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ABSTRACT

Multi-modal datasets are critical for a wide range of applications, but in practice,
they often suffer from missing modalities. This motivates the task of Missing
Modality Completion (MMC), which aims to reconstruct missing modalities from
the available ones to fully exploit multi-modal data. While pre-trained genera-
tive models offer a natural solution, directly applying them to domain-specific
MMC is often ineffective, and fine-tuning suffers from limitations like limited
complete samples, restricted API access, and high cost. To address these is-
sues, we propose RAG4DMC, a retrieval-augmented generation framework for
data-level MMC. RAG4DMC builds a dual knowledge base from complete in-
dataset samples and external public datasets, enhanced with feature alignment and
clustering-based filtering to mitigate modality and domain shifts. A multi-modal
fusion retrieval mechanism combining intra-modal retrieval with cross-modal fu-
sion then provides relevant context to guide generation, followed by a candidate
selection mechanism for coherent completion. Extensive experiments on general
and domain-specific datasets demonstrate that our method produces more accurate
and semantically coherent missing-modality completions, resulting in substantial
improvements in downstream image–text retrieval and image captioning tasks.

1 INTRODUCTION

Multi-modal datasets have become indispensable in advancing a wide range of applications, includ-
ing vision-language understanding, healthcare analysis, and autonomous systems (Yuan et al., 2025;
Xu et al., 2023). However, in practice, such datasets often suffer from missing modalities in some
samples, due to reasons such as sensor failure, annotation costs, or data corruption (Jiao et al., 2024).
This issue motivates the task of Missing Modality Completion (MMC)(Ke et al., 2025), i.e., recon-
structing or inferring missing modalities from available ones, thereby enabling more complete and
effective utilization of multi-modal data.

With the remarkable success of pre-trained generative models, a natural approach to this task is
to leverage them to generate missing modalities conditioned on the observed ones. Nevertheless,
directly applying pre-trained generative models to reconstruct domain-specific missing data often
yields unsatisfactory results, due to their limited adaptation to specific domains (Ke et al., 2025).
A straightforward remedy is to fine-tune these models using the subset of complete samples in the
dataset. However, this strategy faces several challenges: (i) the amount of complete data is usually
limited, making fine-tuned models prone to overfitting and losing generality; (ii) many pre-trained
generative models are accessible only through restricted inference APIs, preventing effective fine-
tuning; and (iii) fine-tuning large models is often costly and resource-intensive.

To overcome these limitations, we propose a retrieval-augmented generation (RAG) based frame-
work for MMC. RAG combines retrieval from a knowledge base with generative modeling, allow-
ing the model to incorporate external, task-relevant information during generation. While RAG has
achieved great success in language modeling and downstream NLP tasks, its potential for MMC
remains largely underexplored. In adapting RAG to MMC, two key challenges arise: (i) how to
construct an effective knowledge base from the available multi-modal data, and (ii) how to design
retrieval strategies that can best augment the generation of missing modalities.

To this end, we propose RAG4DMC, a retrieval-augmented generation framework tailored for data-
level MMC. RAG4DMC leverages a dual-knowledge-base design that combines an internal knowl-
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edge base—built from complete samples in the target dataset—with an external knowledge base
constructed from publicly available datasets. While the internal knowledge base provides domain-
specific information, its limited scale motivates the use of external data as a complementary source,
despite domain shifts. To make this integration effective, RAG4DMC encodes all samples into
embeddings and introduces feature alignment mechanisms to address the embedding misalignment
between modalities and knowledge bases. Furthermore, a clustering-based filtering strategy is ap-
plied to prune irrelevant external samples. On top of the dual knowledge base, RAG4DMC develops
a multi-modal fusion retrieval strategy, which combines intra-modal retrieval with cross-modal re-
ranking to achieve semantically consistent retrieval results. The retrieved information is used to
augment the generative model, which produces multiple candidate completions. Finally, a candidate
selection mechanism identifies the most semantically coherent output to fill in the missing modality.

We extensively evaluate RAG4DMC on both general-domain (MSCOCO, Flickr30K) and domain-
specific (RSICD) datasets under various modality missing rates. Downstream models trained on
datasets completed using RAG4DMC exhibit improvements of up to +5.0 Avg R@1 in image–text
retrieval tasks and +5.0 CIDEr in image captioning tasks over those trained on datasets completed
via direct generative completion methods.

The main contributions of this paper are as follows: (i) To our knowledge, RAG4DMC is the
first RAG-based approach to achieve multimodal completion at the raw-data level, generating the
actual missing modality instead of relying on latent-feature imputation. (ii) We design an integrated
knowledge base combining internal and external samples, equipped with filtering and alignment, and
propose a two-stage multi-modal fusion retrieval with candidate selection to mitigate modality gaps
and produce semantically faithful generations. (iii) Extensive experiments on MSCOCO, Flickr30K,
and RSICD demonstrate that RAG4DMC consistently outperforms baselines, validating both the
effectiveness and robustness of the proposed approach.

2 RELATED WORK

Strategies for handling missing modalities. Existing approaches for handling missing modali-
ties can be broadly categorized into two groups: non-completion methods and completion-based
methods. Non-completion methods avoid explicit imputation and instead rely on fusion strategies
or missing-indicator mechanisms to make predictions directly from the observed modalities (Lang
et al., 2025; Lee et al., 2023; Guo et al., 2024; Zhao et al., 2024; 2025). While effective in certain
scenarios, these methods cannot generate fidelity-guaranteed reusable multimodal samples, which
limits their applicability across diverse tasks. In contrast, completion-based methods address the
issue by reconstructing the missing modalities before downstream processing. These approaches
can be further divided into two subcategories: 1) Feature-level completion, which learns to infer
missing features in a shared latent space. For example, MMIN (Zhao et al., 2021) imagines latent
features and Smil Ma et al. (2021) meta-learns extreme missing patterns. 2) Data-level completion,
which reconstructs missing modalities directly in the data space. For example, Knowledge Bridger
Ke et al. (2025) leverages structured priors from domain knowledge, GTI-MM (Feng et al., 2024)
steers diffusion with prompts, and DiCMoR (Wang et al., 2023c) aligns cross-modal distributions
via normalising flows. These methods produce more faithful multi-modal datasets that can be fully
reused across diverse downstream tasks, but existing methods still suffer from hallucination, poor
generalization to rare samples, and heavy resource demands (Wang et al., 2023a). The limitations
of existing methods motivate our investigation to RAG-based methods for data-level MMC.

Multimodal Retrieval-Augmented Generation. Retrieval-Augmented Generation (RAG) has
proven highly effective in NLP for knowledge-grounded text generation and QA (Riedler & Langer,
2024; Lewis et al., 2020; Izacard & Grave, 2020). Recent multimodal extensions adapt RAG to
tasks such as captioning, VQA, and reasoning by retrieving relevant images or texts as additional
context for generation models (Abootorabi et al., 2025; Lin & Byrne, 2022; Zhang et al., 2024).De-
spite these advances, the application of RAG to MMC remains underexplored. The most related
work is MissRAG(Pipoli et al., 2025), which retrieves prototype representations from the training
set to approximate missing inputs. However, MissRAG focuses on feature-level completion at infer-
ence, while our approach operates at the data level, explicitly reconstructing missing modalities and
generating enriched multi-modal training data.
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Figure 1: The workflow of RAG4DMC.
3 METHOD

3.1 PROBLEM STATEMENT

We consider the task of data-level MMC in a multi-modal dataset. Let D = {(xI
t , x

T
t )}Nt=1 denote a

dataset containing image (I) and text (T ) modalities. In practice, many samples are incomplete, i.e.,
only xI or xT is observed. Our goal is to promote a pre-trained generation model G to complete the
missing modality x̂ from the available one x based on two complementary knowledge bases:

Kint = {(xI
i , x

T
i )}

Nc
i=1 ⊂ D, Kext = {(xI

m, xT
m)}Mm=1,

where Kint contains complete samples from the dataset D, and Kext contains paired image–text
samples from publicly available datasets (e.g., CC3M, LAION) to provide additional knowledge.
For an incomplete sample x, the missing modality is generated as x̂ = G(x,R(x;Kint ∪ Kext)),
whereR(·) denotes retrieval from the dual knowledge base Kint ∪ Kext.

3.2 OVERVIEW

The design of RAG4DMC is illustrated in Fig. 1 (algorithm description is illustrated in Ap-
pendix A.1). RAG4DMC follows a retrieval-augmented generation pipeline with three key com-
ponents. It first constructs a dual knowledge base, where the internal base is built from complete
samples in the target dataset and the external base is derived from publicly available datasets to
compensate for data scarcity. Since embeddings from different modalities and from internal and ex-
ternal sources are often misaligned, RAG4DMC incorporates feature alignment modules that learn
mappings to align representations from different modalities and knowledge bases, and applies a
clustering-based filtering strategy to remove irrelevant external samples. Given an incomplete sam-
ple, the system then performs a two-stage multi-modal fusion retrieval process that first conducts
intra-modal retrieval and subsequently refines candidates via cross-modal re-ranking to ensure se-
mantically consistent matches. The retrieved knowledge is used to guide the generative model,
which produces multiple candidate completions. Finally, a candidate selection mechanism identifies
the most semantically coherent and high-quality output to reconstruct the missing modality.

3.3 DUAL KNOWLEDGE BASE CONSTRUCTION

To enable effective retrieval-augmented generation, RAG4DMC constructs a unified dual knowledge
base that integrates internal complete samples and external public datasets. Relying solely on the
internal dataset is often problematic because the number of complete multi-modal samples is lim-
ited and cannot sufficiently cover the diversity of missing cases. For example, in a vision–language
dataset collected for autonomous driving, only a fraction of scenes may contain both images and
detailed textual annotations, making it difficult to reconstruct missing captions for rare traffic sce-
narios. By incorporating external public datasets such as CC3M or LAION, the knowledge base can
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provide broader visual–textual coverage, offering complementary patterns that mitigate the sparsity
of internal data. However, directly combining internal and external data introduces three challenges:
(i) misalignment between modalities within the same dataset, (ii) noise and irrelevance in exter-
nal datasets, and (iii) domain shifts across internal and external sources. To address these issues,
RAG4DMC employs three key techniques: (i) a cross-modal bidirectional mapping mechanism to
reconstruct missing modalities and mitigate modality gaps in the embedding space, (ii) a clustering-
based filtering mechanism to prune irrelevant external samples, and (iii) a cross-domain alignment
strategy to align internal and external embeddings into a unified semantic space. Together, these
components yield a semantically consistent multi-modal knowledge base for subsequent retrieval
and generation.

Cross-modal bidirectional mapping. We use fixed pretrained encoders EI : X I → Rd and ET :
X T → Rd to extract embeddings only for paired multimodal samples. Let Pint = {(xI

i , x
T
i )}

Nc
i=1⊂

D and Pext = {(xI,ext
m , xT,ext

m )}Mm=1⊂Dext denote the sets of complete image–text pairs. For these
pairs we compute:

zIi = EI(x
I
i ), zTi = ET (x

T
i ) (i ∈ Pint) (1)

zI,extm = EI(x
I,ext
m ), zT,ext

m = ET (x
T,ext
m ) (m ∈ Pext). (2)

To bridge the gap between modalities, we train a lightweight MLP for bidirectional cross-modal
mapping. We denote the two directions as fI→T : Rd → Rd and fT→I : Rd → Rd, which share
parameters:

Lmap =
1

|Pint|
∑

(xI
i ,x

T
i )∈Pint

(
∥fI→T (z

I
i )− zTi ∥22 + ∥fT→I(z

T
i )− zIi ∥22

)
. (3)

This bidirectional cross-modal mapping reconstructs missing modalities in the internal embedding
space using available ones, and producing pseudo embeddings for retrieval. As the external knowl-
edge base is subsequently aligned into the internal space, training the MLP on internal pairs suffices
for both internal and external samples.

Clustering-based knowledge filtering. External datasets mix relevant and irrelevant information.
To reduce noise, we design a clustering-based knowledge filter. For the image modality, we denote
the internal and external image embeddings as zI,int and zI,ext. First, we apply K-means to internal
and external embeddings to obtain cluster centroids. For K clusters, we compute cluster centroids
as the average embedding:

µI,int
p =

1

|cI,intp |

∑
zI,int
i ∈cI,intp

zI,inti , µI,ext
q =

1

|cI,extq |

∑
zI,ext
m ∈cI,extq

zI,extm . (4)

where cI,intp and cI,extq denote the sets of embeddings assigned to the p-th internal cluster and q-th
external cluster, respectively. Next, we match each external centroid µI,ext

q to its closest internal
centroid µI,int

p based on cosine similarity:

pIq = argmax
p

cos
(
µI,ext
q , µI,int

p

)
, (5)

where pIq denotes the index of the internal centroid µI,int
p that is most similar to the external centroid

µI,ext
q . We then define the corresponding centroid-level and instance-level similarities as:

sIcent = cos
(
µI,ext
q , µI,int

pI
q

)
, sIinst = cos

(
zI,extm , µI,int

pI
q

)
. (6)

where zI,extm is an external embedding in the q-th cluster. Clusters and samples are then filtered by
thresholding the similarities:

CI
keep = {cI,extq | sIcent ≥ τcent}, (7)

ZI
keep = {zI,extm | zI,extm ∈ cI,extq , sIinst ≥ τinst, c

I,ext
q ∈ CI

keep}. (8)
We first prune clusters with low centroid similarity and then filter instances within the retained ones
to improve efficiency and robustness. The same procedure is applied to text (Appendix A.2). Further
analysis of imbalanced clusters and the sensitivity of τinst and τcent is provided in Appendix A.3.
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Cross-domain alignment. Even after filtering, the internal and retained external embeddings still
reside in different semantic spaces due to domain shifts (see t-SNE visualizations in Appendix A.4).
Inspired by MUSE (Lample et al., 2018), we adopt an orthogonal Procrustes alignment strategy,
performed separately for the image and text modalities using their internal and filtered external
embeddings.

For images, let {(zI,inti , zI,extm )} denote the mutual nearest neighbor (MNN) pairs identified via
CSLS (analysis in Appendix A.6). Stacking these pairs yields matrices ZI

int and ZI
ext. For texts,

the procedure is analogous, producing ZT
int and ZT

ext. The orthogonal Procrustes problems are then
solved:

W ∗
I = arg min

W∈O(d)
∥ZI

int − ZI
extW∥2F , W ∗

T = arg min
W∈O(d)

∥ZT
int − ZT

extW∥2F , (9)

where O(d) = {W ∈ Rd×d | W⊤W = Id} denotes the set of d-dimensional orthogonal matrices.
Each admits a closed-form solution via SVD, with derivation in Appendix A.7. The aligned external
embeddings are then

Z̃I
ext = ZI

extW
∗
I , Z̃T

ext = ZT
extW

∗
T . (10)

We iteratively refine W ∗
I and W ∗

T by alternating between updating MNN pairs using CSLS on the
aligned embeddings and recomputing Eq. 9, until convergence, i.e., until ∥W (r) −W (r−1)∥F < ϵ.

After alignment, the internal embeddings remain fixed as the target space, while W ∗
I and W ∗

T are
applied to all external embeddings of the corresponding modality. Each entry in the knowledge base
thus contains raw data and its aligned multi-modal embeddings:

Kint = {xI , zI , xT , zT }, Kext = {xI,ext, z̃I,ext, xT,ext, z̃T,ext}, (11)

K = Kint ∪ Kext. (12)

Thus, modality-level mapping within D and domain-level alignment across datasets together yield
a semantically aligned multimodal knowledge base for retrieval-based completion.

3.4 MULTI-MODAL FUSION RETRIEVAL

While RAG has shown strong performance in knowledge-intensive tasks, directly extending it to
multimodal missing modality completion poses unique challenges. Conventional approaches of-
ten perform cross-modal retrieval (e.g., retrieving images from text), but the inherent modality gap
severely limits discriminability, even with powerful joint encoders like CLIP. As shown in Ap-
pendix A.4, embeddings of paired image–text samples still occupy distinct subspaces, leading to
mismatched candidates and degraded generation quality. This motivates us to design a retrieval
mechanism that can both preserve the precision of intra-modal similarity and incorporate cross-
modal cues for alignment. To this end, we propose two-stage multi-modal fusion retrieval strategy:
(i) intra-modal top-k retrieval for precise candidate selection, and (ii) multimodal re-ranking with
pseudo-embeddings of the missing modality. This fusion mitigates the modality gap and yields more
semantically aligned candidates for generation. We illustrate the procedure using the case where an
image lacks a corresponding text. Let xI

j be an unpaired image and zIj = EI(x
I
j ). We obtain a

pseudo-text embedding via the learned map:

ẑj
T = fI→T (z

I
j ). (13)

We first conduct intra-modal retrieval. For each candidate r in the knowledge base K with precom-
puted embeddings (zIr , z

T
r ), define

simg(r) = cos
(
zIj , z

I
r

)
. (14)

Let a stable permutation be
σ = argsort

r

(
− simg(r), r

)
. (15)

The top-k candidate index set is

A = {σ(1), . . . , σ(k)}, |A| = k. (16)
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For each r ∈ A, compute the fused score

simfuse(r) = α cos(zIj , z
I
r ) + (1− α) cos(ẑTj , z

T
r ). (17)

Re-rank stably by the fused score:

π = argsort
r∈A

(
− simfuse(r), r

)
, r⋆ = π(1), (18)

and select the top-1 caption xT
r⋆ . Construct the prompt P as “Please write two captions of the image.

Caption 1: “xT
r⋆”. Caption 2:” and generate sample with the original image xI

j :

x̃T = GI2T (x
I
j ,P). (19)

The text-only case is symmetric,with detailed formulas provided in Appendix A.5.

3.5 GENERATION AND CANDIDATE SELECTION

Given the retrieved exemplars, RAG4DMC leverages modality-specific generators (e.g., GI2T for
image-to-text and GT2I for text-to-image) to produce multiple candidate completions. This multi-
sample generation increases diversity and reduces the risk of degeneration, but also raises the chal-
lenge of identifying the most faithful and coherent output. To address this, we introduce a candidate
selection mechanism that jointly evaluates semantic consistency and perceptual quality. For image-
only inputs, the caption generator GI2T produces a set of candidate captions {x̃T

1 , . . . , x̃
T
n}. We

score each candidate with a weighted function that balances semantic alignment and linguistic qual-
ity:

sT (x̃
T ) = λ1 · cos

(
ET (x̃

T ), ẑT
)
+ λ2 · BLEU(x̃T ), (20)

where ẑT is the pseudo-text embedding derived from the input image and BLEU measures n-gram
overlap with the retrieved exemplar caption xT

r⋆ . For text-only inputs, the image generator GT2I pro-
duces a set of candidate images {x̃I

1, . . . , x̃
I
n}. Each candidate is evaluated by combining semantic

similarity and perceptual quality:

sI(x̃
I) = λ1 · cos

(
EI(x̃

I), ẑI
)
− λ2 · NIQE(x̃I), (21)

where ẑI is the pseudo-image embedding from the input text, and NIQE is a no-reference image
quality metric (lower is better). The candidate with the highest score is selected as the final comple-
tion for the missing modality.

4 EVALUATIONS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate RAG4DMC on both general-domain and domain-specific datasets. For the
general domain, we adopt MSCOCO (Lin et al., 2014) and Flickr30K (Young et al., 2014). For
the domain-specific setting, we use the RSICD dataset (Lu et al., 2017). From these datasets, we
construct modality-missing dataset. In our experiments, incomplete samples are introduced in the
training phase by applying predefined missing rates to each modality. The evaluation phase is con-
ducted exclusively on complete samples. To support retrieval, we adopt external public datasets as
knowledge bases. Specifically, CC3M (Sharma et al., 2018) serves as the external knowledge base
for MSCOCO and Flickr30K, while NWPU-Caption (Cheng et al., 2022) is used for RSICD. We use
BLIP2 (Li et al., 2023) as the text generator and Stable Diffusion XL 1.0 (Rombach et al., 2022) as
the image generator across all datasets. We provide more detailed dataset splits and implementation
details in the AppendixA.8.

Metrics. Following prior work (Ke et al., 2025; Jin et al., 2024), we evaluate the quality of the
imputed datasets through their utility in downstream tasks. The underlying rationale is that if the
imputed data preserves semantic fidelity and consistency with the original multimodal samples,
models trained on these datasets should achieve better performance on standard benchmarks. We
consider two representative tasks: (i) Image–text retrieval, where we train a CLIP (Radford et al.,
2021) model on the augmented datasets and evaluate retrieval accuracy using Recall@1 and Re-
call@5, consistent with prior studies (Hao et al., 2023; Ke et al., 2025; Jin et al., 2024). (ii) Image

6
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Table 1: Image–Text Retrieval and Image Captioning results on MSCOCO.

Method Image–Text Retrieval Image Captioning
I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore

Complete 48.9 49.6 82.3 81.0 127.9 92.6
Drop-Incomplete 35.4 35.1 69.5 69.3 109.2 92.1
Direct Generation 41.4 43.9 75.4 76.3 112.2 92.2
GTI-MM 41.0 41.7 74.9 74.9 111.0 92.2
Knowledge Bridger 42.5 44.5 76.1 77.5 112.2 92.2
Vanilla-RAG 44.9 44.6 77.9 78.0 113.4 92.3
Combined-RAG 44.8 44.6 77.6 77.7 113.0 92.2
KFA-RAG 45.9 46.4 78.1 78.6 115.8 92.3
RAG4DMC 46.6 47.5 79.0 79.7 117.2 92.5

Table 2: Image–Text Retrieval and Image Captioning results on Flickr30K.

Method Image–Text Retrieval Image Captioning
I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore

Complete 53.2 52.6 81.3 81.1 71.2 91.7
Drop-Incomplete 45.2 47.4 75.9 75.9 64.8 91.3
Direct Generation 47.1 49.6 76.6 77.8 65.9 91.4
GTI-MM 46.3 48.9 75.6 76.0 65.8 91.4
Knowledge Bridger 47.2 49.8 77.3 78.0 66.0 91.4
Vanilla-RAG 48.3 50.2 77.6 78.3 67.3 91.5
Combined-RAG 48.3 50.2 77.3 78.0 66.9 91.5
KFA-RAG 51.0 52.7 79.2 79.1 68.2 91.6
RAG4DMC 52.9 53.8 80.6 81.5 70.4 91.7

captioning, where we fine-tune LLaVA (Liu et al., 2023) on the augmented datasets to generate tex-
tual descriptions, and measure caption quality using CIDEr (Vedantam et al., 2015) and BERTScore
(Zhang et al., 2019), following prior work (Li et al., 2022; Wang et al., 2023b; Zhang et al., 2019).
For training, CLIP is optimized with AdamW (learning rate 1e−4, batch size 16) for 20 epochs.
LLaVA is fine-tuned with LoRA adapters using AdamW (learning rate 2e−5, effective batch size 2)
for 2 epochs. All evaluations are conducted on the standard test splits: 1,000 samples for MSCOCO
and Flickr30K, and 1,093 samples for RSICD.

Baselines. Since data-level modality completion based on generative models is largely under-
explored, we design the following three categories of baselines: (i) Naive baselines: Drop-
Incomplete, discards all samples with missing modalities. (ii) Direct generative-based methods:
Direct Generation, which fills missing modalities using generative models without retrieval ground-
ing, GTI-MM(Feng et al., 2024), which uses generative models to impute missing visual modalities
and designs prompts to control the generation quality, and Knowledge Bridger (Ke et al., 2025),
which extracts knowledge from the available modalities and then guides a generative model to com-
plete the missing ones. (iii) RAG-based methods: Vanilla-RAG, which builds the knowledge base
from internal data only and performs naive cross-modal retrieval; Combined-RAG, which builds the
knowledge base by directly merging internal and external datasets without filtering or alignment; and
KFA-RAG, which constructs an integrated knowledge base using the same method in RAG4DMC
but performs naive cross-modal retrieval. This design also allows us to dissect the contribution of
each component: Combined-RAG vs. Vanilla-RAG highlights the benefit of incorporating external
knowledge; KFA-RAG vs. Combined-RAG demonstrates the importance of filtering and alignment
in knowledge base construction; and finally, RAG4DMC vs. KFA-RAG validates the effectiveness
of our proposed retrieval mechanism.

4.2 RESULTS AND ANALYSIS

4.2.1 MISSING MODALITY COMPLETION PERFORMANCE

We first evaluate the missing modality completion performance on MSCOCO, Flickr30K, and
RSICD datasets. Tables 1–3 summarize performance on downstream image–text retrieval and cap-
tioning tasks using datasets completed by different methods. It can be observed that removing
incomplete samples (Drop-Incomplete) leads to substantial performance degradation. For example,
Avg R@1 on MSCOCO drops from 49.2 to 35.2, which highlights the necessity of modality comple-
tion. Introducing retrieval grounding via Vanilla-RAG improves performance (+2.2 Avg R@1, +2.1
Avg R@5 on MSCOCO), demonstrating the benefit of exemplar guidance. However, naively adding
external data (Combined-RAG vs. Vanilla-RAG) does not yield gains because of noise and domain
mismatch. Filtering and aligning external knowledge (KFA-RAG vs. Combined-RAG) consistently
boosts performance (+1.5 Avg R@1, +0.7 Avg R@5), confirming the effectiveness of our knowl-
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Table 3: Image–Text Retrieval and Image Captioning results on RSICD.

Method Image–Text Retrieval Image Captioning
I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore

Complete 10.3 10.3 30.4 30.1 34.0 89.1
Drop-Incomplete 8.2 8.8 25.3 27.9 30.9 88.8
Direct Generation 8.5 9.5 25.9 28.5 32.5 89.0
GTI-MM 8.3 9.1 24.3 27.7 32.1 89.0
Knowledge Bridger 8.6 9.5 26.3 28.9 32.8 89.0
Vanilla-RAG 4.8 5.1 18.5 18.7 19.4 87.8
Combined-RAG 4.8 5.2 18.2 18.8 18.1 87.6
KFA-RAG 5.3 5.6 20.2 20.3 20.6 88.1
RAG4DMC 8.7 9.7 27.6 29.6 33.9 89.1

Table 4: Performance of RAG4DMC on MSCOCO under different modality missing rates.

MissRate Method Image–Text Retrieval Image Captioning
I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore

0.1

Drop-Incomplete 49.3 49.1 80.7 79.7 128.2 92.4
Direct Generation 50.5 51.3 81.6 81.4 129.7 92.7
GTI-MM 49.9 49.7 80.9 80.2 128.9 92.6
Knowledge Bridger 50.9 51.5 81.9 81.9 129.5 92.6
Vanilla-RAG 51.7 51.8 82.4 82.6 130.4 92.7
Combined-RAG 51.6 51.8 82.3 82.4 129.7 92.6
KFA-RAG 52.7 52.9 83.9 83.6 131.7 92.7
RAG4DMC 53.9 54.1 85.6 85.5 133.8 92.8

0.3

Drop-Incomplete 46.7 46.4 78.7 77.8 120.5 92.4
Direct Generation 47.9 48.1 80.3 80.6 121.7 92.6
GTI-MM 47.5 47.8 79.9 80.0 121.1 92.5
Knowledge Bridger 48.2 49.1 80.5 81.1 121.8 92.6
Vanilla-RAG 48.3 49.3 81.2 81.5 123.2 92.6
Combined-RAG 48.1 49.2 80.9 81.5 122.8 92.6
KFA-RAG 50.2 51.7 82.3 83.0 124.7 92.7
RAG4DMC 52.3 52.9 84.1 84.4 125.8 92.7

0.5

Drop-Incomplete 42.7 45.6 76.9 78.5 116.9 92.4
Direct Generation 45.5 45.8 77.2 77.9 118.5 92.4
GTI-MM 44.3 44.9 76.3 76.6 118.2 92.4
Knowledge Bridger 45.3 45.8 77.3 78.5 118.6 92.5
Vanilla-RAG 45.8 46.1 78.3 78.9 119.8 92.5
Combined-RAG 45.6 46.1 78.0 78.7 119.6 92.5
KFA-RAG 46.7 47.1 79.4 79.2 121.6 92.5
RAG4DMC 48.4 47.7 80.1 80.2 123.6 92.6

0.7

Drop-Incomplete 35.4 35.1 69.5 69.3 109.1 92.1
Direct Generation 41.4 43.9 75.4 76.3 112.2 92.2
GTI-MM 41.0 41.7 74.9 74.9 111.1 92.2
Knowledge Bridger 42.5 44.5 76.1 77.5 112.2 92.2
Vanilla-RAG 44.9 44.6 77.9 78.0 113.4 92.3
Combined-RAG 44.8 44.6 77.6 77.7 113.0 92.2
KFA-RAG 45.9 46.4 78.1 78.6 115.8 92.3
RAG4DMC 46.6 47.5 79.0 79.7 117.2 92.4

edge processing. Finally, integrating multi-modal fusion retrieval in RAG4DMC further enhances
results (Avg R@1 = 47.1, Avg R@5 = 79.4), approaching the oracle upper bound and validating our
retrieval design.

On the domain-specific RSICD dataset, standard RAG variants degrade due to representation bias
in the knowledge base. Since CLIP encoders are not trained on remote-sensing data, the extracted
image and text features exhibit a modality gap, leading to inaccurate retrieval and reduced comple-
tion quality. Comparing RAG4DMC with KFA-RAG shows that integrating our multi-modal fusion
retrieval effectively mitigates this issue and substantially restores performance.

For image captioning, we observe that Combined-RAG performs worse than Vanilla-RAG, with
CIDEr decrease of 1.3% on RSICD dataset. This is because naively merging external samples
introduces noise that harms linguistic consistency, captioning requires accurate word-level supervi-
sion and is therefore more sensitive to dataset quality. In contrast, KFA-RAG alleviates this problem
through filtering and alignment, improving CIDEr from 113.0 to 115.8 on MSCOCO. Furthermore,
training LLaVA on datasets completed by our method achieves the highest captioning performance,
further boosting CIDEr and BERTScore. These results indicate that our completions provide faith-
ful, semantically coherent, and dataset-consistent supervision that benefits not only retrieval but also
downstream generative tasks. These findings highlight both the necessity of modality completion
and the effectiveness of our proposed design across general and domain-specific datasets.
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Table 5: Performance of RAG4DMC on MSCOCO with different generation candidate number n.

n
Image–Text Retrieval Image Captioning

I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore
1 46.6 47.5 79.0 79.7 117.2 92.4
3 47.1 48.0 79.4 79.8 117.9 92.4
5 47.4 48.2 79.8 80.0 119.3 92.5

10 47.7 48.5 80.1 80.3 121.5 92.6

Table 6: Performance of RAG4DMC on MSCOCO with different retrieval size k.

k
Image–Text Retrieval Image Captioning

I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore
3 46.5 46.1 77.7 76.6 109.4 92.1
5 46.6 47.5 79.0 79.7 110.7 92.2
10 47.7 48.5 80.1 80.3 117.2 92.4
15 41.9 42.9 75.0 76.7 104.1 92.5

4.3 PERFORMANCE UNDER DIFFERENT MISSING RATES

To evaluate robustness against different degrees of missing information, we conduct experiments on
MSCOCO with modality missing rates ranging from 10% to 70%. As shown in Table 4, all methods
experience performance degradation as the missing rate increases, but the decline rates differ signif-
icantly. Generation-based methods (Direct Generation, GTI-MM) deteriorate the fastest, reflecting
their reliance on generative filling without sufficient grounding, which amplifies errors when larger
portions of data are absent. In contrast, Vanilla-RAG demonstrates greater stability by leveraging ex-
emplar grounding from internal data, while KFA-RAG further enhances robustness by filtering noisy
external samples and aligning them with internal exemplars. RAG4DMC consistently surpasses all
baselines across missing rates, with particularly pronounced gains under high-missing settings. For
example, at 70% missing rate, RAG4DMC improves Avg R@1 by +2.3 over Vanilla-RAG, highlight-
ing its ability to deliver faithful and reliable completions even in highly incomplete scenarios. These
results demonstrate the effectiveness and robustness of RAG4DMC, showing that its integration of
modality completion, retrieval grounding, and knowledge filtering enables consistent performance
even under severe data scarcity.

4.4 IMPACT OF GENERATION CANDIDATE NUMBER

In RAG4DMC, the generation and candidate selection module introduces a hyperparameter n, which
determines the number of generated candidates. To investigate its effect, we conduct experiments
on MSCOCO with different n values (n ∈ {1, 3, 5, 10}). As shown in Table 5, the performance of
RAG4DMC consistently improves as n increases. For example, Avg R@1 of RAG4DMC rises from
47.1 at n = 1 to 48.1 at n = 10, while CIDEr rises from 117.2 to 121.5. This demonstrates that
RAG4DMC effectively identifies the best candidate among multiple generations, filtering out noisy
outputs and ensuring that diversity translates into real performance gains.

4.5 IMPACT OF RETRIEVAL SIZE

We further investigate the effect of the retrieval hyperparameter k, which controls the number of
exemplars retrieved for RAG. As shown in Table 6, increasing k from 3 to 10 steadily improves
performance, since a larger candidate pool increases the likelihood of including highly relevant
exemplars, enhancing the quality of generation. However, when k becomes too large (e.g., 15),
performance slightly degrades, likely due to the introduction of less relevant or noisy exemplars,
which can misguide the generator. This suggests that a moderate number of high-quality retrievals
strikes a good balance between diversity and precision. We set k = 10 in all main experiments based
on this trade-off.

4.6 SENSITIVITY TO KNOWLEDGE FILTERING THRESHOLDS

We conducted additional sensitivity experiments by varying τcent and τinst within a reasonable range
(0.6–0.8). The results (Table 7) show that retrieval and captioning performance remains highly
stable: the changes in R@1, R@5, CIDEr, and BERTScore are minimal, indicating that our filtering
strategy is robust to these thresholds.
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Table 7: Performance of RAG4DMC with different filtering thresholds.
Filtering Threshold I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore

0.6 46.5 47.1 79.0 79.0 117.0 92.4
0.7 46.6 47.5 79.0 79.7 117.2 92.5
0.8 46.9 47.6 79.6 79.9 117.2 92.5

4.7 IMPACT OF EXTERNAL KNOWLEDGE BASE SIZE

To investigate how performance varies with the size of the external knowledge base, we conducted
experiments on MSCOCO using external samples ranging from 5k to 15k. As shown in Table 8,
the results demonstrate a monotonic improvement as the size of the external KB increases, though
with diminishing returns at larger sizes. This suggests that while a larger external KB offers richer
exemplars and broader coverage, our method does not depend on extremely large corpora to perform
effectively—competitive performance is already achieved with just 5k external samples.

Table 8: Performance of RAG4DMC with different number of external knowledge base samples.
Number of External KB I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore

5000 46.0 46.6 78.6 78.8 116.4 92.4
10000 46.6 47.5 79.0 79.7 117.2 92.5
15000 47.1 48.1 79.3 80.1 117.5 92.7

4.8 COMPLEXITY ANALYSIS

In Appendix A.9., we provide a detailed theoretical complexity analysis for each component in
our pipeline. As shown there, the dominant factors are the number of samples N , the number of
clusters k, and the feature dimension d. We supplemented experiments measuring the runtime for
each module under varying N , k, and d, on an NVIDIA GeForce RTX 3090 GPU.

As summarized in Table 9, under the largest tested configuration (N = 1k+10k, k = 128,
d = 1024), the end-to-end pipeline—including knowledge filtering, cross-domain alignment, and
bidirectional MLP training—completes in approximately 629 s (10.48 minutes), while retrieval re-
mains extremely lightweight (0.0031 s). Thus, although the pipeline involves clustering and nearest-
neighbor search, the overall computational overhead is clearly manageable in practice. Table 9
further breaks down the major sources of computation:(i) K-means is most sensitive to N and k,
consistent with its standard computational behavior; (ii) Cross-domain alignment scales primarily
with d, since nearest-neighbor search is performed in the feature space; (iii) Bidirectional MLP
training dominates the total runtime but is largely insensitive to N and k, as it operates only on in-
ternal feature representations and is mainly driven by d; (iv) Filtering and retrieval incur negligible
cost across all configurations.

Overall, these results demonstrate that the scaling behaviors of all modules are predictable and well
controlled. Importantly, none of the components introduce unexpected or prohibitive overhead.
Moreover, users may flexibly adjust N , k, and d to trade off between efficiency and accuracy, en-
abling deployment under different computational budgets.

Table 9: Time cost (in seconds) of each module under different settings.

Configuration K-means Clustering Filtering Cross-Domain Alignment Cross-Modal Mapping Multi-Modal Retrieval
N = 1k + 5k, k = 128, d = 512 21.43 0.30 0.40 405.17 0.0012
N = 1k + 10k, k = 128, d = 512 39.14 0.64 0.55 407.14 0.0014
N = 1k + 20k, k = 128, d = 512 112.87 1.35 0.99 406.25 0.0017
N = 1k + 10k, k = 64, d = 512 32.98 0.58 0.52 408.95 0.0015
N = 1k + 10k, k = 256, d = 512 46.97 0.78 0.54 408.98 0.0015
N = 1k + 10k, k = 128, d = 768 53.49 0.82 1.43 499.29 0.0018
N = 1k + 10k, k = 128, d = 1024 92.20 0.88 2.01 533.85 0.0031

5 CONCLUSION

This paper proposes RAG4DMC, a retrieval-augmented framework for data-level missing modal-
ity completion. Our approach leverages a dual knowledge base and multi-modal fusion retrieval
with semantic-quality-based candidate selection to generate faithful and semantically coherent com-
pletions. Extensive experiments on both general-domain and domain-specific datasets demonstrate
that RAG4DMC consistently outperforms existing baselines, significantly improving the training
performance of downstream models on image–text retrieval and captioning tasks.
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A APPENDIX

A.1 THE FRAMEWORK OF RAG4DMC

A.2 CLUSTERING-BASED KNOWLEDGE FILTERING FOR TEXT EMBEDDINGS

For the text modality, the internal and external text embeddings are denoted as zT,int and zT,ext,
and processed analogously to the image modality. We apply K-means to obtain cluster centroids,
computed as the average embedding:

µT,int
p =

1

|cT,int
p |

∑
zT,int
i ∈cT,int

p

zT,int
i , µT,ext

q =
1

|cT,ext
q |

∑
zT,ext
m ∈cT,ext

q

zT,ext
m . (22)

Each external centroid µT,ext
q is matched to its closest internal centroid µT,int

p :

pTq = argmax
p

cos
(
µT,ext
q , µT,int

p

)
, (23)

and we define centroid-level and instance-level similarities as

sTcent = cos
(
µT,ext
q , µT,int

pT
q

)
, sTinst = cos

(
zT,ext
m , µT,int

pT
q

)
, (24)

where zT,ext
m ∈ cT,ext

q . Clusters and instances are then filtered hierarchically: we first prune clusters
with low centroid similarity and then filter embeddings within the retained clusters:

CT
keep = {cT,ext

q | sTcent ≥ τcent}, (25)

ZT
keep = {zT,ext

m | zT,ext
m ∈ cT,ext

q , sTinst ≥ τinst, c
T,ext
q ∈ CT

keep}. (26)
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Algorithm 1 The Framework of Dual Knowledge Base Construction

Require: Internal data D, external data Dext; frozen encoders EI , ET ; mapping MLPs
fI→T , fT→I ; number of clusters K; thresholds τcent, τinst; tolerance ϵ

Ensure: Multi-modal knowledge base K, trained mapping MLPs fI→T , fT→I

1: Construct paired sets: Pint = {(xI,int
i , xT,int

i )}, Pext = {(xI,ext
m , xT,ext

m )}.
2: for (xI,int

i , xT,int
i ) ∈ Pint do

3: zI,inti ← EI(x
I,int
i ), zT,int

i ← ET (x
T,int
i ) ▷ Eq. 1

4: end for
5: for (xI,ext

m , xT,ext
m ) ∈ Pext do

6: zI,extm ← EI(x
I,ext
m ), zT,ext

m ← ET (x
T,ext
m ) ▷ Eq. 2

7: end for
8: // Cross-modal bidirectional mapping
9: Train fI→T , fT→I on internal pairs (zI,inti , zT,int

i ) ▷ Eq. 3
10: // Clustering-based knowledge filtering (image modality)
11: Run K-means on {zI,int} and {zI,ext} to obtain centroids {µI,int

p }Kp=1, {µI,ext
q }Kq=1. ▷ Eq. 4

12: for each external cluster q = 1, . . . ,K do
13: pIq ← argmaxp cos

(
µI,ext
q , µI,int

p

)
▷ Eq. 5

14: sIcent ← cos
(
µI,ext
q , µI,int

pI
q

)
▷ Eq. 6

15: if sIcent < τcent then
16: drop cluster q
17: else
18: keep cluster q, add to CIkeep
19: end if
20: end for
21: for each cluster cI,extq ∈ CIkeep do
22: for each sample zI,extm ∈ cI,extq do
23: sIinst ← cos

(
zI,extm , µI,int

pI
q

)
▷ Eq. 6

24: if sIinst < τinst then
25: drop zI,extm
26: else
27: keep zI,extm
28: end if
29: end for
30: end for
31: Repeat the same procedure for text embeddings (zT,int, zT,ext) to obtain CTkeep and ZT

keep. (see
Appendix A.2)

32: // Cross-domain alignment (Procrustes, modality-specific)
33: Build image MNN pairs {(zI,inti , zI,extm )} and text MNN pairs {(zT,int

i , zT,ext
m )} using CSLS.

34: Solve W ∗
I = argminW∈O(d) ∥ZI

int − ZI
extW∥2F , W ∗

T = argminW∈O(d) ∥ZT
int − ZT

extW∥2F ▷
Eq. 9

35: Iteratively refine W ∗
I ,W

∗
T until convergence ∥W (r) −W (r−1)∥F < ϵ.

36: // Knowledge base construction
37: Project external embeddings: Z̃I

ext = ZI
extW

∗
I , Z̃T

ext = ZT
extW

∗
T ▷ Eq. 10

38: Kint = {xI , zI , xT , zT }; Kext = {xI,ext, z̃I,ext, xT,ext, z̃T,ext} ▷ Eq. 11
39: K = Kint ∪ Kext ▷ Eq. 12
40: return K, fI→T , fT→I

A.3 ANALYSIS OF CLUSTERING-BASED KNOWLEDGE FILTERING

Imbalanced clusters. In small or imbalanced clusters, outliers may severely bias the centroid µc,
rendering centroid-based decisions unreliable. For a cluster c with size |c| and sample embeddings
{z(x) | x ∈ c}, its centroid is µc. We compute the average cluster radius as

uc =
1

|c|
∑
x∈c

∥z(x)− µc∥2, (27)
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Algorithm 2 The Workflow of Multi-Modal Fusion Retrieval and Candidate Selection

Require: Knowledge base K; encoders EI , ET ; maps fI→T , fT→I ; generators GI2T

(image→text), GT2I (text→image); retrieval size k; fusion weight α; number of candidates
n; weights λ1, λ2

Ensure: Completed internal dataset D̂
1: // Image→ Text
2: zIj = EI(x

I
j ); ẑTj = fI→T (z

I
j ) ▷ Eq. 13

3: for candidate r in knowledge base K do
4: simg(r)← cos(zIj , z

I
r ) ▷ Eq. 14

5: end for
6: σ ← argsortr(−simg(r), r); A ← {σ(1), . . . , σ(k)} ▷ Eq. 15–16
7: for r ∈ A do
8: simfuse(r)← α cos(zIj , z

I
r ) + (1− α) cos(ẑTj , z

T
r ) ▷ Eq. 17

9: end for
10: π ← argsortr∈A(−simfuse(r), r) ▷ Eq. 18
11: Reorder A and select top-1 caption xT

r⋆

12: Build prompt P
13: Generate n caption candidates {x̃T

1 , . . . , x̃
T
n} ← GI2T (x

I
j ,P) ▷ Eq. 19

14: // Text→ Image
15: zTh = ET (x

T
h ); ẑIh = fT→I(z

T
h ) ▷ Eq. 29

16: for candidate r in knowledge base K do
17: stext(r)← cos(zTh , z

T
r ) ▷ Eq. 30

18: end for
19: σ ← argsortr(−stext(r), r); A ← {σ(1), . . . , σ(k)} ▷ Eq. 30
20: for r ∈ A do
21: simfuse(r)← α cos(zTh , z

T
r ) + (1− α) cos(ẑIh, z

I
r ) ▷ Eq. 31

22: end for
23: Reorder A and select top-1 image xI

r⋆

24: Generate n image candidates {x̃I
1, . . . , x̃

I
n} ← GT2I(x

T
h , x

I
r⋆) ▷ Eq. 32

25: // Candidate Selection
26: // Text candidates
27: sT (x̃

T
j ) = λ1 cos(ET (x̃

T
j ), ẑ

T ) + λ2BLEU(x̃T
j ) ▷ Eq. 20

28: // Image candidates
29: sI(x̃

I
j ) = λ1 cos(EI(x̃

I
j ), ẑ

I)− λ2NIQE(x̃I
j ) ▷ Eq. 21

30: Select the candidate with the highest score as the final completion
31: return D̂

and let ū denote the average radius across all clusters. A cluster is regarded as imbalanced if uc >
β · ū, with β = 2 in our experiments. For such clusters, we adopt more robust representatives instead
of plain centroids. Specifically, we use the νc, defined as

νc = argmin
x∈c

∑
y∈c

∥z(x)− z(y)∥2, (28)

which is the most central sample in c and less sensitive to outliers.

Sensitivity to thresholds. We further analyze the impact of τcent and τinst. If the thresholds are
set too high, only very close samples are retained, reducing coverage and harming downstream per-
formance. If the thresholds are set too low, many noisy or irrelevant external samples are included,
introducing excessive noise and again degrading performance. Our experiments show that perfor-
mance improves as the thresholds increase up to a moderate range, but deteriorates once they are
either too strict or too relaxed. Based on this observation, we set both thresholds to 0.7, which
provides a stable trade-off between precision and recall.

A.4 VISUALIZATION OF KNOWLEDGE ALIGNMENT

To illustrate the necessity and effectiveness of our knowledge filtering and alignment, we visualize
the embeddings of the internal dataset (MSCOCO) and an external dataset (CC3M) using t-SNE
before and after alignment.
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Before alignment. As shown in Fig. 2, the embeddings from the two datasets form distinct clus-
ters, reflecting the domain gap. Although semantically related (both are natural image–text corpora),
the representations are not directly compatible.

After alignment. As shown in Fig. 2, after applying our knowledge filtering and alignment, the
external embeddings are rotated into the internal space, and semantically similar samples from both
datasets become much closer, indicating successful mitigation of domain shift.

Figure 2: t-SNE visualization of MSCOCO and CC3M embeddings before (left) and after (right)
alignment.

A.5 MULTI-MODAL RETRIEVAL FOR TEXT-ONLY CASE

Given an unpaired text xT
h , we extract its embedding zTh = ET (x

T
h ) and obtain a pseudo-image

embedding via the learned mapping:

ẑIh = fT→I(z
T
h ). (29)

We perform intra-modal retrieval over K by text similarity and take the top-k candidates:

stext(r) = cos(zTh , z
T
r ), σ = argsort

r

(
− stext(r), r

)
, A = {σ(1), . . . , σ(k)}, |A| = k. (30)

For r ∈ A, we compute a fused score and pick the best exemplar image:

simfuse(r) = α cos(zTh , z
T
r ) + (1− α) cos(ẑIh, z

I
r ), r⋆ = argmax

r∈A
simfuse(r). (31)

Finally, we feed the text xT
h and the retrieved reference image xI

r⋆ into the text-to-image generator
GT2I to produce the completed sample:

x̃I = GT2I(x
T
h , x

I
r⋆). (32)

A.6 DETAILS ON PROCRUSTES ALIGNMENT

In practice, all filtered external embeddings are considered during mutual nearest neighbor (MNN)
matching. If an external embedding is linked to multiple internal embeddings, we retain only the
pair with the highest CSLS score to ensure a one-to-one mapping. When the internal and external
datasets differ greatly in size, we randomly subsample the larger side to balance the number of pairs
used for alignment. Since Procrustes alignment is based on one-to-one MNN pairs, the number
of effective seed pairs is bounded by the size of the internal dataset. Although this means that at
most |D| external embeddings are directly used for learning the mapping, having a large external
pool remains beneficial as it increases the chance of finding reliable MNN pairs. After learning the
alignment from these one-to-one pairs, the resulting Procrustes transformation is applied to the entire
external knowledge base, projecting all external embeddings into the internal space for subsequent
retrieval.
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A.7 THEORETICAL DERIVATION OF ORTHOGONAL ALIGNMENT

The goal of cross-domain alignment is to map external embeddings Zext ∈ Rn×d into the internal
embedding space Zint ∈ Rn×d while preserving geometric structure. Formally, this corresponds
to solving the orthogonal Procrustes problem defined in Eq. 9. For clarity, the following derivation
is presented without modality superscripts, but applies equally to both image (ZI ) and text (ZT )
embeddings.

Closed-form solution. Expanding the Frobenius norm, the optimization is equivalent to

max
W∈O(d)

Tr(W⊤M), where M = Z⊤
extZint.

Let the singular value decomposition (SVD) of M be

M = UΣV ⊤,

with U, V ∈ Rd×d orthogonal and Σ ∈ Rd×d diagonal. The optimal alignment matrix is

W ∗ = UV ⊤,

which yields the aligned external embeddings as given in Eq. 10.

Iterative refinement. Since exact correspondence between Zext and Zint is unknown, we refine
W ∗ iteratively following (Lample et al., 2018): (i) update mutual nearest neighbor (MNN) pairs
using CSLS on the current aligned embeddings; (ii) recompute W ∗ via the SVD step above; (iii)
repeat until convergence, i.e.,

∥W (s) −W (s−1)∥F < ϵ,

for a small threshold ϵ, where s indexes the iteration.

Domain-consistent embedding space. After convergence, internal and external embeddings are
merged into a unified space. The internal embeddings remain fixed as the anchor space (standard-
ized by their own mean and scale), while the learned mapping W ∗ is applied solely to external
embeddings, ensuring domain-consistent representations.

A.8 DATASET SPLITS AND IMPLEMENTATION DETAILS.

Dateset Splits. From MSCOCO, we sample 10k training instances and construct a modality-missing
dataset where each modality has a 35% missing rate, resulting in a total missing rate of 70%. For
Flickr30K, we use 5k training instances with a 20% missing rate per modality, yielding an overall
missing rate of 40%. For RSICD, all 8,743 training samples are utilized with a 20% missing rate per
modality, corresponding to a total missing rate of 40%. Since both CC3M and NWPU-Caption are
large-scale, we randomly sample 10k entries from each to construct the external knowledge base.

Implementation Details. For knowledge alignment, we cluster embeddings with KMeans (k =
128), apply thresholds τcent, τinst = 0.7, and refine the alignment using Procrustes analysis (5
iterations). During knowledge-constrained completion, we retrieve top-k = 10 candidates and α =
0.5 for conditioning. For candidate selection, we set λ1 = 0.7 and λ2 = 0.3 to balance semantic
similarity and quality scores.

A.9 COMPLEXITY ANALYSIS

We analyze the asymptotic cost of each component. Let N be the number of entries (per modality)
in the knowledge base, d the embedding dimension, K the number of clusters, s the number of
alignment refinements, k the retrieval shortlist size, n the number of generated candidates, and
P = |Pint| the number of internal image–text pairs used to train the mapping.

Cross-modal mapping (fI→T , fT→I ). Training the lightweight MLPs on P paired samples scales
linearly in both P and d. With e epochs (and fixed-width MLP), the cost is O(e P d2).
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Knowledge filtering (clustering + thresholding). K-means over N embeddings per modality
costs O(NKd). Matching cluster centroids and computing centroid/instance similarities add at
most O(K2d) +O(Nd), so the filtering step remains dominated by O(NKd).

Cross-domain alignment (MNN + Procrustes). Let Nf be the number of filtered embeddings
that enter alignment (per modality). Per refinement step:

• Mutual nearest neighbor (MNN) construction with CSLS requires nearest-neighbor search
across domains: O(N2

f d).

• Procrustes: form M = Z⊤
extZint in O(Nfd

2), then SVD on d× d in O(d3).

With s refinements, the alignment cost is O
(
s [N2

f d + Nfd
2 + d3 ]

)
.

Retrieval-based completion (two-stage retrieval + candidate scoring). Given a query embed-
ding (image or text):O(Nd) + O(kd) + O(nd).

Overall. Summing the components yields O(e P d2) + O(NKd) + O
(
s [N2

f d+Nfd
2+d3]

)
+

O(Nd + kd + nd) . In typical settings with fixed d≪N and small k, n, the dominant terms are
O(NKd) (filtering), the MNN search inside alignment, and the intra-modal retrieval term.

A.10 EXPERIMENTS WITH STRONGER GENERATORS

To examine the effect of stronger generation models, we conducted additional experiments using
enhanced image captioning and text-to-image models. As shown in Table 10, upgrading the gener-
ators (e.g., from BLIP2 + Stable Diffusion XL 1.0 to LLaVA-1.5 (Liu et al., 2023) + Juggernaut-XL)
improves the performance of Direct Generation across both retrieval and captioning metrics. No-
tably, RAG4DMC achieves 49.1 / 49.4 R@1 and 117.9 CIDEr, outperforming the enhanced Direct
Generation baseline by a clear margin. These results demonstrate that while stronger generators
can enhance Direct Generation, RAG4DMC consistently provides additional gains on top of any
generation backbone. This reinforces that our method improves modality completion beyond what
generator quality alone can achieve.

Table 10: Performance of Direct Generation and RAG4DMC with different generation models.

Method Generation Models I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore
Direct Generation Blip2 and Stable Diffusion-XL 41.4 43.9 75.4 76.3 112.2 92.2
Direct Generation LLaVA-1.5 and Juggernaut-XL 45.8 47.2 78.3 78.0 113.0 92.2

RAG4DMC Blip2 and Stable Diffusion-XL 46.6 47.5 79.0 79.7 117.2 92.5
RAG4DMC LLaVA-1.5 and Juggernaut-XL 49.1 49.4 81.7 81.4 117.9 92.6

A.11 ABLATION STUDY ON MULTI-MODAL FUSION SCORE

To evaluate whether the proposed multi-modal fusion score (simfuse) provides additional benefits
beyond standard top-k retrieval, we conducted an ablation study comparing three settings: (i) Top-k:
One exemplar is randomly selected from the retrieved top-k candidates and fed into the generator; (ii)
Top-k-all: All k retrieved exemplars are fed into the generator (i.e., no fusion and no selection); (iii)
RAG4DMC: Our proposed fusion score is used to select the best exemplar among the k candidates
and feed it into the generator.

As shown in Table 11, Top-k-all performs the worst, likely because feeding all retrieved samples
into the generator introduces excessive or noisy context. Top-k performs better, but RAG4DMC
achieves the best results across all metrics, improving both retrieval (e.g., +0.6 R@1 over Top-k)
and captioning (e.g., +1.0 CIDEr). These results demonstrate that the fused score effectively selects
the most semantically aligned exemplar, yielding consistent performance gains over naive top-k
retrieval strategies.

A.12 ABLATION STUDY ON CROSS-DOMAIN ALIGNMENT ITERATIONS

To evaluate the effect of varying the number of cross-domain alignment iterations, we conducted
experiments with 3, 4, and 5 iterations. As shown in Table 12, varying the number of iterations
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Table 11: Performance of RAG4DMC with different retrieval methods.

Method I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore
Top-k 46.0 46.7 78.4 78.8 116.0 92.3

Top-k-all 43.7 45.4 76.2 75.8 115.5 92.2
RAG4DMC 46.5 47.3 78.9 79.5 117.0 92.5

from 3 to 5 results in only marginal performance improvements (e.g., I2T R@1: 46.2 → 46.6;
CIDEr: 116.3 → 117.2), demonstrating that the method is not highly sensitive to this parameter.

Table 12: Performance of RAG4DMC with different number of cross-domain alignment iterations.

Number of Iterations I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore
3 46.2 46.7 78.6 78.8 116.3 92.4
4 46.4 46.9 78.8 79.2 116.8 92.4
5 46.6 47.5 79.0 79.7 117.2 92.5

A.13 ABLATION STUDY ON CANDIDATE SELECTION WEIGHTS (λ1 AND λ2)

To examine the effect of candidate selection weights, we conducted experiments by varying λ1 and
λ2. As shown in Table 13, varying these weights leads to moderate but controlled changes in
performance. Importantly, RAG4DMC continues to outperform baseline methods across all tested
settings.

Table 13: Performance of RAG4DMC with different λ1 and λ2 values.

λ1 λ2 I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore
0.7 0.3 47.7 48.5 80.1 80.3 121.5 92.6
0.5 0.5 47.2 48.4 80.1 80.4 121.3 92.6
0.3 0.7 46.4 47.5 79.0 79.7 120.9 92.5

A.14 SEMANTIC AND FIDELITY EVALUATION OF GENERATED DATA

To provide a more comprehensive assessment of the generated data quality, we conducted direct
semantic and fidelity evaluations. Specifically, we computed CLIP-Similarity between the gener-
ated text and the original modality images, and we evaluated image fidelity using FID, comparing
generated images with 10k real MSCOCO images. As shown in Table 14, RAG4DMC achieves
higher CLIP-Similarity and substantially lower FID (Heusel et al., 2017) compared to Direct Gen-
eration, indicating that our method produces text that is more semantically aligned with the original
images and generates images with significantly better distributional fidelity. These results confirm
that RAG4DMC improves not only downstream performance but also the intrinsic quality of the
generated modalities.

Table 14: Semantic and fidelity evaluation of generated data.

Method CLIP-Similarity FID
Real Data 0.3040 –

Direct Generation 0.2915 30.70
RAG4DMC 0.2995 27.92

A.15 EFFECT OF DOMAIN DISTANCE ON PERFORMANCE

To study the effect of domain distance, we compare two external knowledge base choices in Table
15: CC3M (a large, generic caption dataset) and Flickr30K (a smaller dataset more similar in style
to our internal datasets). Although Flickr30K is closer in domain to the internal datasets, CC3M
yields better performance, suggesting that semantic diversity and scale of the external KB are more
important than strict domain matching. Furthermore, the gains achieved with CC3M show that
RAG4DMC is robust to moderate domain mismatch and does not require a perfectly curated or
tightly aligned external corpus.
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Table 15: Performance of RAG4DMC with different external knowledge bases.

External KB I2T R@1 T2I R@1 I2T R@5 T2I R@5 CIDEr BERTScore
CC3M 46.6 47.5 79.0 79.7 117.2 92.5

Flickr30K 44.7 45.2 77.4 77.5 112.5 92.3

A.16 VISUAL COMPARISON OF RAG4DMC

In this appendix, we present a visual comparison of RAG4DMC’s performance in filling missing
modalities. Fig. 3 shows the comparison between real captions and those generated by RAG4DMC
when the image modality is missing. On the left, we display real images from the MSCOCO dataset
with their corresponding captions. The middle column shows captions generated through Direct
Generation, which tend to be brief and less detailed. On the right, RAG4DMC-generated captions
are more descriptive and contextually relevant, demonstrating its ability to fill in missing details.

Figure 3: Comparison of generated captions when the image modality
is missing.

Figure 4: Comparison of generated images when the text modality is
missing.

Fig. 4 illustrates RAG4DMC’s performance in generating images when the text modality is missing.
The left column shows real images with captions, while the middle column presents images gener-
ated through Direct Generation methods, often lacking detail or relevance. On the right, RAG4DMC
generates more detailed and contextually accurate images, better reflecting the described scene.

These figures highlight the effectiveness of RAG4DMC in handling missing modalities and gener-
ating content that aligns with real scenes in both text and image modalities.
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A.17 USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we used OpenAI’s GPT-5 as a language-assist tool to help
improve the clarity and readability of certain paragraphs. All scientific ideas, experimental design,
and data analysis were solely conceived and conducted by the authors. The outputs from the LLM
were carefully reviewed and edited to ensure technical accuracy and consistency with our research
findings.
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