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ABSTRACT

We propose a novel interpretation technique to explain the behavior of structured
output models, which learn mappings between an input vector to a set of output
variables simultaneously. Because of the complex relationship between the com-
putational path of output variables in structured models, a feature can affect the
value of output through other ones. We focus on one of the outputs as the target
and try to find the most important features utilized by the structured model to de-
cide on the target in each locality of the input space. In this paper, we assume an
arbitrary structured output model is available as a black box and argue how con-
sidering the correlations between output variables can improve the explanation
performance. The goal is to train a function as an interpreter for the target out-
put variable over the input space. We introduce an energy-based training process
for the interpreter function, which effectively considers the structural information
incorporated into the model to be explained. The effectiveness of the proposed
method is confirmed using a variety of simulated and real data sets.

1 INTRODUCTION

The impressive prediction performance of novel machine learning methods has motivated re-
searchers of different fields to apply these models in challenging problems. However, their complex
and non-linear inherence limit the ability to explain what they have learned. Interpretation gets more
attention when we want to discover the reasons behind the model’s decision and be sure about the
trustworthiness and fairness of a trained machine learning model in areas such as medicine, finance,
and judgment. Additionally, interpreting a model with a satisfying prediction accuracy in a scien-
tific problem, which results in understanding relationships behind the data, leads to new knowledge
about the problem domain.Murdoch et al. (2019)

In many real-world applications, the goal is to map an input variable to a high-dimensional structured
output, e.g., image segmentation and sequence labeling. In such problems, the output space includes
a set of statistically related random variables. As considering these dependencies can increase the
prediction accuracy, many structured output models have been introduced. Many of these methods
use graphical models, including random fields, to capture the structural relations between variables.
Most define an energy function over these random fields, with a global minimum at the ground
truth. Therefore, an inference is needed to find the best configuration of output variables for input by
minimizing the energy function in the prediction step. Early efforts to utilize deep neural networks
in structured output problems adopt deep networks to extract high-level features from the input
vector to incorporate them in calculating the energy function Peng et al. (2009); Chen et al. (2015);
Schwing & Urtasun (2015). The computational complexity of the inference step in models that
use random fields limits their ability to incorporate complex structures and interactions between
output variables. Recent works in Belanger & McCallum (2016); Gygli et al. (2017); Belanger et al.
(2017); Graber et al. (2018) propose to adopt deep networks instead of random fields to model the
structure of the output space. Nevertheless, complex interactions between problem variables in such
models make their interpretation too challenging, specifically when we focus on the model behavior
in predicting a single output variable.
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This paper attempts to interpret a structured output model by focusing on each output variable sep-
arately. Our approach to model interpretation is based on instance-wise feature selection. Its goal
is to find the relative importance of each input feature in predicting a single output variable. The
subset of important features can vary across the input space. The complicated interactions between
computational paths of output variables in structured output models cause critical challenges for
finding a subset of important features associated with each output variable. A feature may not be
used directly in the computational path of output but affects its value through relations with other
outputs. To compute the importance of a feature for a target output variable, we should aggregate its
effect on all output variables that are correlated to this target.

Existing approaches of model interpretation can be divided into two groups, model-based and post
hoc analysis Murdoch et al. (2019). The model-based interpretation approach encourages machine
learning methods that readily provide insight into what the model learned. However, it leads to
simple models that are not sufficiently effective for complex structured output problems. Here we
follow the post hoc analysis and try to explain the behavior of a trained, structured output model
provided as a black box. Many interpretation techniques to find the importance of features as a
post hoc analysis have been introduced. Works in Zhou & Troyanskaya (2015); Zeiler & Fergus
(2013); Zintgraf et al. (2017) make perturbations to some features and observe their impact on the
final prediction. These techniques are computationally inefficient in situations where we search for
the most valuable features. Since we should perform a forward propagation for all possible per-
turbations, in another trend, works in Simonyan et al. (2013); Bach et al. (2015) back-propagate
an importance signal from the target output through the network to calculate the critical signal of
features by calculating the gradient of the target w.r.t the input features. These models are com-
putationally more efficient than perturbation-based techniques because they need only one pass of
propagating. However, they need the structure of the network to be known. As this approach may
cause a saturation problem, DeepLIFT Shrikumar et al. (2017) proposes that instead of propagat-
ing a gradient signal, the difference of the output from a reference value in terms of the difference
of features from a reference value to be considered. In addition to these approaches, other ideas
have also been introduced in model interpretation. Authors in Ribeiro et al. (2016) introduce LIME
which trains a local interpretable surrogate model to simulate the behavior of a black box model in
the vicinity of a sample. It randomly selects a set of instances of the input space around that sample
and obtains the black box prediction for them, and trains the surrogate model by this new dataset.
Therefore this interpretable model is a good approximation of the black box around the locality of
the selected sample. Shapley value, a concept from the game theory, explains how to distribute an
obtained payout between coalition players fairly. The work in Lundberg & Lee (2017) proposes the
kernel SHAP for approximating the shapely value for each feature as its importance for a prediction.
As an information-theoretic perspective on interpretation, the work in Chen et al. (2018) proposes to
find a subset of features with the highest mutual information with the output. This subset is expected
to involve the most important features for the output.

Existing interpretation techniques can be applied to explain the behavior of a structured model, w.r.t.
a single output, by ignoring other output variables. However, none of these approaches consider
possible correlations between output variables and only analyze the marginal behavior of the black
box on the target. In this paper, we attempt to incorporate the structural information between output
variables during training the interpreter. As our goal is to present a local interpreter, which is trained
globally as Chen et al. (2018), we train a function over the input space which returns the index
of most important features for decision making about the target output. Since the value of other
output variables affects the value of the target, incorporating them into the training procedure of an
interpreter function may lead to higher performance and decrease our uncertainty about the black
box behavior. To the best of our knowledge, this is the first time an interpreter is designed mainly for
structured output models, and dependencies between output variables are considered during training
the interpreter.

2 PRELIMINARIES AND MOTIVATION

Structured output prediction models map an arbitrary n-dimensional feature vector x ∈ X to the
output y ∈ Y where y = [y1, y2, . . . , yd] includes a set of correlated variables with known and
unknown complex relationships and Y shows a set of valid configurations.
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Figure 1: The generative relationship between problem variables.

Now we explain our intuition about an interpreter, which explains the behavior of a structured output
model in predicting a single output variable. We assume a structured model is available as a black
box about which we do not know. Our goal is to find indices of k important features of x which
affect the black box prediction about the target output yt. As for different localities of the input
space these indices may vary, the proposed interpreter is a function IN t(x;α) : X → {0, 1}n
over the input space with a set of parameters α which returns an n-dimensional k-hot vector. In this
vector, the value of 1 shows the indices of selected k important features for target output yt.

We define Θsb as the set of all parameters and hidden variables inside the structured black box. The
probabilistic graphical model of Fig. 1 describes dependencies between problem variables. In this
figure, x shows the input variable, ysbt and ysb−t = {ysbi |i 6= t} show black box predictions and
αIN t

is the set of parameters of IN t. The bidirectional edge between ysbt and ysb−t emphasizes
the correlation between the outputs of a structured model. In fact αIN t

is determined based on Θsb
and the black box architecture, and the final prediction of the ysbt does not directly affect its value.
However, here, Θsb is a latent variable which makes active paths between αIN t and output values
ysbt and ysb−t. Therefore αIN t and ysb−t are dependent random variables and we have:

H(αIN t
|x,ysbt ) > H(αIN t

|x,ysbt ,ysb−t) (1)

where H(.|.) shows the conditional entropy. We use the strict inequality because αIN t and ysb−t are
dependent random variables. The left term measures our uncertainty when we train the interpreter
only by observing the target output ysbt . This inequality confirms that the uncertainty is decreased
when we consider observed ysb−t during estimating αIN t . Motivated by this fact we propose a
training procedure for an interpreter IN t which incorporates the structural information of the output
space by observing the black box prediction on all output variables.

We call our method SOInter as we propose it to train an Interpreter specifically for Structured Output
models.

3 PROPOSED METHOD

We consider psb(y|x) as the distribution by which the structured black box predicts the output as
follows,

ysb = arg max
y

psb(y|x). (2)

Our goal is to train the interpreter IN t(x;α) which explores a subset of most important features that
affects the value of black box prediction on the target output yt in each locality of the input space. As
the desired interpreter detects the subset of most important features, we expect perturbating other
ones does not change the black box prediction of the target yt. Motivated by this statement, we
are encouraged to compare the black box prediction for the target output when a sample and its
perturbated version are passed through the black box. The interpreter IN t(x;α) returns a k-hot
vector in which the value of 1 shows the index of a selected feature. We define x̃, a perturbated
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version of x, as follows,

x̃ = x� IN t(x;α) (3)

in which only features selected by the interpreter are included, and other ones are filled with zeros.
Therefore by passing x and x̃ through the black box, we expect the value of the tth element of
predictions to be the same, and we can define a penalty over the value of the target in these two
situations. However, since the structure of the black box is unknown and the arg max operation
in equation 2 is non-differentiable, a loss function that directly compares these two output values
can not be used to find the optimal interpreter. Therefore, in the following subsection, we try to
achieve a penalty according to the difference between these values for the target, which can transfer
the gradient through an interpreter block.

3.1 OBTAINING A TRACTABLE LOSS FUNCTION

We consider ỹ as the black box prediction when masked inputs x̃ are given to the black box i.e.,

ỹ = arg max
y

psb(y|x̃). (4)

We define distribution qα to estimate the probability density function of ỹ. We assume qα is from
the exponential family and can be parameterized as follows,

qα(y|x) =
exp(−Eq(x̃, y))∫

y′ exp(−Eq(x̃, y′))
(5)

As we define qα the distribution over the output variables when the masked input is given to the black
box, Eq can be considered as an energy function describing the structural information incorporated
into the black box. We train a deep neural network to estimate this energy block, using a set of
samples from the input space and their associated outputs predicted by the black box. For an input
feature x, the obtained energy function Eq(x, y) has the minimum value when y is equal to the black
box prediction for x. The detailed architecture of this block depends on the data inherence. Different
techniques to train an energy network have been introduced recently Belanger & McCallum (2016);
Belanger et al. (2017); Gygli et al. (2017) which can be used to train Eq in a pre-training phase.
Here we use the work in Gygli et al. (2017). Since after the pre-training phase, the only unknown
parameters of qα are parameters of IN t, we show it by the index of α.

Now to find the optimum value for α, we define the following penalty over the log-likelihood of qα,

SL(x, ysbt , ỹ; α) = max{0, (log qα([ỹt, ỹ−t] |x)− log qα(
[
ysbt , ỹ−t

]
|x) + L(ỹt,y

sb
t ))}.

(6)

When the target values for an input x and its perturbated version x̃ are the same, i.e. ỹt = ysbt , the
penalty value is zero. Otherwise, as ỹ maximizes qα, SL(x, ysbt , ỹ; α) has a positive value which
is proportional to the difference between the desired target value ysbt and the most offending answer
ỹt. Using the log-likelihood of the joint distribution qα(.|x) in calculating the penalty, which ỹ−t
is the most probable value for other outputs according to the qα, leads to incorporate the structural
information between output variables.

Now we attempt to achieve a more simpler form of equation 6. According to equation 5 the log-
likelihood of qα equals to,

log qα(y|x) = −Eq(x̃, y)− log

∫

y′
exp(−Eq(x̃, y′)). (7)

Because the second term of equation 7 for both of log qα(
[
ysbt , ỹ−t

]
|x) and log qα([ỹt, ỹ−t] |x)

is the same, we can write the equation 6 as follows,

SL(x, ysbt , ỹ; α) = max{0, (Eq(x̃,
[
ysbt , ỹ−t

]
)− Eq(x̃, [ỹt, ỹ−t]) + L(ỹt,y

sb
t ))}. (8)

We propose to iteratively calculate the most offending answer ỹ for the current qα and then mini-
mize the penalty function of equation 8 according to α. It is worth mentioning that we consider a
constraint only over the ysbt as we intend to find the best interpreter for the target. As Eq is a deep
neural network and x̃ is an element-wise multiplication of x and IN t(x;α), the gradient over the
penalty of equation 8 can be back-propagated through the interpreter block.
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Figure 2: The architecture we use to train the IN t for the structured black box determined by sb.
The interpreter block includes a neural network Wα and a Gumbel-Softmax (GS) unit. The input
feature x is passed through the IN t and a k-hot vector is obtained. The black box prediction is
calculated for two input vectors:(1) the feature vector x and (2) the element-wise multiplication of
the x and IN t(x;α). Obtained target outputs ysbt and ỹt, alongside ỹ−t, are separately passed
through energy block Eq .

The final proposed iterative optimization procedure for an interpreter block can be expressed as
follows,

α(k) = arg min
α

Ep(x)[SL(x, ysb
t , ỹ

(k−1); α)]

ỹ(k) = arg max
y

psb(y|x� IN t(x;α(k))) (9)

where ysb = arg maxy psb(y|x). In the first step, the expected penalty of equation 8 is minimized
to find the optimum value for the parameter α. The penalty function SL is minimized when we find
a value for α which makes

[
ysbt ,y−t

]
the strict maximum of qα(.|x) with the margin proportional

to L. In the second step, the black box prediction for the input which is masked by the output of the
current interpreter is calculated.

The initial value α(0) is selected randomly and its associated ỹ(0) is obtained using the second step
of equation 9. The algorithm is continued until the value of the penalty SL does not considerably
change which is usually obtained in less than 100 iterations. Here we consider L = I(ysbt , ỹt)
which is an indicator function

3.2 THE INTERPRETER BLOCK

The interpreter IN t includes a deep neural network, with a set of parameters α, followed by a
Gumbel-Softmax Jang et al. (2017) unit. The detailed architecture of the deep network depends
on the inherence of x. The dimension of the interpreter output is the same as the feature vector
x. Fig. 2 describes the architecture used for training the interpreter IN t(x, α). The output of the
deep networkWα shows the importance of the elements of the feature vector x. To encourage the
interpreter to find top k important features associated with the target output yt, we use the Gumbel-
Softmax trick as proposed in Chen et al. (2018). To obtain top k important features, we consider
the output ofWα(x) as parameters of the categorical distribution. Then we can independently draw
a sample for k times. Each sample is a one-hot vector in which the element with the value of 1
shows the selected feature. To have a k-hot vector, we can simply get the element-wise maximum of
these one-hot vectors. However this sampling process is not differentiable and we use its continuous
approximation introduced by the Gumbel-Softmax trick. Considering following random variables,

gi = − log(− log(ui)) (10)
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where ui ∼ Uniform(0, 1), we can use the re-parameterization trick instead of direct sampling
fromWα(x) as follows:

ci =
exp{log(Wα(x)i + gi)/τ}

Σj exp{log(Wα(x)j + gj)/τ}
(11)

The vector c is the continuous approximation of the sampled one-hot vector. To have k selected
features, we draw k vectors cj , j = 1 . . . k and obtain their element-wise maximum as follows
Chen et al. (2018),

IN t(x, α)i = max
j
{cji , j = 1 . . . k} (12)

Finally, Algorithm 1 of Appendix A summarizes what we propose to train the interpreter IN t.

4 EXPERIMENTS

We evaluate the performance of our proposed interpreter on both synthetic and real datasets. In
section 4.1, we define two arbitrary energy functions to synthesize structured data. We compare
the performance of SOInter with two well-known interpretation techniques, Lime and Kernel-Shap,
which are frequently used to evaluate the performance of interpretation methods, and L2X Chen
et al. (2018) which proposes an information-Theoretic method for interpretation. None of these
techniques are specifically designed for structured models. Indeed, they only consider the target
output and ignoring other ones. In section 4.2 and 4.3, the efficiency of SOInter is shown with two
real text and image datasets.

4.1 SYNTHETIC DATA

Here we define two arbitrary energy functions on input vector x and output variables y, E1 and E2 in
equation 13, which are linear and non-linear functions respectively according to the input features.

E1 = (x1y1 + x4)(1− y2) + (x2(1− y1) + x3)y2

E2 = (sin(x1)y1y3 + |x4|) (1− y2)y4 +
(

exp(
x2

10
− 1)(1− y1)(1− y3) + x3

)
y2(1− y4)

(13)

Input features are randomly generated using the standard normal distribution. Output variables are
considered as binary discrete variables. For each input vector x, we found the corresponding output
by the following optimization,

y∗ = arg min
y
E(x, y) (14)

where E shows the energy function from which we attempt to generate data. E1 describes the energy
value over a structured output of size 2 and E2 describes an output of size 4. For each scenarios, we
simulate input vectors with the dimension of 5, 10, 15 and 20.

For each generated dataset, we train a structured prediction energy network introduced in Gygli et al.
(2017). As it has the sufficient ability to learn energy functions in equation 13, we can assume it
has successfully captured the important features with a negligible error rate. We adopt each inter-
pretation techniques to explain trained energy networks. According to equation 13 first four features
affect the value of outputs. Fig. 3 compares the accuracy of results obtained by each method during
the interpretation. Diagrams of Fig. 3 show results for target outputs y1 and y2 in E1 and two arbi-
trary outputs y3 and y4 in E2. As there may be randomness in interpretation methods, we run each
interpreter five times for each dataset. Each line in the diagrams shows the average value, and the
highlighted area shows the standard deviation. SOInter has an overall better performance compared
to others.

As the accuracy measures the exact match of the subset of important features with ground truths, we
consider an order for features and report the median rank of important ones in Fig. 4 as proposed in
Chen et al. (2018). As the first four features are the solution, the desired median rank is 2.5 in all
situations. As shown, SOInter has the nearest median rank to 2.5 nearly in all cases.
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Figure 3: The accuracy of Lime, Kernel-Shap, L2X and SOInter as a function of input size. For each
energy function E1 and E2 results on two outputs are reported. The SOInter performance is overall
better than others.

As the number of input features is increased, the performance of methods is generally degraded.
This is because the ratio of important features compared to the size of the input vector is decreased,
which can lead to confusion of the interpreter.

However, the obtained results confirm the robustness of SOInter for the more significant number of
input features. Thus the proposed method is more reliable when the size of the input vector is large.

4.2 MULTI-LABEL CLASSIFICATION ON BIBTEX DATASET

Bibtex is a standard dataset for the multi-label classification of texts. Each sample in Bibtex involves
an input feature vector corresponding to 1836 words mapped to a 159-dimensional output vector.
Elements of the output vector are associated with a set of tags that describes the sample subject.
We train a structured prediction energy network (SPEN) as a multi-label classifier on Bibtex with a
desirable accuracy as shown in Gygli et al. (2017). A SPEN as a structured black box is a challenging
benchmark for an interpreter because of its ability to capture more complicated relations between
output variables. During interpreting this classifier with SOInter, we select an output variable, i.e.,
a tag, as a target of explanation and find the top 30 features related to this tag for each sample.
According to SPEN decisions, we aggregate those top features over all samples for each tag and find
the top 30 features which are expected to be correlated to this tag. Table 1 shows the general top 30
features for different 3 tags. More results are provided in Table 3 of Appendix A. As shown, word
sets are meaningfully correlated to their corresponding tags. In addition, we highlight bold words
that are correlated to each tag confirmed by human experts.
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Figure 4: The median rank obtained by Lime, Kernel-Shap, L2X and SOInter as a function of input
size. For each energy function E1 and E2 results on two outputs are reported. The ground truth
value in all situations is 2.5. The SOInter performance is overall better than others.

Table 1: Results on Bibtex dataset

TAG TOP 30 IMPORTANT FEATURES ASSOCIATED TO EACH TAG

GAMES

GAMES-LEARNING-GAME-DESIGN-HOW-EXPERIENCES-NEW-SOCIAL-IDEA
FUTURE-MEDIUM-BEYOND-SCHOOL-LOGIC-CONTEXTS-OPPORTUNITIES
COMPUTERS-COMPUTER-POINT-KNOW-TEACHERS-EDUCATIONAL-ARGUE
BUILDING-DEVELOP-VIDEO-EDUCATION-KINDS-NEED-DEMONSTRATES

HCI

INTERFACES- USER - CASE- P- LEARNING - E - B - CONTENT
SEMANTIC -ENERGY- CHEMICAL - MOLECULAR - DENSITY
2004 -APPLIED-BETTA-SIMULATIONS-FISH-2000-MINIMAL
APPLICATIONS-COGNITIVE-SPLENDENS-PHYSICS-CONFERENCE
THESE-EDUCATION-APOLIPOPROTEIN-EFFICIENT-OBSERVED

MOLECULAR

MOLECULAR-BIOINFORMATICS-GENOME-DYNAMICS-STRUCTURES
SMALL-FORCE-VELOCITY-PARTICLES-SEQUENCE-EXTERNAL
WHILE-MOLECULES-FLUID-PARTIAL-PROTEINS-THREE-SEMANTIC
WEB-ORGANIZED-FORCES-ACID-VERSUS-MODEL-MOTIVATION
REDUCING-REVERSE-BIOLOGICAL-ALGORITHMS-ADDRESSED

4.3 IMAGE SEGMENTATION ON WEIZMANN-HORSE DATASET

Image segmentation is another structured output learning task in which the image is partitioned into
semantic regions. Here we again train a SPEN for segmentation of 24×24 Weizmann-horse dataset.
Each image of this dataset is partitioned into two regions which determines the borders of the horse.
During the interpretation, we consider a pixel as the target and find pixels of the image that affect
the target’s output.
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Figure 5: The red pixel shows the target and green ones are important features selected by SOInter.
The number of important features is considered 5, 10, 50 and 100 respectively for images of each
row. Important features are mostly placed in the locality of the target.

In Fig. 5 the pixel in [10, 10] is considered as target and the interpretation results for arbitrary
images are shown. We do experiments for different numbers of important features of 5, 10, 50,
and 100. The red pixel shows the target, and green ones are obtained important input features as
expected green pixels are placed in the locality of the target.

Table 2 compares the accuracy and post-accuracy of the SPEN in finding the label of the target during
the segmentation process. Post-accuracy measures the model performance when only the selected
features are passed through the SPEN and un-selected ones are masked with zero. These measures
are shown for different choices for the number of important features. The negligible difference
between the accuracy and post-accuracy confirms that the interpreter selects pixels which are the
most effective ones in labeling the target. In addition, the increased value of the post-accuracy in
some situations shows that omitted features confuse the segmentation model, i.e. SPEN, as a noise
signal. These observations show that SOInter successfully selects important features which affect
the SPEN decision for the target output.

Table 2: Accuracy and post accuracy for target pixel segmentation

Num. of imp. features 5 10 50 100
ACCURACY 0.877 0.872 0.868 0.866
POST-ACCURACY 0.872 0.855 0.868 0.872

5 CONCLUSION

We have presented SOInter, an interpreter for explaining structured output models. We focused on a
single output variable of a structured model, available as a black box, as the target. Then we train a
function over the input space, which returns a subset of important features for the black box to decide
on the target. This is the first time an interpreter has been designed explicitly for structured output
models to the best of our knowledge. These models learn complex relations between output variables
which ignoring them while interpreting a single output can decline the explanation performance. We
used an energy model to learn the structural information of the black box and utilize it during the
interpreter’s training. The effectiveness of SO-Inter is confirmed using synthetic and real structured
datasets.
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A APPENDIX

Algorithm 1 The training procedure of the interpreter IN t(x;α)

1: function INTERPRETER-BLOCK(x, α)
2: return Gumbel-Softmax (Wα(x))
3: end function
4:
5: function SL-CALCULATOR(x, ỹ, α)
6: x̃← x� Interpreter-Block(x, α)
7: ysb ← arg maxy psb(y|x)
8: L ← |ỹt − ysbt |
9: SL ← max{0, Eq(x̃,

[
ysbt , ỹ−t

]
)− Eq(x̃, [ỹt, ỹ−t]) + L}

10: return SL
11: end function
12:
13: function TRAINING-INTERPRETER(t)
14: α(0) ← Sample Standard Normal distribution
15: ỹi

(0) ← arg maxy psb(y|x� Interpreter-Block(xi, α
(0)), for i = 1...N

16: k = 1
17: while the penalty does not change considerably do
18: α(k) = Adam-minimizerα ΣNi SL-calculator(xi, ỹi(k−1), α)

19: ỹi
(k) = Adam-minimizery − psb(y|xi � Interpreter-Block(xi, α

(k))), for i = 1...N
20: k = k + 1
21: end while
22: end function

Table 3: Results on Bibtex dataset

TAG TOP 30 IMPORTANT FEATURES ASSOCIATED TO EACH TAG

CLUSTERING

DATA-CLUSTERING-E-MORE-THAT-WERE-TYPE-5-ANNUAL-REAL
CLUSTER-APPLICATIONS-OPTIMIZED-FUNCTIONAL-SAME-RETRIEVAL
DESIGN-AUTOMATIC-PROCEEDINGS-PROBLEM-GIVEN-QUERY-THESE
SELECTION-ALSO-CHEMISTRY-HAS-EFFECTIVE-BOUND-INFORMATION

DEFFUSION

TERM-WEIGHT-DIFFUSION-MOBILITY-CONFERENCE-OFTEN
DECREASE-IMAGING-SCIENCE-INCREASED-DISCOVERY-SOLUTION
QUALITY-E-ENZYME-FUNCTION-PROPOSE-WHICH-POSSIBLE
DEVELOPERS-SUBJECTS-MUCH-AVAILABLE-APPROACH-PAPER
YEARS-DETAIL-HETEROGENEOUS-IDEAS-ENGINEERING

ELECTROCHEMISTRY

REVIEW-QUANTUM-NETWORKS-PROPOSE-IT-WORKSHOP-INTERNATIONAL
WE-DISCUSS-COMPUTER-FIRST-COLLABORATIVE-WEB-MECHANICAL
CONTEXT-ELECTROCHEMICAL-DO-FOUND-APOLIPOPROTEIN
LIPOPROTEIN-ELECTRODE-APPROACH-PHYSICS-AMPEROMETRIC-HIGH
STATISTICAL-LANGUAGE-APPLICATIONS-CONCEPTUAL-IMMUNOASSAY

GRAPH

OBSERVATIONS-SERUM-ACIDS-OBJECTS-PAST-UNIT
PARADIGM-NODES-FREQUENCIES-PERFORMED-GRAPHS-SOCIAL
WEAK-MEASUREMENTS-PROCEDURES-ANTI-ANTIBODY-FACT
EASY-AT-LITERATURE-RELATION-PATHWAY-PARAMETER
ADAPTATION-CREATING-UNIVERSAL-DISCOVERY-FAMILY-COST

ONTOLOGY

ONTOLOGY-LANGUAGES-IUPAP-XXIII-TOP-INTEGRATE-KNOWN
KEY-STATISTICAL-GIVEN-BOOK-PHYSICS-CONFERENCE
DISCUSSED-METHODS-SPLENDENS-OBSERVED-C-SHOW-DETERMINE
PROPERTIES-MECHANISMS-EVALUATING-MONITORING
INTERNATIONAL-SOFTWARE-IMAGES-CONVENTIONAL-FOUND-FISH
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