CROSS-DOMAIN ALIGNMENT ITERATIONS

969 To evaluate the effect of varying the number of cross-domain alignment iterations, we conducted
 970 experiments with 3, 4, and 5 iterations. As shown in Table 12, varying the number of iterations

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 11: Performance of RAG4DMC with different retrieval methods.

Method	I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
Top-k	46.0	46.7	78.4	78.8	116.0	92.3
Top-k-all	43.7	45.4	76.2	75.8	115.5	92.2
RAG4DMC	46.5	47.3	78.9	79.5	117.0	92.5

from 3 to 5 results in only marginal performance improvements (e.g., I2T R@1: 46.2 → 46.6; CIDEr: 116.3 → 117.2), demonstrating that the method is not highly sensitive to this parameter.

Table 12: Performance of RAG4DMC with different number of cross-domain alignment iterations.

Number of Iterations	I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
3	46.2	46.7	78.6	78.8	116.3	92.4
4	46.4	46.9	78.8	79.2	116.8	92.4
5	46.6	47.5	79.0	79.7	117.2	92.5

A.13 ABLATION STUDY ON CANDIDATE SELECTION WEIGHTS (λ_1 AND λ_2)

To examine the effect of candidate selection weights, we conducted experiments by varying λ_1 and λ_2 . As shown in Table 13, varying these weights leads to moderate but controlled changes in performance. Importantly, RAG4DMC continues to outperform baseline methods across all tested settings.

Table 13: Performance of RAG4DMC with different λ_1 and λ_2 values.

λ_1	λ_2	I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
0.7	0.3	47.7	48.5	80.1	80.3	121.5	92.6
0.5	0.5	47.2	48.4	80.1	80.4	121.3	92.6
0.3	0.7	46.4	47.5	79.0	79.7	120.9	92.5

A.14 SEMANTIC AND FIDELITY EVALUATION OF GENERATED DATA

To provide a more comprehensive assessment of the generated data quality, we conducted direct semantic and fidelity evaluations. Specifically, we computed CLIP-Similarity between the generated text and the original modality images, and we evaluated image fidelity using FID, comparing generated images with 10k real MSCOCO images. As shown in Table 14, RAG4DMC achieves higher CLIP-Similarity and substantially lower FID (Heusel et al., 2017) compared to Direct Generation, indicating that our method produces text that is more semantically aligned with the original images and generates images with significantly better distributional fidelity. These results confirm that RAG4DMC improves not only downstream performance but also the intrinsic quality of the generated modalities.

Table 14: Semantic and fidelity evaluation of generated data.

Method	CLIP-Similarity	FID
Real Data	0.3040	—
Direct Generation	0.2915	30.70
RAG4DMC	0.2995	27.92

A.15 EFFECT OF DOMAIN DISTANCE ON PERFORMANCE

To study the effect of domain distance, we compare two external knowledge base choices in Table 15: CC3M (a large, generic caption dataset) and Flickr30K (a smaller dataset more similar in style to our internal datasets). Although Flickr30K is closer in domain to the internal datasets, CC3M yields better performance, suggesting that semantic diversity and scale of the external KB are more important than strict domain matching. Furthermore, the gains achieved with CC3M show that RAG4DMC is robust to moderate domain mismatch and does not require a perfectly curated or tightly aligned external corpus.

1026 Table 15: Performance of RAG4DMC with different external knowledge bases.
1027

External KB	I2T R@1	T2I R@1	I2T R@5	T2I R@5	CIDEr	BERTScore
CC3M	46.6	47.5	79.0	79.7	117.2	92.5
Flickr30K	44.7	45.2	77.4	77.5	112.5	92.3

1031 **A.16 VISUAL COMPARISON OF RAG4DMC**
1032

1033 In this appendix, we present a visual comparison of RAG4DMC’s performance in filling missing
1034 modalities. Fig. 3 shows the comparison between real captions and those generated by RAG4DMC
1035 when the image modality is missing. On the left, we display real images from the MSCOCO dataset
1036 with their corresponding captions. The middle column shows captions generated through Direct
1037 Generation, which tend to be brief and less detailed. On the right, RAG4DMC-generated captions
1038 are more descriptive and contextually relevant, demonstrating its ability to fill in missing details.
1039

Image	Real Caption	Direct Generation	RAG4DMC
	A giraffe standing next to rocks on grass.	The giraffe is brown and white.	A giraffe standing on grass by some big rocks with trees in the background.
	A man riding skis down a snow covered slope.	A clear blue sky.	A skier skis down a snow covered slope.
	Two men playing frisbee on a grassy field.	A group of trees in the background.	Two men playing frisbee.
	A man riding water skis on a lake.	The water is blue.	A person who is water skiing on a lake.

1057 Figure 3: Comparison of generated captions when the image modality
1058 is missing.
1059

Caption	A large white bath tub sitting in a bathroom next to a sink	A snowboarder flying through the air on a snowboard.	A knife with a black handle some tomatoes and an apple	A very nicely dressed man standing by a door.
Real Image				
Direct Generation				
RAG4DMC				

1072 Figure 4: Comparison of generated images when the text modality is
1073 missing.
1074

1075 Fig. 4 illustrates RAG4DMC’s performance in generating images when the text modality is missing.
1076 The left column shows real images with captions, while the middle column presents images generated
1077 through Direct Generation methods, often lacking detail or relevance. On the right, RAG4DMC
1078 generates more detailed and contextually accurate images, better reflecting the described scene.
1079

These figures highlight the effectiveness of RAG4DMC in handling missing modalities and generating content that aligns with real scenes in both text and image modalities.

1080
1081

A.17 USE OF LARGE LANGUAGE MODELS

1082
1083
1084
1085
1086

During the preparation of this manuscript, we used OpenAI’s GPT-5 as a language-assist tool to help improve the clarity and readability of certain paragraphs. All scientific ideas, experimental design, and data analysis were solely conceived and conducted by the authors. The outputs from the LLM were carefully reviewed and edited to ensure technical accuracy and consistency with our research findings.

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133