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Abstract

Articulated objects, as prevalent entities in human life, their 3D representations play
crucial roles across various applications. However, achieving both high-fidelity
textured surface reconstruction and dynamic generation for articulated objects
remains challenging for existing methods. In this paper, we present REArtGS, a
novel framework that introduces additional geometric and motion constraints to
3D Gaussian primitives, enabling realistic surface reconstruction and generation
for articulated objects. Specifically, given multi-view RGB images of arbitrary
two states of articulated objects, we first introduce an unbiased Signed Distance
Field (SDF) guidance to regularize Gaussian opacity fields, enhancing geome-
try constraints and improving surface reconstruction quality. Then we establish
deformable fields for 3D Gaussians constrained by the kinematic structures of
articulated objects, achieving unsupervised generation of surface meshes in un-
seen states. Extensive experiments on both synthetic and real datasets demon-
strate our approach achieves high-quality textured surface reconstruction for given
states, and enables high-fidelity surface generation for unseen states. Project site:
https://sites.google.com/view/reartgs/home.

1 Introduction

Articulated objects are ubiquitous in our daily lives. Modeling articulated objects, i.e. mesh re-
construction and generation, holds significant importance in many fields of computer vision and
robotics fields including virtual and augmented reality [16} 134], object manipulation [38] [30] and
human-object interaction [35} [12]]. Currently, the surface and shape reconstruction for articulated
objects is a non-trivial task due to the challenges: firstly, articulated objects exhibit complicated and
diverse geometric structures with a wide range of scales. Secondly, articulated objects possess varied
kinematic structures, and the static surface meshes generated from vanilla 3D reconstruction methods
fail to meet practical interaction requirements. Under this circumstance, PARIS [14]] attempts to
use multi-view images from two states for articulated object dynamically reconstruction with neural
implicit radiance fields. Nevertheless, PARIS lacks geometric constraints, leading to shape-radiance
ambiguity and additional errors for motion analysis.
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from insufficient geometric constraints [40] or Figure 1: Given multi-view RGB images of ar-
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via 3DGS tend to input motion time and spatial

positions into neural networks to obtain the de-

formed positions of Gaussian primitives [36l 4]. Consequently, these methods require continuous
supervision throughout the entire motion, which limits their ability to generate surface meshes in
unseen states. In general, introducing 3DGS as a ready-to-use technique into articulated object
surface reconstruction and generation is still not feasible and remains a challenging task.

In this paper, to address the aforementioned issues and make full advantage of 3DGS, we propose
REATrtGS, a novel approach that Reconstructs and gEnerates high-quality texture-rich mesh surfaces
for Articulated objects via 3D Gaussian Splatting, only taking multi-view RGB images from two
arbitrary states. Specifically, unlike most 3DGS methods based on the opacity field, which may lead
to noisy surface extraction due to the non-strict linearity of the opacity field, we first introduce the
Signed Distance Function (SDF) field to facilitate geometry learning. Then we propose a geometry
constraint which encourages the SDF values of the Gaussian primitives approach zero when their
opacity values reach the maximum , achieving unbiased guidance of the SDF field over the opacity
field. In this way, we can take advantage of the strong linearity of the SDF field to explicitly establish
a connection between Gaussian opacity field and the scene surface, which significantly enhances
geometric learning and reduces artifacts.

Subsequently, we employ the optimized Gaussian primitives as an accurate geometry initialization
for dynamic surface generation. Due to the absence of intermediate states, we leverage the kinematic
structures of articulated objects to model time-continuous Gaussian deformable fields in an unsuper-
vised fashion, and constrain the deformable fields using learnable motion parameters. Concretely, we
propose a heuristic method for unsupervised part segmentation and formulate the deformable fields
of dynamic parts via the motion parameters. Our REArtGS is evaluated on PartNet-Mobility [32]] and
AKB-48 [15] object repositories, ranging from synthetic to real-world data. Extensive experiments
demonstrate that our REArtGS outperforms existing state-of-the-art methods in articulated object
surface reconstruction and generation tasks, as shown in Fig.[I}

In summary, our main contributions can be summarized as follows: (1) We propose REArtGS, a
novel framework introducing 3DGS to conduct high-quality textured surface reconstruction and
time-continuous generation for articulated objects, only using multi-view images from two arbitrary
states. (2) Our REArtGS exploits an unbiased SDF guidance for 3D Gaussian primitives to enhance
geometric constraints for improving reconstruction quality, and also establishes the deformable fields
constrained by kinematic structures of articulated objects to generate unseen states in an unsupervised
manner. (3) We incorporate REArtGS into various scenes ranging from synthetic to the real-world
data across many different articulation categories. The extensive experimental results demonstrate
that our approach significantly outperforms SOTAs in both mesh reconstruction and generation tasks.

2 Related Work
2.1 Articulated Object Shape Reconstruction

Object surface reconstruction is a well-established problem for understanding the full geometric
shape of objects. Some works introduce to encode continuous functions that model the objects using
Signed Distance [23} 21], radiance [20} 126} 29] and occupancy [19]. To achieve both geometry and
motion analysis in a single forward, Ditto [9] and REACTO [28] propose to generate shapes at
unseen states from pair observations. Specifically, PARIS [14]] alleviates the 3D data requirement



limitation and succeeds in reconstructing shape surface with only RGB images. Most recently,
ArticulatedGS [7]] and ArtGS [17]] introduce 3DGS to achieve both the reconstruction and motion
estimation of articulated objects. However, these methods still suffer from insufficient geometry
constraints, which may lead to noisy surface mesh outputs. Therefore, our REArtGS aims to address
these issues, and proposes geometric and motion constrained 3DGS for this task.

2.2 Surface Reconstruction with 3DGS

3D Gaussain Splatting has become increasingly popular technique for surface reconstruction in
recent years [10} [11} 39, 25]. GOF [40] establishes opacity fields of 3D Gaussians using ray-
tracing-based rendering, and extracts the surface meshes by the opacity level set. 2DGS [8] and
PGSR [[1] seek to transform 3D Gaussians into 2D flat representation, obtaining accurate normal
distribution. Although improving the surface reconstruction quality, these methods still lack more
reasonable geometry constraints. Several researchers attempt to integrate SDF representation with
3D Gaussians [37, 2, 33| 3], but these approaches commonly use SDF to regularize normals and
guide the pruning of 3D Gaussians, without substantial optimization of Gaussian opacity fields.
Meanwhile, some works conduct dynamic reconstruction using 3DGS. Deformable 3DGS proposes a
deformation field to reconstruct dynamic scenes with 3D Gaussian primitives. 4DGS [4]] leverages
a spatial-temporal structure encoder and a multi-head Gaussian deformation decoder to derive the
deformed 3D Gaussians at a given time. However, these methods rely on complete supervision of the
motion process, limiting their capacity for generating unseen states. The similar issues also occur in
DGMesh [13]] and REACTO [28]]. We provide more analysis and comparison of the related works in

Appendix

P s s e e it 1
I Reconstruction — h Generation
| & Opacity 14 | Rendering |
$§ _—

. - ! PE— !
1 ol — t(depth)] ‘ g
1 :tart State { ',..’. — SDF]| |I Dense Points . Prismaticm, d @ End State :

g | Revolute o,, q &
(- 1 Al> ( 5 1
| g TRegulxrized Opacity Fields |I 184 Deformable Network |

Lo R
: - :' |
1 Y 5 I B Dynamic Part 1
' % ¢ | Essswewews”| Evaluation p e N
! g |I Initial Dynamic Part Final Dynamic Part 1
I 3D Gaussians MLP : i State's !
e S - [

—— Operation flow D P / / / o

() \— — e e " e —
—_— 1
Gradient flow Reconstruction Surface Generation for Unseen States

Figure 2: The overall pipeline of REArtGS. We introduce additional geometric and motion constraints
for 3D Gaussian primitives, achieving high-quality surface mesh reconstruction and time-continuous
generation, with only multi-view images from arbitrary two states.

3 Method

The overall framework of our REArtGS is illustrated in Fig. 2} Taking multi-view RGB images from
two arbitrary states s = 0, s = 1 of articulated objects, we aim to achieve high-quality textured mesh
reconstruction and generation at any unseen states between s € [0, 1].

We first introduce SDF representation and propose an unbiased SDF regularization to enhance the
geometry constraints of 3D Gaussian primitives. In this manner, we improve the reconstruction
quality and yield dense point clouds at state s = 0, providing an accurate geometric prior for
subsequent dynamic reconstruction. Then we establish time-continuous deformable fields for 3D
Gaussian primitives constrained by the kinematic structures of articulated objects. Given any state s,
we can derive the deformed position x; of Gaussian primitives through the deformation fields in an
unsupervised fashion. The details of our approach are elaborated below.

3.1 Reconstruction with Unbiased SDF Guidance



To better preserve the geometric features of Gaussian primitives, we use the ray-tracing-based 3DGS
following GOF, which evaluates rendering contribution of Gaussian primitives directly without the
3D-to-2D projection step. However, the Gaussian primitives still suffer from insufficient geometric
constraints. Concretely, the opacity fields lack an explicit link with scene surface, which may lead to
noisy outputs in surface reconstruction of articulated objects.

To address the limitation, we first introduce SDF

representation to guide the geometry learning

of Gaussian primitives. We utilize a Multi-layer W
Perceptrons (MLP) with 8 hidden layers to learn
the SDF values for spatial position inputs, and
the scene surface can be represented by the zero-
set:
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Following Neus [31]], we can derive the opacity
& for the center x; of Gaussian G; from learned Figure 3: The illustration of unbiased SDF regular-

SDF values: ization. It can be observed that when ¢ approaches
t*, the absolute value of SDF |S| converges to zero
&; = max (cp (f (xi)) — @ (f (xi41)) 0> with the unbiased SDF regularization.

®(f (x:))
2)
where ® denotes a Sigmoid function. f(x;1) is approximated as:
f(xip1) = f(xi) + f/(x:) Ax €)

where Ax = RSr. R € R3*3 is the rotation matrix derived from Gaussian’s quaternion, and
S € R3*3 is the diagonal matrix of Gaussian’s scaling. r is the normalized ray direction. Nevertheless,
the SDF-opacity conversion is not directly applicable to the o blending rendering. This is because
each 3D Gaussian primitive models a local density distribution, while Eq. 2] only maps the global
positions to their opacity values and neglects the local properties of Gaussian primitives. Therefore,
we define the opacity of Gaussian primitive combining the rendering contribution & proposed in GOF
as:

=6 -max(e_%xLTxL) 4
i “

&, - max (67%(r{rLt2+2oert+ofoL)>

where oy, ry, are the camera center and incident ray direction represented in the local coordinate
system of Gaussian GG;, which can be acquired by local scaling matrix and rotation matrix of GG;. The
maximum value of € (G;) occurs at ray depth ¢*, expressed as follows:

._oLrL
= -L o)
ryry,

The rendering equation based on o is represented as:

N i—1
C=> co; [[J(1-0v) (6)
i=1 j=1

where N is the number of Gaussian primitives involved in a-blending and c; is the color modeled
with spherical harmonics. To leverage SDF to constrain the geometric learning of Gaussian primitives,
we first introduce a bell-shaped function ®;, to modulate the transformation from SDF to opacity and
replace the original Sigmoid activation function ® in Eq. 2] formulated as:

ok F ()
Pr(f(x)) = m @)

where £ is a learnable parameter that adjusts the function shape and we initially set it to 0.1. Intuitively,
the Gaussian primitive closer to the surface has a higher opacity value.



However, since & is determined solely by the Gaussian’s center, a non-alignment still exists between
the maximum points of & and e, which can be formulated as:

®)

thias =

argmax (6 ) — argmax(e)
t t

To mitigate this bias, we propose an unbiased regularization for the SDF value at depth t* as following:

£unbias = Hf(o + t*r)||§ (9)

where o, r are the camera center and incident ray direction. Through the unbiased regularization, we
encourage that when the rendering contribution of a Gaussian primitive reaches its maximum value,
the corresponding spatial position is close to the scene surface, as shown in Fig.|3| In this manner, the
SDF representation is able to regularize the opacity fields without bias and facilitate more reasonable
distribution of Gaussian primitives over scene surface. We provide more detailed elaboration and
proof in the Appendix [C.T]

3.2 Mesh Generation with Motion Constraints

Due to the explicit representation of Gaussian primitives, we can acquire accurate dense point
clouds from reconstruction, serving as initial geometry for mesh generation. Then we establish time-
continuous deformable fields for 3D Gaussians to infer the deformed position x at state s. However,
it is challenging to optimize the deformable fields for Gaussian primitives only with the supervision
of two states. Accordingly, we exploit the kinematic structures of articulated objects to constrain
the Gaussian deformation field. We first assume that the articulated motion only includes rotation
and translation following PARIS. Then we employ a heuristic method to efficiently predict the joint
type through movement trend of points, which is elaborated in the Appendix [C.3] For rotation joints,
our learning objective is to determine their rotation axis and rotation angle. Specifically, we take the
pivot point o, € R? of the rotation axis and a normalized quaternion q € R* as learnable parameters,
where the quaternion can be decoupled into the rotation axis a € R? and rotation angle #. For
prismatic joints, our learning objective is to determine their translation directions d and translation
distances m. Similarly, we take the unit vector d € R? representing the translation direction and the
translation distance m as learnable parameters.

Subsequently, we formulate the deformable fields through a canonical state. Given the rotation
motion SO(3) € R3*3, we define its canonical state as s* = 0.5 and the rotation angle of state s can
be expresses as:

== "y (10)

where s € [0,1] and 6 € [—7/2,7/2]. The angle-bounded parameterization is able to prevent the
singularity in exponential coordinates when ||6|| > 7. Using Rodrigues’ rotation formula [24], the
deformed position x4 can be derived as following:

xo = (I+sin(0.)K + (1~ cos(0,))K?) (x ~ 0,) + o, (an

where K is a skew-symmetric matrix formed by the rotation rotation axis a and I € R3*3 is a unit
matrix. Meanwhile, we align the local quaternions of 3D Gaussian primitives after rotation through
quaternion multiplication.

For the prismatic motion m -d € R3, we take advantage of the vector space structure of Euclidean ge-
ometry by setting s* = 0. The deformed position x4 can be naturally acquired by linear interpolation,
formulated as:

Xs=X+s-m-d (12)

unlike rotation motion, this parameterization avoids singularities due to the flat Riemannian structure
of R3.

However, the deformable fields should be applied exclusively to movable Gaussian primitives.
Consequently, the Gaussian primitives need to be segmented into dynamic and static parts. To address
this challenge, we propose an unsupervised method for dynamic part segmentation. We first only
input the multi-view images at the end state during warm-up training iterations, and then perform an
initialization segmentation of the dynamic part. The segmentation criterion for the initial dynamic
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Figure 4: The qualitative result of surface reconstruction on PartNet-Mobility dataset. We show both
textured and non-textured meshes for the best comparison.

components is represented as: |Ax| > [, where |Ax| is the L1 distance of spatial position variation
during the warm-up training, and /3 is its average value. Furthermore, the spatial transformation of the
dynamic part should align with the learnable motion parameters. Hence the dynamic part among the
Gaussian primitives is re-evaluated at certain intervals of iterations, where the criterion for revolute
or prismatic joints is represented as:

|A | Pm (3)
m—m| < —
K

where 6, 77 are the rotation angle around axis a and the translation distance respectively, ¢ is the
tolerance threshold which decreases as the number of iterations K increases.

Moreover, our method can be conveniently transferred to multi-part articulated objects, through
sequentially learning the segmentation masks and motions of each individual part. Please refer to our
Appendix [C.4]for more details.

3.3 Optimization and Textured Mesh Extraction

Since the shapes of Gaussian primitives are not limited, the normal distributions of Gaussian primitives
are difficult to estimate accurately. However, Gaussian’s normals should be parallel to the gradients of
SDF in an ideal case. We consequently introduce additional regularization to regularize the normals
of Gaussian primitives by SDF representation, expressed as follows:

N
1 0 - Vf(xi)|
£normal = xr (1 - 7) (14)
N; [l - [1.f (o)l
where n; represents the normal of Gaussian G;, which is calculated following GOF:
n; = —R?S;lrL (15)

where R is the rotation matrix encoded by Gaussian’s quaternion and S is the scaling matrix. We
also employ the Eikonal regularization term [3] to encourage SDF gradient direction perpendicular to

the surface, represented as:

1 N

Lok = 1 UV, = 1) (16)
i=1

The overall training objective £ is formulated as follows:
L= Ec + /\1£unbias + /\2£normal + )\SEeik + >\3£d (17)



where ) is the weight of regularization and L is the depth distortion loss following [8]. L. is defined
as:

Le= Xpssmm + (1 —A)Ly (18)
where Lp_ssiv is proposed in [10] and £; is the L1 norm of the pixel loss.

Once the optimization converges, we adopt the TSDF fusion algorithm[22] to extract the textured
mesh from Gaussian primitives. We utilize the a-blending rendering pipeline to obtain depth, opacity
and RGB renderings for training views. Then we integrate these images into a voxel block grid
(VBG) and extract a triangle mesh from the VBG. The textures of surface meshes can be efficiently
obtained leveraging the spherical harmonics and opacity of Gaussian primitives. Please refer to our
Appendix [C.3|for a more detailed illustration.

Table 1: Quantitative results for the surface reconstruction quality on PartNet-Mobility dataset. We
bold the best results and underline the second best results. * means we implement it without depth
supervision for fair comparison.

Metrics Method Stapler USB  Scissor Fridge Foldchair Washer Blade Laptop Oven Storage Mean
A-SDF [21] 1419 7.14 10.61 13.71 40.85 1250 331 211 2137 2257 1484

Ditto [9] 2.38 2.09 1.70 2.16 6.80 729 4204 031 2.51 391 7.19

CD(ws) | PARIS [14] 0.96 1.80 0.30 2.68 0.42 18.31 0.46 0.25 6.07 8.12 3.94
GOF [40] 151 8.09 0.36 151 0.53 17.35 0.89 084 1981 10.04  6.09

ArtGS* [17] 2.77 1.36 0.75 2.01 041 2059  0.63 0.99 9.01 9.00 4.75

REATtGS (Ours) | 3.47 0.75 0.29 1.50 0.40 1220 0.72 0.53 8.89 8.27 3.79
A-SDF [23] 2.140 2478 1.805 1.801 2.080 1590 5.630 2418 2751 4.077 2.677

Ditto 2.874 3.049 2926 1.550 0.925 1428 5792  1.184 1.296 2.837 2.386
CD(rs) | PARIS [14] 2.077 3.812 2807 0.370 1.209 3869 2.855 1.025 2873 2903  2.380
GOF [40] 2510 1.736 2304 2230 2.787 5725 2111 0.961 3.080 2812 2.626

ArtGS* [17] 2949 1704 2438  0.725 0.615 2.874 2031 1.182 1.148 1.157 1.682
REArtGS (Ours) | 2.186 1433 2291 0475 0.018 1204 259 0.038 0.784 1330 1.236
A-SDF [23] 0.041 0.035 0.094 0.019 0.053 0.046 0224 0.001 0.010 0.015 0.054

Ditto 0.197 0.181 0275 0.114 0.352 0.059 0.107 0366 0.052 0.030 0.173
Fl 1 PARIS [14] 0240 0.151 0.343 0.091 0.429 0.024 0396 0533 0.031 0.033 0.227
GOF 0217 0.189 0.614 0.173 0.480 0.087 0386 0303 0.049 0.036 0.253
ArtGS* [17] 0.251 0.209 0438  0.118 0.447 0.053 0408 0.294 0.056 0.042 0.232
REAT1tGS (Ours) | 0.256  0.307  0.598 0.165 0.502 0.069 0488 0419 0.065 0.066 0.294
A-SDF [23] 0.755 1.113 0952 0.945 1.020 0.982 1.763 1.039 1.174 1.258 1.100
Ditto 1.724 1308 1212 0.619 0.935 0.841 1.996 0417 0852 0.970 1.087
EMD | PARIS [14] 1.197  1.381 0.637  0.426 0.778 1.660 1.823  0.706  1.200 1.046 1.085
GOF 1.643 1815 1.075 1.055 1.181 1.692 1237 0394 1.241  0.959 1.229
ArtGS* [17] 1.921 0.677 0934  0.637 0.506 1.154  1.131 0.502 1.006 0.787  0.926
REATrtGS (Ours) | 1.060 0.847 1.078  0.485 0.097 0.777 1112 0111 0.627 0.755  0.695
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Figure 5: The qualitative results of surface generation at arbitrary unseen states on PartNet-Mobility
dataset. We show both textured and non-textured meshes for best comparison. The states are sampled
randomly.



Table 2: Quantitative results for the surface generation quality on PartNet-Mobility dataset. We
bold the best results and underline the second best results. * means we implement it without depth
supervision for fair comparison.

Metrics Method Stapler USB  Scissor Fridge Foldchair Washer Blade Laptop Oven Storage Mean
A-SDF [21 11230 3401 9411 3346 56.73 5582 378 27.64 29.60 2530 4728

PARIS [14] 209 1451 1281 2.64 10.42 1830  0.80 325 1089 589 8.16

CD(ws) ]  D-3DGS [36] 98.90 1679 91.84  48.78 30.10 3093 1262 65.11 2239 1879 4249
ArtGS* [17] 2.34 1.72 0.68 2.05 0.52 20.59  0.63 1.00 8.78 1097 492

REATrtGS (Ours) | 2.60 1.68 0.44 221 0.41 1480 059 3.65 8.11 648 4.10

A-SDF [21 8992 1806 1.822 5.166 5.668 7.050 5991 2710 5245 7.794 5224

PARIS [14] 2.113 0417 4704  0.408 1.216 0.857 4442 1354 2793 4332 2264

CD(rs) | D-3DGS [36] 9.589 1.544 0.891  0.465 1.147 3218 0.168 0449 3773  3.100 2434
ArtGS* [17] 4924 0.670 0381  0.471 1.622 2,670 1455 1.269 3912 0.562 1.794

REArtGS (Ours) | 3.651 0487 0127 0464 0.420 1.617 0414 0298 2129 1.020 1.063

A-SDF [21 0.007 0.034 0.056 0.012 0.021 0.023  0.168 0.00I 0.010 0.004 0.034

PARIS [14] 0221 0.151 0319  0.091 0.423 0.024 0421 0.530 0.031 0.032 0224

F11 D-3DGS [36] 0.064 0.180 0.125  0.073 0.168 0.195 0233 0.131 0.022 0.023 0.12]
ArtGS* [17] 0.264 0.255 0454  0.125 0.460 0.055 0426 0292 0.062 0.045 0.244

REArtGS (Ours) | 0254 0215 0.577  0.186 0.465 0.052  0.509 0.608 0.065 0.050 0.298

A-SDF [21 2.123 0951 0.955 1.606 1.684 1878 1.731 1.115 1.620 1.837 1.559

PARIS [14 2454 0457 1533 0451 0.780 0.655 1491 0.770 1.183 1354 1.113

EMD | D-3DGS [36] 3224 0612 0.665 0481 0.758 1.269 0291 0436 1374 1206 1.032
ArtGS* [17] 2207 0562 0412 0563 0.525 1.171  0.631 0.724 1297 0.750 0.884

REArtGS (Ours) | 1.594 0494 0.251 0473 0.459 0900 0456 0.353 1.033 0.689  0.670

4 Experiments

4.1 Experimental Setting

Datasets. To evaluate the reconstruction quality of our method, we conduct surface reconstruction
experiments on synthetic dataset PartNet-Mobility [32] and real-world dataset AKB-48 [[L5], an
extremely rich repository of real-world articulated objects which exhibit a wide variety of geometries
and textures. Please see the Appendix [D.T|for more details.

Metrics. Chamfer Distance (CD), Fl-score and Earth Mover’s Distance (EMD) [41] are usually
adopted as evaluation metrics for surface quality. However, these methods typically focus on the
whole surface, endowing the unseen areas (such as the bottom of the object) with considerable
weights during evaluation. This is unreasonable since we tend to be more concerned with the upper
hemisphere regions of articulated objects. Therefore, we sample point clouds from the fragments
between the rays cast by test cameras and the surface mesh to calculate EMD and CD, defined
as CD (rs). We also evaluate the Fl-score and CD for the whole surface, defined as CD (ws), to
comprehensively evaluate the surface quality. Note that the CD values are multiplied by 1000 and the
distance threshold of Fl-score is set to 0.4. The calculation of these metrics can be referred to in our

Appendix [D.4

All the experiments are conducted on a single RTX 4090 GPU. We also provide detailed implementa-
tion of our approach and baselines in the Appendix

4.2 Mesh Reconstruction Performance

We report the quantitative results of mesh reconstruction in Table. [I] and qualitative results are
shown in Fig.[d] Note that we implement ArtGS without depth supervision for a fair comparison.
As can be observed, our REArtGS outperforms state-of-the-art approaches in the mean across all
metrics with 3.79, 1.236, 0.294 and 0.695 respectively. Compared to A-SDF [21] and Ditto [9] that
exploits 3D inputs for articulated object surface reconstruction, our method still achieves higher
reconstruction quality in the majority of categories. In terms of PARIS, GOF and ArtGS, our approach
exhibits significantly smoother and clearer surfaces as shown in Fig. 4] benefiting from our enhanced
geometric constraints.

4.3 Mesh Generation Performance

We report the quantitative results of mesh generation in Table. [2]and present the qualitative results
Fig.[5] Please refer to our Appendix for more qualitative results. Our REArtGS achieves the best
mean results across all metrics with 4.10, 1.063, 0.298 and 0.670. Compared to PARIS, our method
exhibits smoother surface generation results, as shown in Fig.[5] It is mainly because PARIS lacks a
reasonable geometry initiation and directly utilizes the composite rendering, leading to the spatial
overlap between the neural radiation fields of the start and end states. It can be also observed that



our method is superior to ArtGS on most categories, as shown in Fig.[I0]in the Appendix. This is
primarily attributed to our high-quality geometry initialization from the reconstruction stage, as well
as the motion-constrained deformable fields to yield dynamic generation.

Besides, we provide the part segmentation and joint parameter estimation results in the Appendix. [D.3]
and [D.G|respectively.

Table 3: The ablation study of the unbiased SDF Table 4: The ablation study of motion constraints

guidance on PartNet-Mobility dataset. on PartNet-Mobility dataset.
w/ SDF  w/ Unbiased Reg. | CD (ws) CD (rs) F1 EMD Settings CD (ws) CD (rs) Fl EMD
5.96 2242 0250 1.366 - -
v 438 1921 0273 0817 w/o motion constraints 18.65 2270 0.209 1.105
v v 379 1236 0294 0.695 w/ motion constraints 541 1.063  0.276 0.670

4.4 Ablation Studies

We conduct an ablation of the unbiased Typle 5: The quantitative results on real-world AKB-
SDF guidance on PartNet-Mobility dataset - 48 qataset. We bold the best results and underline the
to validate its effectiveness. The ablation  econd best results. * means we implement it without

setting and_ res.ults are reported in Table. [3] depth supervision for fair comparison.
The quantitative results prove that both
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Figure 6: The qualitative results of surface reconstruction on real-world AKB-48 [[15] repository. We
show both textured and non-textured meshes for two-part and multi-part articulated objects.

4.5 Generalization to the Real World

We conduct reconstruction and generation experiments in the real world to investigate the generaliza-
tion capacity of our REArtGS. We report the quantitative results comparing with PARIS and ArtGS in
Table. [5} and present the qualitative results in Fig.[6] Our approach significantly outperforms PARIS
and ArtGS in mean performance across all metrics. This demonstrates that our method exhibits strong
generalization capability for real-world objects and enables high-quality surface reconstruction and
generation as shown in Fig.



5 Conclusion and Future Work

We propose REArtGS, a novel framework that achieves high-quality textured mesh reconstruction and
dynamic generation of articulated objects using only RGB views of two arbitrary states. We propose
an unbiased SDF guidance to regularize Gaussian opacity fields and model the Gaussian deformation
fields constrained by kinematic structures for generating meshes of unseen states. Experiments show
the superior performance of our method on both synthetic and real-world data.

The limitations of REArtGS lie on the requirement of camera pose prior and challenges of objects with
transparent materials. Future works will introduce relative pose estimation to alleviate the dependence
on camera poses and employ physically-based networks to model the transparent materials.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: see the Abstract and Introduction part.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: please see Sec. [3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: please see Sec. [C.1]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental settings are illustrated in Sec. [D.2] and the whole project will be
released after the paper is accepted.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: please see the zip files of codes in the supplemental material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: please see Sec.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: the effect of random seed could almost be negligible since we set the same
initiation seed during experiments. Reproducibility can be guaranteed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: please see the Sec. [D.2}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: we have conformed with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]
Justification: Please see Sec.[I]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: this work poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: please see the main manuscript.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: this work does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: this work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: this work does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Overview

In the appendix, we first provide a detailed comparison highlighting our advantages over related
works in Sec. [B] Then we elaborately extend our method in Sec. [C|from the following four aspects:
unbiased SDF guidance theory, textured mesh extraction, joint type prediction, and multi-joint mesh
generation. In addition, more experimental details and results are presented in Sec[D] Finally, we
provide our codes and video in Sec. [E]

B Related Work, Extended

Recently several methods also attempt to integrate SDF representaion with 3D Gaussian primitives [37}
213313, [18] and have improved surface reconstruction quality. However, most approaches are limited
to normal regularization and pruning strategy of Gaussian primitives through SDF representation [37}
2,133, 13]], and the opacity of Gaussian primitives holds a more essential role in the a-blending. In
contrast, we leverage the unbiased SDF guidance to regularize Gaussian opacity fields, achieving
substantial geometric constraints and enhancing geometric optimization. 3DGSR [[L8] directly obtains
the opacity of Gaussian primitives through SDF-opacity conversion proposed in Neus [31]] and also
employs a bell-shaped activation function to control the distribution of SDF-opacity. Nevertheless,
since the SDF network simply utilizes Gaussian’s center as input, 3DGSR ignores the local features
of Gaussian primitives. In comparison, our approach combines the local rendering contributions with
SDF-opacity conversation results as Gaussian’s opacity values, yielding more reasonable distribution
of Gaussian opacity fields.

Most recently, ArtGS [17] also proposes a mesh reconstruction method for articulated objects.
Although demonstrating its effectiveness and robustness for mesh reconstruction, it relies on depth
inputs, limiting its performance when the 3D supervision is unavailable. Moreover, it still lacks
sufficient geometry constraints, leading to noisy results occasionally. In contrast, our REArtGS only
requires 2D RGB images as inputs and introduces additional geometry constraints, improving the
mesh reconstruction quality.

C Methodology, Extended

C.1 Unbiased SDF Guidance for Gaussian Opacity Fields, Extended

As defined in the main draft, the opacity of Gaussian primitives combines with the rendering
contribution €, formulated as:

|
Q»

g; i€

&; - max (e_%(r{“tz“‘%z”t‘*‘ozw)) (19)
where x;, = or, + try. X1, Oof, Iz, represent the spatial position, camera center, and ray direction
of Gaussian’s local coordinate system respectively. e attain its maximum value when ¢ = ¢* as
mentioned in the main draft. &; can be derived from ®; and the SDF-opacity conversation, where
®,. is also defined in the main draft, formulated as:

ke f ()

Pr(f(x) = m (20)

Although the composite function & (f(x)) attains its maximum when f(x) = 0, a non-alignment
still exists between the maximum points, formulated as:

t = argmax (& (x(t))) &t =t* (1)

This mismatch leads to a spatial deviation between & and € proposed in the main draft:

thias = (22)

argmax (&) — argmax(e)
¢ t
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Figure 7: The distribution of ¢-e (a) and SDF-6; (b) without the unbiased SDF regularization.

As illustrated in the main draft (Fig. 3), the deviation ¢, results in a disordered distribution of
the Gaussian opacity fields. We also present their distributions without regularization for intuitive
illustration in Fig. [7]

To tackle the deviation, we propose an unbiased SDF regularization Lypi,s defined in the main draft:

cunbias = Hf(o + t*r>||3 (23)

We present the theorem and proof that £,pi,s i capable of eliminating the deviation ty;,s in Theorem. |I|
and Proof. [[|below.

Theorem 1 Let f : R? — R be a multilayer perceptron (MLP) with smooth activation functions,
and let the spatial position be defined as x(t) = o + tr with camera center o € R? and ray direction
r € R3. Let argmax(e) = t*. Consider the activation function ®y, : R — R defined by:

t

ekz

If lim f(x(t)) = O, then the composite function @y, o f o x(t) attains its maximum at t = t*, i.e.,

=0.

argmax (&) — argmax(e)
t t

Proof 1 Define z(t) := f(x(t)). Compute the first derivative:

av (o
dz  dz \ (1+ ek=)2

kekz(l + ekz)2 _ lekzek’z(l + ekz)
(14 ek=)4
B kel (1 — ek?)
BT

Setting % = 0 gives the unique critical point at z = Q.

Evaluate the second derivative at z = 0:

d>®,,  K2eFE(1 — etz  e?h7)
dz? |y (1+eb=)1 2=0
k2(—4 2
By R
16 4
dq)k dq)k

For z > 0, = < 0; for z < O, = > 0. This proves that the maximum value of Py is
attained when z(t) = 0. Given that tlir? f(x(t)) = 0 and argmax(e) = t*, it can be proved that
—t* t

=0.

argmax (&) — argmax(e)
t t
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C.2 Textured Mesh Extraction, Extended

In this paper, we employ TSDF fusion [22] to extract textured meshes from the regularized Gaussian
opacity fields. We first obtain multi-view RGB renderings through a-blending, where the opacity o
and view-dependent spherical harmonics (SH) coefficients jointly modulate the color accumulation.
These per-pixel blended colors are then projected into the voxel block grid (VBG), ensuring that
high-opacity regions dominate the color field, while low-opacity areas are suppressed. Meanwhile,
we acquire the multi-view depth renderings via a-blending and conduct filtration with a minimum
opacity threshold 0.5 as well as a maximum depth threshold 5.0. Then the filtered depth renderings
are similarly integrated into the VBG. After multi-view fusion, a triangle mesh is extracted via
Marching Cubes and vertex colors are directly sampled from the VBG’s color fields. This process
effectively bakes the fused texture into the extracted mesh.

In the early experiments, we also attempt to use SDF combined with Marching Tetrahedra to extract
surface meshes, but this leads to a decline in surface quality. It is mainly because the SDF-opacity
conversion only uses the center positions of Gaussian primitives for approximate calculation during
training. Therefore, the SDF network only learns the spatial information at Gaussian’s center, making
it challenging to handle dense sampling points in mesh extraction. In contrast, the a-blending in
TSDF fusion incorporates the local information of the Gaussian primitives via Gaussian opacity
fields, yielding higher-quality mesh results.

C.3 Joint Type Prediction

Given an articulated object with unknown kinematic structure, we first obtain two coarse point clouds
P, and P, using the multi-view images from two states sg and s; respectively, based on the proposed
pipeline in Sec. [3.1] Note that it only takes few minutes since the training process only undergoes
3000 iterations. Then we use the Farthest Point Sampling (FPS) to produce the sparse point clouds

o and P7 for Py and P;. For each point p; € P{, we identify a point ¢; € P7 closest to it.
Subsequently, we filter out the dynamic points D with significant displacement through the distance
between p and ¢, formulated as:

D = {pi| |lpi — @l > 7} (25)

where 7 is the dynamic threshold.

After that, we determine the motion type of the dynamic point set D through the variance op of the

displacement direction angle.

1 2

oD = 7 (26)
] >

( Vi * Umean >
arccos | ————
[[vi ll | vmeanl

where v; = p; — ¢; and Vpean = I%\ > v;. Then we use a threshold o, to predict the motion type,

that is, the joint type of the articulated object. Concretely, we determine the dynamic part as prismatic
joint if op < 0,4 and as rotation joint in unsatisfactory cases.

C.4 Mesh Generation of Multi-Part Articulated Object

Mesh generation of multi-part articulated objects can be treated as a straightforward extension of
the two-part task for our approach. We can generate meshes for multi-part objects in unseen states
through a sequentially learning strategy. Specifically, given an articulated object with & dynamic parts
wgq,,» we start with fixing parts {wg,, ..., wa, } except for the dynamic part wg, , and the object can be
decomposed the into dynamic part w4, and static part w, (all the remaining points). After learning the
motion and segmentation mask for wg, , we sequentially perceive dynamic part wg,, while the static
part wg can be updated as: wy = Wq, — wq,, Where @y, denotes the remaining points except wq,. By
parity of reasoning, we achieve learning all motions and segmentation masks for the % parts, and the
mesh generation results for any unseen state can be obtained using the proposed pipeline in Sec.
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D Experiments, Extended

D.1 Dataset

The PartNet-Mobility dataset [32] is a synthetic dataset comprising articulated objects across 46
categories, characterized by a diverse scale and geometry. Following PARIS, we selected the same 10
categories for our experiments. Each category comprises 64 to 100 RGB views at two arbitrary states,
which are sampled randomly from their upper hemispheres. AKB-48 [15] is a real-world dataset
containing an extensive collection of articulated objects scanned in real indoor scenes. We select
6 categories with both two-part and multi-part objects and sample 100 RGB views at two arbitrary
states for each object.

D.2 Implementation

All the experiments are conducted on a single RTX 4090 GPU. Our approach constitutes a two-stage
procedure to perform surface reconstruction and generation respectively. For the reconstruction stage,
we train the 3D Gaussian primitives with SDF network for 3,1000 iterations, which includes an
warm-up phase consisting of 1,000 iterations for SDF initial learning. Then we employ the unbiased
SDF regularization in 1,500 to 1,6000 iterations, use the SDF-normal regularization and Eikonal
regularization during the entire training process. We perform the densification and pruning for 3D
Gaussian primitives from 1,500 iterations to 16,000 iterations. The training time of reconstruction
stage is about 60 minutes.

For the generation stage, we leverage the 3D Gaussian primitives optimized from the reconstruction
stage as initialization. We also set a warm-up phase with 3,000 iterations to train 3D Gaussian
primitives only using RGB images from the end state. Then we start to evaluate dynamic parts of
the articulated object and apply the deformation fields to them. For the prismatic joints, we set the
initial translation axis d to (1 x 1075,1 x 1076, 1 x 107%) and set the initial translation distance m
to 0.1. As for the rotation joints, we set the initial pivot point o,. to (0,0, 0) and use the initial angle
6 = 0.1 and rotation axis a = (1, 1, 1) to build the initial quaternion q. The total number of training
iterations during the generation stage is 30,000. The training time of the generation stage is about 10
minutes and the total training time for surface generation from scratch is approximately 70 minutes.

We also present an accelerated version of REArtGS. Specifically, we approximate Az as Z==r in
Eq.|3} where [ is set to 64. Moreover, we use Tiny-cuda-nn to accelerate the SDF network. These
accelerations reduce the reconstruction time to approximately 30 minutes with almost no impact on
performance.

D.3 Baselines

For the surface reconstruction experiments of articulated objects, we define the start states of ar-
ticulated objects as reconstruction targets, and compare the reconstruction results with existing
state-of-the-art methods: A-SDF [21]], Ditto [27]], PARIS [14], GOF [40] and ArtGS [17]. Note that
we implement ArtGS without depth supervision for a fair comparison. In particular, A-SDF uses
sampled point clouds as inputs and Ditto requires both point clouds and united robotics description
format (URDF) files of articulated objects. Following PARIS, we train A-SDF on the 10 categories of
the PartNet-Mobility dataset and employ the pretrained weights of Ditto to conduct the comparison.

As for the surface generation experiments, we compare the surface generation results with existing
state-of-the-art methods: A-SDF, PARIS, Deformable-3DGS (D-3DGS) [36] and ArtGS [17]. Since
the ground truth point clouds of unseen states are unavailable, we take the end states of the articulated
objects as generation targets and generate surface meshes from the canonical states. Besides, all the
methods employ point clouds (A-SDF) or RGB images (PARIS, D-3DGS, ArtGS, ours) from both
start and end states as training inputs.

D.4 Metrics, Extended

We employ CD (ws), CD (rs), Fl-score, EMD as the metrics of surface quality. We present the
detailed calculation below.
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The CD (ws) is defined as the mean of the shortest distance between two point clouds, which can be
formulated as following:

CD (ws) = 5 (5~ D> min [x—yl3
pSS (27)

y
where N7, N, represent the point number of output and ground truth respectively. The CD (rs) is
calculated by the sampled point clouds from the fragments between the rays cast by test cameras and
the surface mesh, shown as following:
1,1 . 9
CD (1) = o (55— > Jmin flx -yl

N,
S1 xeN51

1 .
T 2 min ly - x[3)

52 yeN.,

(28)

where Ng,, N, denote the point number of sampled output and sampled ground truth respectively.
Similarly, we adopt the same point cloud sampling method to calculate EMD score [41], which can
be formulated as:

1
EMD (N,,,N,,) = min —— X — p(x 29)
(N ) = i, ey 32 I o0

where ¢ is a bijection to identify the optimal correspondence between two point clouds.

Start State End State

4
£

K
K

Figure 8: The qualitative results of part segmentation. We set the dynamic parts to yellow and the
static parts to blue.

Fl-score is the harmonic mean between the precision P(d) and recall R(d) with distance threshold
d = 0.4 in this paper, formulated as:

F = ———~— (30)



D.5 Part Segmentation

We present the quantitative results of part reconstruction quality on PartNet-Mobility dataset in
Table. [6] and provide the qualitative results of part segmentation in Fig.[8] Our method achieves
the best mean results on both dynamic and static parts. It can be also observed that our REArtGS
successfully acquires accurate part decompositions, as shown in Fig.[8] This demonstrates that our
approach is capable of perceiving motion, and enables accurate part segmentation using the simple
yet effective heuristic method.

Table 6: Quantitative results for the part reconstruction quality on PartNet-Mobility dataset. CD-s |
and CD-m | represent the CD results of static part and dynamic part respectively. We bold the best
results and underline the second best results.

Metrics Method Stapler USB  Scissor Fridge Foldchair Washer Blade Laptop Oven Storage Mean
Ditto [9] 2.38 2.09 1.70 2.16 6.80 7.29 42.04 031 251 391 7.19

CD-s | PARIS [14] 0.96 1.80 0.30 2.68 0.42 18.31 0.46 025  6.07 8.12 3.94
) ArtGS [17] 3.45 2.05 0.57 2.03 0.16 20.97 0.44 0.76 9.20 13.51 5.31
REArtGS (Ours) | 1.47 0.82 0.25 1.53 0.31 13.04 0.69 0.48 6.59 7.30 3.25

Ditto [9] 3121  15.88  20.68 0.99 141.11 1289 19593  0.19 0.94 220 4220

CD-m | PARIS [14] 0.85 0.89 0.23 1.13 0.53 0.27 5.13 0.14 043 2067  3.06
ArtGS [17] 2.78 1.17 0.67 1.43 0.57 2.82 1.80 0.99 2.12 7.18 215

REArtGS (Ours) | 1.18 0.40 0.21 0.66 0.30 0.42 1.97 0.11 0.25 1239 179

D.6 Joint Parameter Estimation

We also present the joint parameter estimation quantitative results in Table. [7jand qualitative results
in Fig.[9]to evaluate motion learning. Following PARIS [14], we compute the orientation error (Ang
Err) between the predicted axis direction (a, d in our method) and the ground truth, and evaluate the
position error (Pos Err) for revolute joints through the position difference of the pivot point (o, in
our method). It can be observed that our method achieves the best results, which demonstrates our
superiority in motion learning and further demonstrates the high fidelity of our dynamic generation.

Fridge Scissor Stapler Storage

g B -

Figure 9: The qualitative results of joint parameter estimation. We show the textured mesh with red
arrow representing joint axis.

Table 7: Quantitative results for the joint parameter estimation on PartNet-Mobility dataset. Note
that, - denotes the absence results for prismatic joints. We bold the best results and underline the
second best results.

Metrics Method Stapler USB  Scissor Fridge Foldchair Washer Oven Laptop Blade Storage Mean
Ditto [9] 89.86 89.77 4498  89.30 89.35 89.51 0955 3.124 6319 7954 5422

Ang Err | PARIS [14] 0.069 0.065 0.019  0.001 0.020 0.082  0.028 0.034 0.001 0369 0.069
ArtGS [17] 0.062 0.034 0.039  0.038 0.048 0.081 0.066 0.052 0.072 0.020 0.051

REATrtGS (Ours) | 0.042 0.059 0.010  0.006 0.013 0.067 0.031 0.012 0.005 0201 0.045

Ditto [9] 0.201 5409 5698 1.021 3.768 0.661  0.129 0.014 - - 2.113

Pos Err | PARIS [14] 0.006  0.000 0.000  0.002 0.004 0.020  0.003  0.001 - - 0.005
ArtGS [17] 0.011  0.002 0.001  0.003 0.000 0.017  0.004  0.001 - - 0.004

REATrtGS (Ours) | 0.002  0.000  0.000  0.000 0.006 0.011  0.004 0.003 - - 0.003

D.7 Mesh Generation, Extended

To present our generation results more comprehensively, we provide the qualitative results in Fig. [T0]
corresponding to Table. 2]in the main draft. We generate surface meshes of the end state from the
canonical state using the Gaussian deformation fields. It can be observed that our generated results
still maintain smooth and high-quality surfaces, which proves the effectiveness of our method.
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Figure 10: The qualitative results of surface generation on PartNet-Mobility dataset. We employ the
deformable fields to generate surface meshes at the end state from the canonical state.

D.8 Computational Efficiency Analysis for Mesh Generation

We present the detailed training time in Sec.|[D.2} and also provide the qualitative inference time for
mesh generation in Table. [§] It can be observed that our method achieves the highest computational
efficiency. This is mainly because of our efficient design for the learnable motion parameters, which
obviates inference of deep networks.

Table 8: The qualitative results of inference time for mesh generation on PartNet-Mobility dataset.
The results are derived from the average of more than ten inference times.

Method | Time (second) |
Ditto [9] 36
D-3DGS 40
PARIS [14] 33
REATtGS (Ours) 21

D.9 Ablation Study, Extended

Table 9: The ablation study of canonical state setting on PartNet-Mobility dataset.

Joint Canonical | CD (ws) CD (rs) F1 EMD
0.0 3.54 0.717 0.280 0.573

Prismatic 0.5 5.69 1.203  0.242 0.608
1.0 6.10 1.304 0236 0.591

0.0 5.93 1.352  0.266 0.637

Revolute 0.5 5.88 1.150  0.275 0.556
1.0 7.13 1.591  0.194 0.680

To evaluate the effectiveness of the canonical state selecting, we compare the surface generation
quality under three settings of canonical state 0.0, 0.5, and 1.0 on PartNet-Mobility dataset. The
quantitative results can be found in Table. [9] For prismatic joints, the surface reconstruction quality
attains the highest when the canonical state is 0.0. It is mainly because the linear interpolation can be
performed more stably taking advantage of the vector space structure of Euclidean geometry.
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As for revolute joints, setting canonical state 0.5 achieves the best surface generation quality. This can
be mainly attributed to the fact that canonical state 0.5 leads to the angle-bounded parameterization
0 € [—m/2, /2], which can prevent the singularity in exponential coordinates when ||0|| > .

E Reproducibility and Video

We provide our codes in https://github.com/wd-ustc-cs/REArtGS and present a video to
show more visualization results in https://sites.google.com/view/reartgs/home.

27


https://github.com/wd-ustc-cs/REArtGS
https://sites.google.com/view/reartgs/home

	Introduction
	Related Work
	Articulated Object Shape Reconstruction
	Surface Reconstruction with 3DGS

	Method
	Reconstruction with Unbiased SDF Guidance
	Mesh Generation with Motion Constraints
	Optimization and Textured Mesh Extraction

	Experiments
	Experimental Setting
	Mesh Reconstruction Performance
	Mesh Generation Performance
	Ablation Studies
	Generalization to the Real World

	Conclusion and Future Work
	Overview
	Related Work, Extended
	Methodology, Extended
	Unbiased SDF Guidance for Gaussian Opacity Fields, Extended
	Textured Mesh Extraction, Extended
	Joint Type Prediction
	Mesh Generation of Multi-Part Articulated Object

	Experiments, Extended
	Dataset
	Implementation
	Baselines
	Metrics, Extended
	Part Segmentation
	Joint Parameter Estimation
	Mesh Generation, Extended
	Computational Efficiency Analysis for Mesh Generation 
	Ablation Study, Extended

	Reproducibility and Video

