SkillAct: Using Skill Abstractions Improves LLLM Agents

Anthony Z. Liu“' Jongwook Choi“! Sungryull Sohn?> Yao Fu' Jaekyom Kim? Dong-ki Kim? Xinhe Wang
Jaewon Yu' Honglak Lee '2

Abstract

Complex sequential decision-making tasks of-
ten require hierarchical thinking and abstraction:
breaking down these tasks into simpler subtasks
that can be solved with reusable behaviors, or
skills. In this work, we show that large language
models (LLMs) can benefit from using skill ab-
stractions to solve interactive tasks successfully.
We propose a simple prompting approach named
SkillAct, which can extend existing prompting ap-
proaches. In addition, we demonstrate that these
skill abstractions can be learned from few-shot
demonstrations by prompting LLMs. We demon-
strate that SkillAct improves the performance of
existing approaches such as ReAct on the interac-
tive task benchmark ALFWorld.

1. Introduction

Humans solve complex tasks by breaking them down into
simpler tasks, then decide how to finish these simpler tasks
by planning. Often these simpler tasks appear in many
different tasks. Cognitively, humans benefit from learning
abstractions for shared tasks, which we refer to as skills
in this work. For example, consider a set of household
tasks, such as “clean the dirty dishes”, or “serve coffee”.
In these tasks, an agent will need find and retrieve some
target objects (dishes or mug) in the scene. A skill such as
“finding a target object” would be useful, as it can be shared
by many different tasks.

Automated approaches that use large language models
(LLMs) to solve these complex interactive tasks (LLM
Agents) have shown strong capabilities in multiple do-
mains (Brohan et al., 2023; Nakano et al., 2021; Huang
et al., 2022). In these tasks, agents leverage LLM’s strong
domain knowledge, and its planning abilities by prompting
LLMs to enumerate high-level plans on how to solve the

"University of Michigan, Ann Arbor, USA *LG AI Research,
Ann Arbor, USA. Correspondence to: Anthony Liu <anth-
liu@umich.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

task (e.g., prompting “What steps should I take to clean the
dirty dishes?”).

Recently, many prompt-based agents using LLMs have
emerged, further improving task solving capabilities (Yao
et al., 2022; Wang et al., 2023; Yin et al., 2023; Shinn et al.,
2024; Niu et al., 2024). Notably, ReAct (Yao et al., 2022)
prompts LLMs to “think” while solving tasks, enabling
the agent to reason about the tasks given, track the agent’s
progress, and update the current plan as necessary. Voy-
ager (Wang et al., 2023) prompts LLMs to produce and
learn a skill library. In Voyager, as the task is to solve a
code-based environment, skills are represented in the form
of executable code functions (in Python) that are updated
and re-used as the agent explores the environment.

Our work takes a more general view of skills than these
prior works do. Compared to Voyager, skills can also be
applied to non-code settings by encoding skill information
in natural language — we simply define skills with skill
name, instructions, and examples of execution (Figure 1).
This can be seen as a more relaxed, loose version than code
skills as in Voyager, allowing more flexibility to be utilized
by LLMs and the ease of computation without needing to
execute through an interpreter that requires strict syntactic
and semantic correctness for code. Furthermore, we show
that by simply appending appropriate skill descriptions to
an LLM agent prompt, such as SkillAct, we can increase the
performance of the LLM agent. As this approach simply
modifies the LLM prompt, it can be used to extend other
LLM agents for other domains. In addition, these skills can
be “learned” from data: LLMs can produce useful skills by
analyzing few-show demonstrations of the target tasks.

Our work makes the following contributions:

* We show that prompting LLMs with skills, or descriptions
of shared behaviors that are useful solving tasks, can
improve performance on interactive text-based planning
and reasoning tasks such as ALFWorld (Shridhar et al.,
2020b).

* We present an approach for extracting skills from demon-
strations without expert supervision, and show these are
comparable to skills written by human experts.

SkillAct: Using Skill Abstractions Improves LLM Agents

ReAct SkillAct D R N
’ 1 l \
Interact with a household to solve a task.] [Jnteract with a household to solve a task.] | Extracted Skill Library |
- - ! "[Name: find_and_take_item(item, locations)] !
Here are some examples: Here are skills that may be useful for solving the task: | I
. | I
sxamplg 1 . o . o [skil|1’] I Instructions: |
ou are in the middle of a room. Looking quickly around you, 1| |2. Tdentify the item you need to find and take. 1
you see a cabinet 4, a cabinet 3, ..., and a toaster 1. () 1| [2. List the potential locations where the item could be I
Your task is to: find some apple and put it in sidetable. | Found |
> think: To solve the task, I need to find and take an () 1| |5, Visit each tocation in the Tist sequentially. !
apple, then put it in sidetable. | 4. Check the location for the item. |
[Skil|2:--- J 5. If found, take the item. !
> put apple 3 in/on sidetable 1 1| |6. If the item is not found, proceed to the next location. | I
You put the apple 3 in/on the sidetable 1. [] | 7. Continue until the item is successfully found and taken. | |
Example 2: () | I
I 1
1| [Example: find_and_take_item("spraybottle", ["cabinet 1", ...| |

wgar n 1
Here are some examples: ! >ga b:gecab]t)l !

. o to cabine
Your task: Example 1 ! & !
You are in the middle of a room. Looking quickly around you, 1| |on the cabinet 1, you see a cloth 1, a soapbar 1, a I
you see a cabinet 4, a cabinet 3, ..., and a towelholder 1. 1| | soapbottie 1. I
Your task is to: put some spraybottle on toilet. > think: [find_and_take_item] To solve the task, I need to | > go to cabinet 2 |
> find and take an apple, then put it in sidetable. i'| |The cabinet 2 is closed. I
i'| |> open cabinet 2 I
1 You open the cabinet 2. The cabinet 2 is open. In it, you |
| see a candle 1, and a spraybottle 2. |
Your task: 1| |> take spraybottle 2 from cabinet 2 I
You are in the middle of a room. Looking quickly around you, 1| | You pick up the spraybottle 2 from the cabinet 2. I
you see a cabinet 4, a cabinet 3, ..., and a towelholder 1. | I
I I
I 1

Your task is to: put some spraybottle on toilet.

Figure 1. A comparison of prompting approaches SkillAct vs. ReAct on the ALFWorld domain. SkillAct extends existing prompt
approaches by inserting descriptions of skills into the prompt. Skills help LLMs solve tasks by providing useful abstractions over useful
behaviors. The skill shown in the figure was written by GPT4-turbo (Achiam et al., 2023) using the provided demonstrations.

2. SkillAct

Our approach, SkillAct, is a simple method which provides
a large language model (LLM) agent with descriptions of
skills: abstractions over useful and reusable behaviors for
the target tasks. In the following, we (§2.1) define skills,
(§2.2) describe how we can prompt LLMs with skills, and
(§2.3) describe how to extract skills from demonstrations.

2.1. Skills

Consider a decision-making problem in a language domain,
where at time step ¢, given an observation o; from the envi-
ronment, the agent must predict the next action a; toward
its final goal. A sequence of the agent’s observations and
actions, 7 = (01, a1, ...,0N,an), is called a trajectory.

We designate “skills” to be abstractions over partitions of
agent trajectories that (1) summarize high-level actions that
an agent should take, consisting of multiple actions from the
trajectory: (0;, a;, - . ., 0i+¢, Gite), and (2) can be reused in
multiple different tasks. Skills are also often referred to as
“options” in the options framework (Sutton et al., 1999).

For instance, in ALFWorld, agents are given household
tasks that require many steps, context understanding, and
reasoning to solve, such as “find some apple and put it
in sidetable”. However, these tasks also share multiple
potential “skills”. For instance, one crucial skill present in
every ALFWorld task is the need to find objects within the
household. An agent that could consistently use a “find”
skill could hence more consistently solve ALFWorld tasks.

2.2. Prompting LLMs with Skills

In this work, we represent skills in a textual form so that it
can easily guide an LLM agent. We define each skill as a a
tuple z = (¢, I, ¢), where ¢ is the name of the skill, I is the

instructions for the skill, and e is the skill examples, a list of
trajectory segments where the skill is used. We present an
example of skills in the third column of Figure 1. The name
¢ and instructions [of the skill can guide the LLM on how
to use and generalize the given skill for a given task. The
examples e serve as few-shot demonstrations to the LLM
on how to execute the provided skills in the task.

We maintain a set of extracted skills as a skill library
{z1,...2k} = {(¢1,11,e1),... (¢, Ix,exr)}, which can
be incorporated into the prompt for an LLM policy, as il-
lustrated in the second column of Figure 1: We call the
resulting prompt-based LLM agent as SkillAct, which is
provided with the available skill library and a few additional
examples of using skills to solve some tasks. This contrasts
with simple prompt-based LLM agents, such as ReAct (Yao
et al., 2022), which are only provided with few-shot demon-
strations without any skill abstractions.

2.3. Extracting Skills from Few-Shot Demonstrations

To make the incorporation of the skill library effective, hav-
ing a good set of skills is important. Due to the large-
scale training data in diverse domains, LLMs often possess
common-sense knowledge to form skills that can be helpful
in solving decision-making tasks, such as the household
tasks from ALFWorld. However, to leverage such ingrained
skills for the completion of tasks, these skills should be
“grounded” to the task (e.g., specific actions and contexts
are required in tasks such as ALFWorld). A limited form
of grounding can be done by showing an LLM few-shot
demonstrations or expert trajectories, which are assumed to
be given in past LLM agent works (Yao et al., 2022; Brohan
et al., 2023; Huang et al., 2022). This grounding is limited
as the trajectories will differ from the inference task, and
the agent will need to adapt skills during inference.

In this work, we show that skills can be automatically “ex-

SkillAct: Using Skill Abstractions Improves LLM Agents

LLM Prompt:

An agent may have useful "skills", which accomplishes parts
of an agent's goal task. A skill should consist of multiple
actions and be reusable across tasks. Given the following
trajectories, output:

(1) The name of the skill.

(2) Instructions on how to execute the skill. ...

(3) Examples of how to execute the skill (extracted from
the following trajectories). ...

Trajectory 1:

You are in the middle of a room. Looking quickly around
you, you see a cabinet 13, ..., and a toaster 1.Your task
is to: put a clean lettuce in diningtable.

> think: ...

> think: I have lettuce. I need to go to sinkbasin 1 and ")
clean it.

OK.

> go to sinkbasin 1

On the sinkbasin 1, you see a apple 2, a ladle 2, a spoon
1, and a tomato 3.

> clean lettuce 1 with sinkbasin 1

You clean the lettuce 1 using the sinkbasin 1.

Trajectory 2:
-/

B e eIy

Skill Segmentation

Sample Output:

[Name: clean_item(item, facility)

Instructions:
1. Take the specified item. J

2. Go to the facility (e.g., sinkbasin) used for cleaning.
3. Use the facility to clean the item.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Segmentation: clean_item("lettuce", "sinkbasin 1") |
> go to sinkbasin 1 |
|

|

|

|

|

|

|

|

|

|

/

On the sinkbasin 1, you see a apple 2, a ladle 2, a spoon 1,
and a tomato 3.

> clean lettuce 1 with sinkbasin 1

You clean the lettuce 1 using the sinkbasin 1.

Figure 2. Skills can be extracted or “learned” using LLMs through prompting. We describe our process for extracting skills in Section 2.3.
Through LLM’s prior domain knowledge and reading comprehension ability, they are able to extract skills that are similar to the expert

skills without supervision (skills shown in Appendices B and C).

tracted” from demonstrations simply with a prompt-based
approach, as in Figure 2. In the prompt for the LLM, we
provide the definition of skills and instruct the LLM to out-
put skills in the specified format: name, instruction, and
example trajectory, i.e., (¢, I, e). We include the prompts
we used in Appendix D.

Finally, in order to make sure the LLM to make use of
such skills, we “relabel” some steps in the demonstration
to reference the skills using an LLM. The prompt for this
process is described in Appendix E.

3. Experiments
3.1. Benchmark

ALFWorld. We evaluate on the ALFWorld environ-
ment (Shridhar et al., 2020b), a text-based simulated house-
hold environment, designed around the embodied agent
ALFRED environment (Shridhar et al., 2020a). In this en-
vironment, the agent must find and manipulate objects in a
household according to a given task, e.g., “find some apple
and put it in the sidetable” as shown in Figure 1. ALFWorld
is a difficult environment, as the agent needs to achieve vari-
ous subgoals within the tasks by planning. However, across
different tasks many subgoals may be shared — where learn-
ing shared skills can help to solve.

In our experiments, we use the same annotated randomly
sampled trajectories as ReAct (Yao et al., 2022): 2 trajecto-
ries for each of the 6 task types. These trajectories contain
“think” actions annotated by the ReAct authors.

3.2. Methods

Baseline. We test our approach, SkillAct, against a base-
line ReAct (Yao et al., 2022). ReAct prompts the LLM
to additionally output “think” steps, which help the LLM
reason and better plan its actions. Our approach (SkillAct)
also contains a similar think prompts, and can be thought of
adding skills to ReAct.

SkillAct. We test two versions of SkillAct — (1) SkillAct:
skills are extracted from the ReAct-annotated trajectories
using GPT4-turbo, and (2) SkillAct-Expert: skills are writ-
ten by an expert (human) annotator. The skill examples
are also taken from the ReAct annotated trajectories. In
both versions, we also use GPT4-turbo to relabel the ReAct
trajectories to include reference to the provided skills.

3.3. Results

Skill Extraction Quality. We show an example of an
extracted skill in Figure 2, and all extracted skills using
GPT4-turbo' in Appendix B. We find that the extracted
skills are similar to the expert skills, even more general than
the expert skills (e.g. suggesting clean_item (item,
facility), for general cleaning facilities compared to
the expert’s skill, clean (object), which assumes the
sink 1 is always the cleaning facility). The extracted
skills also tended to be more verbose, likely a result of the
prompt instructing the LLM to describe skills in a “step by
step” manner.

ALFWorld: Success Rate. We show the success rate (SR)

'We also tried extracting skills with weaker models, such as
GPT3.5-turbo. However, we found they had poor output quality;
often producing skills that are overly vague, or producing just
single trivial skill.

SkillAct: Using Skill Abstractions Improves LLM Agents

ReAct

You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 2,
a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a
garbagecan 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3,
a shelf 2, and a shelf 1.

Your task is to: find two cd and put them in safe.

> think: To solve the task, I need to find two CDs first and then put them in the safe.
CDs are often found in drawers or shelves, so I will start searching those locations.
K.

> think: First, I'll search the closest and most accessible storage, which would be
drawer 1.

oK.

> go to drawer 1

The drawer 1 is closed.

> take cd 3 from drawer 4

You pick up the cd 3 from the drawer 4.

> think: I've secured the first cd (3). Next, I'll search drawer 5 and drawer 6 for the
second cd. If I don't find it there, I'll begin checking the shelves.

OK.

> think: I have searched all available drawers and shelves without finding the second
cd. I should re-check some spots that might have been overlooked or I might need to
consider other possible locations within the room where a cd could be found

-

SkillAct

You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 2,
a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a
garbagecan 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3,
a shelf 2, and a shelf 1.

Your task is to: find two cd and put them in safe.

> think: [find_and_put_multiple_items] To solve the task, I need to find two CDs and
put them in the safe. A CD is likely to be found in places like desks, drawers, and
shelves. I will check these locations starting with desk 1.

OK.

> go to desk 1

On the desk 1, you see a alarmclock 2, a bowl 1, a cd 1, a cellphone 1, a desklamp 1,
and a mug 1.

> take cd 1 from desk 1

You pick up the cd 1 from the desk 1.

> go to safe 1

The safe 1 is closed.

> open safe 1

You open the safe 1. The safe 1 is open. In it, you see nothing.

> put cd 1 in safe 1

Nothing happens.

> put cd 1 in/on safe 1

You put the cd 1 in/on the safe 1.

> go to desk 2

On the desk 2, you see a bowl 2, a cd 2, a keychain 2, a mug 3, a mug 2, and a pen 3.
> take cd 2 from desk 2

You pick up the cd 2 from the desk 2.

> go to safe 1

The safe 1 is open. In it, you see a cd 1.

> put cd 2 in/on safe 1

You put the cd 2 in/on the safe 1.

You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a
cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a
countertop 3, a countertop 2, a countertop 1, a drawer 3, a drawer 2, a drawer 1, a
fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf 1, a sinkbasin
1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: cool some potato and put it in microwave.

> think: To solve the task, I need to find and take a potato, then cool it with fridge,
then put it in the microwave.

oK.

> think: Now I have cooled the potato. Next, I need to put it in the microwave.
OK.

> go to microwave 1

The microwave 1 is closed.

> put potato 1 in microwave 1

Nothing happens.

You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a
cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a
countertop 3, a countertop 2, a countertop 1, a drawer 3, a drawer 2, a drawer 1, a
fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf 1, a sinkbasin
1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: cool some potato and put it in microwave.

> think: [find_and_take_item, cool_item, put_item_in_location] To solve the task, I
need to find and take a potato, then cool it with fridge, then put it in microwave.
OK.

> think: [cool_item, put_item_in_location] Now I cool the potato (1). Next, I need to
put it in the microwave 1.

OK.

> go to microwave 1

The microwave 1 is closed.

> put potato 1 in microwave 1

Nothing happens.

> open microwave 1

You open the microwave 1. The microwave 1 is open. In it, you see a apple 1, and a mug
1.

> put potato 1 in microwave 1

Nothing happens.

> put potato 1 in/on microwave 1

You put the potato 1 in/on the microwave 1.

Figure 3. Sampled trajectories of two tasks with SkillAct with extracted skills vs. ReAct on ALFWorld. In these trajectories, ReAct makes
errors specific to the ALFWorld environment (1) trying to take multiple objects at once and failing to find them and (2) using the incorrect
action syntax. Skills help correct these errors by re-emphasizing how to correctly act through instructions and examples.

ALFWORLD

LLM AGENT SR (1 %)

GPT3.5-TURBO REACT 54.5%
SKILLACT 54.9%
SKILLACT-EXPERT 59.0%

GPT4-TURBO REACT 79.7%
SKILLACT 85.1%

SKILLACT-EXPERT 88.0%

Table 1. We evaluate each approach on ALFWorld with differ-
ent base language models GPT3.5-turbo-instruct and GPT4-
turbo (Achiam et al., 2023).

of each base LLM and approach in Table 1. For each LLM,
SkillAct with expert skills achieves the best SR (59% and
88% SR for GPT3.5-turbo and GPT4-turbo respectively).

With extracted skills, SkillAct still achieves a success rate
higher than ReAct (an increase of +0.4% and +5.4% SR).
We hypothesize the relatively lower performance increase
in GPT-3.5-turbo may be due to the LLM’s weaker ability
to comprehend and utilize the skills.

ALFWorld: Qualitative Analysis. We analyzed ReAct
compared with SkillAct (extracted skills) by sampling tra-
jectories where ReAct failed and SkillAct succeeded. We
visualize two examples from these trajectories in Figure 3.

From our analysis, we see that both ReAct and SkillAct

rarely make mistakes in planning: deciding which skills
or subgoals to pursue to accomplish the task. However,
ReAct makes more “plan execution” mistakes, mistakes
when outputting actions to execute the plan. In Figure 3, we
see that ReAct makes a mistake in trying to take multiple
objects at once (ALFWorld agents can only hold one at a
time), failing to find the objects, and outputting the wrong
action syntax for the put action.

We also analyzed the trajectories of SkillAct with extracted
vs. expert skills, shown in Figure 4. We find that extracted
skills tend to cause the LLM to make more plan execution
mistakes. We hypothesize that these may be due to the ver-
bosity of extracted skills obscuring some important details
that an LLM may need to solve the task.

4. Conclusion

In this work we showed how skills — descriptions of re-
usable behaviors in tasks — can improve an LLM agent’s
performance in the ALFWorld environment by simply
adding them to other LLM agent prompts. We also demon-
strated how to extract and learn these skills through LLM
prompting. We find the quality of these skills that are auto-
matically extracted by LLMs can match the ones written by
human experts, and result in similar performance boost on
the ALFWorld domain.

SkillAct: Using Skill Abstractions Improves LLM Agents

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Brohan, A., Chebotar, Y., Finn, C., Hausman, K., Herzog,
A., Ho, D, Ibarz, J., Irpan, A., Jang, E., Julian, R., et al.
Do as i can, not as i say: Grounding language in robotic

affordances. In Conference on robot learning, pp. 287—
318. PMLR, 2023.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents. In Interna-
tional Conference on Machine Learning, pp. 9118-9147.
PMLR, 2022.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim,
C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W., et al.
Webgpt: Browser-assisted question-answering with hu-
man feedback. arXiv preprint arXiv:2112.09332, 2021.

Niu, R., Li, J., Wang, S., Fu, Y., Hu, X., Leng, X., Kong,
H., Chang, Y., and Wang, Q. Screenagent: A vision
language model-driven computer control agent. arXiv
preprint arXiv:2402.07945, 2024.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han,
W., Mottaghi, R., Zettlemoyer, L., and Fox, D. Alfred:
A benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10740-10749, 2020a.

Shridhar, M., Yuan, X., Coté, M.-A., Bisk, Y., Trischler,
A., and Hausknecht, M. Alfworld: Aligning text and
embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020b.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181-211, 1999.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting

in language models. arXiv preprint arXiv:2210.03629,
2022.

Yin, D., Brahman, F., Ravichander, A., Chandu, K., Chang,
K.-W., Choi, Y., and Lin, B. Y. Lumos: Learning agents
with unified data, modular design, and open-source llms.
arXiv preprint arXiv:2311.05657, 2023.

SkillAct: Using Skill Abstractions Improves LLM Agents

Appendix

A. Additional ALFWorld Qualitative Analysis

SkillAct Extracted Skills SkillAct Expert Skills

You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a \
cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a
countertop 3, a countertop 2, a countertop 1, a drawer 3, a drawer 2, a drawer 1, a countertop 3, a countertop 2, a countertop 1, a drawer 3, a drawer 2, a drawer 1, a
fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf 1, a sinkbasin fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf 1, a sinkbasin
1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1. 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: heat some apple and put it in garbagecan. Your task is to: heat some apple and put it in garbagecan.

> To solve the task, I need to find and take an apple, then heat it with the microwave, > think: [find, heat, place] To solve the task, I need to find and take an apple, then
and finally put it in the garbagecan. heat it with microwave, then put it in garbagecan.

Nothing happens. OK.

> think: [find_and_take_item] First I need to find an apple. An apple is more likely to > think: [find] First I need to find an apple. An apple is more likely to appear in
appear in fridge (1), countertop (1-3), or drawer (1-3). I can check these locations fridge (1), countertop (1-3), drawer (1-3), cabinet (1-6), garbagecan (1). I can check
one by one, starting with fridge 1. one by one, starting with fridge 1.

OK. OK.

> go to fridge 1 > go to fridge 1

The fridge 1 is closed. The fridge 1 is closed.

> open fridge 1

You open the fridge 1. The fridge 1 is open. In it, you see a bowl 1, a bread 1, a cup > open cabinet 6

1, a lettuce 2, and a potato 1. You open the cabinet 6. The cabinet 6 is open. In it, you see nothing.

> go to countertop 1 > go to garbagecan 1

On the countertop 1, you see a cellphone 1, a mug 2, a pan 2, and a tomato 1. On the garbagecan 1, you see a apple 2, and a apple 1.

> think: [find, take] Now I find an apple (1). Next, I need to take it.

> It appears that an apple is not found in any of the inspected locations. Please let OK.

me know how you would like to proceed or if there is any other location you would like > take apple 1 from garbagecan 1

me to check further. You pick up the apple 1 from the garbagecan 1.

Nothing happens.

Figure 4. A trajectory of SkillAct with extracted skills vs. expert skills on the same task. In the trajectories, SkillAct with extracted
skills (left) fails to enumerate through all possible object locations.

B. ALFWorld Extracted Skills

find_and_take_item(item, locations) 1

instructions: 2
1. Identify the item you need to find and take. 3
2. List the potential locations where the item could be found. 4
3. Visit each location in the list sequentially. 5
4. Check the location for the item. 6
5. If found, take the item. 7
6. If the item is not found, proceed to the next location. 8
7. Continue until the item is successfully found and taken. 9
example: find_and_take_item("spraybottle", ["cabinet 1", "cabinet 2", "cabinet 3", " 16

cabinet 4", "countertop 1", "toilet 1", "sinkbasin 1", "sinkbasin 2", "garbagecan 1"

1)

> go to cabinet 1 1

On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1. 12
> go to cabinet 2 13
The cabinet 2 is closed. 14
> open cabinet 2 15
You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a 16
spraybottle 2.

> take spraybottle 2 from cabinet 2 17
You pick up the spraybottle 2 from the cabinet 2. 18

19

20
put_item_in_location(item, location) 2
instructions: 22
1. Identify the item and the desired location. 23
2. Carry the item to the specified location. 24
3. Place the item in/on the location. 25
example: put_item_in_location ("spraybottle", "toilet 1") 26
> go to toilet 1 27
On the toilet 1, you see a soapbottle 2. 28
> put spraybottle 2 in/on toilet 1 29
You put the spraybottle 2 in/on the toilet 1. 30

31

32
clean_item(item, facility) 33
instructions: 34

SkillAct: Using Skill Abstractions Improves LLM Agents

1. Take the specified item. 35
2. Go to the facility (e.g., sinkbasin) used for cleaning. 36
3. Use the facility to clean the item. 37
example: clean_item("lettuce", "sinkbasin 1") 38
> go to sinkbasin 1 39
On the sinkbasin 1, you see a apple 2, a ladle 2, a spoon 1, and a tomato 3. 40
> clean lettuce 1 with sinkbasin 1 4
You clean the lettuce 1 using the sinkbasin 1. 42

43

44
heat_item(item, appliance) 45
instructions: 46
1. Take the specified item. 47
2. Go to the relevant appliance (e.g., microwave) used for heating. 48
3. Use the appliance to heat the item. 49
example: heat_item("egg", "microwave 1") 5(
> go to microwave 1 5
The microwave 1 is closed. 52
> heat egg 2 with microwave 1 53
You heat the egg 2 using the microwave 1. 54

55

56
cool_item(item, appliance) 57
instructions: 58
1. Take the specified item. 59

2. Go to the relevant appliance (e.g., fridge) used for cooling. 60
3. Use the appliance to cool the item. 6
example: cool_item("pan", "fridge 1") 62
> go to fridge 1 63
The fridge 1 is closed. 64
> cool pan 1 with fridge 1 65
You cool the pan 1 using the fridge 1. 66

find_and_use_item(item, locations) 69

instructions: 70
1. Identify the item you need to find and use. 71
2. List the potential locations where the item could be found. 72
3. Visit each location in the list sequentially. 73
4. Check the location for the item. 74
5. If found, use the item. 75
6. If the item is not found, proceed to the next location. 76
7. Continue until the item is successfully found and used. 77
example: find_and_use_item("desklamp", ["desk 1", "sidetable 1", "sidetable 2"]) 78
> go to desk 1 79

On the desk 1, you see a alarmclock 2, a book 1, a cellphone 1, a keychain 1, a laptop 2, %0
a laptop 1, and a pen 3.

> go to sidetable 1 8
On the sidetable 1, you see a cd 1, a pen 1, and a pencil 1. 82
> go to sidetable 2 83
On the sidetable 2, you see a alarmclock 1, a desklamp 1, and a pen 2. 84
> use desklamp 1 85
You turn on the desklamp 1. 86

87

88
find_and_put_multiple_items (items, locations, container) 89
instructions: 90
1. Identify the items and the locations where they might be found. 91
2. Visit each location sequentially to find each item. 92
3. Take each item once found. 93
4. Carry each item to the specified container. 94
5. Place the items in/on the container. 95
example: find_and_put_multiple_items (["creditcard 2", "creditcard 3"], ["countertop 1"], 9%

"dresser 1")
> go to countertop 1 97

SkillAct: Using Skill Abstractions Improves LLM Agents

On the countertop 1, you see a cellphone 2, a creditcard 4, a creditcard 3, a creditcard s
2, a mirror 1, a pencil 2, and a pencil 1.

> take creditcard 2 from countertop 1 99

You pick up the creditcard 2 from the countertop 1. 100

> go to dresser 1 101

On the dresser 1, you see a mug 1, and a television 1. 102
> put creditcard 2 in/on dresser 1 103
You put the creditcard 2 in/on the dresser 1. 104
> go to countertop 1 105

On the countertop 1, you see a cellphone 2, a creditcard 4, a creditcard 3, a mirror 1, a 106
pencil 2, and a pencil 1.
> take creditcard 3 from countertop 1 107
You pick up the creditcard 3 from the countertop 1. 108
> go to dresser 1 109
On the dresser 1, you see a creditcard 2, a mug 1, and a television 1. 110
> put creditcard 3 in/on dresser 1 11
You put the creditcard 3 in/on the dresser 1. 112

C. ALFWorld Expert SKkills

find (object) : 1
The agent should visit each location in order until the object is seen. If a location is 2
closed, such as a drawer, or fridge, open the location to see inside.
In addition, I should visit locations where the object is likely to appear. For example, 3
an apple is more likely to be on the countertop.
find (apple) 4
> think: First I need to find an apple. An apple is more likely to appear in fridges (1), 5
diningtables (1-3), sidetables (1), countertops (1), sinkbasins (1), garbagecan (1).
I can check one by one, starting with fridge 1.

OK. 6
> go to fridge 1 7
The fridge 1 is closed. 8

> open fridge 1 9

You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2, a mug 2, a 10
potato 2, and a tomato 1.

> go to diningtable 1 I

On the diningtable 1, you see nothing. 12
> go to diningtable 2 13
On the diningtable 2, you see a pineapple 1. 14
> go to diningtable 3 15
On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a bread 1. 16
> go to sidetable 1 17
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a 18

saltshaker 1.
> go to countertop 1 19

On the countertop 1, you see a butterknife 1, a dishsponge 1, and a soapbottle 1. 20
> go to sinkbasin 1 2
On the sinkbasin 1, you see a cup 2, a egg 1, a mug 1, and a potato 3. 22
> go to garbagecan 1 23
On the garbagecan 1, you see a apple 3, and a egg 3. 24
> think: I found apple 3. Next, I can take the apple 25
> take apple 3 from garbagecan 1 26
You pick up the apple 3 from the garbagecan 1. 27

28
place (object, location): 29
The agent should go to the target location. Then, place the current object at the 30

location.

place (apple 3, sidetable 1) 3
> think: I have an apple. I need to put it in/on a sidetable. 32
OK. 33
> go to sidetable 1 34
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a 35

saltshaker 1.
> put apple 3 in/on sidetable 1 36

SkillAct: Using Skill Abstractions Improves LLM Agents

You put the apple 3 in/on the sidetable 1. 37

clean (object) : 39
The agent should go to the sinkbasin. Then, the agent should use the "clean" action with 40
the sinkbasin.

clean (lettuce 1) 41
> think: I have lettuce. I need to go to sinkbasin 1 and clean it. 42
OK. 43
> go to sinkbasin 1 44
On the sinkbasin 1, you see a apple 2, a ladle 2, a spoon 1, and a tomato 3. 45
> clean lettuce 1 with sinkbasin 1 46
You clean the lettuce 1 using the sinkbasin 1. 47

48
heat (object) : 49
The agent should go to the microwave. Then, the agent should use the "heat" action with 50

the microwave.

heat (egg 2) 51
> think: I have an egg 2. I need go to microwave 1 and heat it. 52
OK. 53
> go to microwave 1 54
The microwave 1 is closed. 55
> heat egg 2 with microwave 1 56
You heat the egg 2 using the microwave 1. 57

58
cool (object) : 59

The should go to the fridge. Then, the agent should use the "cool" action with the fridge oo

cool (mug 3) 61
> think: I have a mug 3. Next, I need to go to fridge 1 and cool it. 62

OK. 63
> go to fridge 1 64
The fridge 1 is closed. 65
> cool mug 3 with fridge 1 66

You cool the mug 3 using the fridge 1. 67
68

look (object) : 69

The agent should find a desklamp find(desklamp). Then, I can use the "use" action with 70
the desklamp.

look (bowl 1) 71

> think: I have a bowl 1. Next, I need to find a desklamp. A desklamp is more likely to 72

appear in desk (1), sidetable (1-2), shelf (1-5), bed (1), drawer (1-3). I can check
one by one, starting with desk 1.
OK. 73
> go to desk 1 74
On the desk 1, you see a alarmclock 2, a book 1, a cellphone 1, a keychain 1, a laptop 2, 75
a laptop 1, and a pen 3.

> go to sidetable 1 76
On the sidetable 1, you see a cd 1, a pen 1, and a pencil 1. 77
> go to sidetable 2 78
On the sidetable 2, you see a alarmclock 1, a desklamp 1, and a pen 2. 79
> think: Now I find a desklamp (1). Next, I need to use it. 80
OK. 81
> use desklamp 1 82
You turn on the desklamp 1. 83

D. Skill Extraction Prompt

You are a helpful assistant who can help build an automated agent
interacting with an environment. 2

Your task is to identify what "skills" would be useful in accomplishing tasks. 4

Here are some exemplar tasks the household agent can be given in this domain: 6

SkillAct: Using Skill Abstractions Improves LLM Agents

— put some spraybottle on toilet.
— find some apple and put it in sidetable.

- put two creditcard in dresser.
- put two cellphone in sofa.

The agent may have useful "skills":

skill accomplishes useful parts of the goal task by outputting certain text actions.
skill should consist of multiple actions executed sequentally (usually more than two
actions) .

skill should be "reusable" across different tasks and generalizable.

skill should not intersect with other skills.

=

=

Your task is to identify what skills would be useful in accomplishing tasks.

For each trajectory given in the following, try to summarize
what the agent is doing in a high-level abstraction of skill.

(1) skill_name (argl, arg2, ...)

(2) instructions: the instruction of a skill should explain:
— step by step explanation on how to use this skill
— tips on unexpected steps or advice on using this skill

(3) example: Part of the provided trajectories that show how to use the skill.
Indicate the skill being used and the arguments used for this example skill.

You must answer in the following format:

— For each skill discovered, place the text in a markdown fence.

- (1) In the first line, briefly give the name of the skill and arguments

— (2) In the second line, write step by step instructions, and tips on how to use this
skill.

— (3) Write one example extracted from the example trajectory, and indicate the arguments

for this skill.
Only include parts of the trajectory that are relevant for this skill.

YY'skill

{{ skill_name }}

instructions: {{ instructions }}

example: {{ skill_name (example_arguments) }}
> {{ action }}

{{ observation }}

> {{ action }}

{{ observation }}

AURTRY

E. Demonstration Relabeling Prompt

You may want to use some of the following skills relevant for this task:
[[insert list of skills here ...]]
Given the following context:

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a
cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 1, a diningtable
3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a
stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: find some apple and put it in sidetable.

Modify the this "think" action by adding a citation on which skills may be relevant in
the text.

10

26
27
28

29

39

w o

10

SkillAct: Using Skill Abstractions Improves LLM Agents

IMPORTANT :

Example:

> think:

change "> think: (action text)" to "> think: [skilll,

To solve the task,

I need to find and take an apple,

11

Only output the modified think action and nothing else.

skill2] (action text)".

then put it in sidetable.

12
13
14

